
Native OPC UA Handling and IEC 61499 PLC
Integration within the Arrowhead Framework

Jose Cabral, Kirill Dorofeev
fortiss GmbH

Research Institute of the Free State of Bavaria
Munich, Germany

{cabral,dorofeev}@fortiss.org

Pál Varga
Dept. of Telecommunications and Media Informatics
Budapest University of Technology and Economics

Budapest, Hungary
pvarga@tmit.bme.hu

Abstract—The Arrowhead framework enables interoperability
and integrability for new and legacy systems by applying Service
Oriented Architecture (SOA) principles at the Industrial Internet
of Things (IIoT) domain. The core systems of Arrowhead provide
service registration, discovery, security and other services for
application systems within the System of Systems domain under
their authority.

While the application systems can communicate with each
other using any protocol that fits them, the core Arrowhead
services have been available as RESTful HTTP implementation
only. This practically meant that those application systems with-
out built-in HTTP protocol support, must have used translators
to connect to the Arrowhead services.

The current paper describes a pragmatic enhancement for
OPC Unified Architecture (OPC UA) endpoints, so they are now
able to utilize Arrowhead core services natively. Moreover, the
paper provides a solution for IEC 61499 Programmable Logic
Controller (PLC) integration, and a practical use case description
as proof of concept.

I. INTRODUCTION

Industrial automation is a turbulently changing area nowa-
days, due to the appearance of IIoT, the advancements of
Cyber-Physical Systems (CPSs), and their extension with
structures of business models by the Industry 4.0 (I4.0) move-
ment. It is clear that industrial systems – especially production
– requires improved flexibility in processes, which raises
expectations on dynamic re-configuration, interoperability and
integrability at both design and operation time [1]. Naturally,
these expectations can only be fulfilled together with keeping
the guarantees for high reliability, high availability, timeliness,
quality, security and safety – as base requirements of indus-
trial production. The related challenges are well-known for
researchers and domain experts alike [2].

The Arrowhead framework [3] addresses interoperability
and integrability issues with a SOA approach, by keeping in
mind the traditional requirements of industrial automation, as
well. It proposes both design and operational time concepts
– together with their reference implementations. Its aim is to
cover the gaps and allow the stakeholders (i.e., developers,
vendors, integrators, operators) to move ahead with their
Systems of Systems together, allowing legacy and new systems

This work is funded by the Electronic Components and Systems for
European Leadership Joint Undertaking (ECSEL JU) under grant no. 737459
through the project Productive4.0 (https://productive40.eu).

to be interoperable. The Arrowhead framework does not limit
the protocols used among systems. However, the framework
suggests to use protocol translators to access its core services
for those systems not using natively the protocols of the
current reference implementation. One of the contributions of
this paper is to propose an extension for the Arrowhead core
system reference implementation, allowing OPC UA endpoints
to interact natively with the Arrowhead core.

The IEC 61499 is an international standard that addresses
the topic of event-driven Function Blocks (FBs) for industrial
process measurement and control systems [4]. It introduces
an open architecture for distributed control systems, which
is especially important for embedded systems with legacy
elements. The control flow is modeled based on the ”event”
approach; each event is emitted from an output of one FB
and can be received at one or several inputs of other FBs.
The IEC 61499 architecture aims at minimizing the efforts
of developers in deploying automation software to various
distributed architectures of hardware, with the support of the
event-based communication mechanism itself [5].

The paper presents a solution for IEC 61499 PLC inte-
gration through Eclipse 4diac™1 and a practical use case
description as proof of concept.

Together, the OPC UA extension for the Arrowhead core
systems on the one hand, and Arrowhead framework ser-
vices support implemented for IEC 61499 FBs on the other
hand provide all infrastructure needed in order to seamlessly
integrate industrial PLCs into the framework and interact
with them as with other Arrowhead service providers and/or
consumers.

The rest of the paper is organized as follows. Section II
provides basic insights into the Arrowhead framework, after
which Section III summarizes the related work, narrowly fo-
cusing on the similar combination efforts related to IEC 61499,
SOA, OPC UA and the Arrowhead framework. Section IV
describes the OPC UA integration within the Arrowhead core
systems, while Section V describes the related IEC 61499 PLC
integration. A concrete, running example is demonstrated in
Section VI, after which Section VII concludes the paper.

