
 

 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
1 of 34 

 

 

 

 

 

 

 

 Initial Agent-Based Model 

Work Package 1 Tasks 1.1-1.3 Deliverable 1.2 
 

Authors 
 

Artikis, Alex – NCSR 

Atsidakou, Alexia – NCSR 

Michelioudakis, Evangelos – NCSR 

Montagud, Arnau – BSC  

Monti, Michele – CRG 

Ponce de León, Miguel – BSC 

Pradas, Gerard – BSC  

Saxena, Gaurav – BSC 

Tartaglia, Gian Gaetano – CRG/ITT 

Valencia, Alfonso – BSC 

Vicente, David – BSC 
 

 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
2 of 34 

Distribution list: 
 

 

Group: Others: 

 

WP Leader: BSC 

Task Leader: BSC 

Internal Reviewer Partner: NCSR Demokritos  

                                                                   (NCSR) 

INFORE Management Team 

INFORE Project Officer 

 

 

 

Document history: 
 
 

Revision Date Section  Page Modification  

0.1 16/03/2020 All 1-3 Creation. 

0.5 30/03/2020 All 1-25 All sections have been drafted. 

0.8 09/04/2020 All 1-38 Version for internal review completed. 

0.9 14/04/2020 All 1-39 Revision from NCSR performed. 

1.0 28/04/2020 All All Revisions from NCSR incorporated. 

 

 

Approvals: 
 

 

 

 

 

First Author:   Arnau Montagud (BSC)    Date: 09/04/2020 

 

 

Internal Reviewer:  Evangelos Michelioudakis, Elias Alevizos Date: 14/04/2020 

   (NCSR) 

 

Coordinator:          Antonios Deligiannakis (Athena)   Date: 29/04/2019 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
3 of 34 

Table of contents: 
 

1 Executive Summary .............................................................................................................................................. 4 

2 Introduction ........................................................................................................................................................... 5 

3 Agent-based modeling in Life Science use case ................................................................................................... 6 

3.1 Use of agent-based modeling in biology 6 
3.2 Definition of the agent-based modeling used in the present project. 7 

4 Integration of the agent-based modeling in our multiscale Model ........................................................................ 9 

4.1 The agent-based component 9 
4.2 The environment component 10 
4.3 The signalling network module 12 
4.4 The cell cycle module 13 

5 Multiscale Model HPC Implementation.............................................................................................................. 15 

5.1 Design and parallelization 15 
5.2 Experiments 19 
5.3 Discussion 22 

6 Extreme model exploration with optimization algorithms .................................................................................. 25 

6.1 Model exploration of simulation parameters 25 
6.2 Use of different optimization metrics to find proper sets of parameters 27 
6.3 Preliminary results 29 

7 Conclusions and Future Work ............................................................................................................................. 31 

8 References ........................................................................................................................................................... 32 

9 Glossary .............................................................................................................................................................. 34 

 

  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
4 of 34 

1 Executive Summary 

This deliverable describes the agent-based model currently used in the Life Science use case of INFORE, the 

parameters used in its simulation and its HPC implementation. Additionally, we present preliminary results of a model 

exploration framework that is extremely useful for the study of models’ parameters. 

 

The ultimate goal of this use case is to provide a “virtual laboratory” for studying cancer growth and evolution by 

using multiscale models of tumors. Thus, by integrating a center-based agent model into a multiscale model (MSM) 

allows us to study different aspects crucial for the development and growth of tumors. Indeed, given the biophysical, 

biochemical, and biomechanical factors present in these problems, MSM can help identify the factors that drive a 

given treatment to be a success or a failure. This MSM consists of several components and modules that are hereby 

detailed and that operate at very different time scales: environment, cells, signaling pathways, and cell cycle behavior. 

Furthermore, to scale our simulations we need to parallelize our MSM. With that in mind we have started by 

parallelizing the environment component, which has the smallest time scale. This successful parallelization enables 

us to address the parallelization of the cells component, a task that is currently ongoing. These scaled-up simulations 

using the Barcelona Supercomputing Center (BSC) MareNostrum4 will incorporate forecasting techniques for various 

events of interest.  

 

Lastly, we present a model exploration technique that allows us to define the structure and hierarchy of the model’s 

parameters and to evaluate its sensibility to the parameters’ perturbation. All these developments will facilitate the 

design of different set-ups that tally cancer tumor growth conditions with increased number of cells, altered 

microenvironmental physical properties, different cell types, as well as, study the interaction between cancer cells and 

the immune system.  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
5 of 34 

2 Introduction 

Modeling of signaling networks has proven its usefulness in a variety of health-related projects since it has allowed 

researchers to include vast amounts of data and study their behavior. Boolean modeling is particularly appropriate 

when the scientific question is qualitative, as is the case of many signaling studies, and it has been used for very 

different goals such as drug discoveries (Flobak et al., 2015), high-throughput mutant analyses (Montagud et al., 

2017) and patient-specific outcomes (Béal et al., 2019).  

Multiscale models (MSM) are needed to model dynamics with very different timespans, as they can integrate cell 

signaling, cell-cell and cell-environment behavior, which take place at different time scales and use different 

mathematical approaches. For instance, multiscale modeling frameworks combining agent-based and Boolean models 

are useful as they can bridge from genes’ activity to cells’ phenotypes, to physical interactions among cells or cells 

with their environment. Agent-based models represent cells as single agents of a cell population and account for the 

interactions between cells, small diffusing molecules and the environment. These agents can move, grow, divide and 

stick to their neighboring cells and environment. Agent-based models have been successfully used to explore tumor 

spheroids and tumors boxed in ducts (Ghaffarizadeh et al., 2018), to study defibrillation of a human heart in arrhythmia 

(Bernabeu et al., 2010) and liver regeneration (Hoehme et al., 2010). Boolean models, on the other hand, account for 

signaling pathways, cell cycle and cells’ response to external signals that are integrated and can drive the cell to behave 

in a given manner: proliferate, migrate, divide, etc. Boolean models have been successfully used to predict mutants’ 

effect on cancer phenotypes (Cohen et al., 2015), cell sensitivity to drugs and the synergistic effects between pairs of 

drugs (Flobak et al., 2015). Multiscale models are, thus, a promising genotype-to-phenotype mapping framework, 

which allows studying different kinds of variations and their effect on the cell’s individual and collective behavior. 

Models have been used to study genetic variations by evaluating the effect of all knock-outs mutants and over-

expression of genes in cells’ behavior (Montagud et al., 2017). Likewise, environment variations effects on cells’ 

behaviors have also been studied using models with interesting results. MSMs allow for the study of tumor growth 

and evolution, bridging the gap between different levels of description, and connecting events that occur at different 

scales (An, 2010). However, due to the uncertainties regarding the underlying biology, MSMs involve a high number 

of parameters that need tuning (Ozik et al., 2018). Indeed, MSMs would benefit from the thorough exploration of the 

combination of these perturbations. To that end, high-performance computing (HPC) clusters, such as the Barcelona 

Supercomputing Center (BSC) MareNostrum 4 supercomputer, are ideal environments for intensive simulation of 

MSMs that produce extreme-scale data streams as outputs.  

In the INFORE project, the Life Science use case is tasked to provide a “virtual laboratory” for studying cancer 

growth and evolution by using multiscale models of tumor systems (Trisilowati and Mallet, 2012). The goal of this 

use case is to facilitate the design, test, and optimization of cancer treatments based on combinations of different drugs 

and dosage strategies. In this deliverable we detail the agent-based model used in our MSM, its different modules and 

how they communicate among them. Also, we detail its internal parameters and their ranges. Additionally, we present 

the first version of our HPC implementation for this MSM framework. Lastly, we present and discuss some 

preliminary results on the model exploration performed on this MSM framework using a model of drug resistance. 

  

https://www.zotero.org/google-docs/?YKRufh
https://www.zotero.org/google-docs/?YKRufh
https://www.zotero.org/google-docs/?YKRufh
https://www.zotero.org/google-docs/?g8ffen
https://www.zotero.org/google-docs/?g8ffen
https://www.zotero.org/google-docs/?g8ffen
https://www.zotero.org/google-docs/?g8ffen
https://www.zotero.org/google-docs/?hgYy0K
https://www.zotero.org/google-docs/?hgYy0K
https://www.zotero.org/google-docs/?hgYy0K
https://www.zotero.org/google-docs/?mbC4Vx
https://www.zotero.org/google-docs/?mbC4Vx
https://www.zotero.org/google-docs/?mbC4Vx
https://www.zotero.org/google-docs/?4HY0uo
https://www.zotero.org/google-docs/?4HY0uo
https://www.zotero.org/google-docs/?4HY0uo
https://www.zotero.org/google-docs/?7lfNyu
https://www.zotero.org/google-docs/?7lfNyu
https://www.zotero.org/google-docs/?7lfNyu
https://www.zotero.org/google-docs/?5W9Dbp
https://www.zotero.org/google-docs/?5W9Dbp
https://www.zotero.org/google-docs/?5W9Dbp
https://www.zotero.org/google-docs/?UmU9Du
https://www.zotero.org/google-docs/?UmU9Du
https://www.zotero.org/google-docs/?UmU9Du
https://www.zotero.org/google-docs/?FUBKdP
https://www.zotero.org/google-docs/?FUBKdP
https://www.zotero.org/google-docs/?FUBKdP
https://www.zotero.org/google-docs/?cPHwDS
https://www.zotero.org/google-docs/?ecQtIs
https://www.zotero.org/google-docs/?ecQtIs
https://www.zotero.org/google-docs/?ecQtIs
https://www.zotero.org/google-docs/?V4AxV8


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
6 of 34 

3 Agent-based modeling in Life Science use case 

3.1 Use of agent-based modeling in biology 

Agent-based modeling (ABM) is a computational approach for modeling and simulating systems composed of 

autonomous agents, the environment, and the interaction between agents and the environment (Macal and North, 

2010). ABM has been applied to model biological systems at different scales. For instance, the use of ABM to study 

population dynamics has a long tradition in ecology (Grimm et al., 2006). Moreover, ABM has also been used to 

model biological systems at the cellular and subcellular scale (Anderson, 2005). One of the most relevant features of 

the ABM framework is that it allows simulating processes taking place at different time and space scales, e.g. diffusion 

processes and biochemical reactions, cell movement and mechanical interactions and population-level dynamics such 

as competition for resources. 

