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Conclusion 
 

Just like other types of regression models (constant response model, linear response model, quadratic 

response model) a bi-linear response model gives a valid description of the immunotoxicity data as 

presented in EFSA (2020). In the case of a Diph vaccination response a bi-linear response model was a 

statistically significant improvement compared to the other models. However, as the dose-response 

calibration was mainly determined by the small number of data for high doses, more data are necessary 

to conclude more definitively that the bi-linear model is the relevant type of regression model for  

analyzing PFAS induced immunotoxicity.  

 

Summary 

EFSA (2020) and Abraham et al. (2020) present a dose-response analysis of the vaccination response to 

influenza (Hib), tetanus (Tet) and diphteria (Diph) on serum PFOA and serum sumPFAS, i.e. the sum of 

PFOA, PFNA, PFOS and PFHxS, in one-year old children. This analysis did not address various aspects of 

(model) uncertainty. As the latter is a prerequisite in quantitative risk assessment RIVM has (re)analyzed 

the available data using various simple regression models. These applied models were of increasing 

complexity, the simplest being a constant model (absence of a dose-response relationship), followed by 

a linear model, a quadratic model and a bi-linear model (absence of a response up to a certain dose 

(“knee”), followed by a linear response thereafter). Note that the bi-linear model was used in the 

mentioned by EFSA/Abraham analysis . The chosen models guaranteed model uncertainty to be 

addressed, i.e. to scale different models on their performance to describe the available data. The 

performances of the models were compared on the basis of model fits taking account of the differences 

in the number of model parameters used (non-linear model: 1; linear and quadratic model: 2; bi-linear 

model: 3). The performances were measured using the Akaike Information Criterium (AIC) and the 

Bayesian Information Criterium (BIC). The AIC and the BIC differ slightly in the way they measure the 

penalty of increasing the number of model parameters. Note that the AIC is the default approach in 

EFSA’s and RIVM’s current BMD modelling to compare the performance of different models.   

 

 

 

 

 

 

 

 

 



The current analysis revealed the following: 

 

- The high variability of the data, resulting in marginal dose-response information in the data, led to small  

differences between the performances of the different types of regression models. 

For example, this resulted in cases where a particular model performed better according to the AIC 

criterium function, but not according to the BIC criterium function. 

 

- The trend of the calibrated dose-response relations were mainly determined by the response data for 

the highest dose values. 

 

- The analysis showed that for the Diph vaccination response the bi-linear model performed better than  

other models (non-linear, linear and quadratic) models in terms of AIC.  

 

- For Diph the serum concentration from which the a linear response visible was found to be 35.8 μg 

sumPFAS/L [95% confidence interval: 27.4 – 46.7]. In the case of Hib this concentration was found to be 

32.5 [18.3 – 57.6], and for Tet 35.3 [23.7 – 52.6] μg sumPFAS/L, to be compared with 12.0 (Hib), 37.1 

(Tet) and 37.1 (Diph) (EFSA, 2020, Figures K.1-K.3).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Rationale 

The EFSA Draft Opinion on PFAS addresses the derivation of a HBGV for an (assumed) equipotent PFAS 

mixture consisting of PFOA, PFNA, PFOS and PFHxS. This derivation was based on PFAS induced 

immunotoxicity, i.e. a decreased vaccination response, as described by Abraham et al. in 1-year olds 

(2020, in press, the accepted manuscript kindly provided to RIVM by the authors). Abraham et al. (2020) 

present a data base consisting of elicited influenza Hib, tetanus (Tet) and diphteria (Diph) antibody titers 

upon vaccination, and corresponding PFOA, PFNA, PFOS and PFHxS concentrations in the serum of one-

year old children. In this context EFSA presents the results of a bi-linear dose-response modeling analysis 

(also referred to as “knee” type modeling or a “piece wise” linear modeling, for details see EFSA (2020), 

Figures K.1 – K.3) on the Abraham data. However, the uncertainty in the model calibration, i.e. the 

accuracy with which parameters were estimated, was not provided, neither was the issue of model 

uncertainty addressed. For this reason RIVM (re)produced the mentioned bi-linear dose-response 

analysis, incorporating the mentioned uncertainty issues.         

 

Methodology 
 

The performances of different types of regression models to fit the data were compared. These 

comparisons were made along two ways. The first way was fitting several non-linear regression models 

on the data using a generic non-linear model fitting routine (nls of R). These regression models contained 

the crossing-point as a model parameter and thus were non-linear in the model parameters. The 

performances of these models were defined in terms of the AIC and BIC criterium functions that 

measure the goodness of fit with a penalty based on the number of parameters included. The second 

way was fitting linear regression models with linear and/or quadratic terms with respect to the dose 

using the lm-routine of R. The latter regression models can be interpreted as re-parametrizations of the 

former regression models. That means, the latter regression models did not include the crossing-points 

as a model parameter, but only included polynomial functions of the dose. Again the performances of 

these models were defined in terms of AIC and BIC criterium functions. However, since the latter 

regression models can be interpreted as nested models, we also used the Likelihood-Ratio test to check 

whether the better fit of a more complex model was statistically significant. By comparing the results of 

the different ways of model comparisons the results of the nls analyses were validated.  

