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ABSTRACT
An effective and efficient application of Continuous Integration
(CI) and Delivery (CD) requires software projects to follow certain
principles and good practices. Configuring such a CI/CD pipeline
is challenging and error-prone. Therefore, automated linters have
been proposed to detect errors in the pipeline. While existing linters
identify syntactic errors, detect security vulnerabilities or misuse
of the features provided by build servers, they do not support de-
velopers that want to prevent common misconfigurations of a CD
pipeline that potentially violate CD principles (“CD smells”). To
this end, we propose CD-Linter, a semantic linter that can auto-
matically identify four different smells in pipeline configuration
files. We have evaluated our approach through a large-scale and
long-term study that consists of (i) monitoring 145 issues (opened
in as many open-source projects) over a period of 6 months, (ii)
manually validating the detection precision and recall on a rep-
resentative sample of issues, and (iii) assessing the magnitude of
the observed smells on 5,312 open-source projects on GitLab. Our
results show that CD smells are accepted and fixed by most of the
developers and our linter achieves a precision of 87% and a recall of
94%. Those smells can be frequently observed in the wild, as 31% of
projects with long configurations are affected by at least one smell.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment;Automated static analysis; Software libraries and repositories;
Software testing and debugging.
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1 INTRODUCTION
Continuous Integration (CI) and Delivery (CD) are widely adopted
practices in software development. A CI/CD pipeline automates
the process of building, testing, and deploying new software ver-
sions. There is plenty of empirical evidence for the positive effects
of using CI/CD, including early defect discovery [19], increased
developer productivity [43], and fast release cycles [5]. To achieve
these benefits, it is recommended to follow various principles and
best practices. For example, developers should build and test the
software on every change that is committed to a project’s version
control system [29]. Several catalogs of CI/CD best practices ex-
ist [5, 20, 28, 37]. However, while their adoption has been advocated
in research papers, white papers, and books, developers have dif-
ficulties to apply them in practice [18], deviating from principles
and generating anti-patterns [44].
Some of these anti-patterns are related to the way developers

use a CI/CD pipeline. For example, developers do not integrate
their changes frequently or they remove failed tests to repair a
build failure, and previous researchers [44] implemented tools
that help developers avoid those bad practices by analyzing logs
and past changes. Other anti-patterns emerge when the CI/CD
pipeline is configured. To support developers when configuring
CI/CD pipelines, DevOps build servers such as GitLab [11] can
validate their configuration files using online linters [12]. How-
ever, those tools only spot basic syntactic errors such as the use of
reserved keywords when naming build steps.
Previous works have proposed approaches for detecting misuses

of specific configuration options. Gallaba et al., [9] achieved a high
user acceptance when pointing out the misuse of four different
configuration options, like executing commands in the wrong build
step. Rahman et al. [36] focused on security-related issues and
Sharma et al. [38] on Infrastructure-as-Code (IaC) smells. While
these works show that semantic linting of CD pipelines is useful,
they do not solve the problem of avoiding CD anti-patterns in
configurations files. For example, a systematic manual job execution
is not a misuse, but it violates a CD principle.
In this work, we want to help developers avoid violations of

accepted CD principles when configuring CD pipelines. We propose
a novel semantic linter named CD-Linter to detect process-related
violations of CD principles, in the following referred to as “CD
smells”. CD-Linter is currently capable of detecting four types

https://doi.org/10.1145/3368089.3409709
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of CD smells that are related to violations of principles and best
practices described in the literature [20, 28]. We evaluated CD-
Linter through a large-scale and long-term study consisting of 145
issues opened in as many projects. We monitored the reactions
to those issues over a period of 6 months and found that 53% of
the project maintainers agreed with the reported CD smells either
accepting the issues (9%) or directly fixing them (44%). We also
analyzed the reasons for rejecting issues and use them to further
improve CD-Linter. Finally, we measured the accuracy of the latest
version of CD-Linter and investigated the occurrence of the four
CD smells in the wild.