 

In the field of cancer research, ABM has been used for modeling and simulating different properties of tumors. For 

instance, how tumor morphology can evolve driven by selective pressure from the microenvironment (Anderson et 

al., 2006), the metabolic reprogramming in cancer cells (Shan et al., 2018) or the stress response in growing tumor 

spheroids (Van Liedekerke et al., 2019). Furthermore, multiscale ABM has been used to accelerate the discovery of 

immune-tumor interactions (Ozik et al., 2019) and to optimize drug dosage and regime to improve treatment efficacy 

in solid tumors (Letort et al., 2018). 

 

From the modeling perspective, there are at least five different discrete or individual-based approaches that have been 

used to model a multicellular system (Osborne et al., 2017). All these approaches treat individual cells as discrete 

entities but differ in the way the cells are represented. Also, these approaches have very different focuses, as they are 

meant to model different properties of the individual cells as well as their interactions. For example, the simplest 

model is the cellular automaton Figure 1a) where the domain is a lattice and each cell may be occupied by a cell-

agent. Cellular automata have been used for studying the interaction between tumor cells and the extracellular matrix 

in 2D monolayers. Other approaches are depicted in Figure 1b-e (See Osborne et al., 2017 for a complete review).  

 

 
Figure 1: Schematics of the most typical cell-based models considered in biology studies. (a) Cellular 

automaton. (b) Cellular Potts model. (c) Overlapping spheres model. (d) Voronoi tessellation model. (e) 

Vertex model. from (Osborne et al., 2017). 

 

Furthermore, the different cell-based models depicted in Figure 1 are implemented and available as programming 

frameworks or standalone software packages. Some of the most widely used tools include Chaste (Mirams et al., 

2013), a general-purpose modeling package for multicellular systems in a lattice model; CompuCell3D (Swat et al., 

2012), a flexible scriptable modeling environment that implements a cellular Potts model (Graner and Glazier, 1992); 

CellSys (Hoehme and Drasdo, 2010), a modular software tool for efficient off-lattice simulation; and PhysiCell 

(Ghaffarizadeh et al., 2018), an agent-based extensible framework for 3D multicellular simulations. 

 

Herein we have focused on the overlapping spheres model (Figure 1c) as it can represent cells’ movement, attachment 

and growth in a more implicit way than its more abstract alternatives. The overlapping spheres model was used to 

study the process of tumor cell growth in different arrangements or architectures (e.g. 2D monolayers, 3D spheroids) 

and treated with different drugs or combinations of drugs. Moreover, we have chosen the PhysiCell framework, 

together with its extension PhysiBoSS as the basis of our developments because of its OpenMP-based implementation 

and its extensibility. Nonetheless, OpenMP has a limited distribution and it’s the reason behind our efforts towards an 

MPI-OpenMP implementation of PhysiCell in the section below. 

https://www.zotero.org/google-docs/?osxWVB
https://www.zotero.org/google-docs/?osxWVB
https://www.zotero.org/google-docs/?pQSvlf
https://www.zotero.org/google-docs/?pQSvlf
https://www.zotero.org/google-docs/?pQSvlf
https://www.zotero.org/google-docs/?Upni5J
https://www.zotero.org/google-docs/?PJQwjL
https://www.zotero.org/google-docs/?PJQwjL
https://www.zotero.org/google-docs/?PJQwjL
https://www.zotero.org/google-docs/?PJQwjL
https://www.zotero.org/google-docs/?8HT3OA
https://www.zotero.org/google-docs/?8HT3OA
https://www.zotero.org/google-docs/?8HT3OA
https://www.zotero.org/google-docs/?RLrO5r
https://www.zotero.org/google-docs/?RLrO5r
https://www.zotero.org/google-docs/?RLrO5r
https://www.zotero.org/google-docs/?jahYxz
https://www.zotero.org/google-docs/?jahYxz
https://www.zotero.org/google-docs/?jahYxz
https://www.zotero.org/google-docs/?psLo1X
https://www.zotero.org/google-docs/?psLo1X
https://www.zotero.org/google-docs/?psLo1X
https://www.zotero.org/google-docs/?ARVegV
https://www.zotero.org/google-docs/?ARVegV
https://www.zotero.org/google-docs/?ARVegV
https://www.zotero.org/google-docs/?CfGPNC
https://www.zotero.org/google-docs/?CfGPNC
https://www.zotero.org/google-docs/?CfGPNC
https://www.zotero.org/google-docs/?zQqXSx
https://www.zotero.org/google-docs/?zQqXSx
https://www.zotero.org/google-docs/?zQqXSx
https://www.zotero.org/google-docs/?zQqXSx
https://www.zotero.org/google-docs/?a1tgzk
https://www.zotero.org/google-docs/?a1tgzk
https://www.zotero.org/google-docs/?a1tgzk
https://www.zotero.org/google-docs/?a1tgzk
https://www.zotero.org/google-docs/?uzRJZJ
https://www.zotero.org/google-docs/?0zCdCW
https://www.zotero.org/google-docs/?xoppbJ
https://www.zotero.org/google-docs/?xoppbJ
https://www.zotero.org/google-docs/?xoppbJ


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
7 of 34 

3.2 Definition of the agent-based modeling used in the present project 

As described in the previous section, the development of the agent-based model for simulating tumor growth and the 

responses to different drug regimens is implemented on the top of PhysiCell framework and is mostly based on its 

extension PhysiBoSS. As we detail in further sections, the PhysiCell framework manages the simulation of i) the 

environment, ii) the cell-agent mechanics, including movement and physical interaction and iii) the basic agent 

behavior by providing standard models for cell growth, division and death (Figure 2).  

 

 
Figure 2: Visual representation of a multiscale simulation of a population of cells. On the left side, a 

population of cells arranged in a 3D spheroid are depicted. Cell colors indicate cells exhibiting alternative 

phenotypes. For instance, the brown core at the center of the spheroid corresponds to necrotic cells that die 

because of the lack of nutrients. On the right side panel, the different attributes or properties of each 

individual cell agent are shown. 

 

Nonetheless, most of the behaviors of the cell agents are governed by complex rules that are not part of the basic 

agent-based mechanisms, as is the signaling transduction pathway, the intracellular machinery that integrate and 

process external and internal stimulus and transduce them into cell fate decision, e.g. start replication cycle or commit 

into apoptosis. In order to capture part of the intracellular processes and their dynamics, a model of cell signaling can 

be integrated within each individual cell-agent. This extension adds another layer to the multi-scale model allowing 

for a more detailed description of the signal transduction process which, for instance, can be used to simulate the effect 

of drugs in a more realistic way. This motivated the development of PhysiBoSS (Letort et al., 2018), a framework 

which combines PhysiCell with MaBoSS1.  

 

PhysiBoSS extends the functionalities of PhysiCell by allowing it to model and simulate the cell signaling network 

which processes inputs and dictates the cell fate (e.g. proliferate, commit apoptosis). Importantly, this extension adds 

a fourth time-scale in the model, the Boolean network time to the original three time-scales from PhysiCell: the 

diffusion, the mechanics and the cell division (Figure 3). At each time-scale, the engine queries the specific component 

and evaluates if it needs to update any of the component. The diffusion ∆𝑡𝑑𝑖𝑓𝑓, typically 0.01 minutes, is the time 

where changes in the environmental entities are considered: their diffusion, reactions and transport. The mechanics 

∆𝑡𝑚𝑒𝑐ℎ, typically 0.1 minutes, is the time where changes in the cell physical behavior are considered: cell movement, 

cell-cell attachment, cell-environment attachment, etc.. The cell division ∆𝑡𝑐𝑒𝑙𝑙, typically 6 minutes, is the time where 

PhysiCell queries if there is any change in the cell growth, cell division and the different death modes considered 

(Apoptosis and Necrosis). Finally, the Boolean network ∆𝑡𝐵𝑁, typically 10 minutes, is the time where PhysiCell 

queries if there is any change in the cells’ behavior as a result of the signaling pathway activation. 

 
1 MaBoSS is an environment for stochastic simulations of Boolean models of cell signaling networks (Stoll et al., 

2012, 2017). 

https://www.zotero.org/google-docs/?Dx528v
https://www.zotero.org/google-docs/?Dx528v
https://www.zotero.org/google-docs/?Dx528v
https://www.zotero.org/google-docs/?xI3LlM
https://www.zotero.org/google-docs/?xI3LlM
https://www.zotero.org/google-docs/?xI3LlM
https://www.zotero.org/google-docs/?xI3LlM


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
8 of 34 

 

 
Figure 3: Multiscale simulation main loop pseudo-code and the different time scales.  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
9 of 34 

4 Integration of the agent-based modeling in our multiscale Model 

The agent-based model previously described was included into a multiscale modeling framework to allow us to 

perform the complex simulations required by the INFORE Life Science use case. This multiscale Model (MSM) 

frames the agent-based model (Ghaffarizadeh et al., 2018; Letort et al., 2018) with processes taking place at multiple 

time and space scales, enabling the simulation of the diffusion of chemical entities in the environment, such as oxygen 

or drugs; intracellular pathways, such as drug-targeted or cell cycle proteins; and cells’ mechanics, such as movement 

and friction. 

 

This MSM allows us to connect different scales of description and to find causal relationships among them (Figure 

4). In this sense, our MSM can be divided in three differentiated components: environment, agents and signaling. The 

environment component is the one that simulates all the diffusion, creation and uptake of chemical entities that roam 

in the environment. The agents’ component is the one that takes care of the population level and simulates the cells 

dynamics, their growth, death, movement and overall physical behavior among cells and among them and their 

surrounding environment. These first two components are simulated by PhysiCell. The signaling module is the one 

that takes care of the individual cells’ level and simulates the behavior of each cell in response to its environment and 

its neighboring conditions. This component is simulated by PhysiBoSS. Finally, the cell cycle module that takes care 

of how the cells grow and divide, is embedded into PhysiCell. 

 

 
Figure 4: Scheme of the desired multiscale modeling framework. Continuous line indicates that the module 

has been incorporated into the framework, dotted line represents ongoing work. 

