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Abstract. A formalism for evaluating the interaction potentizal of a charged particle with a
solid is developed using linear response theory. It is applied to study the interaction with a
metal sphere. The plasmon modes of the sphere are evaluated using the hydrodynamic
model of metallicelectrons and used in the general formulae, Itis shown that the predominant
contributions to the potential for r = R is due to a finite number of surface modes for
dispersive plasmons. For r < R the bulk modes make the dominant contribution. The first-
order quantum correction to the interaction potential is given.

1. Introduction

The interaction of a charged particle with a solid surface is a problem of considerable
interest in surface physics in view of the implications of the interaction potential on
experimental studies of surface properties. Experimental data onimage potential surface
states in metals (Straub and Himpsel 1984), surface resonance states in metals (reviewed
by McRae 1979), scattering of charged particles from surfaces (Ibach, 1977) all require
detailed information on the interaction potential for interpretation and analysis. This
has stimulated a spurt of theoretical activity in this field in recent years. The literature
in this field is vast and growing at an ever-increasing rate.

When the distance between a charged particle and a solid surface is large, the
interaction potential can be analysed classically in terms of image theory or variants
thereof. At close proximity to the surface the interaction potential saturates mainly
for two reasons. The first is the screening of the charge through the induced charge
distribution in the solid. The induced charge has a spatial spread arising out of dispersion
of the charge oscillation modes in the solid, leading to a finite interaction energy with
the charged particle. The second is a polaron-like effect on the self-energy of the
charged particle arising out of real or virtual exchange of quanta of the collective charge
oscillations of the solid, whose frequencies are bounded at the lower end (e.g., plasmons
in metals and optical phonons in dielectrics). These effects have been analysed for a
planar geometry of the solid surface in detail, the first by Newns (1969), Heinrichs
(1973), Equiluz (1981), and the second by Manson and Ritchie (1981), and Mahanty et
al (1985), among many others.

The object of this paper is to first give a formalism based on linear response theory
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that provides a unified framework for the study of this problem, and secondly, to apply
the formalism to evaluate the interaction of a charged particle with a metallic sphere.

2. Theory of interaction potential

Tomonaga (1950) had pointed out that the interaction of a local charge with the metal
electrons may be considered as one with the electron density fluctuations represented
by a Boson field. This approach can obviously be generalised to include the case of
interaction with an insulator where the Boson field will represent the polarisation
fluctuations associated with optical phonons. In this model the Hamiltonian for acharged
particle of mass M and charge Q interacting with a solid would be

H=H0+HI HD=HS+HF (10)

Hg = 2 ho,(aja; +14) (1b)
A

Hy = p?/2M (10

H =Qd = Q§ (@plal + @,a;).

Here A is the label of the particular mode of charge oscillation and a}, a; are the creation
and annihilation operators thereof. The potential operator ® has the representation

(ridlry = 8(r = ) 2 (@} (Na} + @:(r)a;] (2)

where @,(r) is the potential due to the Ath charge oscillation mode of the solid. We shall
restrict ourselves here to the electrostatic limit, although the formalism can readily be
extended to include retardation effects (Fetter 1973).

According to linear response theory (Kubo 1957) the change in any physical quantity
A due to a perturbation Hi(¢) is given by,

1 t
@Ay == [ ar expOn) Q4G -0, i) n—0° ©
with
A(t) = exp(iHt/h) A exp(—iHt/h). (4)
When H; is time-independent, as in the above example, (3) becomes,
1 %
84y == [ drexp(-m) (A, Hi). ©
0
Depending onthe problem understudy(. . . . . yinequations (3) and (5) represents either

the expectation value in a given state of the system or, more usually, a thermal average
over the states of the solid combined with the expectation value in a given state of the
particle. The state of the system in the mixed representation is the product |{n,})/k},
where [{n,}) is the state of the solid with n; quanta in the Ath mode, and k is the
wavenumber of the particle.

