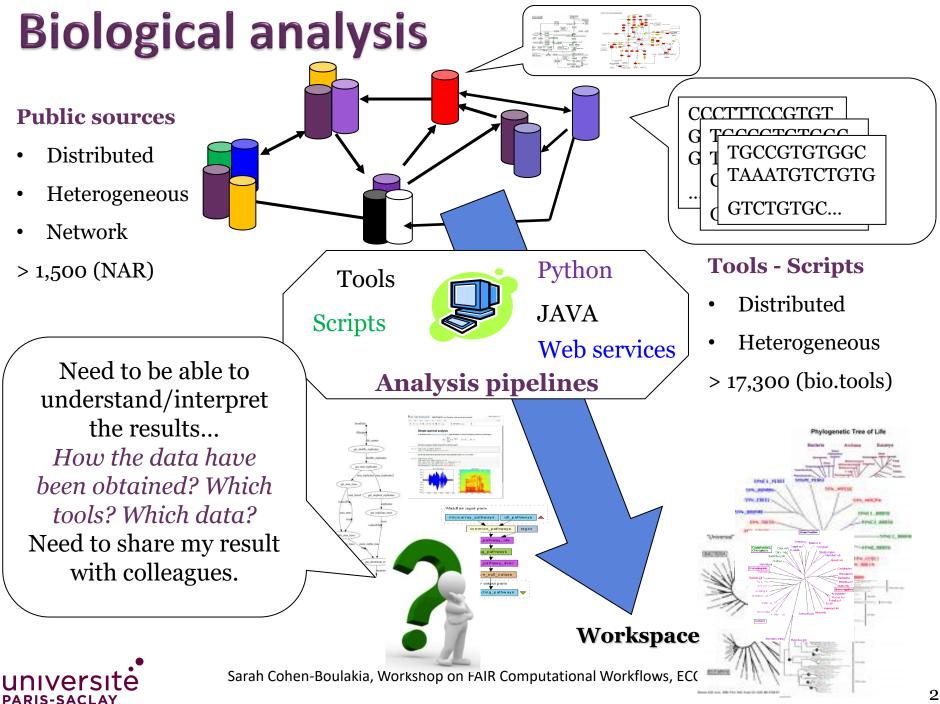
FAIR Computational Workflows

Sarah Cohen-Boulakia, Université Paris-Saclay


Joint work with

Carole Goble, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil, Michael R. Crusoe, Kristian Peters & Daniel Schober

http://www.dataintelligencejournal.org/p/45/

Variety of means to perform data analysis

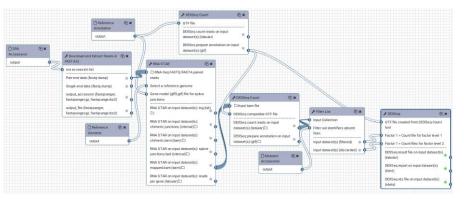
Studio

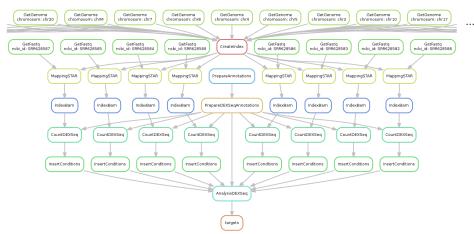
- From scripts ... to Notebooks
- Workflow Management Systems
 - *coarse-grained*: chaining locally hosted or distributed tools
 - *fine-grained:* optimizing computational resources (distributed infrastructure, HPC, cloud-based container orchestration...)
- Possible features of WfMS
 - User interactions: APIs vs scripting vs GUI
 - **Resource scalability**: optim, concurrency and parallelisation
 - **Portability management** : dependencies on the infra
 - Secure execution: monitoring and fault handling
 - Tracking: process logging and data provenance tracking
 - Data handling: secure access, movement, ref management

nextflow

🗧 Galaxy

PROJECT





Computational workflows

- Separation of the workflow specification from its execution
- Are they computational workflow?
 - $\,\circ\,$ Workflows from most WfMS $\checkmark\,$
 - Notebooks when the dataflow is explicit (cells) ✓
 - Scripts usually interleave data and computational processes
 - YesWorkflow provides means to annotate scripts

Precise description of a procedure: multi-step process coordinated by input/output data relationships (data types)

Execution of a computational process (running a code, invocation of a service...). Data is consumed and produced by each step.

