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Abstract— Over the last decades, Learning from Demon-
stration (LfD) has become a widely accepted solution for
the problem of robot programming. According to LfD, the
kinematic behavior is “taught” to the robot, based on a set of
motion demonstrations performed by the human-teacher. The
demonstrations can be either captured via kinesthetic teaching
or external sensors, e.g., a camera. In this work, a controller for
providing haptic cues of the robot’s kinematic behavior to the
human-teacher is proposed. Guidance is provided in procedures
of kinesthetic coaching during inspection and partial modifica-
tion of encoded motions. The proposed controller is based on an
artificial potential field, designed to adjust the intensity of the
haptic communication automatically according to the human
intentions. The control scheme is proved to be passive with
respect to robot’s velocity and its effectiveness is experimentally
evaluated in a KUKA LWR4+ robotic manipulator.

I. INTRODUCTION

Learning from Demonstration (LfD) is recently proposed
as a promising solution for the problem of robot program-
ming, according to which the robot’s kinematic behavior
is taught based on a set of demonstrated by the human-
teacher motions. Learning from demonstration provides the
robots with flexibility and allow them to exploit the workers’
experience, as opposed to classical programming which
is inflexible, cognitively and physically demanding, time-
consuming and requires technical skills from the human-
teacher. The set of motion demonstrations can be either
captured via external sensors [1], e.g., a camera, or via
internal sensors, i.e., robot’s proprioception, during phys-
ical human-robot interaction, an approach widely known
as kinesthetic teaching [2]–[4]. To encode and general-
ize the demonstrated kinematic behavior, the most popular
approaches involve the utilization of Dynamical Systems
(DS) with parameters learned to optimally reflect the set of
demonstrated motions. The most popular dynamical systems
for LfD are the Dynamic Movement Primitives (DMP)
[5], [6] and Gaussian Mixture Models (GMMs) [7]. Both
dynamical systems involve function approximation methods,
most commonly utilizing a weighted sum of Gaussian base
functions, with the weights of those functions being the
parameters which encode the kinematic behavior. Dynamical
systems generalize motions from different initial states to
new targets and allow on-line adaptation and modification.
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LfD can be significantly accelerated if feedback of the
current knowledge is provided from the robot-learner to the
human-teacher, since it can accelerate the learning process
[8]–[10]. Many works propose the bi-directional communi-
cation between the human-teacher and the robot-learner [1],
[2], [4], [8]–[15]. Some works utilize graphical interfaces to
display the path of the robot [12], [13], while others simulate
the robot’s kinematic behavior [1], [12], [14], [15]. However,
the planar nature of the utilized monitors hinders the user’s
ability to get a clear understanding of the current knowledge
of the robot and navigate in such an environment. A more
effective approach involves the autonomous execution of the
learned behavior, while allowing physical intervention for
modifications [2], [4], [11], [16]. However, in these cases, the
user has to wait for the evolution of the dynamical system
or synchronize with it and intervene exactly at the specific
instance the modification is intended, which can be time-
consuming and cognitive-demanding. In physical human-
robot interaction the passivity of the control system is needed
in order to ensure that the energy produced by the system will
in any case be less than the absorbed one, and therefore the
safety of both the system and the operator are guaranteed.
In some of the above works, passivity proof is not given
[2], [11]; in others [16] the passivity analysis involves the
velocity error and not the velocity of the robot which is
more appropriate, as it corresponds to the energy transferred
between the system and the environment.

A common technique for providing haptic feedback to the
user involves the utilization of Virtual Fixtures (VF), which
were firstly introduced in tele-robotic manipulation [17], [18]
and have been later utilized in surgical [19], micro [20],
industrial [21], [22], or even in underwater robotic tasks [23],
to enhance operator performance in terms of execution time,
precision and error rates. Virtual fixtures for guidance are
usually enforced either via controllers that utilize artificial
potential fields [8], [24], [25], or via controllers which do
not store energy [20], [26], [27]. The controllers of the latter
category do not provide haptic cues when the robot velocity
is zero, which actually interrupts the communication between
the robot and the human.

