

Micro Teaching

ESR 10

Chemical recycling of plastic waste by reactor and catalyst engineering

Bahman Goshayeshi 9 September 2020

Prof. dr. Kevin Van Geem Prof. dr. Angeliki Lemonidou

Overview

- Background
- Plastic recycling
- Pilot plant steam cracking
- Vortex reactors

Master's degree in chemical engineering

Process control and simulation

Pierre-Simon Laplace

Master's thesis:

Dynamic modeling and simulation of integrated pre-combustion CO₂ capture based on SEWGS technology in natural gas combined cycle

Sorption Enhanced Water Gas Shift (SEWGS)

Advantages:

- Process simplification
- High H₂ and CO₂ recovery
- Better heat integration
- Lower steam usage

Water gas shift reaction: $CO+H_2O \rightleftharpoons CO_2 + H_2$ $-\Delta H_{298}^0 = 41kJ/mol$

Feed Sorption Enhanced WGS

Cool Exhaust

Gas

Plastic recycling

Solid plastic waste

Plastic Consumption
 Europe, USA, China, India
 2002-2014

PVC

The plastic waste problem

Times are changing

A circular economy helps enable ideal resource recovery

Linear model

- Disposal of molecules at end of lifecycle (landfill, etc.)
- Unmanaged CO₂ emissions

Increasingly "bent" model

- Partially renewable feedstocks and energy
- Some level of product reuse and recycling
- Energy recovery

Circular model (total recovery)

- Full reuse of molecules with or without modifications of molecular bonds
- Climate neutrality

The new plastics economy

11

Always look at the global recycling picture

The best strategy will be a combined strategy:

1. Mechanical recycling

- Collection, sorting, washing, grinding and reprocessing
- Not possible for all waste streams

2. Thermochemical recycling (pyrolysis and gasification)

- Conversion into base chemicals, similar to virgin materials
- No extra risk for (food) safety (similar as for virgin materials)

Pyrolysis of plastic waste

Thermal degradation of long-chain polymers

- Catalytic pyrolysis
 - With presence of catalyst
- Thermal pyrolysis
 - Without presence of catalyst

Products:

- Liquids (condensable vapors or oil)
- Solids (char)
- Gases (non-condensables)

Why did Chemical Recycling not fly in 90's?

- The main challenge for chemical recycling is:
 - Stable and continuous feed supply
 - Making a profit => simpler (less equipment) is better
 - Corrosion, because of poor separation
 - Finding the most suitable reactor technology with maximum selectivity.
 - Optimizing the technology in a way that it is least affected by changing process conditions and feedstock variation.

Facilities

Pilot plant steam cracking

Steam cracking pilot plant

HC

Feed

What is chromatography?

GC x GC Principle

- Analytes are separated using two different columns with two different stationary phases.
- The modulator quickly traps, then "injects" the analytes from the first dimension column onto the second dimension.
- This process creates a retention plane of the 1st dimension separation x 2nd dimension separation.

Highly beneficial to analyze complex samples

 $\widehat{\underline{\underline{}}}$

GHENT

Analytes Partially Resolved on Column 1

Analytes Released to Stage 2 of the Thermal Modulator

Analytes Trapped on Stage 2 of the Thermal Modulator

Analytes Released to Column 2

Analytes Separate on Column 2

Analytes Separate on Column 2 Next Bands Enter the Thermal Modulator

Analytes Separate on Column 2

Comprehensive GCxGC

Analytes Separate on Column 2

GCxGC advantages

- Improved Chromatographic Resolution
- Increased Peak Capacity
- Enhanced Signal to Noise
- More accurate qualitative and quantitative info
- More Information per Analyzed Sample

Universal On-line quantification

Methane = Reference Component

Comprehensive 2D Gas Chromatography: GCxGC

Comprehensive 2D Gas Chromatography: GCxGC

2D contour plot

Straightforward group-type analysis

Combining MS and FID

Confident peak identification +
Accurate quantification

Vortex reactors

Process intensification – what?

"any chemical engineering development that leads to a substantially smaller, cleaner, and more energy-efficient technology"

A. Stankiewicz, J. Moulijn

PROCESS

FOR TRAINING

Fluidized bed reactors

- 1. van Hoef et al., Ann. Rev. Fluid Mech. 40 (2008) 47-70
- 2. http://www.fluidcodes.co.uk/fbed.html
- 3. adapted from Watano et al., Powder Tech.131 (2003) 250-255

What are the Vortex Reactors?