When A = H, the only non-vanishing term in (5) will be {[H;(), H;]). This leads to
the second-order energy shift if we multiply by a factor 3. This factor comes from the
Hellman-Feynman theorem when applied to perturbation theoretic wavefunctions.
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Thus, the second-order energy shift is,
1 =
(AE); = 5= | drexp(=m) (HH(), Hal ©)
0

Let us consider a physical quantity A having the form
A= 2147 (R)a; +A;(R)a,). (7)

To evaluate A(¢) from (4) we must distinguish among a few cases. Firstly, if R is not
the coordinate of the particle (as would be the case, for instance, if R were a field point),
the time evolution of A will occur only through Hg of (15). Secondly, if the mass of the
charged particle is very large so that the effect of Hp of equation (1c¢) is negligible, then
also the time evolution of A will occur mainly through Hj, irrespective of whether or not
R = r, the coordinate of the particle. This gives the classical limit for the response as
measured through (AA). Finally, if R = r and M is not too large, both Hg and Hp will
determine the time evolution. In the first two cases,

A1) = 2 [A; (R)a; exp(im; 1) + A, (R)a; exp(—iw, )] (8)
so that

[A(0), H] = 2 [~A (R)@, exp(iv;1) + A, (R)@] exp(—iw;0)].  (9)

A

Then (5) becomes,

1 :
a4) = - (o) (A7 B, + ARG (10)
A A

When the expectation value is taken in a mixed representation [{n;} |k}, using (2) we get

(a4) = | d*rken) AR, ) () (1)
where

1 ®
AR 1) = = 5 (=) 2Re[47 R)g, ()] (12)
A \W;

This depends on the particle coordinate » and the field point R, and its expectation
value in the particle state (rik) gives the induced change (AA). If A;(R) = ¢;(R) for
instance, A(R, r) would give the induced potential at R when the particle is at 7.

If A is set equal to H; and (6) is used, we get in the same approximation as above
(i.e., neglecting the time evolution of H; through Hjy),

(AE), = | d*rlhin) 2) 01, (13)

where the classical self-energy of the charge, i.e., its interaction potential with the solid
is given by,

0= =03 (57) w0 (14
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This is independent of the state of the particle and represents the interaction potential
of a static particle.

Finally, in the general case when the time evolution of A is determined by both Hg
and Hp, we can write

(AA) = [ A3 Hkir) Vo (r; k) (k) (15)

where the generalised potential whose expectation value in the particle state k) gives
(AA)1s,

1 4
Valr k) = = J dtexp(—nt) ((;1};} j d3r' (F([A(R), Hy]),Ir) % (r’|k)) . (16)
0

(... .)sstands for the expectation value in a state |{n,}) of the solid.
When (AA) is the second-order energy (AE),, the corresponding interaction poten-
tial is the self-energy of the particle,

Zi(r) =V, (r; k). (17)

Using (16) and some straightforward algebra we get,

2 27,2
Z(r) = (%—) exp(—ik - r) 2 [n,«_cp}f (r) f exp(ik - r')G (r -r; M + ﬁwﬁ)
X @ (r)d’r + (n; + Dg;(r)
hlk?
><fexp(ik-r’)G(r-r';m—-hw;\) (pi‘(:")d%’] (18)
Here G(r — r'; E) is the Green function of the particle,
e (rlk’YK'|r")
Glr=riB)= kE E - (W*k'*]2M)
_ (M \exp[-ir— r|2MIE|/#?)'?]
- (2:rrﬁ2_) r—r| E<0 (194)
M \ explilr — r'|(2ME/&?)'?]
= — . 19
(mﬂ) —r E>0 (195)
If the solid is in thermal equilibrium, #n; in (18) is replaced by its thermal average,
n; = 1/[exp(hw; /kgT) — 1]. (20)

In the ground state of the solid, or at T = 0 only the second term in (18) contributes to
the interaction potential,

hk?
2M

2r) = (%—) expk - 2 [ 9,0) [ Glr =i - ho

X exp(-—ik-r‘)cp}'_‘(r')d%'}. (21)
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We shall use equations (18) to (21), together with their classical limit (14) to evaluate
the interaction of a charged particle with a metal sphere, the collective charge oscillation
modes of which are evaluated in the electrostatic limit in the hydrodynamic model of the
metallic electrons. Other cases of practical interest will be considered in a later paper.

