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Abstract— This paper presents a teaching by demonstration
method for contact tasks with periodic movement on planar
surfaces of unknown pose. To learn the motion on the plane,
we utilize frequency oscillators with periodic movement prim-
itives and we propose modified adaptation rules along with
an extraction method of the task’s fundamental frequency
by automatically discarding near-zero frequency components.
Additionally, we utilize an online estimate of the normal
vector to the plane, so that the robot is able to quickly
adapt to rotated hinged surfaces such as a window or a door.
Using the framework of progressive automation for compliance
adaptation, the robot transitions seamlessly and bi-directionally
between hand guidance and autonomous operation within few
repetitions of the task. While the level of automation increases, a
hybrid force/position controller is progressively engaged for the
autonomous operation of the robot. Our methodology is verified
experimentally in surfaces of different orientation, with the
robot being able to adapt to surface orientation perturbations.

I. INTRODUCTION

Kinesthetic teaching of a robot, is a promising way to
easily teach new tasks and reduce the programming time of
a robot. In such a teaching by demonstration process the
operator physically grabs the robot and provides motion and
force information. Contact tasks pose an additional challenge
since apart from the motion, the robot has to learn and
regulate an appropriate force to the environment as well.
Hybrid force/position control is a well-known approach to
address this problem given knowledge of the constraint frame
of the surface [1]. However, the orientation of the surface and
the desired normal force might be unknown beforehand.

By focusing on contact tasks of periodic motion, such
as wiping a window, we utilize the notion of progressive
automation [2]. With progressive automation a human can
teach repetitive tasks to a robot for seamless transition from
kinesthetic guidance to autonomous operation. While the
operator demonstrates a task few times, the robot’s stiffness
gradually increases based on the correspondence between
consecutive demonstrations so that the robot learns and
accurately tracks the desired trajectory. Unlike [1] which
focused only on motion encoding with manual segmentation
of movements, the approach presented in this paper aims
at periodic movements that need not be segmented and at
learning of the unknown desired force profile to a non-fixed
planar surface of unknown pose. The presented approach
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combines the following sub-components: a) frequency oscil-
lators and a novel extraction method of the fundamental task
frequency, b) a progressive automation strategy to smoothly
adapt robot compliance towards autonomy, c) a periodic
motion generation system with variable adaptation rates to
learn and reproduce the reference trajectory, d) a force
extraction method to learn and reproduce the desired contact
force profile using an estimator of the normal vector, and e)
a hybrid force/position controller that combines the output
from all modules.

A method to determine the frequency and encode the
waveform of a periodic movement was proposed in [3], [4],
that consists of adaptive frequency oscillators and periodic
Dynamic Movement Primitives (DMP) to encode the motion
pattern [5]. However, to encode multiple degrees of freedom
(DOF) with coupled frequencies, the fundamental frequency
of the task needs to be extracted among the learned fre-
quencies in each DOF and be used in a common Canonical
System for both learning and reproduction, otherwise drifting
may occur. This extraction usually requires treatments such
as logical operations [3], which can lead to side-effects like
canceling or doubling of frequencies.

For periodic contact tasks, such as the wiping of a surface,
the authors in [6] initially learned the periodic movement
with DMP and in a second phase they adapted the DMP to
apply a certain normal force. In [7] a method was proposed
to gradually adapt a wiping task to non-rapid changes of
the environment. A passivity based iterative learning was
proposed in [8] to gradually modify the anchor point of a
periodic DMP with a pre-specified pattern, with respect to
external forces due to changes of the environment. Under
the same objective, an adaptation mechanism was proposed
in [9] to modify the spatial parameters of dynamical systems
in periodic tasks of pre-specified patterns. These methods as-
sume specific motion patterns and slow adaptation to changes
of the environment, which are considerable limitations in
cases when the operator desires to significantly change the
task (force profile, constraint frame, pattern, frequency). In
specific, a rotation of the surface in [8] alters the executed
task because the motion generation system does not consider
the change of orientation.

