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Abstract 

We report on benchmark tests of computations of the total electronic density of states of 
a micro-crystallite of rutile TiO, on MasPar MP-1 and MasPar MP-2 autonomous SIMD 
computers. The 3D spatial arrangement of atoms corresponds to the two dimensional 
computational grid of processing elements (PE) plus memory (2D + 1D) while the interac- 
tions between the constituent atoms correspond to the communication between the PEs. 
The largest sample we study consists of 491,520 atoms and its size is 41.5 X 41.5 X 1Snm. 
Mathematically, the problem is equzuknt to solving an n X n eigenvalue problem, where 
n N 2,5OO,UOO. The program is scalable in the number of atoms, so that the time required to 
run it is nearly independent of the size of the system in x and y directions (2D PE mesh) 
and is step-wise linear in z direction (memory axis). The total CPU time for the largest 
sample on a MasPar MP-2 computer with 16,384 processing elements is m 2.1 hour. 

Keyworak SIMD, Electronic structure; Benchmark; MasPar 

1. Introduction 

The determination of the electronic structure of systems such as disordered 
transition metal oxides, amorphous semiconductors or liquid metals is an impor- 
tant and complex computational problem. It is hoped that the results of such 
computations will prove immensely valuable in designing new materials for use in 
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electronic devices, non-linear optical devices, anti-corrosive surfaces and in many 
other applications. On the more fundamental level, computations of very large 
non-periodic disordered systems might be helpful in understanding such phenom- 
ena as metal-insulator transition [1,2]. The complexity of the computation lies in 
the difficulty in implementing appropriate numerical schemes for the condensed 
matter systems with a very large number of atoms, for example, systems with 
several hundred thousand atoms. The need for such large systems arises from the 
necessity to have the system size larger than any possible correlation length related 
to disorder, so the impurities or imperfections in the lattice do not interact with 
their periodic ‘images’ in the periodic superlattice (periodic computational device) 
in a spurious way. 

It is demonstrated here that the equation of motion method [3,4] used to solve 
the problem is perfectly suited to implementations on parallel processors. Mas- 
sively parallel computer systems offer a possibility of studying very large physical 
systems consisting of hundreds of thousands of atoms. 

In the earlier work the equation of motion method was used with some success 
to solve much smaller problems [8,9] on vector machines. The CRAY vector 
implementation of this method has been communicated by one of the authors and 
co-workers recently [181. The success of the Cray computations lies in the vector 
nature of the data structures involved and the fact that the Cray computers have 
very fast vector processors. However, these processors are essentially serial devices 
where the elements of a vector are processed sequentially (pipelined). A consider- 
able improvement in performance could be obtained if the vectors were processed 
in a parallel manner so that the time for the total vector operation was about that 
for processing a few elements. We have already considered this approach to 
compute the total electron density of states for a microcrystallite of r-utile TiO, 

using a MasPar MP-1 and MP-2. The results were very encouraging and the 
preliminary announcement of these parallel computations has been published [19]. 

In this paper we report more extended computations for a very large sample of 
rutile TiO, with particular emphasis on the performance of the algorithm. Our 
objective is to demonstrate the parallel performance of the program in a series of 
benchmark tests on autonomous SIMD MasPar MP-1 and MP-2 computers. Due 
to inherent parallelism in the method used in this study we could utilize the power 
of the autonomous SIMD architecture such as the MasPar machine very well. The 
advantage over the serial machines is that the three-dimensional spatial arrange- 
ment of the atoms in the sample can be mapped directly onto the two dimensional 
computational grid of processing elements (PE) plus memory (2D + ID). The 
interactions between the constituent atoms then correspond to the communication 
between the processing elements. 

The scaling of this problem on the parallel machine is perfect (nearly constant) 
up to the size of the machine and is extremely favorable in comparison with the 
extrapolated scaling on single vector processor of Cray Y-MP (linear in the number 
of atoms). Our main objective is to highlight exceptional suitability of the equation 
of motion method for the electronic structure and related properties studies on 
massively parallel architectures. 
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We need to stress that the computation of properties of the samples with 
disorder was outside of the scope of this report. However, our studies indicate that 
the scaling will be very similar (i.e. constant) for point defects and extended 
surface defects. The point defects will be described by different diagonal matrix 
elements, which are assigned in one of the preliminary subroutines - this does not 
influence the running time at all, but the screened electrostatic interaction of the 
ions with the vacancy will modify the diagonal elements. This modification of 
diagonal matrix elements was implemented in our program, but is not shown in 
presented results. The vacancy model we use is given by a Yukawa potential with a 
soft core [9], and is exponentially decreasing function of inter-ionic distance. 
Hence only limited number of neighbour sites (PE’s) will be affected by presence 
of a vacancy The extended surface defects are taken care of by the software masks 
which ‘switch off atoms from the sample. This does not affect the running time 
either. We will report on the computations of properties of disordered samples 
and samples with surface corrugations in a separate communication. 