1https://www.eclipse.org/4diac/



II. ARROWHEAD FRAMEWORK

The Arrowhead framework provides interoperability be-
tween services by defining a set of interfaces, rules and
documentation system that allow systems and devices to
provide and consume services following a SOA approach. The
Arrowhead framework also defines types in an abstract way
for Services, Cloud, Systems, System of Systems, and others
concepts.

The framework establishes that there should be at least 3
main systems – also called mandatory core systems – in an
Arrowhead local cloud:

• Service Registry system: allows to register, unregister
and query for services;

• Orchestration system: allows to find provided services
that were designated to devices to consume;

• Authorization System: manages all authorization needed
between devices and services.

These systems, together with other core systems that are not
mandatory (but also made available by the framework), and
the actual application systems provide a set of services that
are defined using the interfaces and types of the Arrowhead
framework. Such an elementary, SOA-based Local Cloud –
that consists of the three mandatory Core systems, some
Applications systems, and their service-oriented approach –
is shown in Fig. 1.

Fig. 1. Arrowhead mandatory core interactions [6]

The description of services is technology-independent to
avoid any technological constraint [7]. The official imple-
mentation of the Arrowhead framework uses HTTP-JSON
as interface for a service description [6], but the framework
acts as a mediator between a producer and a consumer to
support the SOA principles of loose coupling, late binding and
discovery (or lookup, hence the triple ”l”). This also means that
the protocols and other specifications of a service between the
actual Application Systems are not a part of the framework
and needs to be handled by a consumer/producer.

The basic sequence for having a service being produced and
consumed in the Arrowhead framework can be described as
follows:

1) Configure the rules in the Authorization System to
determine what services are allowed to be consumed
by what system.

2) Configure the rules in the Orchestration System to deter-
mine where are the service providers for the consumers
(IP address and port).

3) The service producer registers itself to the Service
Registry.

4) The service consumer contacts the Orchestration to ask
the endpoint of the service provider.

5) The Orchestration checks its stored rules and available
producers, and checks with the Authorization System if
the consumer is allowed to consume a service from a
producer.

6) The Orchestration answers the consumer with the end-
point of the service producer.

7) The service consumer connects to the service producer
and consumes the service.

Overall, Arrowhead framework gains the ability for both
monitoring and control of the manufacturing processes by
deploying and using a large scale of smart devices and profit-
ing from the benefits of interconnected CPSs [8]. Arrowhead
provides the required connectivity and integration at various
levels of manufacturing systems. By developing the FBs for
PLCs that execute the production at the shop floor, we further
enlarge the number of supported device classes that can be
directly connected to the Arrowhead framework and interact
with the other connected systems in order to achieve the level
of the interoperability required by I4.0.

III. RELATED WORK

The integrated usage of OPC UA and IEC 61499 together
with Arrowhead is a natural idea. Nevertheless, so far these
have been elaborated as initial concepts (proven through
demonstrations, of course), without enforcing improvements
in the Arrowhead core system implementations.

The combination of IEC 61499 with SOA is compre-
hensively presented through various papers of Dai, Vyatkin,
Christensen, Dubinin and their co-authors. The main findings
are synthesized in [9], where the authors bridge SOA and
IEC 61499 for flexibility and interoperability, and reference
case studies for distributed control systems, as well.

Translation capabilities are available within the Arrowhead
framework by the supporting core system called Translator.
While translation among RESTful protocols are relatively easy
to tackle, error handling is still not trivial [10]. Translation
between publish-subscribe (e.g., MQTT) and request-response
(e.g., RESTful HTTP or CoAP) is also challenging, although
various implementations are already available. When it comes
to OPC UA, the translation challenges and solutions, together
with an Arrowhead Translator-based case study are described
by Derhamy et. al. [11]. Due to their focus on translation,
these papers do not address IEC 61499 integration.

Derhamy et. al. also provided a possible combination of
Arrowhead services and IEC 61499 function blocks [5]. Their
paper also includes a framework for integration of IEC 61499
within SOA-enabled IIoT. Nevertheless, their endpoints are
using RESTful protocols such as CoAP and HTTP (but not



OPC UA) together with the Translator that supports access to
the Arrowhead core services.