Hybrid force/position control for periodic tasks was im-
plemented in [10], [11], [12] combining adaptive frequency
oscillators in a single degree of freedom and periodic DMP
learning. The authors implemented unidirectional progressive
transition from learning to autonomous execution which in
[10] was based on the tracking error and in [12] on the fatigue
level of the operator using EMG sensors. On the contrary,



a key element of progressive automation that is present in
our approach is the seamless, bidirectional and uninterrupted
transition between hand guidance and autonomous execution,
allowing with the proposed setup the robot to distinguish
between user intervention and task disturbances that need
to be rejected. A common characteristic in learning with
hybrid force/position control is the predetermined values
for the desired force magnitude in [8], [13], [14] and for
the force direction in [10], [12], which however may be
unknown to the robot. Alternative approaches to learn force
and position tasks have also been proposed using DMP [15],
where the robot can learn and reproduce a force profile
instead of a constant desired force. Probabilistic methods
have also been proposed for force/position tasks in [16],
[17], which however aim to generalization and depended on
data variability that require the operator to provide sufficient
statistical information about the task during demonstration.

In this paper we present a novel approach to progressively
automate contact tasks of periodic movement with teaching
by demonstration. The proposed approach aims at fast and
effective learning of tasks with few demonstration, where the
robot needs to apply an unknown to the robot time-varying
force profile that is demonstrated by the operator to a planar
surface of unknown pose and perform a periodic movement.
The contribution of this work is highlighted below:
• We extend the formulation of adaptive frequency os-

cillators with variable adaptation rules and we propose
a method to determine the fundamental frequency of a
task by automatically discarding near-zero components,
based on the variance of the position signal, avoiding
in that way logical operations. The frequency extraction
is combined with periodic DMP that automatically stop
adapting once the task has been learned.

• We allow the robot to adapt to surface orientation
perturbations utilizing a continuous estimation of the
normal vector to the surface using the robot’s tool
velocity, hence, the estimate is not affected by the
surface friction.

• We integrate progressive automation to quickly learn
tasks through demonstration, without requiring re-
demonstration in surface orientation perturbations and
even in gradual changes of the surface orientation.

II. PROPOSED METHODOLOGY

A. The proposed system with surface normal estimation
The concept of the proposed system involves an opera-

tor who guides the robotic manipulator kinesthetically and
demonstrates a task of periodic movement on a surface while
applying a force normal to that surface, as it is illustrated in
Fig. 1. The robot is controlled by a hybrid force/position
control scheme with gravity compensation and is, initially,
with zero control gains (for position and force) to allow
kinesthetic guidance. After few demonstrations the robot
automatically transitions gradually from kinesthetic guidance
into autonomous operation, according to the automation level
strategy, based on the operator’s force Fh and the position
error projected on the surface.
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Fig. 1. Sketch of an operator demonstrating a contact task to the robot.
A force/torque sensor attached to the wrist measures directly the contact
force. The contact surface can be rotated around the origin point of {T} pt
which is known.

During the demonstration it is assumed that the robot
interacts with the environment at the end-effector and with
the operator at the intermediate links, as it is illustrated in
Fig. 1. Since the modification of the automation level is
based on the intervention of the human, the operator’s force
Fh needs to be extracted. For that purpose we utilize the
external joint torque estimates [18] projected at the endpoint
of the manipulator Frob and the direct measurement of the
contact force Fc from a force/torque sensor attached to the
wrist of the robot, both expressed with respect to the base
frame {0}. By neglecting internal robot dynamics -such as
joint friction- which are relatively small compared to the
interaction forces, the operator’s force can then be estimated
as Fh = Frob−Fc. Alternatively, the operator’s force could
be directly measured without the Frob, assuming interaction
through a sensorized handle setup.

The desired force Fd and the trajectory p′d ∈ R3 of the
robot are learned incrementally during the demonstration
without prior knowledge and they are being simultaneously
provided as reference to the hybrid controller. With this
approach there is not a distinction between a learning and
reproduction phase, but a gradual transition by increasing the
control gains, while the reference trajectory p′d approximates
the demonstrated trajectory p ∈ R3 and the operator does not
apply significant forces to the robot. The application of high
forces reduces the control gains and re-enables kinesthetic
guidance to allow a new demonstration of the task.