We identify the equation of motion algorithm as one belonging to the class of 
‘embarrassingly parallel’ algorithms. The problem it solves is one of the ‘Grand 
Challenge’ problems. 

The paper is organized in the following way: The next section summarizes the 
physics and the mathematical model underlying the equation of motion method. 
Next, we describe the SIMD architecture of the MasPar computer, with special 
emphasis on the communication and the locality of the data. In Section 4 we 
describe the fine grain parallelism which was implemented in our program and 
demonstrate the mapping between the atoms and processing elements of the 
computational mesh. Finally in Section 5 we present the results of parallel 
performance test runs for different sub-meshes of the PE array, different number 
of memory layers and FFT steps. We close the paper with conclusions and 
suggestions for further extension of this work. 

2. Electronic structure of disordered systems: mathematical model 

2.1 Primer 

In solving the purely electronic problem in condensed matter state, physicists 
often resort to the Born-Oppenheimer model, which treats the atomic cores as the 
entities fixed in space, so their degrees of freedom do not contribute to the 
expression for the energy of the outer shell electrons. The energy in quantum 
mechanics description is expressed by the Hamiltonian operator which takes into 
account all important contributions arising from the dynamics of outer shell 
electrons. The Hamiltonian operator acts on the states of the system represented 
formally by the vectors spanning the Hilbert space. The eigen-values of the 
Hamiltonian give the allowed energies of the physical system, i.e. in this case the 
electronic levels in a disordered solid. The group of materials we are interested in 
such as insulators or semiconductors are reasonably well described by a model 
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Hamiltonian which treats all outer shell electrons as rather well localized ‘atomic 
orbitals’ - it is called the tight binding model. This model can in principle be also 
used for metals, but the delocalized nature of conduction electrons requires a very 
large (still impractical) basis set for each atom. 

The tight binding Hamiltonian is written in a form 

lfZ = C Ei,p.Ci,pci,fi + C ( 'i,g;j,vCf,gcj,v + h.c*) (2.1) 
i9l.L I,cL;J,Y 

where the i’s and i’s are site indices, the Greek letters P,V are indices labeling 
orbitals and the sum on (ij> is over neighbors on the lattice. The first term on the 
right hand side of the equation describes the ‘on site’ energy at site i and atomic 
orbital p, and the second term represents ‘hopping energy’ of the electron 
‘jumping’ from i,v to i,p site/orbital state. The operators ~1,~ and ci,+ are called 
creation and anihilation operators respectively. 

The problem of the determination of the electronic structure of the perfect 
crystalline solids was one of the central problems of the solid state physics for the 
last forty years or so. However, most of the computational methods employed in 
those studies relied on the point group symmetry of the perfect solid. Periodic 
symmetry reduces the problem of infinite solid to the one in bound space with 
underlying atomic structure which is repeated throughout the infinite space. This 
beautiful symmetry of perfect solids is the basis of the Bloch theorem which allows 
to use a mathematical trick to Fourier Transform the spatial coordinates and to 
rewrite the Schroedinger equation in the reciprocal space of the wave vector k and 
solve the set of algebraic equations for the energy eigenvalues in the restricted 
domain of k-space (the first Brillouin zone). 

Even when a single impurity is introduced into perfect crystal lattice, the Bloch 
theorem can only be used in a perturbative way. The perturbative approaches are 
highly non-trivial and extremely compute time intensive. They were used to study 
disordered systems in the limit of very low concentration of defects. At present two 
methods for treatment of disordered systems in the high disorder regime are used. 
The first one, more widely known and used, is the recursion method [11,211. The 
other one is the equation of motion method. The discussion of the relative merits 
and a comparison of the two methods is outside the scope of this work and can be 
found in Refs. [17,26,8]. 