Lam and Haugen implemented OPC UA services in a SOA
manner [12] through utilizing the Arrowhead Local Cloud con-
cept. Their use-case even included inter-cloud communication,
which means that many Arrowhead local clouds were involved
in service interactions. Their approach, however, was that OPC
UA endpoints were capable accessing the Service Registry,
Orchestration and Authorization core systems through HTTP
protocol capabilities at the endpoints.

IV. OPC UA FOR THE CORE SYSTEMS

OPC UA is a service-oriented machine-to-machine commu-
nication protocol mainly used in industrial automation and
defined in the IEC 62541 standard [13]. A big advantage
of using it is that OPC UA provides a semantic description
of the data being transported. Its information model can
be enriched by various companion specifications, allowing
specific information models for different domains.

OPC UA is acknowledged as a uniform communication
protocol that is ensuring interoperability and transparency
demanded by I4.0 [14]. In order to provide a better support
of the I4.0-complaint services and to enable service-based
architectures at the industrial automation shop floor level,
the Arrowhead framework should cater for OPC UA. As
mentioned above, the Arrowhead core systems are designed to
be protocol-independent but the first reference implementation
was done using an HTTP REST API. Derhamy et. al. [15] as
well as Rönnholm [16] proposed to use translators to convert
OPC UA – as well as some other communication protocols
– to the Arrowhead core systems. The similar approach is
implemented by Karvonen2.

In contrast to this solution, we propose to implement an
OPC UA interface for the Arrowhead core systems. This
enables pure OPC UA-capable Application Systems (service
producers and consumers) to communicate directly with the
Arrowhead core systems – without the need of translators.
Fig. 2 demonstrates the difference among these approaches.

We have extended the core systems’ implementation with
the OPC UA functionalities, so that whenever the Arrowhead
core systems are started, they automatically spawn an OPC
UA server for each mandatory core system in parallel to the
existing HTTP interfaces. These OPC UA servers provide
endpoints, where the OPC UA devices can connect to and
call the corresponding methods of the ServiceRegistry, Or-
chestration, Authorization and EventHandler core systems. All
provided OPC UA methods have input parameters, which are
JSON encoded objects that should be sent to the corresponding
services as defined by Arrowhead core systems specification.
As a result, each core system has its own OPC UA server
started. In order to use the core systems over OPC UA, a
device must connect to the corresponding core system server
via a generic OPC UA client and trigger the required core
system service. Each core system service is implemented

2https://github.com/arrowhead-f/client-opc-ua-rest

according to the Arrowhead documentation and is represented
in a form of an OPC UA method. The Uniform Resource
Identifier (URI) of a service as defined in the documentation
is the browse path in the OPC UA address space, relative to
the /Root/Objects/ folder. The implementation of the OPC UA
interface for the Arrowhead core systems is open-sourced3.
By implementing OPC UA interface for the core systems,
we showed that the Arrowhead framework can function in a
protocol-independent way and the protocols, other than HTTP,
can be supported natively.

V. PLC INTEGRATION

The IEC 61131 standard [17] defines programming lan-
guages for PLCs. These are the most common programming
languages to develop the application software that implements
the control of an automated process. Currently, in the domain
of the software engineering for industrial systems, there is
a shift from centralized to distributed control architectures to
cope with the growing complexity of the software engineering
process [18]. The IEC 61499 standard [19] was defined to
model applications for distributed systems in a platform-
independent way, a characteristic that can be harder to achieve
using IEC 61131.

PLCs are the centerpiece of almost all industrial automation
systems. Considering a PLC as a part of SOA, the PLC soft-
ware components should be provided as encapsulated services
with a well-defined generic interface [20]. By wrapping the
existing PLC functionalities into services, a PLC can be ac-
cessed from outside as a service provider (i.e. for information
exchange). On their side, the PLCs should support all required
functionality to interact with SOA framework.

The integration of PLCs into the Arrowhead framework
was done by implementing FBs according to the IEC 61499
standard in the open-source project Eclipse 4diac™ – an open-
source implementation of IEC 61499. We have implemented
the needed communication with the official implementation of
the Arrowhead ServiceRegistry, Orchestration, Authorization
and EventHandler core systems [3]. The library of FBs was
made public in the source code repository of 4diac.

The work was done in three different parts:
1) 4diac FORTE, the runtime environment4.
2) 4diac IDE, the integrated development environment5.
3) 4diac examples, where unit tests are provided6.

