
Caliban: Docker-based job manager for reproducible
workflows
Sam Ritchie1, Ambrose Slone1, and Vinay Ramasesh1

1 Google, United States of America
DOI: 10.21105/joss.02403

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @lukasheinrich
• @arokem

Submitted: 22 June 2020
Published: 27 July 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Caliban is a command line tool that helps researchers launch and track their numerical ex-
periments in an isolated, reproducible computing environment. It was developed by machine
learning researchers and engineers, and makes it easy to go from a simple prototype running
on a workstation to thousands of experimental jobs running in a Cloud environment.

Motivation

Modern machine learning research typically requires a researcher to execute code in multiple
computing environments. To investigate some property of a machine learning model, the
researcher has to write a script that can accept a path to some dataset, train a model using
some set of configurable parameters, and generate measurements or a serialized model for
later analysis.
Writing and debugging model training code is fastest on a local workstation. Running the
script to generate measurements almost always takes place on some much more powerful
machine, typically in a Cloud environment. The imagenet dataset (Deng et al., 2009) is 144
GiB, for example, far too large to process on a stock laptop.
Moving between these environments almost always causes tremendous pain. In Python, a com-
mon language for machine learning research, the researcher installs their script’s dependencies
in a system-wide package registry. The Cloud environment can have different dependencies
available, or different versions of the same dependency; different versions of Python itself; or
different software drivers, which elicit different behavior from the script that seemed to work
locally.
This environment mismatch introduces tremendous friction into the research process. The
only way to debug a script that succeeds locally and fails in a remote Cloud environment is
to attempt to interpret the often-cryptic error logs.

Docker

One solution to this problem is Docker (Merkel, 2014). A researcher can package their
code and dependencies inside of a Docker container and execute this container on differ-
ent platforms, each with different hardware options available but with a consistent software
environment.
Many Cloud services (Google’s Cloud AI Platform, Amazon Sagemaker etc) allow users to
submit and execute Docker containers that they’ve built locally.

Ritchie et al., (2020). Caliban: Docker-based job manager for reproducible workflows. Journal of Open Source Software, 5(51), 2403.
https://doi.org/10.21105/joss.02403

1

https://doi.org/10.21105/joss.02403
https://github.com/openjournals/joss-reviews/issues/2403
https://github.com/google/caliban
http://www.diehlpk.de
https://github.com/lukasheinrich
https://github.com/arokem
http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/datasets/catalog/imagenet2012
https://cloud.google.com/ai-platform
https://aws.amazon.com/sagemaker/
https://doi.org/10.21105/joss.02403


Packaging research code inside of a Docker container has many benefits for reproducibility
(Cito & Gall, 2016). But the process of building a Docker container is difficult, error-prone
and almost totally orthogonal to the skill set of a machine learning researcher. The friction
of debugging between local and Cloud environments is solved, but only by accepting a not-
insignificant baseline level of pain into the local development experience.
Projects like MLFlow (Zaharia et al., 2018) attempt to streamline the container creation
process, but still force the researcher’s to absorb much of Docker’s mental model.

Caliban and Reproducible Research

Caliban is a command line tool that solves this problem by providing execution modes with
opinionated, intuitive interfaces for each phase of machine learning research - interactive
development, local execution, cloud execution and data analysis in a notebook environment.
With Caliban, the researcher executes all code using Caliban’s various subcommands. This
process is, for the researcher, just as easy as executing code directly. To prepare a research
environment, all they need to do is specify required packages in a requirements.txt file
and Caliban will automatically make those dependencies available inside the container.
Behind the scenes, all software execution has moved inside of a Docker container. This makes
it transparent to move that execution from a local environment to Cloud, enabling a research
project to grow from a simple prototype running on a workstation to thousands of experimental
jobs running on Cloud with little to no cognitive load.
This removal of friction allows a researcher the freedom to be creative in ways that their psy-
chology simply wouldn’t allow, given the typical pain caused by moves between environments.
In addition, Caliban makes it easy to launch multiple jobs with varying command-line argu-
ments with a single command, using experiment configuration files.