3. The plasmon modes of a metallic sphere

We consider a jellium sphere of radius R with an equilibrium electron density which is
a constant ny within the sphere and drops to zero at the surface. The linearised equation
of motion for the density fluctuation n(r, 7} in the time-independent form is given by
(Barton 1979),

2 _ o[aigl — 2 2 2/
P FaAL
(wp — BV)n = w'n wp = dange/m (22)

wp s the plasma frequency and f is the parameter describing the dispersion of plasmons.
The eigenvalue w, obtained for a solution »,(r) of (22) with the boundary condition of
vanishing of the radial current at the surface gives the frequency of the Ath plasmon
mode. The parameter 3% equals 2v# at high frequencies (Jackson 1962), and is v§ at
low frequencies—here we shall treat it as a parameter.

In (22) there are two distinct frequency regions w* < w3 and w? > w%. With the
above boundary condition, which in terms of n can be written as

3 n(r')d3r

— [—noez J Q—,r - mﬁzn(r)] =0 (23)

ar vep P r—R

we get the following solutions and dispersion relations in the two regions, assuming that
n(r) = np,(r) = n(NYT(6, @) 0<r<R. (24)

(1) For w? < w3,

2 2 —
wp — ©7F ¥
n$(r) = Nim,(xr) K} =——" myz) = | 1.4(2). (25)
B 2z
The corresponding frequency w, is the root of the equation
m(kR) _ [ (2! + 1) K2ﬁ2:| m; (kR) . wp— w?
-2l R W pry s ; S R

N7 is a normalisation factor. It is easy to show that / = 0 does not give a root for w in
(26), and the solutions start with / = 1. It can also be shown that for finite 3 there is an
upper limit /,,,
(36 + 16y%)/2 — 6 ,
Izma); = Yo =7
8 B
beyond which solutions of (26) for w? < w$ cannot arise. k;! = (B/wp) is the Thomas—
Fermi screening length. In the non-dispersive limit 8 — 0 the frequencies obtained from
(26) are the well known result,

R? = k}R? (27)

)
: 2 - 2
éLmOw, wp (21+ 1). (28)
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We shall call these solutions the surface modes, denoted by the superscript S, since
mk;r) vanishes at the centre of the sphere and monotonically goes to a maximum at the
surface for all/intherange 1 <! </_,,.

The potential @7 ,,(r) corresponding to the mode (I, m) is obtained by solving
Poisson’s equation

Vig},(r) = 4men} , (r) = dmen} (r)YT'(6, @). (29)

The normalisation of n7,, and of ¢}, can be done exactly as indicated by Barton (1979),
and we get

Aing )“2 [ m(kr)
S - $y1/21-1!
Bin@) = 7 (32) (R0 2] [T
—IIH)( +K’Rb‘)(i)r]yme <R 30a)
(2l+1 “r71)\R) |YTOP ’ (30
ﬁng \ 112 ;
= —dme (m) (21 + 1) (w,A7) 2]
R I+1
% (?) Y7 (6. @) r>R. (306)
Here
b,
Af =+ —iat~¢) (31a)
and a;, b, and ¢, are defined through the equations
m(k;R) = aym,.,(k;R) (316)
mi(kR) = bm 1 (x,R) (31c)
m;-,(k;R) = ¢;my. 1 (kR). (31d)
Using (26) and the recursion relations for modified spherical Bessel functions we can
write
_ kiR [ (’_+_1) ko _ ]
“= \uazr1)e ! (322)
b_(’“)k_% (32b)
2+ 1) K
[+ 1\ (kg
c, = (_T_) (K—% -1). (32(:')
(ii) For w* = w},
2 _ 2
nh)=NRjkir)  KL=THE 0<r<R ()