Equation of motion method employed here is uniquely flexible and capable of 
calculating the electronic structures of arbitrarily disordered systems. The equation 
of motion method was used by the Minnesota group of J.W. Halley to study the 
transition metal oxide, TiO,, with large concentration of oxygen vacancies (up to 
10%) and for 2D [8,9] and 3D [9] samples with up to 3840 Ti and 0 atoms. The 
computed properties included total and local density of states [91, surface density 
of states [22] and conductivity [lo]. (The electronic structure of TiO, surfaces, both 
ideal and with point defects was also studied theoretically using the Green’s 
function, scattering-theoretic method [201.) 

Equation of motion method was also adapted for the evaluation of other 
electronic properties (mainly of amorphous Silicon), such as: electronic conductiv- 
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ity via Kubo formula [161, localization [251, spectral functions 1121, interband linear 
[27] and non-linear [28] optical properties, electronic structure and conductivity 
[13], the Hall coefficient 1141, the electronic structure of hydrogenated a-Si [151 and 
the effective mass of electron and hole in amorphous silicon [29]. 

2.2. Equation of motion method 

The equation of motion method is intuitively very simple. All computations are 
performed in the direct space. The method effectively computes all the eigenvalues 
of a sparse square matrix (Schroedinger equation) without resorting to a direct 
diagonalization. It was shown that this method is well suited for disordered systems 
with impurities with long range impurity potential [23]. 

The equation of motion method for the system with many orbitals per site was 
described in detail in [9,18]. We refer to these papers. In this section we briefly 
summarize important formal results which form the basis of equation of motion 
method. 

The density of states N,(w) associated with the orbitals of type p is given by: 

N,(w)=CCI(nli,~)l’S(o-~~) (2.2) 
n i 

where (n I are the eigenstates of the tight-binding problem in the (disordered) 
lattice and the I i,p) is the tight-binding state localized on site i and of the orbital 

type k 
It can be shown that the above expression can be represented as 

NJ 0) = - iIrn[ /c e-‘~i+&( t )ei’“‘dt ] 
i 

(2.3) 

where I;&) = ~,vaj,vGi,p;j,v(t) is the amplitude of Green’s function. 

We define the Green’s function in a standard way: 
Gi,g;j,v(t) = -i@(t)({ci,,(t), c~,(O)l). 
The time evolution of the quantum system is governed by the equation of motion 

ihaFi,Jat = C Hi,p;j,v$i,v (2.4) 

j,r 

with the initial condition FJO) = -iai,p 
Physical systems such as insulators or wide gap semiconductors can be described 

by the tight binding Hamiltonian, Eq. (2.1). 
In order to compute the total electronic density of states (for the orbital of type 

CL) we set for the coefficients in expression for Fi,p to be: ai,+ = e’“i*c; with random 
4i,fi; O < 4i,, ’ 2r* 

The connection of physics and massively parallel architecture is contained in 
Eq. (2.4) and especially Eq. (2.1). The values of hopping integrals ti,p;j,v are 
communicated between the neighbouring PEs. More details can be found in 
[8,9,18,191. 
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3. MasPar autonomous SIMD architecture 

MasPar Computer Corporation has designed and implemented a high perfor- 
mance massively parallel computing system, based on the autonomous SIMD 
(Single Instruction Multiple Data) paradigm. This is the base system that ran the 
computations described in this paper. We describe the hardware, the code and 
architecture usage in some detail below. 

The MasPar MP-1 and MP-2 are autonomous SIMD systems. They consist of an 
Array Control Unit, Processor Array, processor elements, processor memory, 
X-Net Mesh, Multistage Crossbar Interconnect, an I/O subsystem and a UNIX 
front end. The Array Control Unit fetches and decodes MP-l/MP-2 instructions, 
computes addresses and scalar data values, issues control signals to the Processing 
Element (PE) Array and monitors the PE Array’s status. The Processor Array 
contains 1024 to 16384 processing elements with associated memory ranging from 
16Mbytes to 1Gbyte. Each processing element has an associated local memory 
ranging from 16Kbytes to 64Kbytes. The processing elements are interconnected 
via the X-Net Mesh and the Global Router. The X-Net interconnect directly 
connects each PE with its 8 nearest neighbours in a two-dimensional mesh. The 
aggregate X-Net communication rate in a 16K PE system exceeds 20 gigabytes per 
second. The global router allows any PE to communicate with any other PE in the 
Processor Array. A 16K PE system has an aggregate router communication 
bandwidth in excess of 1.3 gigabytes per second. The full description of the MasPar 
architecture can be obtained from references [5,6]. 