Impact

Before we introduced Caliban in our lab, researchers reported spending multiple weeks learning
how to run their experiments at scale. Caliban allows a new researcher to reach this level of
proficiency in under an hour. Multiple papers currently in preparation contain research results
generated from thousands of experiments executed using Caliban. Given the limited tenure
of a typical machine learning internship and residency, the efficiency boost offered by Caliban
can materially change the scope of project that a researcher would be willing to take on.
In addition, any research conducted with Caliban that the researcher open sources is trivially
executable by any interested party. The Docker environment managed by Caliban guarantees
that anyone with access to the shared source code repository will be able to run experiments
in an environment identical to the environment used in the original research program.

Caliban’s Execution Environments

Caliban provides a suite of execution engines that can execute the containers built by Caliban.
caliban shell generates a Docker image containing any dependencies declared in a req
uirements.txt and/or setup.py in a project’s directory and opens an interactive shell.
Any update to code in the project’s folder will be reflected immediately inside the container
environment. The caliban shell environment is identical to the environment available
during Cloud execution, up to access to different hardware.

Ritchie et al., (2020). Caliban: Docker-based job manager for reproducible workflows. Journal of Open Source Software, 5(51), 2403.
https://doi.org/10.21105/joss.02403

2

https://mlflow.org/docs/latest/projects.html
https://caliban.readthedocs.io/en/latest/cli/caliban_shell.html
https://doi.org/10.21105/joss.02403


caliban notebook starts a Jupyter notebook or lab instance inside of a Docker image
containing the project’s dependencies. As with caliban shell, the environment available
to the notebook is identical to the Cloud environment.
caliban run packages a project’s code into a Docker container and executes it locally using
docker run. If the local machine has access to a GPU, the instance will attach to it by
default, with no need to configure drivers.
caliban cloud allows a researcher to submit a research script to Google’s AI Platform.
The code will run inside the same Docker container available with all other subcommands.
Researchers can submit hundreds of jobs at once. Any machine type, GPU count, and GPU
type combination specified will be validated client side, instead of requiring a round trip to
the server.
caliban build builds the Docker image used in caliban cloud and caliban run without
actually running the container or submitting any code.
caliban cluster allows a researcher to create and submit jobs to a Kubernetes cluster.
This environment is superficially similar to the Cloud environment offered by Google’s AI
Platform and caliban cloud, but a different range of hardware and pricing is available to
the researcher.
caliban status displays information about all jobs submitted by Caliban, and allows a
researcher to cancel, inspect or resubmit large groups of experiments.

References

Cito, J., & Gall, H. C. (2016). Using docker containers to improve reproducibility in software
engineering research. In Proceedings of the 38th international conference on software
engineering companion, ICSE ’16 (pp. 906–907). New York, NY, USA: Association for
Computing Machinery. doi:10.1145/2889160.2891057

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In 2009 ieee conference on computer vision and pattern
recognition (pp. 248–255). Ieee. doi:10.1109/cvpr.2009.5206848

Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and
deployment. Linux journal, 2014(239), 2.

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murching, S.,
et al. (2018). Accelerating the machine learning lifecycle with mlflow.

Ritchie et al., (2020). Caliban: Docker-based job manager for reproducible workflows. Journal of Open Source Software, 5(51), 2403.
https://doi.org/10.21105/joss.02403

3

https://caliban.readthedocs.io/en/latest/cli/caliban_notebook.html
https://caliban.readthedocs.io/en/latest/cli/caliban_run.html
https://caliban.readthedocs.io/en/latest/cli/caliban_cloud.html
https://caliban.readthedocs.io/en/latest/getting_started/cloud.html
https://caliban.readthedocs.io/en/latest/cli/caliban_build.html
https://caliban.readthedocs.io/en/latest/cli/caliban_cluster.html
https://caliban.readthedocs.io/en/latest/cli/caliban_status.html
https://doi.org/10.1145/2889160.2891057
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.21105/joss.02403

	Summary
	Motivation
	Docker

	Caliban and Reproducible Research
	Impact
	Caliban's Execution Environments
	References

