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Master’s degree in chemical engineering

▪ Process control and simulation

Background

Sharif University of Technology, Iran
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Master’s thesis:

Dynamic modeling and simulation of integrated pre-combustion CO2 capture based on SEWGS technology in 

natural gas combined cycle

Sorption Enhanced Water Gas Shift (SEWGS)

Background

Water gas shift reaction :     CO+H2O⇌ CO2 + H2 −Δ𝐻298
0 = 41𝑘𝐽/𝑚𝑜𝑙

• Process simplification

• High H2 and CO2 recovery

• Better heat integration

• Lower steam usage

Advantages:
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Background

PSA

Storage
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Plastic recycling
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Solid plastic waste
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The plastic waste problem
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Times are changing

❖ A circular economy 

helps enable ideal 

resource recovery

❖ Decrease dependency 

on oil and gas

Linear model

• Disposal of molecules at end 

of lifecycle (landfill, etc.)

• Unmanaged CO2 emissions

Increasingly “bent” model

• Partially renewable

feedstocks and energy

• Some level of product reuse

and recycling

• Energy recovery

Circular model (total recovery)

• Full reuse of molecules – with

or without modifications of 

molecular bonds

• Climate neutrality
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The new plastics economy
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Mechanical recycling

Chemical recycling

Always look at the global recycling picture

The best strategy will be a combined strategy:

1. Mechanical recycling

- Collection, sorting, washing, grinding and reprocessing

- Not possible for all waste streams

2. Thermochemical recycling (pyrolysis and gasification)

- Conversion into base chemicals, similar to virgin materials

- No extra risk for (food) safety (similar as for virgin materials)
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Pyrolysis of plastic waste

13

Thermal degradation of long-chain polymers
̶ Catalytic pyrolysis

- With presence of catalyst

̶ Thermal pyrolysis 

- Without presence of catalyst

Products:

▪ Liquids (condensable vapors or oil)

▪ Solids (char)

▪ Gases (non-condensables) 



Why did Chemical Recycling not fly in 90’s?

❖ The main challenge for chemical recycling is:

▪ Stable and continuous feed supply

▪ Making a profit => simpler (less equipment) is better

▪ Corrosion, because of poor separation

▪ Finding the most suitable reactor technology with maximum

selectivity.

▪ Optimizing the technology in a way that it is least affected by

changing process conditions and feedstock variation.

14



Facilities
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Pilot plant steam cracking
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Steam cracking pilot plant
Gas-Fired Furnace + Reactor

Online Analysis

Section

Control “Room”

High temperature

sampling system

HC

Feed

H2O
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What is chromatography?
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GC x GC Principle
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• Analytes are separated using two different columns

with two different stationary phases.

• The modulator quickly traps, then "injects" the

analytes from the first dimension column onto the

second dimension.

• This process creates a retention plane of the 1st

dimension separation x 2nd dimension separation.

Dalluge, Beens, & Brinkman (2003), Comprehensive two-dimensional gas chromatography: 

a powerful and versatile analytical tool. Journal of Chromatography A. 69-108

GC x GC Oven

Liquid CO2

Highly beneficial to analyze complex 

samples



Injector Detector

1st 

Column

2nd

Column

Cold

Pulsed Gas
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Injector Detector

1st 

Column

2nd

Column

Cold

Pulsed Gas
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Comprehensive GCxGC

1

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Cryogenic Cooling 2

Analytes Partially Resolved on Column 1
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Comprehensive GCxGC

1

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Cryo 2 Off and Cryo 1 On2
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Comprehensive GCxGC

1

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

2
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Comprehensive GCxGC

1

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

2
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Comprehensive GCxGC

1

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

2
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Comprehensive GCxGC

1

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Trapped on Stage 1 of the Thermal Modulator

2
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Comprehensive GCxGC

1 2

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Released to Stage 2 of the Thermal Modulator