A. Implementation in 4diac FORTE

The Arrowhead data types that are required for the com-
munication between the runtime and the framework, such
as Cloud, Service and others were defined following the
IEC 61499 standard and implemented in the 4diac FORTE.
For example, the 4diac data type file, which defines the
ArrowheadCloud data type in IEC 61499, is shown in Listing
1.

3https://github.com/arrowhead-f/core-java/
4https://git.eclipse.org/c/4diac/org.eclipse.4diac.forte.git
5https://git.eclipse.org/c/4diac/org.eclipse.4diac.ide.git
6https://git.eclipse.org/c/4diac/org.eclipse.4diac.examples.git



Fig. 2. Alternatives for OPC UA-capable systems to interconnect with Arrowhead core systems

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DataType SYSTEM "http://www.holobloc.com/

xml/DataType.dtd" >
<DataType Name="ArrowheadCloud" Comment="A cloud

representation for the Arrowhead framework 4.0"
>

<Identification Standard="61499-2" />
<VersionInfo Organization="fortiss GmbH" Version="

1.0" Author="Jose Cabral" Date="2018-09-26" />
<ASN1Tag Class="APPLICATION" Number="1" />
<StructuredType >
<VarDeclaration Name="operator" Type="WSTRING"

Comment="" />
<VarDeclaration Name="cloudName" Type="WSTRING"

Comment="Name of the cloud" />
<VarDeclaration Name="address" Type="WSTRING"

Comment="" />
<VarDeclaration Name="port" Type="DINT" Comment=""

/>
<VarDeclaration Name="gatekeeperServiceURI" Type="

WSTRING" Comment="" />
<VarDeclaration Name="authenticationInfo" Type="

WSTRING" Comment="" />
<VarDeclaration Name="secure" Type="BOOL" Comment=""

/>
</StructuredType>
</DataType>

Listing 1. Arrowhead Cloud type defined following the IEC 61499 standard

The implementation in 4diac FORTE also required its
extension to support the communication protocols. HTTP and
OPC UA communication layers already existed, but were
improved and extended for better support. The transformation
from IEC 61499 types to JSON, specific for the used protocols,
was developed from scratch.

B. Implementation in the 4diac IDE and Unit Tests

The library of IEC 61499 FBs were defined in 4diac IDE.
This was done in three logical levels. At the lowest level, the
helper FBs allow user to create the arrowhead types using
standard types from IEC 61499. Fig. 3 shows the FB that
creates an instance of an ArrowheadCloud type, which can
later be connected to the upper levels.

At the second level, the actual Arrowhead services are
implemented. These FBs offer an adapter following the
IEC 61499 standard, in order to decouple the abstract defi-
nition of services from the actual implementation (currently

Fig. 3. A helper FB for an ArrowheadCloud data type

available for HTTP Rest and OPC UA). As an example,
Fig. 4 shows the FB to (un)register a service in the Ar-
rowhead ServiceRegistry core system. The data inputs are
a ServiceRegistryEntry (protocol-independent) and a String,
specifying an endpoint of the ServiceRegistry core system. The
registerService adapter on the below right side, offers a plug
to the actual implementation of the communication, passing
all needed data.

Fig. 4. Abstract definition of the Register Service offered by the ServiceReg-
istry core system

The corresponding adapter sockets are implemented for dif-
ferent protocols, respectively. Fig. 5 shows the FB that imple-
ments the actual HTTP communication to the ServiceRegistry.
Its only input is the socket adapter, the counter part of the plug
adapter from Fig. 4. By connecting them, the information is
passed to the FB that handles the communication between a
PLC and Arrowhead framework.

This decoupled architecture allows to simply extend the
IEC 61499 implementation to support another type of commu-
nication protocol. For example, for the ServiceRegistry core
system, which offers an OPC UA interface, only the FB in



Fig. 5. Register Service implementation in HTTP Rest

Fig. 5 needed to be re-implemented with the specifics of OPC
UA.

At the top most level, the IEC 61499 sub-applications were
implemented in order to facilitate the user using the library.
For example, for registering a service, instead of building from
the lowest level, which requires many FBs and connections
between them, an encapsulated sub-application is provided that
offers all needed parameters. Fig. 6 shows the sub-application
that can be easily parameterized to register and/or unregister
a service.