The contributions of this paper can be summarized as follows:
(1) The operationalization of four violations of CD principles

in pipeline configurations (CD smells), and the empirical
validation of their relevance.

(2) CD-Linter, an open-source semantic linter that can detect
these CD smells in configuration files of GitLab pipelines.
We show that, overall, CD-Linter has a precision of 87% and
a recall of 94%.

(3) A large-scale empirical investigation of the extent to which
the considered CD smells occur in a large set of 5,312 open-
source projects.

All datasets and scripts used in our studies (together with CD-
Linter implementation) are available in a replication package [45].

2 METHODOLOGY OVERVIEW
This paper investigates the problem of violating CD principles (i.e.,
CD smells) in configuration files of CD pipelines. We propose CD-
Linter, a semantic linter that detects CD smells and evaluate its
usefulness by answering the following research questions:

RQ1 Are the CD Smells Detected by CD-Linter Relevant to Devel-
opers?

RQ2 How Accurate Is CD-Linter?
RQ3 How Frequent Are the Investigated CD Smells in Practice?

Figure 1 provides a high-level overview of the different parts of this
paper, the details of the empirical study design will be covered in
Section 4. Inspired by existing literature in this area, we started by
selecting four CD smells that affect the definition of CD pipelines
(1) (Section 3.2 provides more details about the selection). To study
these CD smells, we selected a dataset of 5,312 open-source projects
that are publicly available on the GitLab platform (2). We built
detectors, ran them against the dataset, and incrementally improved
the corresponding detection strategies (3). The four CD smells types
and their detection strategies will be introduced in Section 3.
Initially, we detected 5,237 smells in our dataset (4). To validate

the relevance of the selected CD smells and the correctness of
our detectors, we started opening issues in the issue trackers of
the affected open-source projects. We used feedback from the early
iterations to further improve the detection strategies. Once we were
confident that the detectors work properly, we created a balanced
sample of 168 issues (5). After validating the reports manually,
we rejected 23 issues and posted the approved 145 issues to the
issue trackers of the corresponding open-source projects. We then
monitored how professional developers reacted to the opened issues
for 6 months (6). In Section 5.1, we will answer RQ1 by analyzing

the internal rating of the authors and the reactions of the original
developers to our reports (7).
The feedback that we received through rejected issues also en-

abled us to further improve our detection strategies, which reduced
the total number of identified issues to 5,011 (4). We created a strat-
ified sample of 868 issues to validate the precision of our detectors
on a large scale, while we validate the recall by manually inspecting
100 projects (8). The sample size made it infeasible to open further
issues on GitLab, because we could not have followed-up on all of
them, so we only rated the validity of these issues internally. Our
rating provided the required data to answer RQ2 (9), which will be
discussed in Section 5.2.
Finally, we analyzed the results for the complete dataset of 5,312

projects to investigate how frequently CD smells occur in practice
(10). These results will be discussed in Section 5.3.

3 CD LINTER DESCRIPTION
Organizations implement CD pipelines using pieces of technology
such as Jenkins, TravisCI, or GitLab. While this paper copes with
build-server agnostic smells, we implement CD-Linter on GitLab.
GitLab is an integrated platform that hosts both the repository and
the issue tracker, which is particularly interesting for our evaluation.
In February 2020, a search via the GitLab API revealed that the
site hosted more than 1.57M projects. As GitLab can also be used
in private installations, this makes it a very popular solution for
enterprises [7]. By supporting GitLab, CD-Linter targets industrial
and open-source projects alike.

3.1 Background
In the following, we provide some background information about
the relevant configuration parts for this work.

Build Server. A build server is a reusable infrastructure, which
enables developers to define custom CD pipelines and is config-
ured through configuration files. In GitLab the configuration file is
.gitlab-ci.yml; other build servers have similar configuration files.
An example of such a configuration file is shown in Figure 2. In

the top part of the file, the stages of the build, that every change
committed to a version control system as Git has to pass during the
build, are defined. If no stages are defined, the default stages in Git-
Lab are build, test, and deploy. The automation tasks are defined
as jobs, the basic unit of the CD pipeline. The example defines two
jobs, code_quality and unit_test, which invoke specific scripts
that are defined in the script line. For example, a Java project
could include the script line script: mvn test to start all unit
tests through the Maven build tool. Developers can also configure
when to run a job (e.g., when: manual), how many times a job can
be auto-retried in case of failures (e.g., retry: 3), and whether a
job is allowed to fail (i.e., allow_failure: true).