The basic concept for getting the best performance out of these types of systems 
is to keep as high a percentage as possible of the processing elements (PEs) active 
for as high a percentage of the runtime as possible. This was achieved by the type 
of data layout and computational model used. The model allowed for discrete data 
to be kept on each PE, use of the X-Net only for communications and the 
duplication of the computation on each PE. This model was ideal for the MasPar 
architecture, as the only bounding factor for performance and size of the problem 
was directly related to number of processing elements. The number of processing 
elements govern available memory for storing the atoms and associated array of 
neighbourhood interactions as well as the total compute power of the system. 

The complexity of the implementation was made simple by the computational 
model that was designed. In this model each PE contains N, layers of TiO, and an 
array of interaction values (off-diagonal Hamiltonian matrix elements). The com- 
putation on each PE is the same, so that for every clock cycle the same instruction 
on each PE is executed, hence there are no inactive PEs and thus the utilisation 
percentage during the majority of the computation can be thought of as being close 
to 100%. Because the size of the problem directly depends on the size of the 
computing system, that is the number of processing elements and the amount of 
memory with each PE, the code was benchmarked on systems ranging from an 
MPllOlD (1K PE 64K memory MP-1) through to an MP2216 (16K PE 64K 
memory MP-2) for the same number of atoms of r-utile TiO, (iVPE per PE). The 
benchmarks were run for different number of layers (N,) in memory. Initially N, 
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was set to N, = 2 and was increased in steps of 2 until on a 16K 64K/PE MasPar 
system the maximum number of layers implemented before memory was exhausted 
was N, = 10. Hence the maximum size of the rutile sample that could be computed 
was (N& x N,,,, X N,) = 12g2 X 3 X 10 = 491,520. NMp is the maximum size of 
MasPar computational array of PEs in one dimension. This total number could be 
easily increased using the same methodology with more memory per processor, 
though the time for computation would increase linearly given constant memory 
access speeds over larger memory. Needless to say computation time would 
decrease with faster processors or more processors or a combination of larger 
memory faster processors and/or a larger number of processors. 

The good performance achieved was also aided by the fact that communications 
between processing elements were kept to a minimum by implementing 
‘neighbourhood interaction arrays’ (arrays that held common data and information 
about the interaction between the particular atom and the neighbour atom on the 
nearest and the second nearest neighbour PEs), and by using only the X-net for 
PE to PE communications. The drawback, in memory usage and thus lower 
number of atoms in total that could be modeled, of duplicating an array on every 
PE instead of using the X-net to pass the data around, or the ACU to broadcast a 
common data item, was evaluated as being inconsequential compared to the 
amount of communications that would have been necessary to provide each PE 
with the correct information as and when required, and the performance hit that 
this would have caused. 

4. Parallel implementation 

On massively parallel computers the local environment of each particular 
processing element and its communication topology defines the physical neigh- 
bourhood of each atom. We used this fact in coding the interactions between the 
neighbouring atoms, expressed by the sum over (i,j) in Eq. (2.1). In the vector 
CRAY version of the program a list of neighbours interacting with each atom was 
maintained in a look-up table [18]. This introduced a restriction on the vectoriza- 
tion of the program, although on the CRAY computers it was vectorized using the 
vectorizing gather-scatter operations. In programming terms, instead of look-up 
tables used in CRAY vector version of our program [19], we use appropriately 
defined CSHIFT operations in Fortran90. The computation of the time evolution 
expressed by Eq. (2.2) is the most time consuming, taking nearly 88% of the total 
CPU time of the vector version of the program. 

