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Abstract

Great amount of stored information used in connection with Machine Learning and statistical methods enables high quality
insight and analysis of data that leads to design of high precision predictive and classification systems. In the process of
analysis, selection of most informative features is crucial for later quality of the designed system. In this report, we propose
two implementations of multidimensional feature selection (MDFES) algorithm (Piliszek et al. in Mdfs-multidimensional
feature selection. arXiv preprint. arXiv:1811.0063 1, 2018) that can be used in distributed environments for detection of all-
relevant variables in data sets with discrete decision variable. While most methods discard information about interactions
between features, MDFS is designed towards identification of informative variables that are not relevant when considered
alone but are relevant in groups. We have developed software using C++ and High Performance ParalleX (HPX) (Kaiser
etal. in STEIIAR-GROUP/hpx: HPX V1.3.0: the C++4 Standards library for parallelism and concurrency. 2019. https://doi.
org/10.5281/zenodo.3189323, 2019) to achieve best performance, great scalability and portability. HPX is a library that uses
lightweight threads, asynchronous communication, and asynchronous task submission based on the declarative criteria of
work. These features enabled us to deeply explore granularity and parallelism of the MDEFES algorithm. Software is prepared
entirely in C++; therefore, calculations can be performed using CPUs on desktops, distributed systems, and any system
with C++ compiler support. During testing on Cray XC40 (Okeanos) using artificially prepared data, we achieved 196 times
acceleration on 256 nodes compared to a single node. From this point, [ICM computing facility is capable of massively paral-
lel feature engineering. The main purpose of the software is to enable researchers for more accurate genomics data analysis
in search for multiple correlations in potential sources of the diseases.
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Introduction

In the twenty-first century, we have been introduced with
new fourth scientific discovery paradigm that is based on
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in groups, which is complicating the case even further.
These facts are not negligible, but investigation of new
phenomena when domain specific knowledge is missing
or limited is hard and feature engineering is even harder.
In such cases, it is highly likely that additional irrelevant
information will be stored or relevant information will be
disposed.

There are many methods dedicated to the problem of fea-
ture selection and they fall into three main categories [2]:

¢ filters where the identification of informative variables is
performed before data modelling and analysis,

e wrappers where the identification of informative vari-
ables is achieved by analysis of the models,

e embedded methods which evaluate utility of variables in
the model and select the most useful variables.

An example of feature selection method is multidimensional
feature selection (MDEFS) algorithm that was invented for
identification of all variables in data set that have influence
on discrete decision variable. It was specifically designed
towards identification of informative variables that are not
relevant when considered alone but are relevant in groups.
Its design introduces great granularity of calculations that
allows computations to be intensively parallelized across
multiple processing units and in this case multiple compu-
tational nodes.

In this report, we introduce the first known implementa-
tion of this method for distributed environments. We want
to provide scientists with a new tool that can accelerate their
feature engineering workflows or enable bigger data sets to
be analysed in search for high dimensional correlations.

Genomics Motivation

The exhaustive search for non-trivial interactions is particu-
larly important for analysis of genetic data. The synergistic
effects of double mutations have been established for exam-
ple in connection with insectide resistance in pests [12] or
various phenotypic effects in Arabidopsis thaliana [9].

Traditional approach for identification of synergies
requires lengthy experimental work in genetics targeted
on a handful of genes. On the other hand, analysis of large
data sets collected in population studies opens possibility
to perform large-scale analysis of entire genomes without a
priori knowledge which genes are interesting. Such analy-
sis involves non-trivial computations, since the number of
variables that could be possibly relevant in such analysis
may even reach several millions. Consequently, exhaustive
analysis of pairwise interaction may require computation
of 10" — 10™ pairwise interactions, which will be possible
using massively parallel computers.
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Theory

Variable x; C X is considered weakly relevant when there
exists such a subset of variables X, C X : x; € X, that one
can increase information about the decision variable y by
extending this subset with the variable x; [7]. To restrict and
strictly define dimensionality of analysed problem, Mnich
and Rudnicki [8] introduced the notion of k-weak relevance
that encloses original definition to (k — 1)-element subsets
X - Dimensionality equals k in this case.

By applying this notion to information theory and by cal-
culating difference between conditional entropies of subsets
X, and X, U {x;}, we are able to measure k-weak rele-
vance of variable x;. This difference in (conditional) infor-
mation entropy H is known as (conditional) mutual infor-
mation and was named information gain (IG) by authors of
MDES method. After computation of mutual information for
each subset X, (identified by value m) from all subsets, we
are able to find maximum information gain that reflects the
biggest mutual information of that variable. This procedure
is described by formula (1).

st m,(_l)

IGE (v:x) = Nmax(HQ|x,, . ....x

()
—H(le,.xml,... x, ).