Here, j, being spherical Bessel functions, the modes have nodes between the centre and
the surface of the sphere. We shalldenote these modes as bulk modes with the superscript
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B. The frequencies w, , are roots of the equation

4@={ Bk? (’21+1)]j,’(kR) _o -}

kR wd \1+1 I A

5011

(34)

This equation has an infinite number of solutions for each /, and hence the second index

v is introduced in (33).

It may be mentioned here that unlike the surface modes, bulk modes also exist for

[ = 0. They are the roots of

jo(kR) = j(kR) = 0.

(35)

One root occurs at k = 0, i.e., for w? = w$. The other roots correspond to the zeros of

J1(kR).
The corresponding normalised potential for / # O is,

B hng \ 1?2 B \1/27-1
‘pf.v:m(r) =- 47{6 ZmR [ki.vR(w(.yALv) ’ ]
x[ Jilky,, 1) _([+1)(k1.yRﬁz,p+a )(L)!]
jrak Ry \20+1/\ 1+1 LY J\R
X Y78, @) r<R
tn 1/2 R I+1
= - 4.’:3 (2m;e> [(2[ + 1)((3!,#&?») 112]_[ (?)
X YT(6, @) r>R.
Here
ﬁf v

AP, =¥af, —vi,) -
and o, ,3; , and y, , are defined through the equations
jitki, ,R) = a),ji+1(k ,R)
ji (ke R) = By jre1(k, R)

fz—l(kf.pR) =¥ is1(ki L R).

Using (34) and the recursion relations for spherical Bessel functions we get,

N _kf',,R[1+k_%(l+lﬂ
b ki, \2l+1

k3 (1+1
ﬁl.v= 2 ; )
k3, \2l+1

. _(l+1)(1+ ka)
{f.ii_ l k‘%p .

(36a)

(36b)

(37a)

(37b)

(37¢)

(37d)

(38a)

(38b)

(38¢)
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Figure 1. (a) The bulk mode eigen-frequencies (w?,/w$ — 1) against radius of the sphere R
for the first/ = 1,2 and » = 1, 2, 3 bulk modes of the sphere. For curve A: /=1, » = 0; for
Cil=1,v=1;forE:l=1,v=2.forB: =2, v=0:forD:i=2,v=1;andforF: /= 2,
v =2, For a fixed radius the eigen-frequencies of increasing order interlace in the same
way as the zeros of the spherical Bessel functions. (b) The surface mode eigen-frequency
w?/w} against radius of the sphere R for the! = 1 (line A),/ =2 (line B),/ = 3 (line C), I =
4 (line D) and / = 5 (line E) modes. The screening length A = 8/wp = 0.8 nm corresponds
10 an Al sphere. The horizontal lines for (w?/w$) = 4 and % indicate the non-dispersive limit
of surface plasmons (8 = 0) which is formally equivalent to the limit R — s {flat surface).
All the eigen-frequencies are then contained in the interval (3, 1),
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For/ = 0, the bulk mode potential is

fmokﬂ!v) 12 [

ko, R — }sin(2ky , R)] ™1
mCUQ‘,.; 0,v i‘-"'111( 0, v )]

@B, (r) = — 4re (
9 [sin(ko‘yr)

— cos(k, l,R)] r<R (39a)
kD.vr !

hngkd .\ 2
=—4 i R — }si -1/2
ne(mwo,v) ko, R — }sin(2kq ,R)]

X ji(ko,, R) (R*ry=0 r>R. (3956)

The last result follows from (35) which implies j,(k, , R) = 0 for all »

Figures 1(a) and (b) give the variation of some of the surface and bulk plasma
frequencies with the radius of the sphere.