 

Our MSM is based on PhysiCell, a powerful lattice-free physics-based agent-based cell simulator for 2D and 3D 

multicellular systems (Ghaffarizadeh et al., 2018) and PhysiBoSS (Letort et al., 2018), a tool that merges PhysiCell 

with the stochastic Boolean model simulator MaBoSS (Stoll et al., 2012, 2017). All of these tools are open-source 

and are released under free open-source licenses. As this MSM is critical to reach INFORE and its Life Science use 

case’s objectives and KPIs, notable efforts have been made to upgrade it and scale it up. 

4.1 The agent-based component 

As described before, the population dynamics are simulated using the agent-based modeling engine from PhysiCell 

(Ghaffarizadeh et al., 2018) (https://github.com/MathCancer/PhysiCell) that allows studying different physical 

properties’ variations (cell-cell adhesions, cell-matrix adhesions) under different microenvironmental conditions 

(presence of oxygen, signaling molecules or extracellular matrix), as depicted in Error! Reference source not found.. 

In our case, this agent-based engine has been connected to MaBoSS to simulate the signaling network of each 

individual agent following the structure of PhysiBoSS (Letort et al., 2018), (https://github.com/sysbio-

curie/PhysiBoSS/wiki). This allows us to have a stochastic Boolean model simulator (MaBoSS) that predicts cell fates 

embedded in a flexible agent-based model (PhysiCell) that simulates multicellular systems. 

 

https://www.zotero.org/google-docs/?CkoA4h
https://www.zotero.org/google-docs/?CkoA4h
https://www.zotero.org/google-docs/?CkoA4h
https://www.zotero.org/google-docs/?CkoA4h
https://www.zotero.org/google-docs/?CkoA4h
https://www.zotero.org/google-docs/?A700i7
https://www.zotero.org/google-docs/?A700i7
https://www.zotero.org/google-docs/?A700i7
https://www.zotero.org/google-docs/?GzbLYs
https://www.zotero.org/google-docs/?GzbLYs
https://www.zotero.org/google-docs/?GzbLYs
https://www.zotero.org/google-docs/?9tspxu
https://www.zotero.org/google-docs/?9tspxu
https://www.zotero.org/google-docs/?9tspxu
https://www.zotero.org/google-docs/?5nvRw7
https://www.zotero.org/google-docs/?5nvRw7
https://www.zotero.org/google-docs/?5nvRw7
https://github.com/MathCancer/PhysiCell
https://www.zotero.org/google-docs/?qpmSda
https://www.zotero.org/google-docs/?qpmSda
https://www.zotero.org/google-docs/?qpmSda
https://github.com/sysbio-curie/PhysiBoSS/wiki
https://github.com/sysbio-curie/PhysiBoSS/wiki


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
10 of 34 

The different engines are connected such that the output of one is the input of another. Specifically, the availability of 

nutrients or the presence of drugs around a cell agent are used as inputs of the signaling model of that cell and the 

output of the signaling model is used to update the behavior of the cell agent. In a typical MSM simulation, each single 

sphere corresponds to a cell agent and the color code indicates the cellular phenotype (Figure 2). For instance, the 

brown-colored cells at the centre of the structure correspond to necrotic cells, i.e. cells that die as a consequence of 

the lack of nutrients and oxygen. 

 

Table 1: Parameters for cell geometry and mechanical interactions for breast epithelium MCF-7 cell line. 

Parameter Value Dimensions 

Cell volume 2494 µm³ 

Nuclear volume 540 µm³ 

Cell radius 8.41 µm 

Nuclear radius 5.05 µm 

Cell fluid fraction 0.75 dimensionless 

Heterotypic cells adhesion min 0.15 dimensionless 

Homotypic cells adhesion min 0.1 dimensionless 

Heterotypic cells adhesion max 0.5 dimensionless 

Homotypic cells adhesion max 0.75 dimensionless 

Cell motility amplitude 5 dimensionless 

Cell movement persistence 0.5 dimensionless 

Cell movement polarity coefficient 0.2 dimensionless 

Cell cell repulsion 5 dimensionless 

Cells to ECM adhesion min 2 dimensionless 

Cells to ECM adhesion max 2 dimensionless 

 

4.2 The environment component 

The aforementioned agents are not standing in the void, instead they are communicating with a rich surrounding 

environment Figure 5) with chemical entities governed by reaction-diffusion equations (Figure 5b). This environment 

is a dynamic one, where these entities are created, diffuse, and can be uptaken dynamically by the agents or can be 

added from fountains or drained from sinks, as can be seen in Table 2. For this, PhysiCell uses BioFVM, a Finite 

Volume Method (FVM) based simulation software, to simulate the chemical microenvironment with a vector of 

reaction-diffusion Partial Differential Equations (PDEs) with both bulk source/sinks and cell-centered sources and 

sinks (Ghaffarizadeh et al., 2016). 

 

https://www.zotero.org/google-docs/?yx4h8v
https://www.zotero.org/google-docs/?yx4h8v
https://www.zotero.org/google-docs/?yx4h8v


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
11 of 34 

 
Figure 5: Domain definition, representation and simulation of the molecular densities that define the 

microenvironment. a) The domain is discretized in voxels and each voxel stores the amount of each molecular 

densities in this space point and at a given time step. b) the systems of partial differential equations that 

govern the time evolution of the different densities. c) an example of the visual representation of the profile of 

a given density (oxygen) at the final time step for a domain of size 10003. Bright yellow areas are substrate-

producing areas and dark blue areas are areas with less substrate concentration. 

 

In practical terms, this means that our MSM can include diffusible chemicals such as oxygen, nutrients and drugs, as 

well as patches of dense static cells that impede the advancement of otherwise migrating cells. These elements allow 

setting up complex microenvironments that enable modelers to tackle real-life scenarios like the ones found in cancer 

growth and migration. For instance, we can set up a scenario with different substrate-producing areas in the 

environment and dynamically track the substrate diffusion (Figure 5c). 

 

Table 2: Parameters for free-roaming chemical entities in the environment component. 

Parameter Value Dimensions 

Oxygen initial condition 38 mmHg 

Oxygen diffusion 1x105 µm2/min 

Oxygen decay rate 0.1 min-1 

TNF concentration 0 - 0.5 ng / mL 

TNF diffusion 1200 µm2/min 

TNF decay rate 0.0275 min-1 

Frequency of TNF injections 150 minutes 

Time point at which TNF is removed 

from the system 
1440 minutes 

Duration of the regular TNF injections 10 minutes 

Duration of initial injection of TNF 60 minutes 

Dirichlet boundary condition Boolean dimensionless 

 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
12 of 34 

4.3 The signalling network module 

The signal transduction machinery of a cell is composed of a network of molecular components (e.g. protein 

complexes, small molecules), which allows the cell to sense external signals and adjust its internal state to respond to 

different stimuli (Tyson et al., 2003). For instance, a schematic representation of different signaling pathways involved 

in prostate cancer is depicted in Figure 6. The transduction of signals like the availability of nutrients, the presence of 

DNA damage, etc. (Table 3) will induce the cell to respond by changing its internal state or the phenotype of the cell 

like moving, growing, dividing, etc.  

 

Table 3: Parameters for cellular processes. 

Parameter Value Dimensions 

Replication rate 0.02 hours-1 

Apoptotic rate 5.32 x 10-5 seconds-1 

Cell cycle rate 0.001 min-1 

Oxygen uptake rate 32-38 attomol s-1 cell-1 

Oxygen sensing threshold 1 dimensionless 

TNF uptake rate 0.0025 fg/cell/min 

TNF secretion rate 0.1 fg/cell/min 

TNF sensing threshold 1 dimensionless 

Time of signaling model evaluation 10 minutes 

 

These transductions of signals are described with signaling networks that are complex systems that exhibit non-trivial 

behaviors. These networks are oftentimes studied with mathematical and computational models where the nodes, 

representing proteins can be active or inactive and are connected through signed interactions, indicating activation or 

inhibition (Calzone et al., 2018). The node state at a given time point is computed through an activation function, 

which integrates the different inputs of the node. The model state is computed by aggregating all the node states at a 

given time. In this project, we will simulate and analyze signaling models using the stochastic Boolean approach 

implemented in MaBoSS, as it allows us to compute the probabilities associated with the different phenotypes. 

https://www.zotero.org/google-docs/?jdhxmz
https://www.zotero.org/google-docs/?jdhxmz
https://www.zotero.org/google-docs/?jdhxmz
https://www.zotero.org/google-docs/?GRWYzt
https://www.zotero.org/google-docs/?GRWYzt
https://www.zotero.org/google-docs/?GRWYzt


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
13 of 34 

 
Figure 6: Network model of the AGS cell line signaling. Nodes correspond to proteins or complexes of 

proteins. Red and green arrows correspond to inhibitory and activation interactions, respectively. Red and 

green nodes indicate those nodes associated with anti-survival and pro-survival phenotypes, respectively. 

4.4 The cell cycle module 

In this section we present the implementation of a novel model of the cell cycle inside the simulation architecture of 

PhysiBoSS. This model differs from the rest of models already present in PhysiBoSS as it’s more detailed, more 

realistic and its different phases have different cellular phenotypes that could be modeled using agents. First of all it 

is worthy to remember that nearly all the tumors have some kind of dysfunctionality related to the cell cycle. Indeed, 

this is the biochemical time regulator and it orchestrates the cellular phases during the growth. In turn, it is tuned on 

or off in respect to the external and internal cues. Thus, being able to correctly regulate the activity of the cell cycle is 

a critical feature for cancer development. 

 

Currently, the cell cycle model implemented in PhysiBoSS is based on a set of transitions among the different cell 

states G1, S, G2, M (Figure 7). Each of these phases is responsible for a certain task of the growth, like biomass 

production, DNA replication or mitotic division. At the moment, there is no quantitative connection with the growth, 

indeed the cell growth rate is independent of its cellular phase.  