Fig. 6. Sub-application for registering a service using HTTP

In order to test and assure that the library performs as
expected, a set of tests were implemented that enable the
automatic testing of the code. The tests are generated from
applications implemented in 4diac IDE and help to identify
bugs both in the 4diac and Arrowhead implementations.

The developed FBs work with both – classical HTTP and
implemented by us and described in Section IV OPC UA –
interfaces of the Arrowhead core systems. This is useful, as
not every PLC supports HTTP, while OPC UA is de facto
standard for the data connectivity in the industrial automation
domain [21].

VI. RUNNING EXAMPLE

To test the integration of PLCs within the Arrowhead frame-
work, we developed an example following the architecture
shown in Fig. 7.

The demonstrator consists out of:
• Two BeagleBones7 that simulate traffic lights systems

offering a TrafficLight service;
• A Supervisory Control and Data Acquisition (SCADA)

system running on a mobile phone that consumes the

7https://beagleboard.org/bone

TrafficLight service and shows the current state of one of
the traffic lights on the screen;

• A monitoring application that checks the connection
status of both traffic lights systems.

Fig. 7. Architecture of the example

The core systems offer OPC UA interfaces, and every
connection to the core systems from the devices is done using
OPC UA. The TrafficLight service running on a BeagleBone
is offered by an OPC UA server.

The sequence of messages in the example is shown in Fig. 8:

1) Each traffic light system registers its TrafficLight service
to the Arrowhead ServiceRegistry core system, after the
system is started.

2) The SCADA system subscribes to a newDevice event of
the Arrowhead EventHandler core system. After one of
the TrafficLight services becomes available, the SCADA
system consumes it and shows the current status of the
lights on the screen of the mobile phone.

3) When the monitoring application detects that the cur-
rently used traffic light system is disconnected, it starts
looking for another one, offering the same TrafficLight
service.

4) When found, the monitoring application changes the
orchestration rules to the new device.

5) Then, the monitoring application sends a newDevice
event to the EventHandler.

6) The SCADA system receives the new Device event.
7) The SCADA system requests for a new orchestration

rule.



8) The Arrowhead Orchestration core system sends the
rule, which now contains the endpoint of the new device.

9) The SCADA system connects to the new device and
starts consuming the TrafficLight service from it.

Fig. 8. Sequence of messages

The example shows the loose coupling between the service
providers (traffic light systems) and consumers (SCADA). The
SCADA system does not have any information about the traffic
light systems, only about the interface of the TrafficLight ser-
vice. The Arrowhead core systems communicate with the other
systems only using OPC UA, except when the EventHandler
sends a message (HTTP in this case), because this mechanism
is not defined in the Arrowhead framework. The only intention
of the example is to show the successful integration of PLCs
into the Arrowhead framework, and not to offer a meaningful
use case. The example is compatible with version 4.1.2 of
the official implementation of the Arrowhead framework and
not yet with the latest version 4.1.3 as the abstract interfaces
tailored to HTTP were changed with the latest updates. The
latter created barriers to use of other protocols such as OPC
UA.

VII. CONCLUSIONS

The paper has described a solution for OPC UA-capable
systems to natively interact with the Arrowhead Framework
core, hence their service registration, authorization, discovery
and orchestration do not require the use of translators. The
system architecture was designed and developed with Eclipse
4diac™, an open source infrastructure for distributed indus-
trial process measurement and control systems based on the
IEC 61499 standard.

The paper provided the proof of concept via an IEC 61499
PLC integration, describing the FBs created for interaction
with the Arrowhead framework. The System of Systems
created in the running example included the PLCs directly
communicating with the Arrowhead framework, and demon-
strated loose coupling, late binding, and lookup (discovery) –
three elementary concepts of the SOA approach.

REFERENCES

[1] J. Delsing, “Local Cloud Internet of Things Automation: Technology and
Business Model Features of Distributed Internet of Things Automation

Solutions,” IEEE Industrial Electronics Magazine, vol. 11, no. 4, pp.
8–21, Dec 2017.