In our previous work [8], a passive control scheme was
proposed which imposes penetrable virtual fixtures around
the spatial properties of the kinematic behavior. The human-
teacher has the ability to haptically inspect and validate
the spatial properties of the already learned kinematic be-
havior and modify any segments of it, by penetrating the
virtual fixture, reducing, in this way, the time required for
modifications. However, haptic cues do not communicate



temporal properties and they are not provided during the
modification Thus, when a human introduces a modification
he is unaware of the already learned behavior and he is
therefore obliged to re-demonstrate the rest of the behavior.
The passivity proof of the overall scheme of [8] is proved
under a restrictive assumption, which is that the nearest pose
from the spatial properties of the kinematic behavior is found
by an optimization algorithm within one control cycle. By
not including the optimization procedure dynamics, the proof
is valid only for the ideal case.

In this work, a control scheme is proposedwith the fol-
lowing properties: a) not only the spatial, but also the
temporal properties of the kinematic behavior are haptically
communicated to the human-teacher as opposed to [8], while
maintaining passivity, b) the proposed virtual fixture is based
on a novel artificial potential field which is designed to
provide haptic cues both during the inspection and the
modification of the learned kinematic behavior and c) the
passivity proof includes the optimization procedure dynam-
ics, as opposed to [8]. The main contribution of this work
is a control scheme that significantly reduces the effort and
time of human coaching as opposed to previous published
works.

II. PROBLEM DESCRIPTION AND HAPTIC CUES
CONCEPT

Consider a robot with an already learned kinematic be-
havior, utilizing a DS. Our aim is to design a passive
control scheme which assists the human-teacher by providing
him/her with the information of the spatial and temporal
properties of currently known kinematic behavior haptically.
Furthermore, the control scheme should allow the human-
teacher to kinesthetically modify any segment of the already
learned kinematic behavior and easily return to the already
learned segments with the assistance of the proposed haptic
cues during the whole procedure. In particular, the control
scheme should fulfill the following key objectives:
• The control action applied by the robot’s motors should

communicate haptically both the spatial and the tem-
poral properties of the learned kinematic behavior to
the user and allow him/her to discriminate between the
phase of inspection and the phase of modification.

• The control scheme should be passive in terms of the
transferred power between the system and the environ-
ment, which involves the velocity of the robot and the
interaction force.

The basic concept for providing the spatial and temporal
properties of the learned kinematic behavior via haptic cues
is illustrated in Fig. 1. The control action is generating a
force pointing from the current end-effector’s pose towards
the future evolution of the DS. It contains a component
which is pointing to the nearest pose on the learned path
and thus it is dependent on the spatial properties of the
behavior similarly to [8] and a component dependent on
the temporal properties of the behavior and in particular on
its velocity profile; thus higher velocities will yield higher
angles with the nearest pose direction. The magnitude of

this force depends on whether the user is inspecting the
learned behavior or he is modifying it. During inspection
and for a preset distance around the learned behavior, the
force magnitude is produced by a non-linear spring and it
is therefore dependent on the deviation. In contrast, during
modifications, which are defined as movements beyond the
preset distance, the force magnitude is small and independent
of the deviation. This signal allows the user to significantly
modify segments of the learned trajectory while always being
aware of the direction of the encoded kinematics so that he
can easily return to the learned segments.
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Fig. 1: Control action, based on the spatial and temporal
properties of the kinematic behavior.

III. PROPOSED CONTROL SCHEME

Let x = [pT QT]T be the generalized pose of the end-
effector, with p ∈ R3 being the position and Q ∈ S3 being
the orientation in the form of unit quaternion. The mapping
between the generalized velocity v = [ṗT ωT]T ∈ R6 of the
end-effector, with ṗ, ω being the translational and angular
velocities respectively, and ẋ is

ẋ = Jx(x)v, (1)

where

Jx(x) = diag
(
I3 ,

1
2JQ(Q)

)
∈ R7×6, (2)

with JQ(Q) ∈ R4×3 being a matrix, mapping the angular
velocity of the frame to the unit quaternion rates of Q:

JQ(Q) =

[
−εT

ηI3 − S(ε)

]
, (3)

with η ∈ R, ε ∈ R3 being the scalar and vector part of the
unit quaternion Q respectively and S(ε) ∈ R3×3 the skew
symmetric matrix derived from ε.

