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ABSTRACT:  
Bayesian reasoning has been proved to be an important component of the human cognition. The present 
work studies the importance of Bayesian reasoning in the everyday life providing a series of characteristic 
applications of the Bayes’ rule and the conditional probabilities. It is shown that the Bayes rule could be 
considered as an interface between the traditional bivalent logic and the Zadeh’s infinite-valued fuzzy 
logic. The importance of the Bayesian reasoning for the whole science is also theoretically justified. 
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INTRODUCTION 
Probability t h e o r y  h a s  b e e n  
d e v e l o p e d  i n  r e s p o n s e  t o  the 
humans’ tendency to deal with games of 
chance. Famous mathematicians of the 
17th and 18th century like Fermat, Pascal, 
Bernoulli, De Moivre and others, put the 
frames of the corresponding theory by 
introducing methods for solving 
problems related to the games of 
chance. However, the appearance of 
Probability as an independent branch of 
mathematics is due to the Laplace’s 
book “Theorie Analytique de 
Probabilite”, which was published in 
1812. 
 
It is recalled that the Laplace’s 
definition, also known as the classical 
or mathematical definition of 
probability, holds only in case of a finite 
sample space X with its singleton events 
having equal frequencies of 
appearance. According to it, if A is an 
event of X, the probability P(A) of the 
appearance of A is equal to the quotient 
of the favorable cases for this to happen 

to the total cases. In other words P(A) = 
[A] : [X], where [A] and [X] denote the 
cardinalities of A and X respectively. 
 
On the contrary, the Von Mises’ 
statistical definition of probability holds 
even if X is an infinite set with no 
equally probable singleton events. The 
statistical definition assumes, however, 
that an experiment of chance could be 
repeated as many times as we wish, 
which does not happen usually in 
practice. According to it, P(A) is equal to 
the limit for n tending to infinity of the 
quotient fn(A) : n, where fn(A) denotes the 
frequency of appearance of A when the 
experiment related to it is repeated n 
times. Obviously, in case of a finite 
sample space X with equally probable 
singleton events, the statistical reduces 
to the mathematical definition of 
probability. 
 
The Kolmogorov’s axiomatic definition 
does not use any formula expression to 
define the probability. According to it, a 
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measure of probability is defined as  a 
function Ρ: Δ(Χ)→ [0, 1] satisfying P(X)=1 
and P(A∪B)=P(A)+P(B), for all A, B in 
Δ(Χ), where Δ(Χ) denotes the power set of 
X (i.e. the set of all the subsets of X). It is 
straightforward to check that the 
axiomatic definition generalizes both of 
the other two definitions of probability 
[1]. Consider, for example, the throwing 
of an impartial die. Then,  X= {1, 2, 3, 4, 
5, 6}and according to the axiomatic 
definition 1=P(X)=P{{1})+ P({2})+ P({3})+ 
P({4})+ P({5}+ P({6})=6p, or p=1/6. 
However, the Kolmogorov’s definition 
does not provide a unique measure for 
probability. In case of throwing a 
nonimpartial coin for example, any pair 
of values (x, y) in [0, 1], with x+y=1 
satisfies it. 
 
Edwin T. Jaynes (1922-1998), Professor of 
Physics at the University of Washington, 
was the first who argued that Probability 
theory could be considered as a multi-
valued generalization of the bivalent logic 
reducing to it in the special case where our 
hypothesis is either absolutely true or 
absolutely false [2]. Many eminent 
scientists have been inspired by the ideas of 
Janes, like the expert in Algebraic Geometry 
David Mumford, who believes that 
Probability and Statistics are emerging as a 
better way for building scientific models [3]. 
Nevertheless, both Probability and Statistics 
have been developed on the basis of the 
bivalent logic. As a result, they are tackling 
effectively only the cases of the existing in 
real world uncertainty which are due to 
randomness and not those due to 
imprecision. In cases of imprecision, the 
Zadeh’s Fuzzy Logic (FL) comes to bridge the 
existing gap [4]. However, as we shall see in 
the next section, the Bayesian rule, 

calculating the conditional probabilities, 
introduces a kind of multi-valued logic 
tackling the existing due to imprecision 
uncertainty in a way analogous to FL!  
 