 

 
Figure 7: Cell cycle module currently considered in PhysiBoSS. 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
14 of 34 

Furthermore, one of the operative definitions of the cell phase is the set of genes that are expressed in that time. This 

means that each phase of the cell cycle can drive the metabolism in different directions that in turn will allow the cell 

to grow or not. In order to make the model more realistic together with the implementation of metabolic models relying 

on flux balance analysis (FBA) approximations, we are developing a cell cycle dynamic that can drive the genes to an 

oscillatory behavior, as it happens in a real cell cycle that in turn will drive the metabolism. 

The model here describes the oscillatory behavior of the gene expressions and its relative transcripts during the cell 

cycle. First, we consider a central core of genes that are responsible for these behaviors and their checkpoints, as well 

as their connection with the rest of the genome. These networks have been taken from experimental and computational 

models from literature (Yang et al., 2018, 53; Gérard and Goldbeter, 2011) and they regulate the oscillation of the 

genome and the checkpoint dynamic of the cell cycle. We implement a stochastic dynamic of this network (Figure 8). 

 

We aim to connect this stochastic dynamic with the genes relative to each phase and in turn connect it to the FBA 

module. This connection will allow us to turn on and off the metabolism for different phases of the cell cycle building 

up a more realistic model of the growth dynamic. 

 
Figure 8: Gene expression levels oscillations driven by the cell cycle are reproduced using stochastic 

simulations coupled to a cell cycle model. 

  

https://www.zotero.org/google-docs/?wZt9Gw
https://www.zotero.org/google-docs/?wZt9Gw
https://www.zotero.org/google-docs/?wZt9Gw


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
15 of 34 

5 Multiscale Model HPC Implementation 

We are currently working in the deployment of the MSM simulation framework PhysiBoSS in BSC’s supercomputer, 

the MareNostrum 4. This involves the parallelization process using different technologies such as OpenMP and MPI 

to scale-up our simulations in terms of numbers of cells considered. To address this complex scaling-up, we decided 

to first address the most basic level of simulation: the environment part and its dedicated engine, BioFVM. Our current 

work aims to parallelize the core kernels of BioFVM to support distributed parallelism using Message Passing 

Interface (MPI) enabling one to solve much larger problems with greater resolution and limited time. 

 

BioFVM (Ghaffarizadeh et al., 2016) is a Finite Volume Method (FVM) based simulation software for solving PDEs 

(Partial Differential Equations) that model complex processes like uptake, release and diffusion etc., of substrates for 

multicellular organisms. BioFVM is capable of handling multiple substrates and can simulate the biological processes 

such as decay, diffusion using both cell and bulk sources. The following diffusive PDE on a computational domain Ω 

(and boundary ∂Ω) is solved for a substrate density vector ρ:  

 

∂ρ/∂t = ∇ · (D ◦ ∇ρ) − λ ◦ ρ + f (1),  
 

with the boundary condition (D ◦ ∇ρ) · n = 0 on ∂Ω and the initial condition ρ(x,t 0 ) = g in Ω. In equation (1) above, 

D is the matrix of (constant) diffusion coefficients, λ is the decay rate, f denotes the net source term (further consisting 

of a bulk term and cell term) and ◦ denotes the element-wise product of vectors.  

 

BioFVM also forms the core component of PhysiCell (Ghaffarizadeh et al., 2018), an agent-based multicellular system 

simulation software that is capable of simulating the cells’ phenotypes i.e. the movement, interaction of cells etc., to 

be studied as a function of the diffusing substrates and signaling factors. PhysiCell is capable of handling models for 

cell cycle, apoptosis, necrosis etc., among many others. The design and implementation of BioFVM is such that it is 

scalable within a compute node, enjoys a minimum dependency on external libraries, is capable of running a multi-

million cell simulation on desktops, and supports both 2D/3D simulations, among others. The software has been 

implemented in C++ and uses Open Multiprocessing (OpenMP) (OpenMP Architecture Review Board, 2018) to 

support shared memory parallelization.  

 

The code takes advantage of extensive vectorization and the diffusion equation shown above is solved using a fast 

direct algorithm called the Thomas algorithm for solving a tridiagonal system of linear equations. Multiple instances 

of such linear systems are solved simultaneously by multiple threads that also take advantage of extensive 

vectorization. Such multiple instances of linear systems and solutions are made possible by splitting a higher 

dimensional PDE into multiple related 1-dimensional PDEs. The method that makes this splitting possible is called 

the locally 1-dimensional method or lod for short (Ghaffarizadeh et al., 2016, 2018). Though BioFVM exhibits 

efficiency, reduced dependencies, ease of use, its greatest limitation is that it is limited to a single node only i.e. it is 

not capable of running on multiple nodes of an HPC cluster to solve a single, coherent problem. Thus, the problem 

size is limited by the memory of a single node. Our current work aims to parallelize the core kernels of BioFVM to 

support distributed parallelism using Message Passing Interface (MPI) (Message Passing Interface Forum, 2015) 

enabling one to solve much larger problems with greater resolution and to reduce the time to solution.  

With this work, we have a two-fold aim:  

1. Expose the internal design of BioFVM to aid the Scientific and HPC community to better understand the 

working of BioFVM and thus, be able to evaluate possible future parallelization strategies.  

2. Elaborate on our design, decisions, parallelize the core kernels and present preliminary parallelization results.  

We are also motivated by the fact that BioFVM forms a core component of PhysiCell (Ghaffarizadeh et al., 2018). 

Thus, it is imperative to parallelize the core kernels of BioFVM to support distributed parallelism before PhysiCell 

can be parallelized. Nevertheless, BioFVM as a stand-alone software is useful enough to warrant parallelization. 

Further, to the best of our knowledge, no literature exists that discusses the distributed parallel design and 

implementation of BioFVM using MPI. 

5.1 Design and parallelization  

BioFVM supports only shared memory parallelization using OpenMP. We present the internal design of BioFVM and 

use MPI to parallelize the core kernels to enable it to support Hybrid parallelization (i.e. MPI + OpenMP). BioFVM 

supports both 2D and 3D domains and we use the latter for describing the internal design and our parallelization 

strategy. A 3D domain in BioFVM is divided into Voxels (Volumetric pixels). The complete, regular domain itself is 

https://www.zotero.org/google-docs/?4gv70N
https://www.zotero.org/google-docs/?4gv70N
https://www.zotero.org/google-docs/?4gv70N
https://www.zotero.org/google-docs/?2GFRyV
https://www.zotero.org/google-docs/?2GFRyV
https://www.zotero.org/google-docs/?2GFRyV
https://www.zotero.org/google-docs/?MAUopD
https://www.zotero.org/google-docs/?sk0IXD
https://www.zotero.org/google-docs/?sk0IXD
https://www.zotero.org/google-docs/?sk0IXD
https://www.zotero.org/google-docs/?Sipzdn
https://www.zotero.org/google-docs/?aO0Kcj
https://www.zotero.org/google-docs/?aO0Kcj
https://www.zotero.org/google-docs/?aO0Kcj


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
16 of 34 

described by specifying the minimum and maximum limits of the domain in each direction. Once the dimensions of 

(cubic) voxels are specified, the total number of voxels contained in the domain becomes fixed. It is important to 

mention that in 2D, the number of voxels in the third dimension is automatically taken as one. Thus, in effect, a 2D 

domain can be visualized as a 3D domain with the width of the third dimension being a single voxel. We now describe 

the internal designs that were chosen to parallelize the core kernels of BioFVM.  

 

The external environment in BioFVM is represented by an object of the Microenvironment class. This class declares 

the major entities used in the Thomas algorithm for solving a Tridiagonal system of linear equations. Further, it also 

contains as public members, the objects of the class Cartesian_Mesh and a pointer to the Agent_Container class (for 

brevity of space, the individual members are not being listed, but are depicted in Figure 9). At a global level, we set 

the name of the environment, the density of various substrates and the measurement units for the mesh space and time 

using an object of the Microenvironment class. Further, the most important group of functions that this class contains 

are the functions that calculate the number of global (homogeneous) voxels (given the dimensions of both the domain 

space and the voxels). The resizing functions are actually members of the Cartesian_Mesh class mentioned above. 

 

 
Figure 9: Unified Modeling Language (UML) diagram of the BioFVM MPI implementation with its different 

classes and relationships.  

 

The first step in parallelization is domain decomposition or domain partitioning (Saxena et al., 2016; Saxena, 2018; 

Saxena et al., 2018) where the domain is divided into multiple smaller sub-domains and assigned to a specific MPI 

process. This approach of dividing the space was preferred to the alternative approach of dividing the total work 

instead of dividing the sub-domain as it was found difficult to quantify the total work in such a way (and since this 

approach leans towards a master-slave design pattern that is generally not scalable). 

 

We assume that the x-direction (unit-stride dimension) in BioFVM goes from left to right, the y-direction going from 

bottom to top and the z-direction going inwards. These directions are different from the directions assumed for a 3D 

MPI Cartesian topology i.e. the MPI Cartesian topology assumes the x-direction going from top to bottom, the y-

direction going from left to right and the z-direction going inwards. This assumption of directions is important: 

1. to establish a consistent terminology,  

2. to visualize the partitioning of sub-domains and  

3. to derive the global index of the voxels on each MPI process.  

https://www.zotero.org/google-docs/?QUVv0Q
https://www.zotero.org/google-docs/?QUVv0Q
https://www.zotero.org/google-docs/?QUVv0Q
https://www.zotero.org/google-docs/?QUVv0Q
https://www.zotero.org/google-docs/?QUVv0Q
https://www.zotero.org/google-docs/?QUVv0Q


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
17 of 34 

 
Figure 10: A 3D domain of dimensions 4×4×4 can be visualized as four 2D plates of dimension 4×4 arranged 

one after the other. A pure 1D domain partition of 4 MPI processes in the x-direction divides the voxels 

numbered from 1 to 64 into 4 parts. Rank 0 process contains voxel IDs 4n+1, rank 1 process contains voxel 

IDs 4n+2, rank 2 process contains voxel IDs 4n+3 and rank 3 process contains voxel IDs 4n+4, where n = 

0,1,2,...,15. Data is contiguous in the x-direction and the distance between 2 consecutive elements in the y and 

z direction is 4 and 16, respectively. 

 

Furthermore, a pure x-decomposition refers to the division of the x-direction of BioFVM among multiple processes. 