Let the kinematic behavior be encoded by a second order
Dynamical System (DS), e.g., a DMP, of the following
general form:

dsd
dt

= h(sd; w) =

hs(sd; w)
Jx (xd) vd
hz(z)

 (4)

where sd = [vT
d xT

d z]T, with xd = [pT
d QT

d ]T, vd =
[ṗT
d ω

T
d ]T the pose and velocity reference respectively, z ∈ R

an auxiliary state variable called “phase variable”, hs, hz



smooth functions of the state and phase variable respectively
and w ∈ RN the parameters which are tuned or “learned” in
order for the DS to optimally reflect the desired kinematic
behavior. Let the notion “spatial properties” of the kinematic
behavior refer to the path of the evolution of xd and the term
“temporal properties” to the velocity profile.

To achieve the set objectives and realize the basic idea
of the haptic cues described above, we propose a control
scheme depicted in Fig. 2 as a block diagram.
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Fig. 2: Block diagram of the proposed control scheme.

The control scheme synthesizes a robot control input at
the torque level given an already learned kinematic behavior
encoded by a Dynamical system (DS) and includes active
damping. The evolution of the DS is controlled to remain
synchronized with the motion of the end-effector driven by
the human-teacher via the introduction of a virtual time
variable σ ∈ R≥0, which acts as a replacement of time; hence
the evolution of the DS can be expressed parametrically with
respect to σ as: xd = xd(σ), vd = vd(σ), z = z(σ), i.e.,
sd = sd(σ) and (4) becomes:

dsd
dσ

= h(sd(σ); w). (5)

To achieve synchronization, we utilize a gradient descent
optimization algorithm with respect to σ as described later
in Subsection III-B. In fact, we find the nearest to the
current pose on the learned path. Then we advance σ (by
one step in a discrete time implementation) to incorporate
temporal properties. As the passivity of the overall system
is lost by this advancement, we utilize an energy tank state
to collect the energy dissipated by the active damping and
provide the required energy back to the system, as shown
in Fig. 2. In this way, we can guarantee the passivity of
the system, which is one of our objectives. Notice that
the energy provided by the energy tank is utilized for the
advancement of the evolution of the DS, which is different to
the common methods involving energy tanks for interaction
with dynamical systems [16], [28], [29]. The latter utilize the
stored energy to adjust the impedance. In our case, it is used
to communicate the temporal properties of the kinematic
behavior, when the energy tank is not depleted.

To realize the basic concept of the haptic cues and in
particular the magnitude of the communicated force, we
impose via the control signal, a novel artificial potential
field U(x,xd(σ)), which forms a penetrable spherical virtual

fixture in position and orientation of preset radius, around
the pose xd(σ), for the advanced σ value In this way, the
spherical fixture is one step ahead of the user. The artificial
potential field is designed to reflect a relatively high apparent
stiffness within the spherical virtual fixture, while outside this
fixture, it induces forces with small and independent of the
deviation magnitude. In fact, when the end-effector is driven
out of the spherical virtual fixture, the human’s intention for
modification is identified and communicated. The re-entrance
within the virtual fixture is followed by the synthesis of a
new dataset, similarly to [8], and consequently the re-training
of the DS.

The control input is analytically expressed with the fol-
lowing generalized force which is then mapped to the joint
space by the Jacobian transpose:

u = −JT
x(x)

∂U(x,xd(σ))

∂x
−Dv, (6)

with D ∈ R6×6 a positive definite damping matrix, intro-
ducing the active damping.

In the rest of this section, details of the proposed control
scheme (Fig.2) are given. First the artificial potential field is
presented, followed by the kinematic behavior synchroniza-
tion which details the finding of the virtual time instance
σ depicted in Fig. 1. Last, the training dataset synthesis
mechanism is briefly presented for completeness.