Computational workflows

FAIR data for and from workflows

FAIR criteria for workflows as digital objects

Conclusion

FAIR Principles

Findable

- F1. (Meta)data are assigned a globally unique and persistent identifier
- F2. Data are described with rich metadata (defined by R1 below)
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource

Accessible

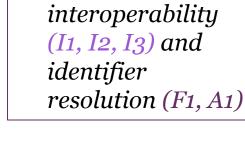
- A1. (Meta)data are retrievable by their id using a standardised communications protocol
 A1.1 The protocol is open, free, and universally implementable
 A1.2 The protocol allows for an authentication and authorisation procedure, where necessary
- A2. Metadata are accessible, even when the data are no longer available

Interoperable

- I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for KR
- I2. (Meta)data use vocabularies that follow FAIR principles
- I3. (Meta)data include qualified references to other (meta)data

Reusable

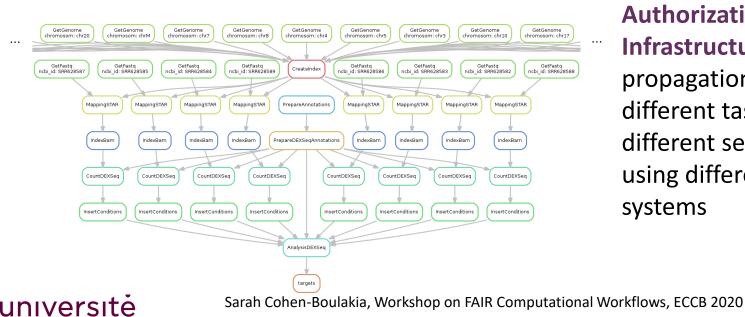
R1. (Meta)data are richly described with a plurality of accurate and relevant attributes
R1.1. (Meta)data are released with a clear and accessible data usage license
R1.2. (Meta)data are associated with detailed provenance
R1.3. (Meta)data meet domain-relevant community standards


FAIR data for and from workflows

- FAIR data...
 - Open ontologies, vocabularies and services for data interoperability and identification resolution
 - MIAPPE/Breeding API (BrAPI): interface for data exchange
 - EDAM ontology: input / output of tools executed
- ... for WfMS, allowing to make informed choices
 - On the specification phase: suggesting tools,...
 - On the execution phase: validating data type,...
- Combination of FAIR data and FAIR tools: FAIR e-infrastructure

- Well-designed workflow management systems can automate the production of FAIR data $\rightarrow (F2, I2, I2)$
 - Metadata descriptions of data products
 - Deposition of data in searchable resources

 \rightarrow Data


 $[\]rightarrow$ (F2, I2, I3, R1.3) and (F4)

Challenges in workflow execution

Identifiers (F1, F3, A1)

PARIS-SACLAY

- Propagation of ids through the workflow
- Tracking data attribution and the minting of 0 ids for numerous intermediate results
 - Minids : light-weight id to unambiguous name, identify and reference research data products
- Wf need to move data ref through their engines (not the data itself)

- Licensing (R1.1)
 - **Combining licenses** impact 0 licensing the workflow or its data products
- Data access (A1.1, A1.2)
 - workflow constituents 0 require harmonized Authentication and Authorization Infrastructure (AAI) propagation through the different tasks, hosted by different service providers using different operating

systems

Additional challenges

Workflow Provenance

- WfMS provides documentation of how the data has been generated (R1.2)
 - Standardisation efforts W3C FROV model and ontology (I1, I2)
- But... Provenance standards have to be fully embraced by WfMS
 - Lack of provenance processing tools
 - Automated provenance collection can be too fine grained and too detailed

Steps in coarse-grained workflows may be wrapped applications

- Sub-workflows and (not tracked) steps within
- Data resources and tools may not report basic metadata (version, licence) in a standardised, machine interpretable way
 - → 🕸 Bioschemas : metadata marked-up in resources in a lightweight way

unFAIR service provision

• The **components change their interfaces** without notice, breaking workflows

Computational workflows

FAIR data for and from workflows

FAIR criteria for workflows as digital objects

Conclusion

FAIR criteria for workflows – Wf Repositories

- FAIR criteria have been envisioned for data
- Workflow registries dedicated to WfMs
 - KNIMEHub, nf-core (Nextflow), snakemake-wrappers
 - findability-accessibility (F4), description/metadata workflows (F2) and may provide persistent, unique ids (F1)
 - Access is baked into the workflow systems (A1)
 - \rightarrow Accessibility = wf should be archived and cited using citation metadata
 - schema.org mark-up used by Datacite (+ tool&wf terms needed!)
- myExperiment
 - WfMS agnostic repository, pioneering: workflow finding/sharing/publishing
 - laid the foundations for workflow-based Research Objects
- WorkflowHub (EOSC Life)
 - CWL standards
 - Research Objects federated (RO-Crate)
 - Registries for tools (bio.tools) and containers (Biocontainers)