The present work focuses on illustrating the 
importance of Bayesian reasoning in 
everyday life and science.  The motivation 
for writing this article is the connection of 
Bayesian reasoning to the measurement of 
the effectiveness of the diagnostic tests for 
the current pandemic of COVID-19 that has 
created serious problems to the whole 
humanity. 
 
The rest of the article is formulated as 
follows: The Bayes’ rule is presented in the 
next section, while the third section includes 
applications of this rule to everyday life 
situations. In fourth section, the argument 
that the whole science could be considered 
as a Bayesian process is discussed and the 
article closes with the general conclusion 
presented in the fifth section. 
 
THE BAYES’ RULE  
Let A and B be two intersecting events. Then 
it is straightforward to check [1] that the 
conditional probability for the event A to 
happen when the event B has already 
happened is calculated by 

P(A B)
P(A/B)=

P(B)

     (1). 

 
In case of finite sample spaces, for example, 
with equally probable singleton events,  the 
mathematical definition of probability gives 
that  P(A/B)=NA∩B : NB, where NA∩B and NB 

denote the numbers of appearance of the 
events A∩B and B respectively. Therefore, if 
N is the cardinality of the sample space of B, 
then P(A/B)=(NA∩B : N) : (NB : N), which proves 
(1). 
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In the same way one finds that 

P(A B)
P(B/A)=

P(A)

  or P(A B) = P(B/A) P(A). 

Therefore (1) can be written in the form 
P(B/A)P(A)

P(A/B)=
P(B)

   (2). 

Equation (2), which calculates the 
conditional probability P(A/B) with the help 
of the inverse in time conditional 
probability P(B/A), the prior probability 
P(A}and the posterior probability P(B), is 
known as the Bayes’ theorem (or rule, or 
law). In other words, the Bayes’ theorem 
calculates the probability of an event based 
on prior knowledge of conditions related to 
that event. When applied in practice, the 
Bayes’ theorem may have several 
interpretations. In social sciences, for 
example, it describes how a degree of belief 
expressed as a probability P(A) is rationally 
changed according to the availability of 
related evidence. In that case, the 
probabilities involved in the Bayes’ theorem 
are frequently referred as Bayesian 
probabilities, although, mathematically 
speaking, Bayesian and conditional 
probabilities are actually the same thing.  
 
The value of the prior probability P(A) is 
fixed before the experiment, whereas the 
value of the posterior probability is 
calculated with the help of the experiment’s 
data. Usually, however, there exists an 
uncertainty about the exact value of P(A). In 
such cases, considering all the possible 
values of P(A), we obtain through the Bayes’ 
rule different values for the conditional 
probability P(A/B). Therefore, the Bayes’ 
rule introduces a kind of multi-valued logic 
tackling the existing, due to the imprecision 
of the value of the prior probability, 
uncertainty. Consequently, one could argue 

that Bayesian Reasoning constitutes an 
interface between bivalent and FL. 
 
It is recalled that FL is an infinite-valued on 
the real interval [0, 1] logic, which is based 
on the concept of Fuzzy Set (FS) introduced 
by Zadeh in 1965 [5]. FL, which has found 
nowadays applications to almost all sectors 
of the human activity, does not contradict 
the Aristotle’s bivalent logic, but it actually 
generalizes and completes it. For more 
details about the history, development and 
the basics of FS and FL the reader may look 
at [6], Section 2. 
 