A. Artificial potential

The following artificial potential is proposed combining
translation and orientation deviations:

U(x,xd(σ)) , kpf

(
‖ep‖
r

)
+ kof

(
‖eo‖
s

)
, (7)

with ‖.‖ denoting the Euclidean norm, ep , p −
pd(σ) ∈ R3 the translation error, eo , JT

Q(Qd(σ))Q =

−JT
Q(Q)Qd(σ) ∈ R3 the orientation error, kp, ko ∈ R>0

tunable gains and r ∈ R>0, s = sin
(
θ
2

)
preset thresholds

which determine the radius of the spherical virtual fixtures
in position and orientation respectively with θ ∈ R>0 and
f(x) : R≥0 → R≥0 the following C1-smooth function:

f(x) =

{
(3− g)x2 + (g − 2)x3, if x < 1

g(x− 1) + 1, if x ≥ 1
, (8)

with g ∈ (0, 3]. Function f(x) is depicted in Fig.3 for two
different values of g = 0.1 and 0.5 respectively. Its derivative
∂f(x)
∂x is proportional to the force and torque magnitude

transmitted to the user. Hence, above the thresholds r and s
for translation and orientation respectively, ∂f(x)∂x is constant
and equal to g. Consequently, the magnitude of the haptic cue
transmitted to the user will be constant during any performed
modification, as described in Section II.

The potential U(x,xd) has the following properties:
• U(x,xd) ≥ 0,∀x,xd,
• U(x,xd) = 0⇔ x = xd,
• U(x,xd) is strictly increasing w.r.t. ‖ep‖ and ‖eo‖,
∀‖ep‖, ‖eo‖ ∈ (0,+∞),
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Fig. 3: Function f(x) and its derivative for g = 0.1 and 0.5.

• U(x,xd)→∞ when ‖ep‖ → ∞ or ‖eo‖ → ∞,
• ‖ ∂U∂ep

‖ is constant for all ep : ‖ep‖ ≥ r and ‖ ∂U∂eo
‖ is

constant for all eo : ‖eo‖ ≥ s.
• ‖∂U∂e ‖ > 0 for all e 6= 0 and ‖∂U∂e ‖ = 0⇔ e = 0.
Remark 1: Notice that f(x) is a quasi-convex function in

[0,∞), since for any two given x1, x2 ∈ [0,∞), f(λx1 +
(1− λ)x2) ≤ max(f(x1), f(x2)), ∀λ ∈ (0, 1). Furthermore
its global minimum is found at x = 0 and it does not possess
any stationary points other than this. Similarly, U has no
stationary points other than its global minimum, which is
found at x = xd.

The partial derivative ∂U
∂x in (6), is given by:

∂U

∂x
=

[
kpvp(‖ep‖)ep

kovo(‖eo‖)JQ(Qd)eo

]
(9)

where vp(‖ep‖), vo(‖eo‖) : [0,∞) → [0,∞) being the
following continuous functions:

vi(‖ei‖) ,

{
6−2g
b2i

+ (3g−6)‖ei‖
b3i

, if ‖ei‖ < bi
g

bi‖ei‖ , if ‖ei‖ ≥ bi
(10)

with i = {p, o}, bp = r, bo = s.
Notice that when ‖ep‖ > r or ‖eo‖ > s, vp(‖ep‖)ep and

vo(‖eo‖)eo have constant magnitude, which makes the force
feedback term independent of the magnitude of ep and eo
respectively.

B. Kinematic behavior synchronization

To incorporate the temporal properties of the kinematic
behavior as described in the concept solution, the following
continuous update law for σ is proposed:

σ̇ = 1︸︷︷︸
Normal

DS evolution

−kg
∂U

∂σ︸ ︷︷ ︸
Gradient descent
for closest point

seeking

, (11)

with kg ∈ R>0 being the gradient descent gain. The update
law (11) induces the DS evolution in parallel with the optimal
seeking. In particular, the first term of (11) will result in
the virtual time being equal to the real time. The second
term of (11) is a gradient descent update law for σ to find
the nearest pose of the 1-dof curve xd(σ) from x(t). The
combination of these two terms results in the acceleration of
the DS evolution when σ̇ > 1 and the deceleration of the

DS evolution when σ̇ < 1 is decelerated. To look ahead in
time, one has to enforce positive values on σ̇.