The identification and the tracking of the task frame {T} is
necessary for the hybrid force/position controller in order to
determine the force- and the position-controlled coordinates
with respect to the base frame {B} of the robot. To determine
the task frame, we estimate the normal unit vector nc ∈ R3 to
the surface using the kinematic adaptive control law proposed
in [19]:

ṅc = −γn(I3×3 − ncn
T
c )Ln(t)nc, (1)

L̇n = −βnLn +
1

1 + ||ṗ||2
ṗṗT , (2)

where γn, βn are constant gains. An initial estimate of
nc(0) = −Fc/||Fc|| is provided by the measured contact
force vector when contact is detected. This estimator guar-
antees exponential convergence to zero angle error for a



stationary planar surface, given persistent excitation of ṗ,
which holds in the case of the periodic movements. By
aligning the (arbitrarily selected) z-axis of the task frame
{T} with the direction of the desired force Fd, which is
expressed with respect to the base frame, we define a rotation
matrix R = TRB from the base frame to the task frame.
We can then utilize the diagonal binary selection matrix
S ∈ R6×6, selecting S3,3 = 0 to activate force control in
that z-axis and Si,i = 1 to activate position control in the
rest of the axes (i = 1, 2, 4, 5, 6). The adaptive law is updated
even when the robot operates autonomously in order to detect
unknown rotation of the contact surface. Assuming that R0

is the orientation of the surface during teaching, if the surface
is rotated around an axis passing though the origin point pt
(Fig. 1), then the relative orientation RT

0 R is used to rotate
the produced reference trajectory and desired force to align
with the surface’s orientation.

The objective of the system involves the operator demon-
strating the task as many times required until the system has
learned the fundamental frequency Ω, the desired trajectory
p′d, the desired force profile Fd and the normal vector nc.
During demonstration, the position is encoded by periodic
DMP with incremental regression learning in each coordinate
i of the base frame and an adaptive frequency oscillator
determines the basic frequency ωi of the input signal pi. The
fundamental frequency Ω ∈ R of the task is then determined
by discarding near-zero frequencies and is used as a common
clock to achieve synchronization of the produced trajectory
p′d generated by the periodic DMP.

During the initial demonstrations, however, the current
estimation of the constraint frame might be incompatible
with the actual one, that would result to incorrect behavior of
the hybrid controller. For that purpose, the control gains for
position and force are initially zero and the robot gradually
becomes autonomous depending on the automation level,
which is determined by the variable κ ∈

[
0, 1
]
. We utilize κ

(Fig. 2) as a weight in the control gains for shared control
as well as in the adaptation rules to suspend any further
adaptation of the DMP when the robot has learned the task.
In the following subsections we present each module of the
proposed system in detail.

B. Automation level strategy

The automation level κ transitions the behavior of the
robot from pure gravity compensation to accurately following
the DMP trajectory and regulating the desired force. The
rate of change κr of the automation level κ depends on the
interaction force of the operator Fh, on the tracking error
p̃ = p′d − p transformed on the xy plane of {T} using
RTSRp̃ and on the current value of κ(t):

κ̇ =

max{κr, 0}, κ = 0
κr, 0 < κ < 1

min{κr, 0}, κ = 1
, with κ(0) = 0, (3)

κr = (
κ

fr
+ fmin)

(
1− ||R

TSRp̃||
λ1

− ||Fh||
3

λ2

)
. (4)
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Fig. 2. Block diagram of the proposed architecture.

The design parameter fmin is a positive constant to induce a
gain increase when κ = 0, and fr is a scaling term. The
robot is gradually becoming autonomous while the level
κ increases. The transition rate κr depends on the current
value of κ, so that the rate is initially slow, requiring from
the operator to demonstrate the task a few periods until the
constraint frame, force, frequency and waveform are learned.
With the increase of κ, the rate increases as well. When the
robot moves autonomously (κ = 1), a high interaction force
Fh in any direction reverts the robot to gravity compensation
mode for allowing modifications. Small tracking errors and
incorrect estimates of Fh, can be compensated by setting
appropriately the thresholds λ1, λ2 that have physical units
and correspond to the impact of the tracking error and of
the interaction force respectively on the rate of change. In
addition, the power to the 3 in the force norm is a design
parameter to strengthen the effect of high interaction forces.