[2] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial
automation based on cyber-physical systems technologies: Prototype
implementations and challenges,” Computers in Industry, vol. 81,
pp. 11 – 25, 2016, emerging ICT concepts for smart,
safe and sustainable industrial systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166361515300348

[3] P. Varga, F. Blomstedt, L. Ferreira, J. Eliasson, M. Johansson, J. Delsing,
and I. Martı́nez de Soria, “Making system of systems interoperable –
The core components of the arrowhead framework,” Journal of Network
and Computer Applications, vol. 81, 08 2016.

[4] V. Vyatkin, Ed., Distributed Control Applications: Guidelines, Design
Patterns, and Application Examples with the IEC 61499. Instrumenta-
tion Society of America; 3rd ed., 2014.

[5] H. Derhamy, D. Drozdov, S. Patil, J. van Deventer, J. Eliasson, and
V. Vyatkin, “Orchestration of Arrowhead services using IEC 61499:
Distributed automation case study,” in 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA),
Sep. 2016, pp. 1–5.

[6] C. Hegedus, D. Kozma, G. Soos, and P. Varga, “Enhancements of the
Arrowhead Framework to Refine Inter-cloud Service Interactions,” 10
2016.

[7] F. Blomstedt, L. L. Ferreira, M. Klisics, C. Chrysoulas, I. M. de Soria,
B. Morin, A. Zabasta, J. Eliasson, M. Johansson, and P. Varga, “The
arrowhead approach for SOA application development and documenta-
tion,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial
Electronics Society, Oct 2014, pp. 2631–2637.

[8] J. Delsing, IoT Automation: Arrowhead Framework, 2017.
[9] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, “Bridging

service-oriented architecture and iec 61499 for flexibility and interop-
erability,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3,
pp. 771–781, June 2015.

[10] H. Derhamy, J. Eliasson, J. Delsing, P. P. Pereira, and P. Varga,
“Translation error handling for multi-protocol SOA systems,” in 2015
IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), Sep. 2015, pp. 1–8.

[11] H. Derhamy, J. Rönnholm, J. Delsing, J. Eliasson, and J. van Deventer,
“Protocol interoperability of OPC UA in service oriented architectures,”
in 2017 IEEE 15th International Conference on Industrial Informatics
(INDIN), July 2017, pp. 44–50.

[12] A. N. Lam and O. Haugen, “Implementing OPC-UA services for
Industrial Cyber-Physical Systems in Service-Oriented Architecture,”
in IECON 2019 - 45th Annual Conference of the IEEE Industrial
Electronics Society, vol. 1, Oct 2019, pp. 5486–5492.

[13] International Electrotechnical Commission, “IEC TR 62541-1:2016 -
OPC unified architecture - Part 1: Overview and concepts ,” 2016.

[14] Plattform Industrie 4.0 – 2018 Progress Report, “Applying Industrie 4.0.
Forward Thinking. Practical. Connected.” Apr 2018.

[15] H. Derhamy, J. Eliasson, and J. Delsing, “IoT Interoperability—On-
Demand and Low Latency Transparent Multiprotocol Translator,” IEEE
Internet of Things Journal, vol. 4, no. 5, pp. 1754–1763, Oct 2017.

[16] J. Rönnholm, “Integration of OPC Unified Architecture with
IIoT Communication Protocols in an Arrowhead Translator,”
2018. [Online]. Available: https://ltu.diva-portal.org/smash/get/diva2:
1238235/FULLTEXT01.pdf

[17] International Electrotechnical Commission, “IEC IEC 61131-3:2013
Programmable controllers - Part 3: Programming languages,” 2013.

[18] A. Zoitl and T. Strasser, Ed., Distributed Control Applications: Guide-
lines, Design Patterns, and Application Examples with the IEC 61499.
CRC Press, 2016.

[19] International Electrotechnical Commission, “IEC 61499-1:2012 Func-
tion blocks - Part 1: Architecture,” 2012.

[20] L. Ollinger, A. Abdo, D. Zühlke, and H. Heutger, “SOA-PLC
– Dynamic Generation and Deployment of Web Services on
a Programmable Logic Controller,” IFAC Proceedings Volumes,
vol. 47, no. 3, pp. 2622 – 2627, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667016420057

[21] C. Resnick and D. Clayton, “OPC Technology Well-positioned
for Further Growth in Tomorrow’s Connected World,” 2018.
[Online]. Available: https://opcfoundation.org/wp-content/uploads/2018/
02/ARC-Report-OPC-Installed-Base-Insights.pdf