Remark 2: The second term of (11) is the on-line solution
to the following optimization problem:

min
σ∈[0,T ]

U(x(t),xd(σ)), (12)

with T ∈ R>0 being the total duration of the generated
motion.

C. Final control synthesis and passivity proof

Let the robot’s task-space model with gravity compensa-
tion be:

Λx(x)v̇ + Cx(x,v)v = Fx + u, (13)

where Λx(x),Cx(x,v) ∈ R6×6 the task-space inertia and
Coriolis matrices respectively, for which it holds aT(Λ̇x −
2Cx)a = 0,∀a ∈ R6, Fx ∈ R6 the interaction force applied
by the human-teacher and u ∈ R6 the control input, i.e., the
force/torque control action (6).

It is easy to show that by utilizing the update law (11),
the closed loop system consisted of (13), (6) and (11) is not
passive with respect to the velocity of the end-effector v,
under the exertion of the external force Fx, since the first
term of (11) generates energy. To resolve this problem, we
utilize an energy tank state L(t) ∈ R≥0, which stores a part
of the dissipated energy from the active damping term. To
exploit this stored energy we replace the first term of (11)
with a smooth switch function of L, depicted in Fig. 4 with
black solid line; namely h(y) : R→ [0, 1] which equals to 1
if y > δ and equals to 0 if y ≤ δ, with δ ∈ R>0 being a very
small preset parameter1, This allows the temporal properties
to be communicated as long as the energy tank is not empty.
Further, we impose the forward evolution of the DS from
the current state, by keeping σ̇ positive via a smooth ramp
function h(y)y, depicted in Fig. 4 with red dashed line. We
assume that when the user drives the robot in the opposite to
vd direction, he/she has the intention to modify and not to
inspect backwards. Thus, the final proposed update law for
σ becomes:

σ̇ = h(y)y, (14)

with
y = h(L)− kg

∂U

∂σ
. (15)

The energy tank’s level L dynamics are:

L̇ = avTDv − h(L)h(y)
∂U

∂σ
, (16)

where a ∈ (0, 1) is the percentage of the dissipated energy
rate which is stored in L. The energy tank’s level L will
always be positive since L = 0 implies L̇ ≥ 0, while
L̇ > 0 and L̇ < 0 means that energy is stored and released
respectively. Equation (16) implies that the energy is released

1h(y) ,


0, if y < 0

10
( y
δ

)3 − 15
( y
δ

)4
+ 6

( y
δ

)5
, if 0 ≤ y ≤ δ

1, if y > δ
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Fig. 4: Smooth switch function h(y) (black solid line) and
smooth ramp function h(y)y (red dashed line).

given that the energy tank is not empty (h(L) > 0) and when
σ̇ > 0. This is the case when the user modifies the trajectory
in the opposite direction of vd and hence the evolution of σ
should stop and energy should be released so that the system
remains passive.

Theorem 1: The closed loop system consisted of (13), (6),
(16) and (14) is strictly output passive with respect to the
velocity output v, under the exertion of the interaction force
Fx.

Proof: The proof is given in the Appendix.
Hence, the proposed control scheme consists of the control

law (9), the update law (14) and the energy tank dynamics
(16). Algorithm 1 describes its discrete time implementation,
where Tc ∈ R>0 is the control cycle.