A gradual transition in the level of automation κ provides
haptic feedback to operators so that they can smoothly feel
the difference in the robot behavior while it is learning the
tasks and avoid abrupt behavior during task modifications.
The proposed strategy can easily scale to different types of
tasks regardless of the complexity, because it highly depends
on the interaction force Fh, suggesting that the automation
level should not be increased as long as the operator makes
adjustments and corrections through Fh.

C. Modified adaptive frequency oscillators with automatic
fundamental frequency extraction

The two objectives of progressive automation are the
ability of the robot to continue executing the demonstrated
task autonomously after it has been encoded sufficiently and
the ability of the operator to intervene during the autonomous
execution for spatial or temporal modification. Regarding the
temporal modification, the frequency adaptation needs to stop
and restart accordingly.

To learn the basic frequency in each axis of the demon-
strated movement, we utilize adaptive frequency oscillators
[4], with modified adaptation rules according to the au-
tomation level κ. The proposed adaptation is weighted by
(1 − κ) to smoothly stop the learning when the robot is in



the autonomous mode (κ = 1) and to smoothly re-enable
it when the operator intervenes. In that way continuous
and bidirectional transition is allowed. The oscillators are
structured as:

φ̇φφ = (1− κ)(ω − a E sin(φφφ)), (5)

ω̇ = −(1− κ) a E sin(φφφ), (6)

where E = diag (p− p̂) is a diagonal matrix with the error
between the position input p and the estimate p̂ ∈ R3, ω ∈
R3 is the vector of basic frequencies (with ωi ≥ 0), φφφ ∈ R3

is the vector of the corresponding phases and a ∈ R is a
coupling constant. The vector of estimates p̂ = [p̂1, ..., p̂3]T

is given by p̂i =
∑M
c=0(αi,ccos(cφi) + βi,csin(cφi)), where

the parameter M is the number of Fourier components. The
amplitudes αi,c, βi,c are updated according to the following
rule:

α̇i,c = (1− κ) η cos(cφi) ei, (7)

β̇i,c = (1− κ) η sin(cφi) ei, (8)

where η is the learning constant and the error ei is the ith

diagonal element of E. With the proposed modification, the
adaptation rates in (5), (6), (7), (8) are reduced while the au-
tomation level increases (κ→ 1) and stops completely when
the robot is fully autonomous (κ = 1). The application of
high correction forces by the operator causes the automation
level to drop and the adaptation of the oscillators to be re-
enabled.

For encoding a complex periodic movement, using M=1
the system will learn the strongest frequency component in
each axis. The fundamental frequency Ω ∈ R of the task
can then be extracted as the minimum non-zero frequency
among the components of ω. Because of a single fundamen-
tal frequency, no drifting problems occur. To automatically
discard near-zero frequency components that can result from
e.g. zero velocity of demonstration along a principal axis,
we propose the following formula that utilizes the variance
pv = VAR(p) of the demonstration over a window of Nv
measurements. The fundamental frequency of the task is then
calculated as:

Ω = min

{
ωi

p̄i/max{p̄i}

}
, i = 1, 2, 3 (9)

where 0 < p̄i < 1 is a logistic sigmoid function p̄i(p
i
v) =

1/(1+e−as(piv−p0)), with as being the steepness of the curve.
With this method, if the position variance piv is smaller than
the threshold p0, then p̄i is close to zero and, as a result,
the corresponding frequency ωi is no longer considered as
the minimum. On the other hand, the higher the variance piv
than the threshold p0 is, it converges to 1. Finally, the term
max{p̄i} is used to handle the case when all components
of pv are below threshold. Notice that the extraction of the
fundamental frequency is decoupled by the estimation of the
normal force vector.

D. Recursive learning of periodic DMP and force profile

To learn the periodic movement online from demonstration
we use the periodic DMP formulation. In parallel with
learning the fundamental frequency, the DMP can encode
the waveform using that frequency and at the same time
produce the reference trajectory p′d to the position controller.
The output of the DMP pd which is expressed with respect
to the base frame {B} is rotated according to the relative
orientation of the surface using p′d(t) = RT

0 R(pd(t) −
pt)+pt. The produced trajectory is specified by an attractor
landscape around an anchor point g ∈ R3 and is governed
by the phase Φ ∈ R that is the common canonical system
among the coordinates, given by Φ̇ = Ω, with Φ(0) = 0.