Rotating fluidized bed reactor in a static geometry

Gas-solid vortex reactor (GSVR)

- Dense particle bed → reduced reactor volume
- High gas feed flow rates → shorter gas residence time
- Higher gas-solid slip velocity → better gas-solid heat and mass transfer
- Gas phase has plug flow behavior → no back-mixing of the gases in the reactor
- High effective thermal conductivity in the solid bed

 uniform temperature in the solid bed

Gas injection through

inclined slots

Rotating

solid particles

Tangential slots

Length

Vortex

End walls

Outflow

GSVR & GLVR

Gas-Solid Vortex Reactor

Gas-Liquid Vortex Reactor

GSVR Research @ LCT

CFD

Cold-Flow GSVR

Hot-Flow GSVR

Reactive GSVR

GHENT UNIVERSITY

Vortex Reactors Infrastructure @ LCT

	_		
	Cold-flow Setup	Hot-flow Setup	Reactive Setup
Reactor Diameter [mm]	570	139	80
Length [mm]	100	25	15
Exhaust Diameter [mm]	150	40	20
Number of Slots [-]	32	8,16	16,12,8
Slot Width [mm]	2,6	0.5,0.6,1	0.45,0.6,0.95
Max Solid loading [g]	2000 – 5000	100 – 200	20 – 30
Materials tested [-]	PVC, PTFE, HDPE, FCC,	HDPE, Pine, Al, Al ₂ O ₃ ,	Poplar, Pine, Al, Al ₂ O ₃ , SiC,
Gas Heater [-]	X	✓ (~ 200 °C)	✓ (~ 1000 °C)
Gas Flow [Nm3/h]	360 - 1800	40 - 600	15 – 60

- High frequency (10 Hz) pressure and temperature sensors
- High accuracy mass flow controllers for all the gases.

TRL 4/5
Research → Demonstration

Reactive Gas-Solid Vortex Reactor (GSVR)

Tangential gas injection slots

Rotating bed in Vortex reactor

Cold-flow CFD model validation

EXPERIMENT L_R =15 mm Double-pulsed Particle image diffused laser velocimetry (PIV) light Measuring particle camera velocity profile to validate e hydrodynamic mod als

CFD MODEL

- OpenFOAM
- Euler-Euler model with KTGF closures

Cold flow testing and data acquisition

GSVR setup

GSVR¹ operational range & applications

Process parameter	Value	
Temperature (°C)	20 - 850	
Gas flow (Nm ³ /h)	15 - 50	
Solid mass flow (Kg/h)	0.36- 1.2	
Solid density (Kg/m³)	300 - 4000	
Solid particle size (m)	7·10 ⁻⁵ - 3·10 ⁻³	
Solid capacity (g)	5 - 30	
Liquid flow (m ³ /h)	6·10 ⁻³ - 3.6·10 ⁻²	
Gas phase residence time (s)	0.005 - 0.01	

- CO₂ absorption
- Oxidative coupling of CH₄
- Biomass fast pyrolysis
- Plastic waste recycling

First drop of bio-oil

- GSVR chamber after the first reactive test
- No signs of clogging of gas inlet slots or reactor exhaust

GSVR vs Conventional Fluidized-Bed reactors

- FB1 DeSisto et al. Energy Fuels (2010) 24:2646-2651
- FB2 Men et al. Bioresource Technol (2012) 111:439-446
- FB3 Kim et al. Renewable Energy (2013) 50:188-195
- FB4 Westerhof et al. Ind. Eng. Chem. Res. (2010) 49:1160-1168

Pine Fast Pyrolysis – GCxGC oil characterization

Components identified:

24 wt. % of Bio-oil

- Non-aromatic: 84%

- Aromatic: 16%

Guaiacols 85%

Catechols 10%

Phenolics 5%

Bio oil composition: GSVR vs gravitational FBs

- Bioresource Technol. (2016) 219:371–377
- Energy Fuels (2010) 24:2642–2651
- Energy Fuels (2013) 27:4748–4759
- Bioresource Technol. (2010) 101:8389-8395

Future Plan

- Vortex reactor setups (experiments and CFD)
- Catalyst synthesis at AUTH

LABORATORY FOR CHEMICAL TECHNOLOGY

Technologiepark 914, 9052 Ghent, Belgium

E info.lct@ugent.be

T 003293311757

https://www.lct.ugent.be