Algorithm 1 The control loop

1: Initialize vd,k := vd,0, xd,k := xd,0, σk := 0, Lk := 0
2: while σk ≤ T do
3: Get current state of the robot xk,vk
4: Compute u from (9), given xk, vk, xd,k
5: Send u as a force/torque command to the robot
6: Compute ∂U

∂σ , given xk, xd,k, vd,k
7: Compute σ̇ from (14), given ∂U

∂σ , Lk
8: σk+1 := σk + Tcσ̇ . Update σ
9: sd,k+1 := sd,k +

∫ σk+1

σk
h . Integrate DS (5)

10: Compute L̇ from (16) given Lk, vk, ∂U∂σ
11: Lk+1 := Lk + TcL̇ . Update L
12: end while

Remark 3: In order to make the calculation of y appearing
in the update law (14) independent to the magnitude of vd,
one can select the following varying gain in the gradient
descent law kg(σ) = κ

‖vd(σ)‖+ε , with κ ∈ R>0 being a
positive constant and ε ∈ R>0 a relatively small value.
Notice that such a choice does not affect the passivity proof.

D. Training dataset synthesis

Similarly to [8], the intention of the human-teacher for
modification is identified when the thresholds r, s are ex-
ceeded. Towards this direction, let us define the following
region: Ω(σ) , {x ∈ T : ψ(x, σ) ≤ 1}, with ψ(x, σ) ,

max
(
‖ep(p,σ)‖

r , ‖eo(Q,σ)‖s

)
. Based on region Ω, the old

segment of the previous training dataset between σo = σ(to)
and σi = σ(ti) is replaced with the newly demonstrated
segment of the modification between to and ti, with to
being the actual instance of exceeding the thresholds r, s
and ti being the actual instance of returning within Ω. If
no intention is identified within a single iteration of the
kinesthetic teaching, i.e., if x(t) ∈ Ω,∀t : σ(t) < T , the
kinesthetic teaching has finished and the system is ready to
autonomously execute the task.

IV. EXPERIMENTAL EVALUATION

Experiments are conducted utilizing a KUKA LWR4+
robotic manipulator, with a control cycle of Tc = 1ms.
The proposed controller is compared to the control scheme
proposed in [8], i.e., g = 0 and not utilizing the energy
tank in the update law (14), i.e., L = 0, L̇ = 0 in (14). The
parameters of the proposed control scheme are set as follows:
κ = 900 (reflecting the convergence rate of the gradient
descent term), kp = 0.2, ko = 0.4 (reflecting the VF signal
intensity in position and orientation respectively), g = 0.4
(reflecting the magnitude of the force felt by the user outside
the VF), r = 0.02m, θ = 10o (reflecting the radius of the
VF in translation and orientation respectively), D = 0.2I6,
ε = 0.05, δ = 10−10 (relatively small values), a = 0.9
(being the percentage of the dissipated energy stored in the
energy tank). For the encoding of the kinematic behavior, a
DMP is utilized with a total of 400 kernels in each axis2.

The experimental scenario emulates the task of applying
liquid material on the upper edges of the cylinders of an
internal combustion engine. The robot is already taught how
to apply material on the two of the engine’s cylinders, as
shown in Fig. 5a, but a variant of the task requires the
behavior’s modification, as shown on Fig.5b, which involves
the application of material in an additional cylinder’s edge of
the engine. Notice that the additional cyclic edge is between
the two others and has different orientation.

(a) Already known kinematic
behavior.

(b) Task variant, yellow line indi-
cates the newlly added segment.

Fig. 5: Experimental setup. Red arrows indicate the required
orientation of the z-axis of the end-effector for the accom-
plishment of the task.

In [8], the results are compared with the case of using a
gravity compensated robot agnostic of the previously learned

2The task’s duration is approximately 25s, hence 400 kernels corresponds
to approximately 16 kernels per second.



behavior, revealing the reduction of the duration of teaching
and thus the user’s cognitive load. In this experimental
evaluation our aim is to reveal the extra advantages of the
proposed control scheme as compared to [8] in terms of time
required and physical load reduction.

The path of the end-effector is depicted in Fig. 6, utilizing
the proposed controller and the controller proposed in [8].
Notice that, due to the lack of the term h(L) in [8], the
solution is trapped in a local minimum and hence the user is
unable to return to the tube of the virtual fixtures, as opposed
to the proposed control scheme which is able to overpass
this local minimum by utilizing the stored energy. The user
identifies that the end-effector did not re-entered the virtual
sphere defined by r, θ and demonstrates the whole segment
until the end of the motion. As a result, the time required
for this procedure was approximately 21s for [8] and 30%
less for the proposed controller.
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Fig. 6: Demonstrated path. Black line indicates the segments
where x(t) ∈ Ω, while blue line the segments where x(t) /∈
Ω. The red line indicates the desired pose xd(σ(t)).