LS
For one-dimensional analysis (k = 1), formula (1) reduces
to Eq. (2).
IG. 0 %) = NH) = HOx,). @
To find the biggest mutual information gain, it is required
to generate all unique k-element subsets. The number of all
unique k-element subsets is given by equation:

1 1!
- () -matm @

where S represents the number of unique subsets, I repre-
sents the number of variables, and k represents the number
of elements in subset (number of dimensions). Therefore,
computation complexity grows rapidly with number of vari-
ables I and dimensions k.

Computation of entropy requires variables to have dis-
crete values. Therefore, continues variables need to be dis-
cretized in order to be tested by MDFS method.

Algorithm Implementation
Algorithm

Mathematical formula of MDFS method (1) reveals high
granularity of the algorithm. Each conditional entropy can
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be computed independently and no information exchange is
required until search for maximum IG. Therefore, computa-
tions can be heavily parallelized.

We prepared two versions of the algorithm. The first one
is optimized for minimalization of preformed computations
and the second one is optimized for minimalization of com-
munication and data synchronization.

First Algorithm Description

For every k-element subset X, (this is different notion of
X, than in Section “Theory”) computation can be carried
indepently and obey the following steps:

1. Compute contingency table for X_,,,

2. Compute reduced contingency table for each
Xou\¥i © X; C Xy,

3. Compute IG from contingency tables for each x; using

following formula (5).

I1G(y; x;) = N(H X \ ;) = HXo)- 4)
4. Search for maximum IG for each x; and store it in the
vector.

We are aware that information entropies of reduced con-
tingency tables are computed redundantly in the first algo-
rithm. In computationally optimal scenario, we are required
to compute information entropies of reduced contingency
tables and store them in a vector. Then, we can continue with
computations of contingency tables X,,,. Unfortunately, this
approach requires more iterations over data (data movement
is the most computationaly expensive part), more synchro-
nization, and more data dependencies.

Second Algorithm Description

1. Compute contingency table for X,

2. Compute contingency table for X,

3. Compute IG from contingency tables using following
formula (5).

1G(y;x;) = N(H(YIX ) — HO X U {X;: D), (5)
4. Store IG for x;.

U {x;},

In the end search maximum IG for each x;.
Algorithm proposed by Mnich and Rudnicki [8] is applied
to compute conditional entropy from formula (5).

High Performance ParalleX

High Performance ParalleX (HPX) is an implementa-
tion of a theoretical execution model for extreme-scale

computing systems called Parallex [5] and offers several
new approaches to parallelism:

e Active Global Address Space (AGAS)—to provide great
control over a flow of a program, processes and variables
in a system have their unique addresses,

e Constraint-based synchronization—parallel program-
ming is based on declarative criteria of work. In other
words, programmer is required to define dependencies
between data and computations in order to allow runt-
ime system to build dependency graph between tasks.
Then, during program execution, finishing of one task
automatically activates others and can be compared to
dominoes falling and pushing each other in a sequence. It
provides great asynchronism in a system but does ensure
synchronization,

e Lightweight threads—to ensure high concurrency and
granularity of tasks, HPX provides lightweight threads.
This approach makes dynamic scheduling faster and
fundamentally reduces overheads of switching between
threads,

e Data directed execution—to avoid movement of data
whenever possible, HPX is designed to allow asynchro-
nous commissioning of tasks on a remote nodes to do
calculations there and to receive answers that are relevant
locally. This approach can be summarized in a maxim:
“move work to data, keep data local”.

HPX library is completely written in C++. It is available on
github' under a liberal open-source license and has an open,
active, and thriving developer community.

We regard HPX library as a perfect fit to our needs,
because it allows deep exploitation of granularity of the
algorithm. A programmer is required to provide data tasks
dependencies, afterwards scheduling with synchronization
is provided by a runtime system. It allows the developer to
put more effort in solving the problem and consequently
reduces development time. Therefore, we used this library in
development of distributed version of MDFS method.

Parallelization and Distribution

To calculate IGiax(v;xI-_) from formula (1), we need to gener-
ate all k-element subsets X, and than apply algorithm from
Section “Algorithm”. The subsets should be generated in a
way that provides distribution of computations, avoids rep-
etition of generated subsets, allows reasonable load balanc-
ing and maintains enough concurrency to utilize computing
resources efficiently.