The reference trajectory is produced according to:

ż = Ω

(
ay(βy(g − pd)− z) +

∑N
j=1 wjΨj(Φ)∑N
j=1 Ψj(Φ)

)
, (10)

ṗd = Ωz, (11)

where ay, βy are constants. Parameter N is the number of
basis functions Ψ = exp(h(cos(Φ− c)− 1)) where h, c are
the width and centers over a period.

The weights in w ∈ R3×N are updated online with
Recursive Least Squares. The adaptation law for each weight
vector wj ∈ R3 of the basis function Ψj is:

wj(t+ 1) = wj(t) + Ψj diag(Pj(t+ 1)) erj (t), (12)

where Pj ∈ R3 is the vector of inverse covariance associated
to the weights wj with a forgetting factor λ and with
elements of Pj (i = 1, 2, 3):

Pi,j(t+ 1) =
1

λ

(
Pi,j(t)−

Pi,j(t)
2

λ
Ψj

+ Pi,j(t)

)
. (13)

To smoothly stop the learning when the robot is in au-
tonomous mode and to smoothly re-enable it when the
operator intervenes, we propose the modification of the
recursive least squares (RLS) fitting error er by introducing
(1− κ) in the error:

erj (t) = (1− κ)(fs(t)−wj(t)), (14)

where fs is the target trajectory shape:

fs =
p̈

Ω2
− ay(βy(g − p)− ṗ

Ω
). (15)

When the automation level is κ = 1, the error er is zero
and the adaptation of the DMP weights stops. Notice that
the DMP formulation can also be used in the case when the
orientation of the robot needs to be encoded as well.

Moreover, the desired force Fd needs to be learned during
the demonstration depending on how much force the operator
applies to the robot. The direct measurement of −Fc is used
for this purpose and Fd is encoded and reproduced with
radial basis functions:

Fd = RT
0 R

∑N
j=1 w

f
j Ψj(Φ)∑N

j=1 Ψj(Φ)
, (16)



where wf ∈ R3×N are the weights updated online with RLS
according to the fitting error ef :

efj (t) = (1− κ)(−Fc(t)−wf
j (t)). (17)

E. Hybrid force/position control for progressive automation

The proposed method is implemented to a gravity com-
pensated n-dof manipulator with the following control law:

τ = τ p + τ f , (18)

where τ p, τ f ∈ Rn are the joint torques that implement the
desired Cartesian position and force respectively.

Let x̃ = [p̃T εe
T ]T ∈ R6 be the generalized tracking error,

where Q̃ = Qd ∗Q−1 is the quaternion error between the
desired orientation Qd and the current orientation Q of the
tool, with Q̃ = [ηe ε

T
e ]T . The velocity error is then described

as ṽ = [ ˙̃p
T
ω̃T ]T where ω̃ = ωd−ω. Within this paper, we

set the desired orientation Qd of the tool (+Z) to align with
the estimated vector nc (-Z) so that the tool always remains
normal to the surface during autonomous operation.

The position and force controllers are then defined as:

τ p = JTU(Kd(κ)x̃ + Dd(κ)ṽ), (19)

τ f = κJT (I−U)

(
Fd + KPFe + KI

∫
Fe

)
, (20)

where Fe = Fd − (−Fc) is the force error, J ∈ R6×n

is the manipulator’s Jacobian matrix and U is a block
transformation matrix:

U =

[
RTSR 0

0 I3×3

]
∈ R6×6. (21)

This transformation matrix is used to apply the Cartesian
position controller (19) in a way that is compatible with the
task plane orientation. Similarly, the transformation I − U
in (20) enables force control only in the z axis of frame
{T}, which utilizes a feed-forward and a proportional-
integral term on the force error with gains KP ,KI ∈ R6×6.
Notice that the force controller also depends on the level of
automation κ. The matrices Kd,Dd ∈ R6×6 are the variable
PD gains that correspond to a spring-damper behavior of the
end-effector. The variable stiffness matrix is selected as:

Kd =

[
κ(t)kT I3×3 0

0 κ(t)kRI3×3

]
, (22)

where kT , kR ∈ R>0 are the maximum desired transla-
tional and tortional stiffness for autonomous operation. The
damping matrix Dd is then chosen accordingly for critically
damped behavior. Since Kd is a variable matrix, the system
can lose its passivity property [20]. This problem can be
overcome by introducing the varying stiffness via a tank
energy system, as proposed in previous works [21], [22], so
that the system remains passive and stable under the changes
of κ.

Fig. 3. Demonstrating circular contact tasks on an unknown surface that
can be rotated. The learned paths by the DMP are shown in Fig. 4.

III. EXPERIMENTAL EVALUATION

To effectiveness of the proposed method is verified in two
experiments using a 7-DOF KUKA LWR4+ robot with an
operator demonstrating contact tasks with simple and more
complex periodic movements on a surface that can be rotated,
as it is shown in Fig. 3.

The parameters used for the automation level strategy are
fr = 1, fmin = 0.01, λ1 = 0.02m, λ2 = (20N)3 (more
details on tuning can be found in [2]), for the Cartesian po-
sition/orientation are kT = 2500N/m, kR = 100Nm/rad,
for the force control gains we use KP = KI = 0.1I6×6

for the DMP are ay = 20, βy = 5 with forgetting factor
λ = 0.999 and N = 30 basis functions, while for the
frequency oscillators we use α = 50, η = 1 and M = 1.
In the normal vector estimator the parameters are selected
as γn = 60, βn = 1. In the frequency extraction we use
a steepness of as = 10, a window of Nv = 2000 and a
threshold p0 = 1e−4.

The first experiment, involves the operator demonstrating
initially a circular wiping task of a horizontal surface until
the robot has learned it. The surface has been oriented so
that the normal axis aligns with a principal axis of the base
frame, aiming to extract the fundamental frequency of the
task by discarding near-zero frequency components. While
this task is executed autonomously, the operator modifies
it by simply grabbing the robot again and demonstrating a
more complex one (a “figure 8” pattern). The operator then
pauses the execution of the task and restarts it after rotating
the surface by 40 degrees. The objectives of this experiment
are to determine how fast the robot can learn the overall task,
how effectively the operator can make task modifications,
and to assess the identification of the surface normal vector
in orientation perturbation without needing to re-demonstrate
the task.

The results of the first experiment are illustrated in Fig.
4. In particular, the learned periodic DMP trajectory pd
is overlaid with the robot’s position p in Fig. 4a and the
basic frequencies ω in each axis are overlaid with the
extracted fundamental frequency Ω in Fig. 4b. Additionally,
we show the level of automation κ in Fig. 4c, the estimated
normal vector nc with the actual one in Fig. 4d, and finally,
the estimated force norm of the operator Fh in Fig. 4e.
Initially, the operator grabs the robot, gets in contact with the
surface and demonstrates a cyclic movement while applying
a normal force to the surface. The normal vector nc is



Fig. 4. Experimental results of the proposed method with the operator
demonstrating contact tasks with different periodic patterns on a surface
that is abruptly rotated without requiring re-demonstration.

determined very quickly because the force vector is used as
an initial estimate when contact is detected. After 4 periods
of demonstration (around t=20s), the fundamental frequency
has been extracted and the DMP has learned the waveform.
The low tracking error causes the increase of the automation
level κ, which reaches its maximum level at t = 22s. Then
the operator stops interacting with the robot and the latter
continues to execute autonomously the learned contact task.
Notice that during the autonomous operation (22s<t<27s)
the estimated operator’s force Fh is almost zero (Fig. 4e)
and the non-zero values appear because of unmodeled robot
dynamics in Frob (e.g. joint friction). At t=27s the operator
grabs the robot aiming to modify the task and the high
interaction force (spike in Fig. 4e) causes the automation
level κ to drop quickly, allowing the operator to demonstrate
another task. The operator then demonstrates a more complex
“figure-8” pattern and the robot learns to execute it within
2-3 periods. In both patterns, the fundamental frequency

extraction method successfully discards the zero frequency
in the Z axis of the horizontal plane (Fig. 4b), since there is
no movement in that axis (Fig. 4a).