In Fig. 7, the two terms of the right-hand side of (16)
are shown separately to demonstrate the necessity and the
functionality of the energy tank, for two different time
instance, namely after the penetration of the virtual fixture
and after the re-entrance within it. Notice that during the
whole procedure the energy tank is never depleted, since the
collected energy L̇in = avTDv is generally larger than the
provided energy L̇out = −h(L)h (y) ∂U∂σ in this experiment,
as also indicated in Fig.7. However, during the time windows
depicted in Fig. 7, the energy tank had to provide energy to
the system in order to maintain passivity, which is visible in
Fig.7 due to the fact that L̇out has also negative values.

The evolution of x = [pT QT]T in time is shown in Fig. 8,
utilizing the proposed control scheme. For comparison pur-
poses, the synthesized training dataset is also depicted, which
corresponds to the demonstration required to be executed by
the user utilizing a system agnostic of the previously learned
behavior. Notice that with the proposed controller, the user
is able to inspect and validate the segments of the kinematic
behavior before and after the modification (light grey boxes)
faster than the training dataset, while it takes the same time
to demonstrate the modified segment, i.e., dark grey boxes
has the same length. Notice that, due to this fact, the time
needed for the whole modification procedure is significantly
reduced, as compared to the re-demonstration of the whole

12.3 12.4 12.5 12.6 12.7

Time (s)

-0.1

0

0.1

7.2 7.3 7.4 7.5

Time (s)

-5

0

5

L̇
o
u
t
(J
/s
) ×10

-30

0.02

0.04

L̇
in

(J
/s
)

0

0.5

Fig. 7: Details of the values of the two terms of (16), L̇in =
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Fig. 8: Evolution of p and Q with the proposed control
scheme. The color code is the same as in Fig. 6, the dashed
grey line is the training dataset.

The evaluation in terms of the physical load required by
the human-teacher is done using a validation demonstration
along the modified trajectory, i.e., x(t) ∈ Ω,∀t, utilizing
the proposed controller and the controller proposed in [8].
The total energy transferred is utilized as a representative
metric of the physical load required by the user, which is
calculated as E =

∫ Td

0
vTFxdt, with Td being the total

duration of the demonstration, and Fx the external force
estimation provided by the robot. The control scheme of
[8] required a total energy of 4.861J to be transferred from
the user to the robot, while the proposed control scheme
required approximately 17% less, as expected, due to the
enhancements of the proposed method.

V. CONCLUSIONS

In this work a controller for providing haptic cues of the
robot’s kinematic behavior of both its spatial and temporal
properties to the human-teacher is proposed, which enables
the inspection and partial modification of kinematic behav-
iors outside the VF. The proposed controller is proved to
be passive and it is experimentally validated and evaluated.
The experimental comparison of the proposed work with the



previous one [8], shows its superiority in terms of the energy
required to be provided from the human-teacher to the system
and the time required for the whole modification procedure
are shown to be significantly reduced. One limitation of the
proposed method is that it does not address cases of singular
configurations since the haptic rendering is inaccurate in
these cases. Future work will study a subjective evaluation
by users, with different background and expertise.

APPENDIX - PROOF OF THEOREM 1

For the system (13), (6), (16) and (14) consider the
following storage function:

V =
1

2
vTΛxv + U(x, σ) + L. (17)

The time derivative of (17), after substituting σ̇ from (14),
Λxv from (13) and utilizing (6), is given by:

V̇ =− vTDv + vTFx + h(L)h (y)
∂U

∂σ

− kgh (y)

(
∂U

∂σ

)2

+ L̇,

(18)

Utilizing equation (16), (18) becomes:

V̇ ≤ −(1− a)vTDv + vTFx, (19)

which proves that the system is strictly output passive, since
0 < a < 1.
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