It can now be noted (according to our assumptions) that creating a pure x-decomposition requires creating a 1D MPI 

topology that has processes only in the y-direction. Thus, if P is the total number of MPI processes, dims[3] represents 

MPI processes in the x, y and z direction, respectively, we set dims[0]=1, dims[2]=1 and dims[1]=P to obtain a pure 

x-decomposition in BioFVM. To further clarify, the stride between consecutive elements in a direction increases in 

the order z > y > x, with x being the unit-stride dimension. The impact of a good domain decomposition on the 

performance of the diffusion solver in BioFVM cannot be emphasized enough and it’s further detailed in the following 

sections. For simplicity, we use a 1D MPI Cartesian topology of processes instead of a 3D topology to divide the 

physical domain into sub-domains although the mapping functions between MPI ranks, voxel indexes and points in 

3D space apply to general 3D decompositions in 3D space (Figure 10).  

 

Before a domain decomposition is performed, each MPI process initializes an object of the Microenvironment class. 

Further, each process in our design maintains the local and global values of the number of voxels, local voxel indexes 

(mesh_index), global mesh index of the local voxels and the center of each local voxel’s global coordinates. The group 

of resizing functions that perform the domain partitioning are members of the Cartesian_Mesh class mentioned above. 

Algorithm 1 shows how the domain partitioning algorithm assigns voxels to each MPI process. First the global 

dimensions of the domain and the voxel dimensions are used to decide the number of local voxels. This is followed 

by the calculation of the global coordinates of the centers if voxels (for brevity lines 1-6 in Algorithm 1 only show 

this for the x-direction and y- and z-direction are analogous). Further, since each voxel must maintain the local and 

global mesh index, a local start of the global mesh index is calculated on each process, which then is used to assign 

the global mesh index to each voxel (see the triple nested loop in Algorithm 1). Apart from the domain decomposition, 

a list of the immediate directional neighbors of each voxel is also maintained (not shown in Algorithm 1). Such a 

scheme must accommodate for the cases when there is no local left/right neighbor or when the process is aligned to 

the physical boundary of the domain. In the serial BioFVM, a list for the Moore neighborhood is also built for each 

voxel but since we do not find any examples that utilized this neighborhood, we abstain from parallelizing this routine. 

Note that the Moore neighborhood equates to a 9-point stencil in 2D and a 27-point stencil in 3D (Kamil et al., 2010).  

 

https://www.zotero.org/google-docs/?s6COL4
https://www.zotero.org/google-docs/?s6COL4
https://www.zotero.org/google-docs/?s6COL4


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
18 of 34 

The Basic_Agent class forms an abstraction of a cell. An object of the Basic_Agent class can either act as a source, 

secreting a substrate or as a sink, uptaking a substrate. Whenever an object of this class is created, the secretion rate, 

uptake rate and the saturation densities are set to a value of zero. Each agent has an ID, a unique index having a value 

between zero and the total number of agents created, a type (source or sink), and a volume and maintains the local 

index of the voxel it is currently present in. In a distributed environment, we added a data member to represent the 

global index of the voxel where the agent currently resides. Furthermore, an agent’s position in space is represented 

by x, y and z coordinates that are generated randomly. It is to be noted that the ID of an agent is unique throughout 

the physical domain and hence if multiple threads of a single MPI process are being used to create agents, then the 

increment of the ID must be made thread-safe. Similarly, if multiple MPI processes are used to create agents, no two 

processes can use the same ID to the agent that they create.  

 

 
Algorithm 1: Assignment of voxels to MPI processes in 1D x-Domain Decomposition. Only partitioning of x-

dimension is shown (y and z-directions are analogous). Prefixes l and g stand for ”local” and ”global”, 

respectively. Array d[] contains the MPI cartesian topology dimensions and the array c[] MPI process 

coordinates (Message Passing Interface Forum, 2015). The triply nested loop sets the global voxel (vxl) 

centers (cntr) and the global voxel index (indx). 

 

BioFVM uses the Thomas solver (Thomas, 1949) for solving a tridiagonal system of linear equations that result from 

the FVM discretization of diffusion PDEs. This solver is inherently serial and hence cannot be fully parallelized. 

However, there do exist parallel algorithms capable of solving tridiagonal systems of linear equations but with an 

increase in operation count and significant complexity of implementation (László, 2016). Thus, we perform the 

https://www.zotero.org/google-docs/?GZqLz0
https://www.zotero.org/google-docs/?vXw8KE
https://www.zotero.org/google-docs/?Kb1G5i


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
19 of 34 

domain decomposition in only 1 direction. This makes the solver completely parallel in two directions but sequential 

in the third direction. 

 

Additionally, the pure OpenMP version of BioFVM supports only the serial writing of the result data such as the 

concentration of the substrate after a specified time interval in a .mat file. In our Hybrid implementation, instead of 

gathering data at the root process, we use MPI-IO so that processes can view their portion of the file and write their 

part of the data simultaneously. BioFVM first writes a 20-byte fixed header into the output file and then the three 

dimensional centers of voxels, the voxel volume and the concentration of the substrates in that voxel for each substrate.  

For all our experiments, we use the MareNostrum IV (MN4) supercomputer at the Barcelona Supercomputing Center 

(BSC). There are a total of 3456 nodes where each node has two Intel Xeon Platinum 8160 processors with a base 

frequency of 2.1 GHz. Each of the processors have 24 cores and the cores in each processor share a main memory of 

48 GB. The computer nodes are interconnected using the Intel Omni-Path (OPA). The Operating System (OS) that 

the cluster uses is the SUSE Linux Enterprise Server 12 SP2. Further, we use GCC 8.1 and OpenMPI 3.1.1 as our 

compiler and MPI implementation respectively. We chose GCC as the compiler because the user documentation of 

BioFVM takes the GCC as the “gold standard”.  

5.2 Experiments  

Since the addition of MPI to OpenMP results in a Hybrid code i.e. MPI+OpenMP, after empirical evaluation we 

choose the hybrid decomposition for all our experiments as 2 × 24 i.e. we spawn a total of 2 MPI processes per node 

(1 process for each socket or processor) where each MPI process spawns 24 OpenMP threads. This choice is also 

advocated by the existing literature (Smith and Bull, 2001; Rabenseifner et al., 2009) as it eliminates the unwanted 

overhead of the first touch policy (Chandra et al., 2001; Chapman et al., 2008) as there are parts of the application 

where initializations are carried out with a single (master) thread. Nevertheless, we explicitly mention whenever we 

use any other Hybrid configuration of MPI processes and OpenMP threads. We emphasize that, for performance 

reasons, the threads must be bound to the individual cores of the socket (Pas et al., 2017).  

 

Further, in all our tests, the domain and the voxel dimensions remain cubic (without any loss of generality). Thus, for 

example, if the domain is 1000 × 1000 × 1000 and the voxel dimensions are 10 × 10 × 10, then there exist 100 voxels 

in each direction, making it a total of 106 (1 million) voxels in the physical domain. Without any loss of generality, 

we assume that the dimensions of the physical domain is exactly divisible by the dimension of the voxel in that 

direction.  

 

The example that we choose to implement and demonstrate the benefits of Hybrid parallelism is tutorial1 in the 

BioFVM/examples directory (http://www.mathcancer.org/blog/biofvm-tutorials/). Our aim was to completely 

parallelize the execution path of tutorial1, as well as, the core components of BioFVM, such as partitioning the domain, 

creation of Basic Agents and writing of the result file, etc. The example under consideration does the following:  

 

1. It initializes and resizes the microenvironment (abbreviated as microenvironment ) of BioFVM, 

2. it creates a Gaussian profile of the concentration of a substrate, 

3. it writes the initial concentration to a .mat file, 

4. it creates Basic Agents (Sources + Sinks), 

5. it simulates Sources/Sinks and Diffusion, and  

6. it writes the final concentration to a .mat file.  

 

We measure and compare the execution time of each of the steps above in the given pure OpenMP and our Hybrid 

implementation (i.e. MPI + OpenMP).  

 

We made a design decision in parallel settings to generate the random positions of agents (both sources and sinks) on 

the root process (process with MPI rank zero) and then convey these positions to the appropriate processes depending 

on the region of space that the processes manage according to the domain partition. This was done to maintain the 

”random” nature of position generation. The alternative of assigning each process an equal number of agents takes 

away the random nature as there would be an equal number of agents in each sub-domain. This demonstrates a trade-

off of choosing between parallelization in generation and maintenance of randomness.  

 

 

 

https://www.zotero.org/google-docs/?vvVeEg
https://www.zotero.org/google-docs/?vvVeEg
https://www.zotero.org/google-docs/?vvVeEg
https://www.zotero.org/google-docs/?YPIpZV
https://www.zotero.org/google-docs/?YPIpZV
https://www.zotero.org/google-docs/?YPIpZV
https://www.zotero.org/google-docs/?YPIpZV
https://www.zotero.org/google-docs/?YPIpZV
https://www.zotero.org/google-docs/?vMoi4c
https://www.zotero.org/google-docs/?vMoi4c
https://www.zotero.org/google-docs/?vMoi4c


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
20 of 34 

Table 4: Time in seconds of the execution for the OpenMP version and the Hybrid versions of tutorial1 of 

BioFVM with a pure 1D x-decomposition. The total voxels are 106 and each voxel volume is 103. The pure 

OpenMP version uses 48 threads. Hyb (n=a) means we run on ’a’ nodes where we have 2 processes per node 

and 24 threads per process by default. Hyb (n=5) (10 MPI processes) was needed with this domain as Hyb 

(n=4) (8 MPI processes) produced a divisibility problem. 

 
 

We present results for the parallelized tutorial1 example on domains of sizes 10003, 19203 and 38403 and cubic voxels 

having a volume of 103; all the results were done using the pure 1D x-decomposition. While increasing the number of 

nodes, the communication time becomes a limiting factor for a high number of nodes (or cores) and thus the 

performance starts deteriorating after a certain number of MPI processes or nodes are reached (due to the Strong 

Scaling). To obtain the total number of executing threads, we can use the following expression: n * ppn * tpp, which 

represents the number of nodes (n) × processes per node (ppn) × threads per process (tpp). We denote the Hybrid 

implementation as ”Hyb(n=a)”, where ”a” denotes the total number of nodes and the original pure OpenMP 

implementation as simply ”OpenMP”. For example, with Hyb(n=2), we obtain a total of 2 × 2 × 24 = 96 executing 

threads. The number of Basic Agents generated for the results presented in Table 4, Table 5 and Table 6 are 1000 i.e. 