The Bayes’ rule was first appeared in the 
work “An Essay towards a Problem in the 
Doctrine of Chances” of the 18th century 
British mathematician and theologian 
Thomas Bayes (Fig. 1).  This essay was 
published by Richard Price in 1763, after the 
Bayes’ death, in the “Philosophical 
Transactions of the Royal Society of 
London”. The famous French 
mathematician Laplace (1749-1827), 
independently from Bayes, pioneered and 
popularized the Bayesian probabilities. The 
Bayes’ rule is frequently used together with 
the theorem of total probability [1] for the 
solution of more composite problems (e.g. 
see Example 7 of the next section).  
 
 

 
Fig. 1. Thomas Bayes (1701-1761) 
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Although the Bayes’ rule is a 
straightforward consequence of equation 
(1) calculating the value of a conditional 
probability, Bayesian reasoning has been 
proved to be very important in everyday life 
situations [7] and for the whole science too 
[8]. Recent researches give evidence that 
even most of the mechanisms under which 
the human brain works are Bayesian [9]. 
Consequently, Bayesian reasoning becomes 
very useful for Artificial Intelligence (AI), 
which focuses on the design and 
construction of machines that mimic the 
human behavior. In fact, the smart 
machines of AI are supplied with Bayesian 
algorithms in order to be able to recognize 
the corresponding structures and to make 
autonomous decisions. The physicist and 
Nobel prize winner John Mather has 
already expressed his uneasiness about the 
possibility that the Bayesian machines 
could become too smart in future, so that to 
make humans to look useless [10]!  
Consequently, Sir Harold Jeffreys (1891-
1989), a British mathematician who 
introduced the concept of the Bayesian 
algorithm and played an important role in 
the revival of the Bayesian view of 
probability, has successfully characterized 
the Bayesian rule as the “Pythagorean 
Theorem of Probability Theory” [11]. 
 
APPLICATIONS OF BAYESIAN REASONING 
TO EVERYDAY LIFE SITUATIONS 
Conditional probabilities and Bayesian 
reasoning have been proved very useful for 
solving problems appearing in everyday life 
situations. Characteristic examples are 
presented in this section. 
    
Example 1: A market’s   research is 
performed on the population of a town 

consisting 45% of men and 55% of women. 
Find the probability of the random choice of: 
i) Three men for the first three interviews, 
and ii) Four women for the next four 
interviews. 
      
Solution: i) Let Ai be the event that a man is 
chosen for the i-th interview, i = 1, 2, 3. Then 
P(A1) = 45:100, P(A2/A1) = 44:99 and 
P(A3/A1∩A2) = 43:98. Therefore, writing 
P(A1∩A2∩A3) = P[(A1∩A2)∩A3] and applying 
two times  equation (1) one finds that 
P(A1∩A2∩A3) = P(A1∩A2)P(A3/A1∩A2) = 
P(A1)P(A2/A1)P(A3/A1∩A2)≈0.088 or 8.8%. 
 
ii) Given a finite number n of events, one can 
show by induction that P(A1∩A2∩….∩An) = 
P(A1)P(A2/A1) P(A3/A1∩A2) …. P(An/A1∩A2∩… 
∩An-1) (3). 
Let A1, A2 and A3 be the events defined in 
case (i) and let Ai be the event that a woman 
is chosen for the i-th interview, i = 4, 5, 6, 7. 
Then,  
P(A4/A1∩A2∩A3)=55:97≈0.567, 
P(A5/A1∩A2∩A3∩A4) =54:96≈0.562,  
P(A6/A1∩A2∩A3∩A4∩A5)=53:95≈0.558, and  
P(A7/A1∩A2∩A3∩A4∩A5∩A6)=52:94≈0.553.  
Therefore, applying equation (3) for n=7 one 
finds that P(A1∩A2∩….∩A7) = 0.0086 or 
0.86%. 
      