The task is manually paused by the operator at t=56s and
the surface is rotated by 40degrees around the given point
pt. The pause function is implemented so that the current au-
tomation level and all learned information (waveform, force
profile, frequency) are not forgotten. After contact with the
rotated surface is detected at t=83s, the task is automatically
restarted with the estimator detecting very fast the correct
normal vector and the learned “figure-8” continuous being
executed without requiring re-demonstration.

In the second experiment, the surface is rotated gradually,
while the robot is executing a circular wiping task on it,
in order to verify the ability of the method to continuously
estimate the time varying normal vector and perform the
task. In Fig. 5 are presented the results of the rotated
produced trajectory p′d, the normal vector evolution nc,
the desired and actual measured forces Fd, −Fc and the
rotation of the task. It can be shown that the normal vector
to the rotated surface is quickly estimated, producing the
appropriate rotated desired trajectory and force profile that
are compatible with the rotating task frame.

IV. CONCLUSIONS

In this work we proposed the progressive automation of
contact tasks with periodic movements on planar surfaces of
unknown pose using teaching by demonstration. To detect
the desired contact force direction we utilize an estimator of
the normal surface, from which we determine the constraint
frame and progressively implement hybrid force/position
control. Our approach utilizes an automation level strategy
and extends adaptive frequency oscillators with customized
rules. We also proposed a method to extract the fundamental
frequency of the task by automatically discarding near-zero
components, and then encode the waveform with periodic
DMP and the desired force profile with basis functions.

The proposed method was experimentally verified in two
tasks with surface orientation perturbations. The results
showed that the constraint frames were successfully identi-
fied quickly and the fundamental frequency of the tasks was
also extracted correctly. The robot was able to learn very
quickly the demonstrated task within few seconds. Although
the learning stops during the autonomous operation, the robot
is able to adapt to changes in the orientation of the surface by
autonomously reorienting the constraint frame. A limitation
of the normal vector estimator is that it cannot detect rotation
of the surface around the axis that is normal to it. For such a
rotation additional sensor modalities are required. Another
limitation can be that of premature learning, when the
operator lets go of the robot before it has fully transitioned
to autonomous mode. In this case the robot accuracy might
be compromised. This effect can be mitigated using a visual
indicator to inform the human when the robot has reached
its maximum stiffness. Future work includes the automatic
estimation of the origin of the rotation frame which is
considered known in this paper.



Fig. 5. Results of the second experiment where the surface is rotated
gradually while the robot performs the rotated task.
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cooperate with humans in dynamic manipulation tasks based on multi-
modal human-in-the-loop approach,” Autonomous Robots, vol. 36,
no. 1-2, pp. 123–136, 2014.

[11] L. Peternel, L. Rozo, D. Caldwell, and A. Ajoudani, “A Method for
Derivation of Robot Task-Frame Control Authority from Repeated
Sensory Observations,” IEEE Robotics and Automation Letters, vol. 2,
pp. 719–726, apr 2017.

[12] L. Peternel, N. Tsagarakis, D. Caldwell, and A. Ajoudani,
“Robot adaptation to human physical fatigue in human-robot co-
manipulation,” Autonomous Robots, vol. 42, no. 5, pp. 1011–1021,
2018.

[13] F. Steinmetz, A. Montebelli, and V. Kyrki, “Simultaneous kinesthetic
teaching of positional and force requirements for sequential in-contact
tasks,” IEEE-RAS International Conference on Humanoid Robots,
vol. 2015-Decem, pp. 202–209, 2015.

[14] A. C. Leite, F. Lizarralde, and L. Hsu, “Hybrid vision-force robot
control for tasks on unknown smooth surfaces,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2006,
no. May, pp. 2244–2249, 2006.

[15] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation Learning
of Positional and Force Skills Demonstrated via Kinesthetic Teaching
and Haptic Input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603,
2011.

[16] L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, and C. Torras,
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