500 sources and 500 sinks. It is to be noted that for the domain of size 10003 , due to a divisibility problem with 8 

processes, we used 10 MPI processes i.e. n=5 nodes with 2 processes-per-node (ppn) with 24 threads-per-process 

(tpp), using 2 MPI processes-per-node (or 1 MPI process-per-socket).  

 

 
Figure 11: Final concentration plot of a substrate using (a) pure OpenMP (b) Hybrid MPI + OpenMP for a 

domain of size 10003 and corresponding to Table 4 to check the correctness of code. 

 

To check the correctness of our Hybrid code for the chosen example (for the run in Table 4), the concentration of the 

diffusing substrate was plotted for the pure OpenMP (Figure 11a) as well as for the Hybrid code (Figure 11b), where 

it can be seen clearly that the final concentration plots are identical. We abstain from plotting the concentration plots 

to illustrate the correctness of the implementation, unless the plot necessarily conveys further information and is 

needed. Table 5 shows the performance results for a domain of size 1920×1920×1920 and a voxel size of 10×10×10. 

Increasing the resolution further, we test our distributed BioFVM kernels using a domain size 3840 × 3840 × 3840 

and its results can be studied in Table 6. 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
21 of 34 

Table 5: Time in seconds of the execution for the OpenMP version and the Hybrid versions of tutorial1 of 

BioFVM with a pure 1D x-decomposition. The total voxels and resolution are ≈ 7 million. The pure OpenMP 

version uses 48 threads and Hyb(n=a) translates to a×2×24 threads in all. 

 
 

Table 6: Time in seconds of the execution for the OpenMP version and the Hybrid versions of tutorial1 of 

BioFVM with a pure 1D x-decomposition. The total voxels and resolution are ≈ 56 million. The pure OpenMP 

version executes using 48 threads and Hyb(n=a) translates to a×2×24 threads in all. 

 

With a problem of size 76803, the memory consumption of the pure OpenMP program reaches ≈ 97% and it throws a 

bus error due to hitting the memory limit. Thus, an input problem of size 76803 cannot be executed on a single node 

of MN4. Irrespective of the performance, parallelization becomes necessary for problems that cannot fit into the 

working memory of a single node. A problem of size 76803 equates to approximately 452 million voxels when the 

voxel dimension is 103. We executed the same problem in parallel on two nodes using our Hybrid MPI implementation 

but the execution terminated by giving a memory error. Since we suspected that the memory was a problem, we 

executed the Hybrid code on 8 nodes i.e. using 8 × 2 × 24 = 384 threads in all. The application executed successfully 

as can be seen in Table 7.  

 

Table 7: Time in seconds of the execution for the OpenMP version and the Hybrid versions of tutorial1 of 

BioFVM with a pure 1D x-decomposition. The total voxels and resolution are ≈ 500 million. The successful 

runs with 8 nodes and a minimum of 4 nodes use 384 and 192 threads respectively. 

 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
22 of 34 

Table 8: Time in seconds of the execution for the OpenMP version and the Hybrid versions of tutorial1 of 

BioFVM with a pure 1D x-decomposition. The total voxels are 106. The pure OpenMP version utilizes all 48 

threads of a node and the Hybrid version spawns 1 MPI process per socket/processor. 

 

To test a different case, we ran a simulation on a domain of size 10003 but increased the number of Basic Agents to 

2×106 (sources + sinks). As can be seen from Table 8, there is a gain of about 26-30% using Hybrid MPI even on a 

single node. The reason for the gain is that the generation of and the computation on agents are being simultaneously 

carried out on two separate processes in the Hybrid implementation as opposed to a single thread in the pure OpenMP 

implementation. The correctness of the execution can be verified from the two identical figures i.e. Figure 12a and 

Figure 12b corresponding to the pure OpenMP version and the Hybrid version, respectively.  

 

 
Figure 12: Final concentration density of a given substrate with 2 × 106 agents on a domain of size 10003 using 

(a) Pure OpenMP (b) Hybrid MPI + OpenMP. 

5.3 Discussion 

BioFVM enables the simulation of biological processes such as secretion, uptake, and diffusion for multicellular 

organisms. Internally it sets-up a microenvironment and uses PDEs to represent the biological processes. After 

discretization using the Finite Volume Method (FVM), these PDEs are numerically solved using a direct solver for 

the tridiagonal system of linear equations. Currently, BioFVM suffers from a serious limitation as it only supports 

shared memory parallelization using OpenMP and thus the size of the problems that it can solve is limited by the 

memory of a single node. With the aim to remove this limitation, we restructured the base data-structures and functions 

of BioFVM to add support for distributed parallelism using MPI.  

 

To provide a proof of concept, we present the parallelization of a chosen example and in the process, successfully 

parallelize the key kernels of BioFVM. For instance, we implement a pure 1D x-direction MPI Cartesian Topology 

and assign sub-domains to individual processes, generate basic agents that represent cells on the root process and map 

the positions to processes that these basic agents belong to, and parallelize the writing of result files among many 

other changes.  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
23 of 34 

Despite the fact that the solver is only 2/3 parallel and communication bound, we see a gain of about 4.21% over the 

pure OpenMP implementation with Hyb (n=2) for a (small) domain of size 10003 and with 1000 Basic Agents (Figure 

13). Note that it is very difficult to beat the performance of the pure OpenMP implementation on a small problem size. 

As seen in Figure 14, one of the reasons for this gain is the excellent scaling of the phases: (1) creating a 

microenvironment, (2) generating a Gaussian profile and (3) the agent generation phase. Furthermore, using MPI-IO 

we substantially reduced the time for writing the files. With a domain of size 19203 and 1000 basic agents we see a 

performance gain of 13.24% with Hyb (n=2) and this gain approximately grows to 33% for a domain of size 38403 . 

A domain of size 76803 cannot be executed on a single node as the application runs out of memory but was successfully 

executed using 4 and 8 nodes. As an alternate test, we increased the number of agents to 2×106 on a domain of size 

10003 and observed a performance gain of 26.12% over the pure OpenMP version. 

 

 
Figure 13: Execution time for the Thomas algorithm using pure OpenMP and Hybrid implementation. The 

Hybrid solver is completely parallel in the y and z direction but only on-node parallel in the x-direction. 

 

We see a high performance gain in Basic Agent generation, building the microenvironment, file I/O (Figure 13) but a 

sub-optimal gain in the diffusion solver as the solver remains partially parallelized (Figure 14). Most importantly, we 

expose the structure of BioFVM to evaluate parallelization schemes and make it possible to simulate larger and more 

complex problems i.e. BioFVM simulations can use multiple nodes and are not in any way limited to the memory of 

a single node.  

 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
24 of 34 

 
Figure 14: Pure OpenMP execution times with increasing problem size Vs Hybrid MPI times for the same. 

Hyb(n=1) represents the time when a single node with 2 MPI processes and 24 threads is used. The Best 

Hybrid represents the least time for that kernel for any number of experimental nodes considered. The 

kernels considered are: (a) Creating the microenvironment (b) Building the initial Gaussian profile (c) 

Generation of Basic Agents (d) Sum of the initial and final I/O file write. 

 

BioFVM constitutes the core at the center of PhysiCell and its parallelization is a required milestone to address the 

parallelization of PhysiCell. We have exposed the design of the internals of BioFVM, describe our parallelization 

strategy and present preliminary results. Next, we plan to work towards optimally parallelizing PhysiCell/BioFVM 

using an object-oriented framework, a methodology consistent with the object-oriented designs of BioFVM and 

PhysiCell. 

 

Furthermore, since the solver is only parallelized using OpenMP, we aim to make it fully parallel by exploring parallel 

tridiagonal solver algorithms such as recursive doubling etc. As PhysiCell allows the cells to move across subdomains, 

a strategy is needed to asynchronously track the movement of cells across subdomains. This poses an additional 

challenge in terms of choosing an appropriate design pattern and a possibility of correctly using the MPI Remote 

Memory Access (RMA) operations. Future implementations can use 3D MPI Cartesian topologies instead of a 1D 

topology that we used in the current work, if there is a significant performance gain. A plethora of literature advocates 

the three dimensional decomposition for 3D decompositions can reduce the total volume of data that is exchanged but 

there exists literature that refutes these claims (Saxena et al., 2018). 

 

The MPI-ready BioFVM code is freely available from https://gitlab.bsc.es/gsaxena/physicell_x and the ongoing 

efforts to have an MPI-ready PhysiCell, also termed DistPhy, are available from https://gitlab.bsc.es/gsaxena/distphy. 

  

https://www.zotero.org/google-docs/?Pl49Vv
https://www.zotero.org/google-docs/?Pl49Vv
https://www.zotero.org/google-docs/?Pl49Vv
https://gitlab.bsc.es/gsaxena/physicell_x
https://gitlab.bsc.es/gsaxena/distphy


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
25 of 34 

6 Extreme model exploration with optimization algorithms 

Modern simulation-based application studies consist of large numbers of simulations with many possible variations. 

Simulations may be run with different parameters, possibly as part of an automated model parameter optimization, 

classification, or, more generally, model exploration (ME). Constructing the software to run such studies at the 

requisite computational scales is often unnecessarily time-consuming and the resulting software artifacts are typically 

difficult to generalize and package for other users (Ozik et al., 2016). Applying ME to MSMs involves an iterative 

workflow where simulations are run across a high dimensional parameter space and changing initial conditions to 

explore alternative simulation outcomes. 

 

 
Figure 15: Model Exploration workflow adapted from (Ozik et al, 2018). 

 

In a typical ME workflow, simulations’ outputs from a set of in-silico experiments are evaluated against some 

predetermined metric, which informs the next iteration of simulation experiments (Figure 15). This metric is problem-

specific and can be as simple as a linear fit or as complicated as a reinforced learning algorithm. In fact, the ME 

process can be enhanced with the use of complex event forecasting techniques, which can be used to improve the 

parameter space exploration.  