Bayesian reasoning is strictly connected to 
the Aristotle’s fallacy of the false inversion, 
according to which the proposition “If A 
then B” always implies the inverse 
proposition “If B then A” [12]. This fallacy 
belongs to the category of the fallacies of 
cause and effect, where A= the cause and B 
= the effect. The cause always precedes 
chronically the effet. It is of worth noting 
that the only information given within the 
premises of the bivalent logic about this 
fallacy is that the inversion between cause 
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and effect is false in general, or otherwise 
that the conditional probability P(A/B) is not 
equal to 1. However, this information is 
useless in practice, where one wants to 
know “what is” (via positiva) and not “what 
is not” (via negativa). The latter, for 
example, is a method that has been followed 
by the religion when failed to define “what 
is the God”. It was decided then to define 
instead “what is not the God” (Cataphatic 
and Apophatic Theologies), which is much 
easier. The following two examples 
illustrate the connection between the false 
inversion and the Bayes’ rule: 
 
Example 2:  In a farm live 100 in total 
animals, 75 of them having 4 feet (e.g. cats, 
dogs, goats, cows and horses) including 3 
cats and the rest of them having 2 feet (e.g. 
chicken). Consider the propostion “ The cats 
are animals having 4 feet”. Then what is the 
degree of truth of the inverse proposi tion 
“An animal living in this farm has 4 feets, 
therefore it is a cat”? 
 
Solution: Here we have that A=cats and 
B=animals having 4 feet, therefore P(B/A)=1. 
Consequently, equation (2) gives that  

P(A/B)= P(A)

P(B)
. But  P(A)= 3

100
, P(B)= 75

100
, 

therefore P(A/B)= 3

75
= 0.04. Hence the 

degree of truth of the false inversion in this 
case is only 4%. 
 
Nevertheless, in many cases the conditional 
probability P(B/A) is not equal to 1, as it 
happens in the following example: 
 
Example 3: Consider the events A = I have 
flu and B = I feel pain in my throat. Assume 
that on a winter day 30% of the inhabitants 
of a village feel pain in their throats and 

that 25% of the inhabitants have flu. 
Assume further that the existing statistical 
data show that 70% of those having flu they 
feel pain in their throats. What is the degree 
of truth of the proposition “I feel pain in my 
throat, therefore I have flu”? 
 
Solution: Equation (2) gives that  P(A/B)=
0.7x0.25

0.3
0.583, or 58.3%.  

 
Bayesian reasoning is frequently used in 
medical applications the outcomes of which 
are not always compatible to the common 
beliefs. The following three timely examples, 
due to the current COVID-19 pandemic, 
concern the creditability of the viruses’ 
diagnostic tests.  
 
Example 4: The statistical data show that 
2% of the inhabitants of country have been 
infected by a dangerous virus. Mr. X, who 
has not any symptoms of the corresponding 
disease, makes a diagnostic test, the 
statistical accuracy of which is 97%. The 
test is positive. What is the probability for 
Mr. X to be a carrier of the virus? 
 
Solution: Consider the following events: 
• A: The subject is a carrier of the 
virus. 
• B: The test is positive. 
 
On the basis of the given data  it turns out 
that P(A)=0.02 and P(B/A)=0.97. Further, 
among 100 inhabitants of the country, 2 on 
average are carriers and 98 are noncarriers 
of the virus. Assuming that all those people 
make the test, we should have on average 
2x97%=1.94 positive tests from the carriers 
and 98x3%=2.94 positive tests from the 
noncarriers of the virus, i.e.4.88 in total 
positive tests. Therefore, P(B)=0.488. 

http://doi.org/10.5281/zenodo.4026022


 ISSN: 2321 – 7537 
IJEDST (2020), 8(2):24-33 

    
  
 
 
DOI: http://doi.org/10.5281/zenodo.4026022  

 

 

International Journal of Education, Development, Society and Technology (2020), Volume 8, Issue 2, Page(s): 24–33 
29 

Replacing the values of P(A), P(B/A) and P(B) 
in equation (2) one finds that P(A/B)≈0.398. 
Therefore, the probability for Mr. X to be a 
carrier of the virus is only 39.8% and not 
97%, as it could be thought through a first, 
rough estimation!  
      