4. The interaction potential

We shall consider first the interaction potential between the charged particle and the
sphere in the classical limits given by (14). Using the potentials given in equations (30),
(36) and (39) we get for the surface mode and volume mode contributions to the
interaction potential the following expressions.

de

-0 3 3 (L) et

I=1 m=-1{

) gx ?15 1 R 2(i+1)
T IRE 1(_%) (21*1)&( ) r>R (40)

B (l(é!++11)) kiR (i_é - 1) (é)}]z r<R. (40b)

This vanishes at » = 0 and at r = %, and has a minimum at the surface. For large r the
value converges to that of the interaction potential of Q with a charge-neutral insulated
sphere obtained by image theory (Stratton 1941).

The contribution to the classical interaction potential from the bulk modes is

EB(?’)-—QQE s 2(

I=0m=~!v=0

--Z53 iw%l?, (21 i 1)(%)%2 7> R (41e)

—) IeBn (O
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i i wf Q2+ 11 [.j,(k,,,,r)
ZR! 1v=0 w(vAlv(kl‘vR) ]f+1(k|’,vR)

- (t(;z++11)) kiR (kkz * 1)(;2)[}2
x ( wp ) {jolkq ,r) — cos(kg , R)}?
ﬂ)o v

@E
"R & {1 - jo(2ko,, R)}

r<R. (41b)
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Figure 2. The contributions from different types of modes to the total self-energy of a static
charge against distance from the centre of the sphere #/R, for an Al sphere of radius R =
2 nm. B, bulk modes contribution; C, { = 0 bulk modes contribution; D, surface modes
contribution; A, total self-energy. The units are eV/n?, where n = Q/e is the multiple of the
electronic charge.

The second term in (41b) is the contribution from the / = 0 mode. At the centre of the
sphere the value of the potential is given only by the / = 0 mode and has the form

_ 0 < (b \[1 = cos(ko, R))
Hr-0=-F 2 (wo,,) [T = joQke ,R)] “2)

For a large sphere this tends to the value,

0%k,
> (43)

2k
lim 2B (r— 0) — lim (— Q2 : tanh(RkO)) = -

R—o=x R—=

which is the well known value of the self-energy of a charged particle embedded in a
homogeneous dispersive plasma. Figure 2 gives a plot of the contributions of various
mode types to the total self-energy. The self-energy of a static charge outside and inside
the sphere, for different sphere radii R is plotted in figure 3.
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Figure 3. The interaction potential of a static charged particle outside the Al sphere against
distance from the centre r/R for spheres of various radii: R = 2nm (A); R =6nm (B); R =
10nm (C); R = 60 nm (D). The inset figure shows the interaction potential inside the sphere.
The description is the same as that of the main figure.

5. The interaction potential: quantum correction

The quantum correctionto the self-energy of amassive particleisobtained by substituting
the following expansion for the Green function (19):

1 ( )
ho, ‘5(r—r)+

G(r—r';E)=

Mo, [(k28(r —r') + V38(r - r')]) (44)

in expression (21). This leads to the correction to the self-energy of the form

So(N=—-0*2 {ig, (kYo (r) +2meq, (Nnt (N} (45)

T Mw3
which, in the static limit k = 0 reduces further to

lim To(r) = - Q* 3 M”i @3 (0)n3 (). (46)

The contribution of the surface modes in the above correction term calculated for the
case of a charged particle interacting with the plasmons in the sphere is given by

_ Q2 ’““w_%(2£+1)
=H(n) = = 35 Rkp) ™ 2 25 =5
my(K;r) ((+1) kg 1 _mu(xr)
X[mHl(K!R) i~ R( 1)(R)]m;+1(K;R) (47a)
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Figure 4. The relative quantum contribution k$Xq(r)/Z . (r) of self-energy for a static charge
inside the Alsphere ofradius: R = 2 nm (A), 6nm (B), 10nm (C), 60 nm (D) against distance
from the centre of the sphere »/R. The correction is less than 0.05% at the centre of the
smallest sphere of radius R = 2 nm.