Cryo 1 Off and Cryo 2 On

28



Comprehensive GCxGC

1 2

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Cryo 1 Off and Cryo 2 On
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Comprehensive GCxGC

2

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Cryo 1 Off and Cryo 2 On1
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Comprehensive GCxGC

2

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Trapped on Stage 2 of the Thermal Modulator

Cryo 1 Off and Cryo 2 On1
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Comprehensive GCxGC

2

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Released to Column 2

Cryo 1 On and Cryo 2 Off1
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Comprehensive GCxGC

2

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Separate on Column 2

Cryo 1 On and Cryo 2 Off1
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Comprehensive GCxGC

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Separate on Column 2 

Next Bands Enter the Thermal Modulator

Cryo 1 On and Cryo 2 Off1 2
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Comprehensive GCxGC

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Separate on Column 2 

Cryo 1 On and Cryo 2 Off1 2
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Comprehensive GCxGC

Column 1:  Non-Polar Phase        Column 2:  Polar Phase

Analytes Separate on Column 2 

1 2
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Comprehensive GCxGC

Analytes Separate on Column 2 

1 2
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Before

After



• Improved Chromatographic Resolution

• Increased Peak Capacity

• Enhanced Signal to Noise

• More accurate qualitative and quantitative info

• More Information per Analyzed Sample

GC×GC advantages
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RGA (TCD)

RGA (FID)

PGA (TCD)

DHA (FID)

GC×GC (FID)
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c
h

e
c
k

C16
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Nitrogen = Internal Standard

Methane = Reference Component

Universal On-line quantification
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Comprehensive 2D Gas Chromatography: GCxGC
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Van Geem K.M. et al., J. Chrom. A. 2010
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Comprehensive 2D Gas Chromatography: GCxGC
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Middle Distillate 

analysis



Approximately 300 

components quantified

di-

aromatics

C9

C16

naphthenes

di-naphthenes

mono-

aromatics

naphtheno-

aromatics

paraffins

GC×GC-(ToF-MS)

Combining MS and FID 

Confident peak identification

+

Accurate quantification

2D contour plot



Straightforward

group-type analysis

di-

aromatics

C9

C16

naphthenes

di-naphthenes

mono-

aromatics
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Vortex reactors
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Process intensification – what?

“any chemical engineering development that leads to a substantially smaller,

cleaner, and more energy-efficient technology”

A. Stankiewicz, J. Moulijn

Stankiewicz, A. I.; Moulijn, J. A., Process Intensification: Transforming Chemical Engineering. Chemical Engineering Progress 2000, 22.

https://www.ugent.be/csc/en

Academia

GovernmentIndustry

Society
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gravitational technologies centrifugal technologies

Conventional  

Fluidized Bed 1

Circulating  

Fluidized Bed 2

Conventional Rotating  

Fluidized Bed 3

Gas/Solid Vortex  

Reactor

1. van Hoef et al., Ann. Rev. Fluid Mech. 40 (2008) 47-70

2. http://www.fluidcodes.co.uk/fbed.html

3. adapted from Watano et al., Powder Tech.131 (2003) 250-255

Fluidized bed reactors
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What are the Vortex Reactors?

Rotating fluidized bed reactor in a static geometry

S

G

Drag

Gravity

G

Centrifugal

Drag

Process intensification in terms of heat & mass transfer

Gas-Solid slip 

velocities

Packed beds

Short Gas Residence time 

46



Gas-solid vortex reactor (GSVR) 

• Dense particle bed → reduced reactor volume

• High gas feed flow rates → shorter gas residence time

• Higher gas-solid slip velocity → better gas-solid heat and mass transfer

• Gas phase has plug flow behavior → no back-mixing of the gases in the reactor

• High effective thermal conductivity in the solid bed → uniform temperature in the solid bed

Momentum, heat and mass transfer intensification 
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GSVR & GLVR

Gas-Solid Vortex Reactor Gas-Liquid Vortex Reactor

48



GSVR Research @ LCT

Cold-Flow GSVR Hot-Flow GSVR Reactive GSVR
CFD
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Vortex Reactors Infrastructure @ LCT