This means that Mr. X has to make a second 
test to see what really happens with his 
health condition. Further, if the second test 
is negative, a third test will be also required. 
At the same time, however, there is an 
urgent need for other people to make the 
test. This becomes evident by the next 
example. 
      
Example 5: Assume that Mr. X has some 
suspicious symptoms and that 85% of the 
people presenting such symptoms have 
been infected by the virus. Mr. X makes the 
test, which is positive. What is now the 
probability for Mr, X to be a carrier of the 
virus? 
      
Solution: Let A and B be the events defined 
in Example 4. Here we have that P(A)=0.85 
and P(B/A)=0.97. Further, assuming that 
100 people having suspicious symptoms 
make the test, we should have on average 
85x97%=82.45 positive tests from the 
carriers and 15x0.3% =0.45 from the 
noncarriers of the virus, i.e. 82.9 in total 
positive tests. Therefore, P(B)=0.829. 
Replacing the values of P(A), P(B/A) and P(B) 
in equation (2) one finds that P(A/B)≈0.995. 
In this case, therefore, the probability for Mr. 
X to be a carrier of the virus is 99.5%, i.e. 
exceeds the statistical accuracy of the test!  
      
In general, the sensitivity of the solution is 
great, depending on the values of the prior 
probability P(A). The greater the value of 
P(A), the higher the creditability of the test. 

The next example examines what happens, 
if the test is negative. 
 
Example 6: Assume that Mr. X makes a 
diagnostic test, which is negative. Find the 
probability to be a carrier of the virus:  
i) Under the conditions of Example 4, and 
ii) under the conditions of Example 5. 
 
Solution: Consider the following events: 
• A: The subject is a carrier of the 
virus. 
• B: The test is negative. 
 
 i) In this case we have P(A)=0.02 and 
P(B/A)=0.03. Assuming that 100 people 
make the test, we should have on average 
98x97%=95.06 negative tests from the 
noncarriers and 2x3%=0.06 from the 
carriers of the virus, i.e. an average of 95.12 
in total negative tests. Therefore, 
P(B)=0.9512. Replacing the values of P(A), 
P(B) and P(B/A) to equation (2) one finds 
that P(A/B)≈0.0006. Therefore, the 
probability for Mr. X to be a carrier of the 
virus is only 0.06%. 
 
ii) Here we have P(A)=0.85 and P(B/A)=0.03. 
Further, assuming that 100 people make the 
test, we shall have on average 
15x97%=14.55 negative tests from the 
noncarriers and 85x3%=2.55 from the 
carriers of the virus, i.e. an average of 17.1 in 
total negative tests. Therefore, P(B)=0.171. 
Replacing the values of P(A), P(B) and P(B/A) 
to equation (2) one finds that P(A/B)≈0.1491. 
Therefore, the probability for Mr. X to be a 
carrier of the virus is 14.91%. One observes 
here that the greater the value of the prior 
probability P(A), the lower the creditability 
of the test. 
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Remark: The outcomes of the previous three 
examples support the view of many 
epidemiologists that, at the initial stage, the 
“blind” diagnostic tests for COVID-19 
performed on the general population are 
not effective, burdening purposeless the 
healthcare system of the corresponding 
country.  
      
To check this from another optical angle, 
one has to take into account the statistical 
estimation that the existing diagnostic tests 
for COVID-19 give 30% incorrectly negative 
(IN) results and 10% incorrectly positive 
(IP) results. Assume that 2% of the 
population of a country has been infected 
by the coronavirus of COVID-19 and that the 
government decides to undergo the heavy 
cost of performing one million “blind“ tests 
on the general population. 
 
Among those people, 20000 on average 
should be carriers and 980000 noncarriers 
of the virus. Therefore, we should have 
20000x30% = 6000 on average IN results 
and 14000 correctly positive (CP) results 
from the carriers and 
980000x10%=98000 IP results from the 
noncarriers of the virus. This means that 
6000 people infected by the virus with IN 
tests will not take the required precautions, 
therefore transmitting easily the virus to the 
other people.  
      
