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Overview

» Background

» Plastic recycling

* Pilot plant steam cracking
* \ortex reactors
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Background

Master’s degree in chemical engineering

= Process control and simulation
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Background

Master’s thesis:
Dynamic modeling and simulation of integrated pre-combustion CO, capture based on SEWGS technology In
natural gas combined cycle

Sorption Enhanced Water Gas Shift (SEWGS)

Water gas shift reaction: CO+H,0= CO, + H, —AHYyg = 41k] /mol
Advantages:
Feed O~ O~ O~ O~O~O~ Product
+ Process simplification Ordinary WGS + 620 Catalyst 202 el
CO+H,0 o O CO,+H,
. O°OPO~0~UP0
* High H, and CO, recovery
| | Catalyst Sorbent
« Better heat integration Sorption Feed ’ 2’00’ ‘600‘ Product )
. Lower steam usage Enhanced WGS €O +H,0 0.0.0‘ 2>
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Background
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Plastic recycling
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Solid plastic waste

Plastic Consumption
Europe, USA, China, India
2002-2014

Plastic Waste Composition (wt.%)
local material recovery facility

Bizkaia, Spain
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The plastic waste problem
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Times are changing

“ A circular economy

*» Decrease dependency

—_

GHENT
UNIVERSITY

helps enable ideal
resource recovery

on oil and gas
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Linear model

* Disposal of molecules at end
of lifecycle (landfill, etc.)

* Unmanaged CO, emissions

Increasingly “bent” model

« Partially renewable
feedstocks and energy

« Some level of product reuse
and recycling

* Energy recovery

Circular model (total recovery)

* Full reuse of molecules — with
or without modifications of
molecular bonds

« Climate neutrality
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The new plastics economy

CREATE AN EFFECTIVE AFTER-USE
PLASTICS ECONOMY

DECOUPLE PLASTICS FROM
FOSSIL FEEDSTOCKS

/—\ WORLD ECONOMIC FORUM, ELLEN MACARTHUR FOUNDATION, MCKINSEY & COMPANY,
"I"" A NEW PLASTICS ECONOMY: RETHINKING THE FUTURE OF PLASTICS (2016)
ELLENMACARTHURFOUNDATION.ORG/PUBLICATIONS
. . . 1 Anaerobic digestion
G H ENT 2 The role of, and boundary conditions for, energy recovery in the New
Plastics Economy needs to be further investigated.

U N IVERSITY Source: Project Mainstream analysis
DRIVIM HEMICAL TECHM Y

OTHER
MATERIAL
STREAMS

ENERGY RECOVERY'

2 DRASTICALLY REDUCE THE
LEAKAGE OF PLASTICS INTO
NATURAL SYSTEMS & OTHER

NEGATIVE EXTERNALITIES

ELLEN MACARTHUR
FOUNDATION
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Always look at the global recycling picture

The best strategy will be a combined strategy:
1. Mechanical recycling
- Collection, sorting, washing, grinding and reprocessing
- Not possible for all waste streams
2. Thermochemical recycling (pyrolysis and gasification)
- Conversion into base chemicals, similar to virgin materials
- No extra risk for (food) safety (similar as for virgin materials)

Fossil feedstock

Energy recovery

End of life Landfill

Product use

J
T Mechanical recycling

GHENT Chemical recycling
UNIVERSITY
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Pyrolysis of plastic waste

Thermal degradation of long-chain polymers
— Catalytic pyrolysis

- With presence of catalyst
— Thermal pyrolysis

- Without presence of catalyst

Products:
» Liguids (condensable vapors or oll)
= Solids (char)
= (Gases (hon-condensables)

L 1 T C-PlaNeT
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Why did Chemical Recycling not fly in 90°s?

** The main challenge for chemical recycling Is:
= Stable and continuous feed supply
= Making a profit => simpler (less equipment) Is better

= Corrosion, because of poor separation

* Finding the most suitable reactor technology with maximum
selectivity.

= Optimizing the technology In a way that it is least affected by
changing process conditions and feedstock variation.
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Pilot plant steam cracking
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Steam cracking pllot plant
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What Is chromatography?
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GC x GC Principle

RN 1D chromatogram
GC x GC Oven (at first column outlet)
D T EETR T
2mx0.25 .
PONA Rtx-1 ST mm. 0.5 um U 1. Modulation
50m x 0.25
mm, 0.5 um ‘ * ‘ ‘ ‘ } } }

|

Liquid CO, J |
.u.,_.ld U JLL_h_J..

« Analytes are separated using two different columns  Raw 2D chromatogram
. - . (at second column outlet)
with two different stationary phases.

Q15 4§ .y

« The modulator quickly traps, then "injects" the 2. Transformation
analytes from the first dimension column onto the Y
second dimension.

 This process creates a retention plane of the 1st
dimension separation x 2nd dimension separation.