Note that the bi-linear regression model is essentially non-linear in the dose. Therefore this regression 

model could not be fitted with the lm-routine. Hence for this model only the nls-routine was used to fit 

this model. Also note that because of the non-linearities the calculated distributions of the parameters 

after fitting the non-linear models were clearly skewed, all parameters were log-transformed. 

 

As results the predictions of the non-linear regression and related linear regression models and the AIC 

criterium function values that resulted from fitting the non-linear regression model using the nls-routine 

and fitting the related linear regression models using the lm-routine are presented. 

 



Dose –response models 

 
1 y(x) = a 

2 y(x) = a ( x0 – x ) 

3 y(x) = a ( x0
2 – x2 ) 

4 y(x) = min( a ( x0 – x ), a ( x0 – x1 ) ) 

 

with: a constant regression parameter 

 x0 y-axis crossing-point 

 x1 “knee” of the bi-linear model 

 

Available data 

 
EFSA (2020) present dose-response data on 10log transformed Hib, Tet and Diph antibody titers and 

corresponding sum PFAS serum concentrations in 98 (Hib) resp. 100 (Tet; Diph) 100 healthy one-year old 

children. As the primary data were not available to RIVM, relevant data were electronically retrieved 

from the original publication, i.e. EFSA (2020), Appendix K, Figures K.1-K.3. In this way 95, 97 and 97 of 

the Hib, Tet and Diph data points could be retrieved with an accuracy of > 99 % .  

The log-transformed antibody titers were used unmodified in the dose-response analysis.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

1. Graphical output 
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2. Parameter estimations (after back-transformation) including crossing-points 

Note: model 1 (constant only) does not include crossing-point; i.e. it assumes no crossing-point 

Hib, model1 

[1] "parameter distribution" 

        [,1]      [,2]      [,3] 

x0 0.5359735 0.4048006 0.7096521 

Hib, model2 

[1] "parameter distribution" 

             [,1]         [,2]         [,3] 

x0   81.368482362 50.555559099 130.96146180 

alfa  0.009845037  0.003922343   0.02471094 

Hib, model 3 

[1] "parameter distribution" 

             [,1]         [,2]         [,3] 

x0   5.792883e+01 4.928631e+01 6.808683e+01 

alfa 2.327116e-04 1.151707e-04 4.702123e-04 

Hib, model 4 

[1] "parameter distribution" 

            [,1]         [,2]        [,3] 

x0   62.35268071 46.724258609 83.20852824 

alfa  0.02026656  0.004162802  0.09866759 

beta 32.46646198 18.312849679 57.55910041 

Tet, model 1 

[1] "parameter distribution" 

        [,1]      [,2]      [,3] 

x0 0.2892714 0.2210161 0.3786056 

Tet, model 2 

[1] "parameter distribution" 

             [,1]         [,2]        [,3] 

x0   98.294359885 54.657162707 176.7706318 

alfa  0.004504479  0.001600726   0.0126757 

 

 

 



Tet, model 3 

[1] "parameter distribution" 

             [,1]         [,2]         [,3] 

x0   6.431482e+01 5.327659e+01 7.764004e+01 

alfa 1.022862e-04 4.452362e-05 2.349868e-04 

Tet, model 4 

[1] "parameter distribution" 

            [,1]         [,2]        [,3] 

x0   61.03476839 48.455439404 76.87976827 

alfa  0.01321233  0.003024166  0.05772358 

beta 35.31872078 23.721639776 52.58540512 

Diph, model 1 

[1] "parameter distribution" 

       [,1]      [,2]     [,3] 

x0 0.640946 0.5848962 0.702367 

Diph, model 2 

[1] "parameter distribution" 

             [,1]         [,2]         [,3] 

x0   1.533232e+02 98.687783624 2.382059e+02 

alfa 5.199198e-03  0.002736567 9.877944e-03 

Diph, model 3 

[1] "parameter distribution" 

             [,1]         [,2]         [,3] 

x0   9.846515e+01 8.056617e+01 1.203407e+02 

alfa 7.279413e-05 3.071853e-05 1.725013e-04 

Diph, model 4 

[1] "parameter distribution" 

            [,1]         [,2]         [,3] 

x0   83.49882668 63.617033996 109.59413886 

alfa  0.01411822  0.005268863   0.03783058 

beta 35.80000846 27.428943881  46.72584592 

 

 



AIC's en BIC's 

Rows: 1: Hib, 2: Tet, 3: Diph; Colums: models 1-4. 

AIC's based on fitting log-linear models with nls 

[1,] 210.40835 208.52194 209.23959 210.88616 

[2,]  90.35735  89.43853  89.14392  89.63997 

[3,]  34.65290  34.59059  32.37776  31.43283 

 

AIC’s based on fitting linear models with lm 

[1,] 210.18650 208.51501 208.46582 

[2,]  89.99872  89.42306  88.86811 

[3,]  34.51769  33.69055  32.35491 

 

BIC’s based on fitting log-linear models with nls 

[1,] 215.49494 216.15182 216.86947 221.05934 

[2,]  95.48604  97.13158  96.83697  99.89736 

[3,]  39.76065  42.25222  40.03939  41.64834 

 

BIC’s based on fitting linear models with lm 

[1,] 215.27309 216.14489 216.09571 

[2,]  95.12741  97.11611  96.56116 

[3,]  39.62544  41.35218  40.01654 

 