Further, denote, for simplicity, by CP and IP 
the numbers of CP and IP results of the tests 
respectively. Then, the probability P(CP) of a 
positive test to be correct is equal to 
P(CP)= CP : (CP+IP) (4)  
In our case, P(CP) 
=14000:(14000+98000)≈0.125, i.e. only 
12.5%! Therefore, there is an urgent need for 
the 112000 in total people with positive tests 

to make a second test in order to check their 
real health condition, etc. 
      
Equation (4) shows that P(CP) increases, 
either if the number CP increases or if the 
number IP decreases. The former happens if 
more people are infected by the virus, 
whereas the latter will happen if the quality 
of the diagnostic tests will be improved.      
When, for example, 20% of the population 
is infected by the virus, it is straightforward 
to check that the probability P(CP) will be 
approximately equal to 63.6%. 
Consequently, the more people are infected 
by the virus, the higher the creditability 
(and therefore the usefulness) of the 
diagnostic tests for detecting the positive 
cases. 
     
Our last example concerns the combination 
of the Bayes’ rule with the theorem of total 
probability for the solution of the 
corresponding problem: 
 
Example 7: A country is divided to three 
confederate districts, say D1, D2 and D3, 
where lives the 20%, 25% and 55% of its 
total population respectively. A percentage 
of 60%, 45% and 10% respectively of the 
population of each one of those districts is 
against the confederation wanting for the 
district to be an independent country. What 
is the probability that one of those people, 
chosen randomly, lives in district D3? 
 
Solution: Consider the events  
• Ai: A person lives in district Di, i=1, 2, 
3, and 
• B: A person is against the 
confederation 
      
On the basis of the given data it turns out 
that P(A1)= 0.2, P(A2)= 0.25,  P(A3)= 0.55 and 
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P(B/A1)=0.6, P(B/A2)= 0.45, P(B/A3) = 0.1. We 
want to calculate the probability  
P(A3/B) = [P(B/A3)P(A3)] : P(B)   (5) 

      
The Ai’s are obviously pairwise disjoint 
events and their union is equal to the 
sample space X of the inhabitants of the 
country (mathematically speaking the Ai’s 
form a partition of X). Therefore, by the 
theorem of total probability [1] one finds 
that P(B) = P(A1∩B)+P(A2∩B)+P(A3∩B) and 
by the Bayes’ rule  
P(B)=P(B/A1)P(A1)+P(B/A2)P(A2)+ 
+P(B/A3)P(A3)     (6). 
      
Replacing the values of the probabilities 
involved in equation (5) one finds that 
P(B)=0.2875. Therefore, equation (6) gives 
that P(A3/B)≈0.0628 or 6.28%. 
 
BAYESIAN REASONING IN SCIENCE 
Many scientists and philosophers of science 
argue nowadays that the whole science 
could be considered as a Bayesian process 
[7-9]. In this section we are going to support 
and justify this view. Τhe process of 
scientific thinking, based on a combination 
of inductive and deductive reasoning, is 
graphically represented in Fig. 2, retrieved 
from [8]. 
 

 
 

Fig. 2. The scientific method 

In Fig. 2, a1, a2,… ,an are observations of a 
phenomenon of the real world that have led 
by induction (intuitively) to the 
development of theory T1 for the explanation 
of this phenomenon. Theory T1 is verified by 
deduction and additional deductive 
inferences K1, K2, …., Ks are obtained. Next, a 
new series of observations b1, b2,…,bm follow. 
If some of those observations are not 
compatible to the laws of theory T1, a new 
theory T2 is developed to replace/extend T1, 
and so on. In each case the new theory 
extends or rejects the previous one 
approaching more and more to the 
objective truth.  
      
