Workshop: Lifecycle of Plastics

Introduction to Polymer Processing

Thomas Lucyshyn, Montanuniversitaet Leoben, Austria 08/09/2020, Network-Wide Training Event 1

C-PLANET CIRCULAR PLASTICS NETWORK FOR TRAINING

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 859885.

Content

- Introduction
- Basics of polymer rheology
- Principles of polymer processing
 - Extrusion (pipe, film)
 - Blow molding
 - Thermoforming
 - Injection molding
 - Additive manufacturing
- Summary

Introduction

Polymers consist of macromolecules

Monomer

INTRODUCTION TO POLYMER PROCESSING

Composition of polymers

Morphology of polymers

INTRODUCTION TO POLYMER PROCESSING

Processing differences thermoplastics - thermosets

Processing methods for thermoplastic products

Basics of polymer rheology

Flow in a round die – shear deformation

Source: Waßner, E.: Rheologische Grundlagen für die Auslegung von Extrusionswerkzeugen,, VDI-Praktikum: Werkzeugauslegung mit Excel, Paderborn, 2003.

INTRODUCTION TO POLYMER PROCESSING

THOMAS LUCYSHYN, MUL

Definitions for shear and elongational flow

Viscosity = measure of flow resistance

INTRODUCTION TO POLYMER PROCESSING

THOMAS LUCYSHYN, MUL

Different flow characteristics in viscosity curve

Temperature dependence of viscosity

Comparison of fluids with different viscosity

INTRODUCTION TO POLYMER PROCESSING

Principles of polymer processing – Extrusion

Extruded products for solar applications

Extruded pipe applications

Hot and cold water pipes

Continuously extruded PE pipes into the sea

From Pipelife Norge AS, Stathelle, Norway

Protected location in a narrow fjord

Continuous extrusion into the fjord

Transport by tugboat to the marine destination

INTRODUCTION TO POLYMER PROCESSING

THOMAS LUCYSHYN, MUL

Components and working principle of an extruder

- Feeding of pellets into the hopper
- Compression of pellets
- Melting of polymer
- Homogenization of the melt
- Pumping the melt through the extrusion die (shaping of film, profile, pipe, ...)

Pipe extrusion line

INTRODUCTION TO POLYMER PROCESSING

Pipe extrusion die (spiral mandrel die)

Cast film extrusion line (Chill roll)

INTRODUCTION TO POLYMER PROCESSING

THOMAS LUCYSHYN, MUL

Cast film extrusion line (Chill roll)

Blown film extrusion line

- 1. Material feed
- 2. Material metering
- 3. Extruder
- 4. Screen changer
- 5. Blowing head
- 6. Exterior cooling
- 7. Profile control
- 8. Interior cooling
- 9. Calibration screen
- 10. Profile gauge
- 11. Film take-off
- 12. Web center guide
- 13. Pre-treatment
- 14. Pre-take-off
- 15. Winder
- 16. Shaft extraction system
- 17. Process visualization

Hosokawa Alpine Blasfolientechnolgien in Perfektion, Folienblasanlagen 09.13/05/DE

Blown film extrusion head

Blown film extrusion line with 9 extruders

Principles of polymer processing – Blow molding

Extrusion blow molding – introduction

- For the production of hollow articles
- Two fundamental phases
 - Extrusion of a parison (preform)
 - Fast blowing of the hot, elastic parison

Extrusion blow molding process steps

Extrusion blow molding process

INTRODUCTION TO POLYMER PROCESSING

Principles of polymer processing -Thermoforming

Thermoforming – products

INTRODUCTION TO POLYMER PROCESSING

Thermoforming process principle

Positive and negative thermoforming

Positive forming

- Inside of part in contact
 with mold
- Exact shape only on inside contour

Negative Forming

- Outside of part in contact with mold
- Exact shape only on outside contour

Principles of polymer processing -Injection molding

Injection molding - introduction

- One of the most important polymer processing methods
- Advantages:
 - Direct path from raw material to final part
 - Little or even no further treatment of the parts
 - Fully automated process possible
 - High reproducibility of the process at large numbers (> 1 mio.)
- Part range:
 - From tiny gears (1 mg) to huge containers (up to 150 kg)

Source: www.directindustry.com

Injection molding machine

Injection molding machine

INTRODUCTION TO POLYMER PROCESSING

Injection molding cycle (1)

Injection molding cycle (2)

Simulation of filling pattern of complex part

Principles of polymer processing – Additive manufacturing ("3D-printing")

Additive manufacturing - introduction

- For complex shapes
- Individualization of single products
- Fast realization from project idea to physical part
- Slow process (not for mass production)
- Limited number of materials
- Quality not comparable with conventional processing

http://thomas1111.wordpress.com/2014/0 6/21/3d-printing-mathematical-objects/

"3D-printing" – one term for many processes

Materials		Technologies	
	Parts built through polymerization	Parts built through bonding agent	Parts built through melting
Ceramic		BJ	
Metal			ЕВМ
Sand			
Plastic	SL PJ		FDM LS
Wax			WJ *
	Lower	Durability	Higher
	Smoother	Surface finish	Rougher
	Higher	Detail	Lower
	Prototypes Indirect processes	Application	Functional parts

Binder Jetting (BJ) Electron Beam Melting (EBM) Fused Deposition Modeling (FDM) Hybrid Processes (HP) Laser Melting (LM) Laser Sintering (LS) Material Jetting (MJ) Photopolymer Jetting (PJ) Stereolithography (SL)

* MJ achieves smooth surface finish and high detail

© additively.com

Stereolithography (SL) - principle

- UV-Laser cures liquid photopolymer on surface of a fluid
- Part is created by lowering the platform

Photopolymer jetting (PJ) - principle

- Printer heads spray liquid photopolymers onto a platform
- Curing with UV-lamps → parts are created layer by layer

Laser Sintering (LS) or Selective Laser Sintering (SLS) – principle

- Thin layer of polymer powder is selectively melted by laser
- Creation of part layer by layer in powder bed

Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF) - principle

- Polymer filament is melted and extruded through a heated die
- Creation of part by deposition of the filament in layers

Research project iPrint: implants from 3D-printer

- Cooperation with Medical University Graz and Hage Sondermaschinenbau
- Polymer implants are printed during surgery
- Second surgery can be avoided
- Tailor-made for each patient
- Winner of Fast Forward Award 2016 in Austria

Summary

Summary

Pipe

Flat film

Blown film

THOMAS LUCYSHYN, MUL

INTRODUCTION TO POLYMER PROCESSING

Summary

Blow molding

Thermoforming

Injection molding

Additive manufacturing

THOMAS LUCYSHYN, MUL

Assoc.Prof. Dr. Thomas Lucyshyn Institute of Polymer Processing Department Polymer Engineering and Science Montanuniversitaet Leoben Otto Gloeckel-Str. 2 8700 Leoben Austria +43 - 3842 - 402 - 3510 thomas.lucyshyn@unileoben.ac.at