Second-dimension chromatograms
stacked side by side

Highly beneficial to analyze complex

T 1 M samples

PR H B H

GHENT . N . CIRCULAR PLASTICS NETWORK _ _ _ _

UNIVERSITY FOR TRAINING Dalluge, Beens, & Brinkman (2003), Comprehensive two-dimensional gas chromatography: L9
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a powerful and versatile analytical tool. Journal of Chromatography A. 69-108
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryogenic Cooling

N

i Analytes Partially Resolved on Column 1
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 2 Off and Cryo 1 On
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Comprehensive GCxGC

Column 1: Non-Polar Phase
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Comprehensive GCxGC

Column 1: Non-Polar Phase
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Comprehensive GCxGC

Column 1: Non-Polar Phase
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Comprehensive GCxGC
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Column 1: Non-Polar Phase Column 2: Polar Phase

© O

1alyteS Trappedion Stage 1 of the Thermal Modulator
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 Off and Cryo 2 On

—_

I Analytes Released to Stage 2 of the Thermal Modulator
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 Off and Cryo 2 On
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 Off and Cryo 2 On
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 Off and Cryo 2 On

N

I Analytes Trapped on Stage 2 of the Thermal Modulator
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 On and Cryo 2 Off

Analytes Released to Column 2
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 On and Cryo 2 Off

- Analytes Separate on Column 2
1 v C-PlaNeT
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 On and Cryo 2 Off

Analytes Separate on Column 2
C- Next Bands Enter the Thermal Modulator
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Comprehensive GCxGC

Column 1: Non-Polar Phase Column 2: Polar Phase

Cryo 1 On and Cryo 2 Off

- Analytes Separate on Column 2
H Y C-PlaNeT
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Comprehensive GCxGC

Column 1: Non-Polar Phase
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Column 2: Polar Phase

Analytes Separate on Column 2
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Comprehensive GCxGC

serore [

Analytes Separate on Column 2

GHENT
UNIVERSITY

v C-PlaNeT

37



GCxGC advantages

* Improved Chromatographic Resolution

* Increased Peak Capacity

* Enhanced Signal to Noise

* More accurate gualitative and guantitative info

* More Information per Analyzed Sample
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Universal On-line quantification
4 N

ONLINE ANALYSIS |
Nitrogen = Internal Standard

RGA (TCD) H, CO, C,Hs; C,Hs C,H,
RGA (FID) ‘ CHi.|C, C; ca
PGA (TCD) CO, C,H, C,Hg C,H,| N,

\l/ > (10) ¥=)-------
GCxGC (FID) CHy | C, C3 C4 Cs Cg ... Cyp &DG:ondensateD

\/ IR-GA <t+—D<—

Hs | ... ——
GCxGC (FID) | | CH4 Cos Bl Ty

N_
GHENT Methane = Reference Component
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Comprehensive 2D Gas Chromatography: GCxGC

injector (1)

Column 1

OVEN

—
W T C-PlaNeT
H B B Van Geem K.M. et al., J. Chrom. A. 2010
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Comprehensive 2D Gas Chromatography: GCxGC

GCxGC-FID di-

aromatics

naphtheno-
aromatics

2D contour plot

N2
Straightforward
group-type analysis
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Vortex reactors
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Process intensification — what?

“any chemical engineering development that leads to a substantially smaller,
cleaner, and more energy-efficient technology”

A. Stankiewicz, J. Moulijn
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Stankiewicz, A. I.; Moulijn, J. A., Process Intensification: Transforming Chemical Engineering. Chemical Engineering Progress 2000, 22.
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Fluidized bed reactors
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Conventional Circulating
Fluidized Bed ? Fluidized Bed 2

Conventional Rotating Gas/Solid Vortex
Fluidized Bed 3 Reactor

Tangential gas
». injection
\
1
f
Al
Rotating solid
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gravitational technologies
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centrifugal technologies

1. van Hoef et al., Ann. Rev. Fluid Mech. 40 (2008) 47-70
2. http://www.fluidcodes.co.uk/fbed.html
3. adapted from Watano et al., Powder Tech.131 (2003) 250-255
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What are the Vortex Reactors?