! https://github.com/STEIIAR-GROUP/hpx.
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We propose the following method to fulfil the above
requirements for the “First Algorithm Description:

1. Generation of all k-element subsets X, is completed
with iteration over all possible variables. An example
of generated sequence for three-element subset with five
variables is the following:

[[-H,Xz,xs]y [X1 > X2, 14], [Ilgxgyxj].- [11,I3,X4]1 [11.-13.-15],

[X3. X3, X4, [%7. %3, x5]. [ 37, x4, X5 ], [ X3, X4, X5 ]]

2. Distribution of work is achieved by spliting a list of
variables between nodes. Each node acquires list of
variables. Then, for each variable on the list it gen-
erates all unique subsets of variables that start with
variable in question. The first element of a subset is
not incremented in this case. An example of gener-
ated sequence for three-element subset and five vari-
ables with x, in a list on a single node is the following:
[[x5. X3, X4 ], [X9. X3, X5], [X9, X4, X5]].

3. To achieve decent load balancing, variables are assigned
to nodes during an “up&down” iteration over nodes IDs.
An example of assignement of ten variables to three
nodes is the following:

Xp = Ny, Xy = Ny, X3 —> N3, Xy —> N3.X5 — My, Xg —> Ny,
Xy = Ry, Xg = Ny, Xy — N3, X9 — N3 In result following
mapping is optained:

ny X xgxglony T, x5, x5l g T [, X, Xg, X0 ]
Data reading and discretization is performed on each
node independently. It is possible to perform multiple
discretizations during one run.

4. In order to provide concurrency on nodes, each ele-
ment in an assigned list is computed in parallel. In other
words, each subset sequence generation and processing
is seperated into n tasks where n is the number of vari-
ables in the list.

The disadvantages of this approach are: requirement for a
vector of maximum IGs that needs to be updated synchro-
nously (critical section) and fact that algorithm will not be
scalable over N / 2 processors where N is the number of
variables. However, our tests in the next chapter prove that
software achieves great scalability and performance with
this parallelization method.

We propose the following method to fulfil the above
requirements for the “Second Algorithm Description™:

1. Distribution of work is achieved by spliting list of varia-
bles between nodes. To achieve load balancing, variables
are assigned to nodes in equal chunks. An example of
ten variables divided between three nodes is the follow-
ing:ny o [x).X%0. %3]0, 1 [xg. x5, X6, X7, 13 1 [xg. Xg, X0 ]
Please note that 10 is not divisible by 3; therefore, node
no. 2 has four elements on a list. The distribution is
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designed in a way that provides consistent partition and
no variable is omitted. Data reading and discretization
are performed on each node independently. It is possible
to perform multiple discretizations during one run.

2. Each variable on the list is processed independently.
Generating of all k-element subsets X, for each varia-
ble from the list is completed with iteration over all pos-
sible variables without incrementing the first element. A
variable from the list x; is the first element and remains
constant in this case. An example of generated sequence
for three-element subset and four variables with x, as the
first element is the following:

[[x0, X1, 20 ], [X. X0, X3 ], [0, X0, X4 ] [0, %00 X3 ) [ X0, X0, Xy ),
[203, 23, x4 1],

3. To provide concurrency on nodes, each maximum IG of
variables on an assigned list is computed in parallel. In
other words, each subset sequence generation and pro-
cessing is seperated into N tasks where N is the number
of variables in the list.

The disadvantage of this approach is the fact that there are
redundant computations but the algorithm will be scalable
to N sockets where N is the number of variables.

For big data use cases (when data cannot fit into a single
node operating memory), the software is equipped with a
chunk processing option. In this scenario, the data are read
and processed in chunks and should already be discretized,
because discretization cannot be performed in this scheme.

Our tool can read files in CSV and HDF5 format.

Results

The tests were performed on Cray XC40 machine
(Okeanos) that is installed at ICM facility. It is composed
of 1084 computing nodes. Each node has 24 Intel Xeon
E5-2690 v3 CPU cores with a 2-way Hyper Thread-
ing (HT) with 2.6 GHz clock frequency. The nodes are
connected with a Cray Aries Network with a Dragonfly
topology.

For demonstration and testing of the MDFS implemen-
tation, two datasets were used.