 

Here, we present some preliminary studies on the use of different metrics to find sets of parameters that reproduce a 

desired simulation’s behavior. 

6.1 Model exploration of simulation parameters 

The first part of the model exploration strategy focuses on performing different simulations with slightly different 

parameters using the EMEWS framework. These different parameter sets are obtained by sweeping their values 

according to parameter-specific ranges. Extreme-scale Model Exploration with Swift/T (EMEWS), uses the general-

purpose parallel scripting language Swift (Armstrong et al., 2014) to generate highly concurrent simulation 

workflows. These workflows enable the integration of external ME algorithms to coordinate the running and 

evaluation of large numbers of simulations. The general-purpose nature of the programming model allows the user to 

supplement the workflows with additional analysis and post-processing as well (Ozik et al., 2016). EMEWS is 

particularly useful as it offers the following contributions to the science and practice of simulation ME studies: 

  

 

https://www.zotero.org/google-docs/?fwjQPD
https://www.zotero.org/google-docs/?fwjQPD
https://www.zotero.org/google-docs/?fwjQPD
https://www.zotero.org/google-docs/?9qizdH
https://www.zotero.org/google-docs/?9qizdH
https://www.zotero.org/google-docs/?9qizdH
https://www.zotero.org/google-docs/?O6pW00
https://www.zotero.org/google-docs/?O6pW00
https://www.zotero.org/google-docs/?O6pW00


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
26 of 34 

1. it offers the capability to run very large, highly concurrent ensembles of simulations of varying types;  

2. it supports a wide class of model exploration algorithms, including those increasingly available to the 

community via Python and R libraries; and  

3. it offers a software sustainability solution, in that simulation studies based around EMEWS can easily be 

compared and distributed. 

 

EMEWS framework and its high-throughput hypothesis testing has already been applied to the complex problem of 

tumor-immune interactions integrating it with PhysiCell and BioFVM (Ozik et al., 2018, 2019). 

This tumor-immune interactions model is a simple model of 3D immunosurveillance against heterogeneous tumors, 

with a special focus on the spatial dynamics of stochastic tumor–immune contact interactions that was described in 

detail in (Ghaffarizadeh et al., 2018). In this model, each cancer cell has a mutant “oncoprotein” which drives 

proliferation: the greater the expression of p, the more likely the cell grows and divides, but also has higher 

immunogenicity.  

 

To model immunosurveillance, after simulating 14 days of growth Ghaffarizadeh et al. introduced generic immune 

cell agents that move towards tumor cells by chemotaxis, stochastically form adhesions to any cell in close contact, 

and then test for immunogenicity by attempting to induce apoptosis with a probability that scales linearly with 

immunogenicity. If successful, the tumor cell undergoes apoptosis, while the immune agent detaches and resumes its 

chemotactic search for additional tumor cell targets. If the immune cell does not kill the tumor cell, it remains attached 

while making further attempts to induce apoptosis until either succeeding or reaching a maximum attachment lifetime, 

after which it detaches without inducing apoptosis. Using this model, researchers studied the changes in the model’s 

behaviors upon sweeping six parameters (Table 9). 

 

Table 9: Parameter space of the workflow from (Ozik et al., 2018). 

Parameter Min Max Increment Dimensions 

Immune cell apoptosis rate 6.94 × 10−6 6.94 × 10−4 8.5882 × 10−5 min-1 

Oncoprotein threshold 0.1 1 0.1125 dimensionless 

Immune cell kill rate 0.1 1 0.1125 min-1 

Immune cell attachment rate 0.01 1 0.12375 min-1 

Immune cell attachment lifetime 10 90 10 minutes 

Immune cell migration bias 0.1 0.9 0.1 dimensionless 

 

We have adapted the EMEWS framework to work with PhysiBoSSa and the study of TNF-dependent behavior. This 

study uses a signaling pathway model consisting of a network of 31 nodes that describes the behavior of cells in 

response to different TNF regimes. In response to TNF presence, the cells can Proliferate, die by Apoptosis or Necrosis 

or remain in a Naive state of survival.  

 

This study was already performed in PhysiBoSS (Letort et al., 2018), however we reproduce it in the upgraded version 

of PhysiBoSSa, where many of the functions, their parameters and their implementation have changed, more notably 

the internalization of free-roaming environmental chemical entities into the agents and how they trigger effects in the 

signaling pathways. Also, we wanted to study the heterogeneity of the parameter space by finding the sets of 

parameters that evolve in the same way; that is, different sets of parameters that give the same global simulation: have 

a depletion of proliferative cells. Thus, we focused on finding a proper set of values for these modified parameters 

(Table 10) that allow for the reproduction of the simulations in which proliferative cells are depleted upon the addition 

of TNF each 150 minutes (Figure 16). 

 

 

 

 

 

  

https://www.zotero.org/google-docs/?JtVevH
https://www.zotero.org/google-docs/?JtVevH
https://www.zotero.org/google-docs/?JtVevH
https://www.zotero.org/google-docs/?dWmFaW
https://www.zotero.org/google-docs/?dWmFaW
https://www.zotero.org/google-docs/?dWmFaW
https://www.zotero.org/google-docs/?8Xgf94
https://www.zotero.org/google-docs/?8Xgf94
https://www.zotero.org/google-docs/?8Xgf94
https://www.zotero.org/google-docs/?I81pMd
https://www.zotero.org/google-docs/?I81pMd
https://www.zotero.org/google-docs/?I81pMd


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
27 of 34 

Table 10: Parameter space of the workflow for the TNF-dependent behavior example. 

Parameter description 
Set of 

parameters 
Min Max Increment Dimensions 

Concentration of TNF NCSR 0 100 5 ng / mL 

Frequency of TNF injections NCSR 0 1440 10 minutes 

Time point at which TNF is removed from the system NCSR 0 1440 10 minutes 

Duration of the TNF injections NCSR 1 200 10 minutes 

Oxygen sensing threshold NCSR 0.1 0.5 0.01 dimensionless 

TNF sensing threshold BSC 0.1 0.5 0.01 dimensionless 

TNF uptake rate BSC 0 2 0.01 ng/mL/voxel/min 

TNF secretion rate BSC 0.01 1 0.01 ng/mL/voxel/min 

Cell cycle rate BSC 0.0001 0.01 0.0001 min-1 

Time of signaling model evaluation BSC 5 20 0.5 minutes 

Duration of initial injection of TNF BSC 1 25 1 minutes 

 

 
Figure 16: Spheroid’s dynamical changes to pulses of TNF injection (0.5 ng/mL during 10 minutes) each 150 

minutes. Green, Proliferative cells; red, Apoptosis; black, Necrosis. Initial spheroid radius is 100 mm. 

6.2 Use of different optimization metrics to find proper sets of parameters 

The second part of the model exploration strategy involves the use of an optimization metric that evaluates and ranks 

the performance of the different parameter combinations. As the set of parameters used are specific to the problem at 

hand, this metric needs also to be problem-specific. Several optimization algorithms can be used for this; in fact, in a 

previous work, Ozik et al. (2019) used a genetic algorithm to find optimal points that produced simulations that had 

counts with the lowest final mean tumor cell as well as an active learning algorithm to build surrogate models for 

characterizing the parameter space structure based on different viability thresholds. 

 

In our case, we have used a genetic algorithm and a random forest strategy to find a proper set of values for the 

parameters in PhysiBoSSa (Table 10) that allow for the reproduction of the results from the simulation with a pulsating 

regime of TNF each 150 minutes. In this section we detail some characteristics of these algorithms that have proved 

useful for our goals, but more in-depth information on the use of these algorithms can be found in Deliverable 6.2.  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
28 of 34 

 

The genetic algorithm from python’s DEAP library (https://github.com/DEAP/deap) was used with two sets of settings 

(Table 11) and following a classic GA strategy (Figure 17). 

 

Table 11: Sets of parameters used in the Genetic Algorithm studies. 

 BSC set NCSR set 

Crossover probability 0.5 0.7 

Mutation probability 0.2 0.5 

Individuals’ characteristics 7 parameters 4 parameters 

Population 150 20 

Number of generations 30 20 

 

 

 
Figure 17: Flowchart of the genetic algorithm used on PhysiBoSSa.  

 

Additionally, we used a random forest algorithm from python’s scikit-learn library (Pedregosa et al., 2011) to study 

the structure of the parameter space. While genetic algorithms can be very efficient in discovering optimal solutions 

in large spaces, they are not sufficient for estimating the structure of complex parameter spaces, a task where random 

forests can provide useful insight.  

 

The training dataset used is a set of simulations classified via 1-NN and known cases as interesting or non-interesting 

and constitutes the initial random forest seed. From here, the algorithm iterates over a set of steps in which it constructs 

https://github.com/DEAP/deap
https://www.zotero.org/google-docs/?cAxKFJ
https://www.zotero.org/google-docs/?cAxKFJ
https://www.zotero.org/google-docs/?cAxKFJ


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
29 of 34 

a random forest; it creates a fine grid in the parameter space and classifies its points using the new random forest; then 

computes the class uncertainty and keeps the highest uncertainty values, as candidate points; and if the number of 

candidate points is bigger than a threshold (k), it clusters the candidate points into k groups. Finally, the algorithm 

selects one point from each cluster at random, evaluates the selected points by running a PhysiBoSS simulation and 

using a 1-NN classifier and adds these points to the dataset. 

6.3 Preliminary results 

These ongoing efforts allow us to define the structure and hierarchy of the model’s parameters and to evaluate its 

sensibility to the parameters’ perturbation and are necessary to ensure the adaptability of present multiscale 

modeling to other models and use cases. We have found sets of data that capture the desired behaviors of our model 

as well as sets of data that fail at capturing these behaviors. We hereby present some of the preliminary results 

(Figure 18 and Figure 19) using the aforementioned algorithms to find ranges of parameters that cause the model to 

behave like in Figure 16.  

 

 
Figure 18: Some representative simulations performed by the model exploration framework on NCSR 

parameter set. (A and B) Positive examples of parameter sets that tally the behavior of Figure 16 (C and D) 

Negative examples of parameter sets that do not tally the behavior of Figure 16. 