Rotating fluidized bed reactor in a static geometry

. Drag . Centrifugal
o 0 ' .. Drag
¢ Y A ~ Gravity
o 0 R
Y9 o 0
' o 0 Short Gas Residence time
Gas-Solid slip P
S velocities 00
| Jo A
.z Packed beds
= —
— = A B Process intensification in terms of heat & mass transfer

3HIEVNETRSITY w . FOR TRAINING 46
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Gas-solid vortex reactor (GSVR)

Gas injection through Rotating * *
inclined slots : solid
/ “ . particles e
D _’ o
R
"
Dense particle bed - reduced reactor volume 4
Tangential

High gas feed flow rates = shorter gas residence time o a—
Higher gas-solid slip velocity = better gas-solid heat and mass transfer ]
Gas phase has plug flow behavior > no back-mixing of the gases in the reactor e
High effective thermal conductivity in the solid bed - uniform temperature in the solid bed

Momentum, heat and mass transfer intensification

i | C-PlaNeT
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GSVR & GLVR
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Gas-Solid Vortex Reactor
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Gas-Liquid Vortex Reactor
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GSVR Research @ LCT

Reactive GSVR

CFD

H N g
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Vortex Reactors Infrastructure @ LCT

Cold-flow Setup

Hot-flow Setup

Reactive Setup

Reactor Diameter [mm] 570 139 80
Length [mm] 100 25 15
Exhaust Diameter [mm] 150 40 20
Number of Slots [-] 32 8,16 16,12,8
Slot Width [mm] 2,6 0.5,0.6,1 0.45,0.6,0.95
Max Solid loading [g] 2000 — 5000 100 — 200 20 — 30

Materials tested [-]

PVC, PTFE, HDPE, FCC,...

HDPE, Pine, Al, Al,O;,...

Poplar, Pine, Al, Al,Os, SIC, ...

Gas Heater [-]

X

« (~ 200 °C)

« (~ 1000 °C)

Gas Flow [Nm3/h]

360 - 1800

40 - 600

15-60

- High frequency (10 Hz) pressure and temperature sensors

- High accuracy mass flow controllers for all the gases.

N
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Research - Demonstration
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Tangential
gas

Injection \‘ >
slots \(
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Cold-flow CFD model validation
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[ EXPERIMENT ]

Lr=15 mm

Particle image
velocimetry (PIV)
Measuring particle
velocity profile to
validate e
hydrodynamic mod zls

camera
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[ CFD MODEL ]

Simplified geometry

~

= OpenFOAM

Euler-Euler model with KTGF closures
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Cold flow testing and data acquisition

- 2.5

- 0
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198, 2016
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GSVR setup
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GSVR! operational range & applications

Temperature (°C) 20 - 850
Gas flow (Nm?3/h) 15 - 50 .
; » CO, absorption
Solid mass flow (Kg/h) 0.36- 1.2 _ _ _
Solid density (Kg/m?3) 300 - 4000 ° OXIdatlve COuU pl I ng Of CH4
Solid particle size (m) 7-105- 3-10°3 ° B'OmaSS fast pyronS|S
Solid capacity (g) 5-30 PI . I
O

Liquid flow (m?3/h) 6-103 - 3.6-:102 aStIC WaSte reCyC Ing
g?s phase residence time 0.005 - 0.01

m | C-PlaNeT o

GHENT L% B SO PLASTICS NET O 1 Reactive unit 55
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First drop of bio-oll

e GSVR chamber after the first reactive test

* No signs of clogging of gas inlet slots or reactor exhaust
a) Unconverted biomass rotates

near the outer wall

%
2
~
~
~
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T
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Char is selectively
entrained
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GSVR vs Conventional Fluidized-Bed reactors

80
70
60-
™
© 50
K
>"4O B Bio — oil
O B Char
g 30 B Gas
(a1

N
o

=
=

FB1 FB> FBs FB4 GSVR

FB1 - DeSisto et al. Energy Fuels (2010) 24:2646-2651
T 0 H C Pl N T FB2 - Men et al. Bioresource Technol (2012) 111:439-446
—_— . . - a e FB3 - Kim et al. Renewable Energy (2013) 50:188-195
GHENT . N . CIRCULAR PLASTICS NETWORK FB4 - Westerhof et al. Ind. Eng. Chem. Res. (2010) 49:1160-1168

FOR TRAINING
UNIVERSITY  cabie cuemcat recanotoo

S7



Pine Fast Pyrolysis — GCxGC oil characterization

Components identified:
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Bio oll composition: GSVR vs gravitational FBs

8 B Ratio Catechol/Guaiacol -
y B Ratio Phenol/Guaiacol
6- ______________

Reduction of 51

secondary cracking — g

reaction
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Auger reactor FB1 GSVR
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Future Plan

* \ortex reactor setups (experiments and CFD)

» Catalyst synthesis at AUTH

N

I} 1 T c C-PlaNeT
GHENT B N . CIRCULAR PLASTICS NETV/ORK

UNIVERSITY

60



LABORATORY FOR CHEMICAL TECHNOLOGY
Technologiepark 914, 9052 Ghent, Belgium

E Info.lct@ugent.be
T 003293311757

https://www.lct.ugent.be

TN
- l N T This project has received funding from the European Union's Horizon 2020
_— C - P a e research and innovation programme under the Marie Sklodowska-Curie grant
GHENT CIRCULAR PLASTICS NETWORK agreement No. 859885.

FOR TRAINING
U N IVERSITY JRIVING CHEMICAL TECHNOLOGY )