Rutile structure of TiO, poses some interesting problems for the mapping of 
atoms on PE array. The model of the rutile tight-binding Hamiltonian we use in 
our study, originally proposed by Vos [24] is non-trivial. It is characterized by the 
following features: 
6) the sample is three dimensional; 
(ii) the rutile structure consists of tetragonal unit cell with two Ti and four 0 

atoms. The titanium atoms occupy the positions (O,O,O) and (3, i, 3) whereas 
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L_ 
oxygens are at the positions f (x, x, 0), and f ($ + x, 2 x, $), where 

x = 0.306 f 0.001 [7]. Each Ti cation forms a ‘dumbell’ shape with two 

neighbouring 0 anions. The ‘dumbell’ attached to the Ti in the centre of the 
unit cell is rotated by 90” with respect to the eight ‘dumbells’ attached to the 
Ti atoms at the corners of the unit cell. This rotation complicates the mapping 
somewhat; 

(iii) there are up to five atomic orbitals at each atom, i.e. five 3d orbitals for each 
Ti and one 2s and three 2p orbitals for each 0 atom; 

(iv) we include the nearest and the second-nearest neighbours for each atom. 
Fig. 1 represents a slice of t-utile seen at slight angle towards the (001) plane. If 

this structure is viewed precisely from the [OOl] direction, then it will form a square 
mesh which can be rotated and projected on the mesh of processors. 

Fig. 2 depicts the PE array and the projection of t-utile in the (001) plane on this 
array. Each Ti atom (square) is centered on one PE, and the two oxygen atoms 
forming a ‘dumbell’ with Ti occupy the same processor. Hence there are three 
atoms on each PE, for each unit cell plane. The black Ti sites are in the z = 0 
plane, and the empty ones are in z = 0.5 plane, but they occupy the same memory 

Fig. 1. Tio2 rutile structure. The large balls represent Ti atoms, . 0 atoms are represented by small 

balls. 
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x PE 

Y PE n o Titanium (PE sites) 

0 Oxygen 
Fig. 2. If the structure on Fig. 1 is slightly rotated it will collapse into a mesh represented schematically 
on this figure. The (001) surface of the rutile TiU, mapped on the square mesh of MasPar processors. 
Each square (Ti atom) corresponds to one processing element. Each pair of 0 atoms, joined by a solid 
lines, occupy the same PE. The empty squares correspond to the purple balls in the previous figure, the 
solid squares - to the green ones. 

layer. By doing this we can optimally use the memory on each PE. This projection 
will naturally form two interlacing, alterating computational sub-meshes which 
means that all the computations on each sub-mesh are identical. The memory gives 
the ‘depth’, or the third z-dimension of the system. The correspondence between 
the crystallographic rutile system and the PE array can be established in other 
ways as well. If, for example, we used one PE for one atom (0 or Ti) the 
communication cost would be much greater, and also we would have to have l/9 
of the processors empty. It is also possible to map the whole unit cell on one PE 
provided more local memory is available. 



862 M.T. Michalewicz, M. Priebatsch /Parallel Computing 21 (1995) 853-870 

Fig. 3. The local environment of the neighbours interacting with the Ti atom (center ball). The small 
balls represent 0 atoms, the large ones - Ti atoms. 

The atoms with which each Ti atoms interacts (communicates) are shown on 
Fig. 3 (for z = 0 Ti site). Fig. 4 depicts how this local environment was mapped on 
the processing element mesh. There are 16 neighbours, all in the nearest neigh- 
bour position (on the PE mesh). The bold face numbers numerate the neighbours 
which are in the different memory layers (below). For example, numbers 1 and 2 
correspond to the Ti atoms above and below. They will occupy the same processing 
element, but have different memory (z> location. Similarly, 0 atoms 13 and 14 will 
be on the same PE. The other locations can be deduced by inspecting Fig. 3 and 4. 

5. Benchmark results and conclusions 

The main results of this work are of the benchmark nature. The goal is to 
demonstrate scaling of the algotithm on SIMD architecture, and not to compare 
different computers. The performance of the vector version of the program on a 
single processor of CRAY Y-MP is linear in the number of atoms in the sample 
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NY+1 

Nx N,+l 
Fig. 4. The mapping of the interacting neighbourhood of Tz’ atom (shaded squares (Ti) and circles (0)). 
There are two types of oxygen atom on each PE, marked 01 and 02. The numbers correspond to the 
order of neighbours in the program. Italic font corresponds to the higher or lower locations in memory, 
normal font means the data is at the same memory level. 