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
30 of 34 

 
Figure 19: Some representative simulations performed by the model exploration framework on BSC 

parameter set. (A and B) Positive examples of parameter sets that tally the behavior of Figure 16 (C and D) 

Negative examples of parameter sets that do not tally the behavior of Figure 16. 

  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
31 of 34 

7 Conclusions and Future Work 

In this deliverable, we have described in detail the agent-based model initially used in the INFORE Life Science use 

case. First, we have introduced the different uses of agent-based modeling in biomedical projects and explained the 

reasons behind our choice of center-based agents for this project as the basis of the multiscale model (MSM). 

 

Second, we have detailed how this agent-based model is integrated into the MSMs, the different modules of this MSM, 

their parameters and how the different modules are connected and build up a MSM. These modules consist of: 

 

● the environment component that simulates all the diffusion, creation and uptake of chemical entities that 

roam in the environment; 

● the agent-based component that takes care of the population level and simulates the cells dynamics, their 

growth, death, movement and overall physical behavior among cells and among them and their surrounding 

environment; 

● the signaling network module that takes care of the individual cells’ level and simulates the behavior of each 

cell in response to its environment and its neighboring conditions; and  

● the cell cycle module that takes care of how the cells grow and divide. 

 

We still have in scope an additional metabolic module whose integration is an ongoing work that would take care of 

the energy and biomass fluxes of the cells.  

 

Third, we have detailed the ongoing implementation of an HPC version of our MSM that will allow its scaling-up to 

clusters and enable INFORE to reach its KPIs. We have started by parallelizing the fastest of all the time scales 

considered in our MSM, the environment one and its Thomas solver used to simulate the diffusion of all chemical 

entities by using domain partitioning. We present benchmarks on different environmental domains that show a speed-

up in the simulations and, more importantly, that the parallelization is possible. Currently, we are parallelizing the 

agents’ component using the same domain partition strategy with promising results. 

 

Four, we have presented a model exploration framework that we are using to explore the parameter space of our 

pulsating TNF simulations. The goal is to define the structure and hierarchy of the model’s parameters and to evaluate 

its sensibility to the parameters’ perturbations. As expected, this exploration retrieves sets of parameters that reproduce 

the desired behavior and others that do not. Next, we plan to use this model exploration framework with different 

optimization algorithms to expand the TNF experiments to other types of drug regimens and to study the effect of 

changes in drug availability combined with microenvironment set-ups in 3D spheroids in a gastric adenocarcinoma 

cell-line multiscale model.  



 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
32 of 34 

8 References 

An,G. (2010) Closing the Scientific Loop: Bridging Correlation and Causality in the Petaflop Age. Sci. Transl. Med., 

2, 41ps34-41ps34. 

Anderson,A.R.A. (2005) A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion. 

Math. Med. Biol., 22, 163–186. 

Anderson,A.R.A. et al. (2006) Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the 

Microenvironment. Cell, 127, 905–915. 

Armstrong,T.G. et al. (2014) Compiler Techniques for Massively Scalable Implicit Task Parallelism. In, SC14: 

International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New 

Orleans, LA, USA, pp. 299–310. 

Béal,J. et al. (2019) Personalization of logical models with multi-omics data allows clinical stratification of patients. 

Front. Physiol., 9, 1965. 

Bernabeu,M.O. et al. (2010) Shock-induced arrhythmogenesis in the human heart: A computational modelling study. 

Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., 2010, 760–

763. 

Calzone,L. et al. (2018) Logical versus kinetic modeling of biological networks: applications in cancer research. Curr. 

Opin. Chem. Eng., 21, 22–31. 

Chandra,R. et al. (2001) Parallel programming in OpenMP Morgan Kaufmann Publishers, San Francisco, CA. 

Chapman,B. et al. (2008) Using OpenMP: portable shared memory parallel programming MIT Press, Cambridge, 

Mass. 

Cohen,D.P.A. et al. (2015) Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and 

Migration. PLoS Comput Biol, 11, e1004571. 

Flobak,Å. et al. (2015) Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling. PLOS 

Comput. Biol., 11, e1004426. 

Gérard,C. and Goldbeter,A. (2011) A skeleton model for the network of cyclin-dependent kinases driving the 

mammalian cell cycle. Interface Focus, 1, 24–35. 

Ghaffarizadeh,A. et al. (2016) BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological 

simulations. Bioinformatics, 32, 1256–1258. 

Ghaffarizadeh,A. et al. (2018) PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. 

PLOS Comput. Biol., 14, e1005991. 

Graner,F. and Glazier,J.A. (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. 

Phys. Rev. Lett., 69, 2013. 

Grimm,V. et al. (2006) A standard protocol for describing individual-based and agent-based models. Ecol. Model., 

198, 115–126. 

Hoehme,S. et al. (2010) Prediction and validation of cell alignment along microvessels as order principle to restore 

tissue architecture in liver regeneration. Proc. Natl. Acad. Sci., 107, 10371–10376. 

Hoehme,S. and Drasdo,D. (2010) A cell-based simulation software for multi-cellular systems. Bioinformatics, 26, 

2641–2642. 

Kamil,S. et al. (2010) An auto-tuning framework for parallel multicore stencil computations. In, 2010 IEEE 

International Symposium on Parallel Distributed Processing (IPDPS)., pp. 1–12. 

László,E. (2016) Parallelization of numerical methods on parallel processor architectures. 

Letort,G. et al. (2018) PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension 

and cell signalling. Bioinformatics, bty766. 

Macal,C.M. and North,M.J. (2010) Tutorial on agent-based modelling and simulation. J. Simul., 4, 151–162. 

Message Passing Interface Forum (2015) MPI: A message-passing interface standard version 3.1. 

Mirams,G.R. et al. (2013) Chaste: An Open Source C++ Library for Computational Physiology and Biology. PLOS 

Comput. Biol., 9, e1002970. 

Montagud,A. et al. (2017) Conceptual and computational framework for logical modelling of biological networks 

deregulated in diseases. Brief. Bioinform., bbx163. 

OpenMP Architecture Review Board (2018) OpenMP application program interface version 5.0. 

Osborne,J.M. et al. (2017) Comparing individual-based approaches to modelling the self-organization of multicellular 

tissues. PLOS Comput. Biol., 13, e1005387. 

Ozik,J. et al. (2016) From desktop to large-scale model exploration with SWIFT/T. Proc. Winter Simul. Conf. Winter 

Simul. Conf., 2016, 206–220. 

Ozik,J. et al. (2018) High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow. BMC 

Bioinformatics, 19, 483. 

https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
33 of 34 

Ozik,J. et al. (2019) Learning-accelerated discovery of immune-tumour interactions. Mol. Syst. Des. Eng. 

Pas,R. van der et al. (2017) Using OpenMP--the next step: affinity, accelerators, tasking, and SIMD The MIT Press, 

Cambridge, Massachusetts. 

Pedregosa,F. et al. (2011) Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12, 2825–2830. 

Rabenseifner,R. et al. (2009) Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP Nodes. In, 

2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing., pp. 

427–436. 

Saxena,G. et al. (2016) A cache-aware approach to domain decomposition for stencil-based codes. In, 2016 

International Conference on High Performance Computing Simulation (HPCS)., pp. 875–885. 

Saxena,G. et al. (2018) A quasi-cache-aware model for optimal domain partitioning in parallel geometric multigrid. 

Concurr. Comput. Pract. Exp., 30, e4328. 

Saxena,G. (2018) Efficient Domain Partitioning for Stencil-based Parallel Operators. 

Shan,M. et al. (2018) Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine 

addiction in solid tumors. PLOS Comput. Biol., 14, e1006584. 

Smith,L. and Bull,M. (2001) Development of Mixed Mode MPI / OpenMP Applications. Sci. Program., 9, 83–98. 

Stoll,G. et al. (2012) Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. 

BMC Syst. Biol., 6, 116. 

Stoll,G. et al. (2017) MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics, 33, 2226–2228. 

Swat,M.H. et al. (2012) Multi-Scale Modeling of Tissues Using CompuCell3D. In, Methods in Cell Biology. Elsevier, 

pp. 325–366. 

Thomas,L. (1949) Elliptic problems in linear differential equations over a network: Watson scientific computing 

laboratory Columbia University, New York, NY. 

Trisilowati and Mallet,D.G. (2012) In Silico Experimental Modeling of Cancer Treatment. ISRN Oncol., 2012, 1–8. 

Tyson,J.J. et al. (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the 

cell. Curr. Opin. Cell Biol., 15, 221–231. 

Van Liedekerke,P. et al. (2019) Quantitative cell-based model predicts mechanical stress response of growing tumor 

spheroids over various growth conditions and cell lines. PLOS Comput. Biol., 15, e1006273. 

Yang,R. et al. (2018) Cell type–dependent bimodal p53 activation engenders a dynamic mechanism of 

chemoresistance. Sci. Adv., 4, eaat5077. 

  

https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox
https://www.zotero.org/google-docs/?XzMPox


 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP1 T1.1-T1.3 
Deliverable D1.2 

Doc.nr.: WP1 D1.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 
34 of 34 

9 Glossary 

● AGS: name of a cell line derived from gastric adenocarcinoma used as a laboratory model to study the 

aforementioned disease (https://web.expasy.org/cellosaurus/CVCL_0139). 

● Apoptosis: programmed cell death that occurs in multicellular organisms. 

● Cell cycle: cell-division cycle, is the series of events that take place in a cell leading to duplication of its 

DNA and division of its cytoplasm and organelles to produce two daughter cells2. 

● Drug synergy: positive interaction between two or more drugs that causes the total effect of the drugs to be 

greater than the sum of the individual effects of each drug. 

● Necrosis: traumatic cell death caused by acute cellular injury or lack of nutrients. 

● Resistant cell: cell that becomes immune to a specific drug or treatment. 

● Signaling pathway: Is a set of proteins in a cell that work together to translate external signals and to control 

one or more cell functions, such as cell division or cell death3. The emergence of cancer cells is closely 

related to the deregulation of malfunctioning of specific signaling pathways. 

 
2 https://en.wikipedia.org/wiki/Cell_cycle 
3 https://en.wikipedia.org/wiki/Cell_signaling#Signaling_pathways 

https://web.expasy.org/cellosaurus/CVCL_0139
https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Cell_signaling#Signaling_pathways