FAIR criteria for workflows – Wf description

Attempts to standardise workflow descriptions in order to aid discoverability (F1) and enable interoperability (I1)

- The Interoperable Workflow Intermediate Representation (IWIR)
 - common bridge for translating fine-grain workflows in different languages, independent of the underlying distributed computing infra wdl
- The Workflow Description Language and the Common Workflow Language are recent community efforts to describe workflows
 - CWL standards describe workflows+tool interfaces making them portable
 scalable across a variety of software and hardware environments

 - runnable by other CWLcompliant engines

As descriptions of processes workflows inherit properties of FAIR data, but as executable processes they inherit properties of software!

Challenges for FAIR workflows as processes Structure and Forms

• Structure : Workflows are often inherently composite

- **Nested workflows**: *sub-workflows* executed as part of complex workflows
- The distinction between a workflow and its *component steps* is blurred
- → FAIR can be applied simultaneously on **multiple levels**
 - Findable composite workflows = findable involved tools and data types
 - FAIR on the components metadata, licensing, ... propagate to the wf level
 - may be incompatible
 - Identify, cite ... *composite, multi-authored* objects is an open question

Forms - FAIR workflow: what do we mean?

- a CWL specification with test or exemplar data
- an **implementation** of that design in a WfMS
- an instantiation of that implementation ready to run with input data, parameters set, computational services spun up
- a run result with intermediate/final data products and provenance logs

Sarah Cohen-Boulakia, Workshop on FAIR Computational Workflows, ECCB 2020

Workflow-centric Research Objects attempt to create a metadata framework to capture each form, but each may have different FAIR criteria

Challenges for FAIR workflows as processes Versioning & Executability

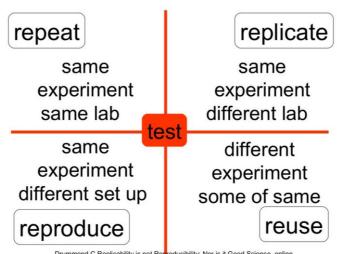
- Workflows are living artefacts
 - Workflow evolution = a form of provenance (R1.2)
 - Workflows can be recycled, repurposed: cloned, forked, merged ...changed
 - nf-core: collab dev env (github) natively versioning + testing and validation

FAIR for workflow must address versioning and "fixivity": snapshot a workflow and its dependencies to fix its reproducible state + associate a persistent id

Workflows are executable objects

Container-based virtualisation sol + platform indep software packaging/distribution

But... workflows and the software tools used are time limited objects whose active lifespan is dependent on that of their components, WfMS, scientific relevance \rightarrow CWL


Challenges for FAIR workflows as processes Reuse

- Depends on the purpose of the reuse
- R1 is fostered by robust software practices
 - **Testing** workflow, modules, software tools
 - Interop = workflow replication on
 - platforms

PARIS-SAC

- OpenBench
- Validation of parameters to preclude workflow failure and faulty/unsafe results
 - ightarrow The formulation of parameters must be FAIR
 - Doc of their purpose and range definitions
 - The BioCompute Object specification: representation and validation of parameters for reusable computational pipelines (precision medicine)

Drummond C Replicability is not Reproducibility. Nor is it Good Science, online Peng RD, Reproducible Research in Computational Science Science 2 Dec 2011: 1226-1227.

Conclusion

- Workflows capture complex methods
 - FAIR properties needed to be published, finable, accessed, cited, reused...
- FAIR principles for data and for software are applicable but need to be extended to capture the processual nature of workflows
 - Appropriate FAIR principles for software, incorporating best practices for maintainability, maturity and reproducibility
 - Individual parts, forms, versions and execution environments of a workflow need to be FAIR and their combination too : complex interdependencies to be covered by additional FAIR metrics
- FAIRification of workflows pave the way for trustable data with the added value of being ready for exploitation by third parties

& Daniel Schober