Cold-flow Setup Hot-flow Setup Reactive Setup

Reactor Diameter [mm] 570 139 80

Length [mm] 100 25 15

Exhaust Diameter [mm] 150 40 20

Number of Slots [-] 32 8,16 16,12,8

Slot Width [mm] 2,6 0.5,0.6,1 0.45,0.6,0.95

Max Solid loading [g] 2000 – 5000 100 – 200 20 – 30 

Materials tested [-] PVC, PTFE, HDPE, FCC,… HDPE, Pine, Al, Al2O3,… Poplar, Pine, Al, Al2O3, SiC, …

Gas Heater [-] X ✔ (~ 200 °C) ✔ (~ 1000 °C)

Gas Flow [Nm3/h] 360 - 1800 40 - 600 15 – 60

- High frequency (10 Hz) pressure and temperature sensors 
- High accuracy mass flow controllers for all the gases.

TRL 4/5
Research → Demonstration
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Reactive Gas-Solid Vortex Reactor (GSVR) 

Rotating bed in

Vortex reactor

Tangential

gas 

injection

slots
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Particle image  

velocimetry (PIV)  

Measuring particle  

velocity profile to  

validate

hydrodynamic mod

Cold-flow CFD model validation

CFD MODELEXPERIMENT

Simplified geometry

▪ OpenFOAM

▪ Euler-Euler model with KTGF closures

r

8

0°

0
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Cold flow testing and data acquisition

Gonzalez-Quiroga et al., Chem. Eng. J. 329

198, 2016

Particle image 

velocimetry
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GSVR setup

Solids

Feeder

GSVR

Solids 

separation

Condensation

section

GSVR
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GSVR1 operational range & applications

Process parameter Value

Temperature (°C) 20 - 850

Gas flow  (Nm3/h) 15 - 50

Solid mass flow (Kg/h) 0.36- 1.2

Solid density (Kg/m3) 300 - 4000

Solid particle size (m) 7∙10-5 - 3∙10-3

Solid capacity (g) 5 - 30

Liquid flow (m3/h) 6∙10-3 - 3.6∙10-2

Gas phase residence time 

(s)
0.005 - 0.01

• CO2 absorption

• Oxidative coupling of CH4

• Biomass fast pyrolysis

• Plastic waste recycling

1 Reactive unit 55



First drop of bio-oil
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• GSVR chamber after the first reactive test

• No signs of clogging of gas inlet slots or reactor exhaust



GSVR vs Conventional Fluidized-Bed reactors

FB1 - DeSisto et al. Energy Fuels (2010) 24:2646−2651  

FB2 - Men et al. Bioresource Technol (2012) 111:439-446  

FB3 - Kim et al. Renewable Energy (2013) 50:188-195

FB4 - Westerhof et al. Ind. Eng. Chem. Res. (2010) 49:1160-1168
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Pine Fast Pyrolysis – GCxGC oil characterization

Components identified:

24 wt. % of Bio-oil

- Non-aromatic: 84%

- Aromatic: 16%

Guaiacols 85%

Catechols 10%

Phenolics 5%

Guaiacol  

moiety
Phenol moiety

Catechol moiety

Guaiacol

4-Methylguaiacol

4-Ethylguaiacol

Vanillin
Acetovanillone

Isoeugenol

4-Vinylguaiacol

Levoglucosan

Acetic acid

Hydroxyacetaldehyde

Phenol
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Bio oil composition: GSVR vs gravitational FBs

Reduction of  

secondary cracking  

reaction

• Bioresource Technol. (2016) 219:371–377

• Energy Fuels (2010) 24:2642–2651

• Energy Fuels (2013) 27:4748–4759

• Bioresource Technol. (2010) 101:8389–8395
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• Vortex reactor setups (experiments and CFD)

• Catalyst synthesis at AUTH

Future Plan
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