(Fig. 5). Based on our experience with SIMD algorithm one of the authors (MTM) 
significantly modified the Cray vector version of the program. Indirect addressing 
was replaced by the direct one and the Cray vector program runs now about 250 
MFLOPS/s on a single C90 processor. However it still scales linearly. What has 
changed is the slope of the line and the cross-over point where the Cray cornputa- 
tion becomes slower. Hardware performance on CRAY Y-MP was measured using 
the hpm program (hardware performance monitor, option -go). The speed of 
computations, despite vectorization was rather low, around 75 MFlop/s (Cray 
Y-MP, indirect addressing). The low performance might be attributed to the 
complexity of the algorithm in a vector version, especially the gather-scatter 
operations employed for collecting information on the nearest neighbour locations. 
The largest system we modeled on Cray consisted of 3840 atoms (8 x 8 x 10 unit 
cells, 6 atoms each). We will report on the linear Cray C90 and and constant T3D 
scaling and the computations for the sample sizes of the order of millions of atoms 
in a separate report [30]. 

Fig. 6 represents the comparison of the extrapolated performance of the 
equation of motion method on the singZe vector processor of CRAY Y-MP and the 
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number of atoms 
Fig. 5. The time of computing on Cray Y-MP grows linearly as a function of the number of atoms. The 
computational system size on Cray ranged from 48 to 3840 atoms. 

massively parallel SIMD MasPar MP-2 machine. The time dependence on a single 
processor CRAY Y-MP can be expressed by a formula t = 0.1 x N,,,,, (see 
previous figure and also Ref. [18]). Using this linear dependency the vector results 

40~o~ * Cray Y-MP estimate (single processor) 
J 

.,.. A 

I I I I I J 

0 1oOooo 2ooooo 3ooooo 400000 5ooooo 

number of atoms 
Fig. 6. The estimates of the CPU time on Cray Y-MP single processor for very large systems were 
extrapolated from the results of the previous figure (solid squares). The triangles depict the actual 
computing times on MasPar MP-2 computer. The last result on MasPar (for 491520 atoms) was 
obtained on MP-2216, the other three on MasPar MP-2204. The lines are only for visual guidance. 



M. T. Michalavicz, M. Priebatsch /Parallel Computing 21 (1995) 853-870 865 

were extrapolated for the samples of up to 491,520 atoms. They are represented as 
black squares on Fig. 6. The MasPar MP-2 results represented by triangles 
correspond to actual computations for 32 X 32 X 2, 64 X 64 X 2, 128 X 128 x 2 and 
128 X 128 x 10 samples (x,y-mesh of PE array X memory ‘cells’; each holding 
three atoms). On MasPar computers we used 1Gbyte memory: all local memory on 
all the processors for the 491,520 atoms run. The size of TiO, sample studied on 
MasPar machines was up to 128 times bigger than the largest sample studied by us 
on single processor of CRAY Y-MP vector supercomputer. It would take nearly 14 
hours CPU time to compute the electronic density of states for the sample this 
large on a single processor of CRAY Y-MP. The cross-over point for better 
parallel performance is reached for the samples of 125,000 atoms. It is seen that 
the scaling of parallel performance is nearly perfect: the time of computation 
remains nearly constant (in fact it even drops down) as the sample size grows. The 
lines are drawn for the eye guidance only. The last two points were computed 
using newer version of the FORTRAN compiler, hence the apparent appearance 
of the decreasing time. The last point was obtained on MasPar MP-2216, all others 
on MasPar MP-2204. 

Similar parallel scaling is seen on Fig. 7. The third dimension (memory) was 
kept fixed at N, = 2 and the x-y mesh was increased for each larger sample. Each 
of three lines represents results for different number of time steps (NW) used in 
the FFT of time evolved amplitude of Green’s function Fi,cL as expressed by Eq. 
(2.3). The running time, in the large sample limit, increases as t,w, N 2n X fNwO 

where NW,, = 2” x NW,, NW, = 128. The doubling of time is related to two 

I I I 1 

12- Nz=2 

_ r....~..“.’ 
.,... AL.. . . . . . . .._.. -.- NW=128 

‘.,. .,.,.,_, u NW=256 - 
10 ‘,I 

.‘...,_ 
‘.,. .,.,.,., x NW=512- 

5 4 
/ .,..., Y., %.., 

.i? 8- 
. .‘I.,., 

Y.,., 

-i+ 
K 

E - 
b 6- 
c 

l 
I I I I 

0 20000 40000 60000 80000 100000 

number of atoms 
Fig. 7. Normalised running times [ T(N = 96, NW = 128) = 1.01 for MasPar MP-1116, and fiied number 
of z layers N, = 2 as a function of system size for three different number of FFT steps: NW = 128,256 
and 512. 
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Fig. 8. Normalised running time for different slab shapes (with fixed N, = 2) vs. number of FFT steps. 
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computational sub-meshes, and this in turn is related to limited amount of memory 
on each PE. 