and for the contribution of the bulk modes,

QZ. = a)% (2I+1)
EB =-—(Rk -2
o(r) = =55 (Rke) Egowiy AP,

ji(kir) (I+1) (k% )(?')z] Ji(ky,7)
X |- - ki, R +ills) | ——=
Lm(kr.yR) 20+1) "Nk, R/ 1ji+1(k; ,R)
2
R
[fo(ko.vr? — cos(kg,, R)] (47b)
[1-=70(2ko,, R)]
where kz? = A/(2Mws ). The second term in (47b) describes the contribution due to the
[ = 0mode.

The relative magnitude of the quantum correction for a stationary particle,
k3Zo(r)/Z.(r), is plotted in figure 4 for different sphere radii R,

(Rke) ™ 2, === (Rko,)o(ko.o7)
v= 0, v

6. Discussion

The purpose of the paper was twofold. First, the generalisation of the method of
evaluating the interaction between a charged particle and a solid through the self-energy
formalism, using linear response theory has been given. Using the formalism, we have
then studied the case of a charged particle interacting with a metallic sphere.

The two distinct types of normal plasma modes of the sphere were classified and the
dispersion relations were given in some detail, to stress some features not given in
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existing literature (Ogale et al 1978, Agarwal and O’Neil, 1983). It was found that only
a finite number of surface modes exist in the dispersive sphere.

We have computed all the eigen-frequencies for the surface modes (up to 299
solutions for the sphere R = 60 nm). In the case of bulk modes the first 1200 eigen-
frequencies were computed (/ = 30, » = 40), and for the bulk / = 0 mode terms up to
v = 3000 were included in the sums for self-energy.

The main results depicted in figures 2 and 3 are exact outside the sphere, due to a
finite sum in the surface part contribution to self-energy. However the error range in the
numerical values of the self-energy inside the sphere are 30% for small » and 10% near
the surface for spheres of radii R < 10 nm whereas for a sphere of radius R = 60 nm (line
D in the inset of figure 3) the calculated values are far from their saturation. This is due
to the truncation of the sum in expression (41b) after the first / = 30, v = 40 terms. The
effect of truncation is less drastic for a smaller sphere (2-6 nm) but is quite large for a
bigger sphere (R = 60 nm) (inset of figure 3).

It should be emphasised that the hydrodynamic model breaks down for very high
frequencies and so the sum in (415) is not infinite; there should be cut-off indices /. and
v, where the sum is to be terminated. By inspection of figure 1(a) one notices that for
bigger spheres the number of terms in the sum (41b) will be drastically higher:

IC(RI)QZC(RZ) and VC(Rl)glVC(Rz) for R1<R2.

The quantum correction introduces the additional screening parameter kp' =
(k/2MwP),; in analogy with the polaron problem and with the case of planar geometry
with non-dispersive surface plasmons (Manson and Ritchie 1981). The complete quan-
tum result for 2(r) can, of course, be worked out from equations (18) and (19). But as
has been pointed out in the case of planar geometry (Mahanty et al 1985), the effect of
screening due to plasmon dispersion on Z(r) near the surface of a metalis more dominant
than polaronic screening, and hence we have given only the leading order quantum
correction term. The screening parameter k3! = 1.4 x 1072 A for a proton incoming to
an Al target, therefore the quantum correction 1s found to be less than 0.05% even for
the smallest sphere of radius 2 nm.

The discontinuity of the quantum correction at the surface ( figure 4) results from the
boundary condition of abrupt vanishing of the electronic density fluctuation at the
surface (see (46)). By relaxing this boundary condition and allowing diffuse electronic
density at the surface the continuity of the quantum correction is recovered. However
its magnitude is smaller by one order and it rapidly vanishes in the close proximity of the
surface. In alater paper we shall present the results for other geometries of experimental
interest.
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