This procedure is known as the scientific 
method. The term was introduced during 
the 19th century, when significant 
terminologies appeared establishing clear 
boundaries between science and 
nonscience. However, the scientific method 
characterizes the development of science 
since at least the 17th century. Aristotle (384-
322 BC) is recognized as the inventor of the 
scientific method due to his refined analysis 
of the logical implications contained in 
demonstrative discourse. The first book in 
the history of human civilization written on 
the basis of the principles of the scientific 
method is, according to the existing 
witnesses, the “Elements” of Euclid (365-
300 BC) addressing the axiomatic 
foundation of Geometry. 
     
The scientific method is highly based on the 
Trial and Error procedure, a term 
introduced by C. Lloyd Morgan (1852-1936) 
[13]. This procedure is characterized by 
repeated attempts, which are continued 
until success or until the subject stops 
trying. 
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As an example, the geocenrtic theory 
(Almagest) of Ptolemy of Alexandria (100-
170), being able to predict satisfactorily the 
movements of the planets and the moon, 
was considered to be true for centuries. 
However, it was finally proved to be wrong 
and has been replaced by the heliocentric 
theory of Copernicus (1473-1543). The 
Copernicus’ theory was supported and 
enhanced a hundred years later by the 
observations/studies of Kepler and Galileo, 
but it faced many obstacles for a long 
period, especially from the church, before its 
final justification [14]. 
         
Another characteristic example is the 
Einstein’s general relativity theory 
developed at the beginning of the 20th 
century. This theory has replaced the 
Newton’s classical gravitational theory, 
which was believed to be true for more than 
two centuries. The Einstein’s new approach 
was based on the fact that, according to his 
special theory of relativity (1905) the 
distance (r) and the time (t) are changing in 
a different way with respect to a motionless 
and to a moving observer. To support his 
argument Einstein introduced the concept 
of the 4-dimensional time-space and after a 
series of intensive efforts (1908-1915) he 
finally managed to prove that the geometry 
of this space is non Euclidean. This can be 
physically explained by the distortion 
created to the time-space due to the 
presence of mass or of an equivalent 
amount of energy, which looks analogous 
to the distortion created by a ball of bowling 
on the level of a trampoline. Einstein’s 
theory was experimentally verified by the 
irregularity of the Hermes’ orbit around the 
sun and later by the magnitude of the light’s 
divergence, which was calculated during 
the eclipse of the sun on May 29, 1919. In 

fact, the eclipse let some stars, which 
normally should be behind the sun, to 
appear besides it on the sky [15]. 
      
The previous discussion about the scientific 
method reveals the importance of inductive 
reasoning for scientific thinking. In fact, the 
premises of all the scientific theories (with 
possible exception only for pure 
mathematics), expressed by axioms, basic 
principles, etc., are based on human 
intuition and inductive reasoning. 
Therefore, a deductive inference developed 
on the basis of a scientific theory, is true 
under the CONDITION that the premises of 
the corresponding theory are true. In other 
words, if H denotes the hypothesis imposed 
by those premises and I denotes the 
deductive inference, then the conditional 
probability P(I/H), which can be calculated 
by the Bayes’ rule, expresses the degree of 
truth of the deductive inference. 
Consequently, the argument that the 
WHOLE SCIENCE is characterized by 
Bayesian reasoning seems to be true. 
 
It must be emphasized that the error of the 
inductive reasoning is transferred to a 
deductive inference through its premises. 
Therefore, the scientific error in its final 
form is actually a deductive and not an 
inductive error! This means that none of the 
existing scientific theories could be 
considered as been absolutely true; it 
simply could be considered as approaching 
the truth in a better way than the previous 
theories, that has replaced, did. 
 
CONCLUSION 
In the present study was shown that 
Bayesian Reasoning could be considered as 
an interface between bivalent and fuzzy 
logic. Its usefulness to everyday life 
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situations was also illustrated by suitable 
examples and its importance for the whole 
science was theoretically justified. 
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