1. Madelon [3] is a synthetic dataset with 2000 objects
and 500 variables that can be accessed from the UCI
Machine Learning Repository [1],

2. Neuroblastoma is data set containing information on
expression levels of 340414 exon/intron junctions meas-
ured for 498 neuroblastoma patients with the help of
RNA-seq method [11].
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Fig. T Measured time of three-dimensional analysis with 100 discre-
tizations on different Madelon dataset sizes and with two algorithm
implementations (e.g. dataset that is twice as big has two times the
number of variables. Additional variables are copies of variables
from the original data set)

To provide multiple sizes of datasets for testing, addi-
tional datasets were generated via duplication of columns
and rows from the original datasets.

Madelon Tests

We decided to perform three-dimensional analysis tests
because it is the minimal size of the problem that allows
presentation of performance up to 256 nodes. The meas-
ured time of the analysis performed on different sizes of
Madelon dataset is presented in Fig. 1.

We can observe linear scalability of both algorithms
up to 256 nodes (6144 cores). The first algorithm is faster
and presents better scalability. Please note that Madelon
analysis time using the first algorithm is stagnant for
128 (2) and 256 (2%) nodes. These phenomena appear
because the first application is not scalable over N/ 2
processors where N is the number of variables (please
see “First Algorithm Description™). Speed-up of analysis
is shown in Fig. 2.

Tests of big data scenario were performed on artifi-
cially increased Madelon data sets (the sets had 1GB,
2GB, 4GB, 8GB, 16GB, 32GB, 64GB). In this case,
additional rows were duplicated. We present perfect weak
scaling results for various dataset sizes ranging from 1
to 64 GB with constant processing time of around 1 h 45
min (~ 65005s) in Fig. 3. We can see a growth of perfor-
mance in Fig. 4. The performance is defined as the ratio
of the size of the problem and the analysis time.
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Fig.2 Measured speedup of three-dimensional analysis with 100
discretizations on different Madelon dataset sizes and with two algo-
rithm implementations (e.g. dataset that is twice as big has two times
the number of variables. Additional variables are copies of variables
from the original data set)
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Fig.3 Measured time of three-dimensional analysis of different sizes
of Madelon data set in big data scenario(the sets had 1GB. 2GB,
4GB, 8GB, 16GB, 32GB, 64GB. In this case, increase was in the
number of rows in the dataset. New rows are copies of the rows from
the original Madelon dataset)

Neuroblastoma Tests

Measured time of one- and two-dimensional analysis per-
formed on Neuroblastoma data set using the first algorithm
is presented in Fig. 5. We did not perform 3 and more dimen-
sional analysis because of big processing time requirements.
Please note that the size of the problem is proportional to
formula:

S ~ NP, (©)
where S represents the size of the problem, N represents
the number of variables, and D represents the number of
dimensions. Please note that one-dimensional analysis time
1s reduced below 100 s. It is the reason of scalability “satura-
tion” beause 10 and other sequential sections of implementa-
tion start to prevail.
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Fig.4 Measured performance defined as ratio of the size of the prob-
lem and the analysis time. Presented plot data is acquired with three-
dimensional analysis of different sizes of Madelon dataset in big data
scenario (the sets had 1GB. 2GB, 4GB, 8GB, 16GB. 32GB. 64GB.
In this case, increase was in number of rows in the dataset. New rows
are copies of the rows from the original Madelon dataset)
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Fig.5 Measured time of one- and two-dimensional neuroblastoma
dataset analysis

Conclusions

We presented MDEFES algorithm for distributed systems in
two implementations. The first one with less computations
but with more synchronization and the second one with
more computations, but with less synchronization. It turns
out that the first implementation performs better and pre-
sents better scalability up to 256 nodes (strong scaling).

Parallelization with ParalleX leads to the reduction of
processing time of feature analysis of genomics data for
Neuroblastoma dataset. We demonstrate that our approach
is able to reduce time of feature engineering analysis of
genomics data by two orders of magnitude from ~ 6.5 h
(22933.3s) to ~ 3 min (175.4 s). We also present perfect
weak scaling results for various dataset sizes ranging from
1 to 64 GB with constant processing time of around 1 h
45 min (~ 6500s).
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We are planning to use this research tool for analysis of a
variety of genomics data sets at [CM.

Future Work

In future work, we will pursue further optimization of pre-
sented MDFS implementation. This will include optimiza-
tion of present algorithm as well as seeking new ways of
solving the problem.

Additionally, we want to expand tool with new features.
One such opportunity is detection of subsets that give the
biggest information gain for each variable.
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