The same results are also represented on Fig. 8 in a slightly different way. Here 
the normalized running time is a function of the number of FFT time steps. Each 
line represents a physical system of fixed size (computational sub-mesh). 

The normalized time as a function of the number of memory layers (N,) is 
plotted on Fig. 9. The plot indicates that the run-time is a step-wise linear function 
of the memory layer, i.e. increasing linearly every two layers (corresponding to 
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Fig. 9. Normalised running time vs. number of memory layers N,. The computations were performed 
on MasPar MP-1116 with NW = 512. 
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number of atoms 
Fig. 10. Normal&d running time vs. number of atoms for MP-1116 and MP-2216 MasPar computers. 
The number of memory layers was kept fuced at N, = 10 and the FFT was taken for NW= 512. 

‘thickness’ of the sample in z dimension or c crystallographic axis). We would have 
to run the program for samples with N, > 10 to confirm such scaling. At present 
we can not run such tests due to limited local memory on each PE. 

Performance on MasPar MP-1 and MP-2 computers as a function of the 
physical sample size is compared on Fig. 10. It is clear that the more advanced 
hardware and software of MP-2 is about 5 times more faster than that of MP-1. 
The scaling of the problem is similar on both platforms. 

The performance of the program on &vo different MasPar MP-2 systems is 
depicted on Fig. 11. We had a limited access to MasPar MP-2216 to run our 
program just once, for the largest sample size of 491,520 atoms (solid diamond). 
The open triangles represents timings on MasPar MP-2204. The line is only for the 
eye guidance. The different timings on those two systems could be attributed to 
different compiler versions. The estimated performance on MasPar MP-2216 is 
740 MFlop/s. It could be improved up to N 1.5 GFlop/s if more local memory 
was available on each PE, so there would be no need to partition a sample on two 
computational sub-meshes (Fig. 2). 

Fig. 12 gives an example of the computed results of the equation of motion 
program. Depicted is the total electronic density of states for the largest sample of 
TiO,. The total running time is of the order of N 2.1 hour on the MasPar MP-2 
computer. This result is for the illustration only, since the most interesting 
computations for the disordered systems and the samples with surface defects will 
be presented elsewhere. 

We demonstrated that the equation of motion method used to evaluate the 
electronic properties of disordered condensed systems is very well suited to 



868 M. T. Micbalewicz, M. Priebatsch /Parallel Computing 21 (1995) 853-870 

MasPar MP-2, NW=51 2, Nz=lO 
1.2 , . , . , . , . , , , . , . , . , . , , c 

0.4 - 

I. I .I .,., .I .I .I. I .I, I 
0 100000 200000 300000 400000 500000 

number of atoms 
Fig. 11. Normalised time for MP-2204 (open triangles) and MP-2216 (solid diamond) vs. number of 
atoms. The two systems had different compiler versions, hence the lines are only for eye guidance. 

implementations on massively parallel SIMD machines. The time required to run 
the program is nearly independent on the size of the system in x and y directions 
(2D PE mesh), up to machine size, and is step-wise linear in t direction (memory 

a 

-20 -15 -10 
Energy (eV) 

Fig. 12. The total electronic density of states (DOS) for the ideal sample of TiOl. The sample size was 
491,520 atoms or 41.5 x41.5X 1.5nm. 
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axis). The program described in this paper can be used to compute the electronic 
properties for the samples with cleaved surfaces of different Miller indices, 
modeling the shape of the microcrystallite in a stone-cutter fashion. The extended 
surface defects and fabricated features such as stepped surfaces, superlattices, 
modulated superlattices or doped samples can now be investigated by methods 
described here. All these features can be programmed as software masks which 
switch-off atoms (PEs) outside the bounds of a sample. We are now working 
towards applying methods described here to computations of the linear and 
non-linear transport properties in disordered systems and implementing the pro- 
gram on MIMD T3D massively parallel Cray system. 
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