Specialized Build Tools. In addition to the configuration of the
high-level orchestration of the build pipeline, most CD pipelines
use specialized build tools to perform the actual automation tasks,
which require separate configuration parameters. In contrast to the
build server, these build tools depend on the programming language
that is used in the project. For this paper, we chose to support the
typical build tools of Java and Python to have two representatives
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Figure 1: Methodology overview

stages:
- build
- test

...

code_quality:
stage: build
script: "mvn sonar:sonar"
when: manual # Manual Execution

unit_test:
stage: test
script: "mvn test"
retry: 3 # Retry Failure
allow_failure: true # Fake Success

Figure 2: Example excerpt of GitLab configuration

for strictly-typed and dynamically-typed languages. The typical
configuration differs between these languages and is too complex
to be covered here. We will introduce the relevant bits, once we
have described the CD smells that we are going to support.

3.2 Selection of Relevant CD Smells
CD-Linter features the implementation of an initial set of CD smells
to be evaluated. Clearly, there may be many smells in CD pipelines
(e.g., Duvall [28] defined 50 anti-patterns). Practically speaking, a
CD-Linter can detect a limited subset of smells, and, being a linter,
only those that can be statically identified. Therefore, we aimed to
find a set of suitable CD smells, not all the most relevant ones. We
collected all the good and bad practices that are illustrated in the
Foundations part of Humble and Farley [20], a well-known book
about CD practices. Some CD smells require historical information
for the detection (using artifacts like logs or repositories), which is
only available after the CD pipeline is being used and not when it is
configured [44]. This is out-of-scope for a static linter, so we judged
the feasibility of detecting the anti-patterns from configuration

files alone, without relying on other artifacts. The complete list is
available in our replication package [45] and we selected four CD
smells.

Fake Success. Each stage of the CD pipeline checks for several
categories of defects. For example, jobs executed in the code quality
stage can reveal the presence of poorly-written code snippets, while
jobs in the test stage typically spot bugs at unit and integration
levels. Every executed job should be able to fail the build. If not,
developers can miss or ignore the underlying issue, which adds
technical debt and might result in problems later. A Fake Success
arises when a failure in a job does not affect the overall build result.

Retry Failure. The build process has to be deterministic. Flaky
behavior, e.g., tests that sometimes fail [21, 26], should be avoided at
any cost, because they hinder development experience, slow down
progress, and hide real bugs. Some pipelines address this issue by
rerunning a job multiple times after failures. However, this might
not only hide an underlying problem but makes issues also harder
to debug when they only occur sometimes.

Manual Execution. CD means to keep the codebase in a deploy-
able stage at any given time. Thus, a fully automated build process
up until the deploy stage is required. Manual jobs might introduce
errors and delay the delivery of code changes to the customers.
This CD smell occurs when a job (that is executed before the deploy
stage) needs to be manually started by a user.

Fuzzy Version. Developers should always specify the exact ver-
sion of the external libraries that are used. If not, a build could not
be reproduced. Failing to be specific on versions also leads to an
occasional long debugging session tracking down errors due to the
use of different library versions. Using the terminology of semantic
versioning, we differentiate between the following sub-types of the
smell: (i) Missing Version: No version number is defined; (ii) Only
Major Version: Only a major release number is defined; (iii) Any
Minor Version: Any equal or higher minor release with the same
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<project>
<modelVersion>4.0.0</modelVersion>
<groupId>a</groupId>
<artifactId>b</artifactId>
<version>0.0.1-SNAPSHOT</version>
<properties><x.version>1.0.0</x.version></properties>
<dependencies>

<dependency> <!-- correct -->
<groupId>foo</groupId>
<artifactId>x</artifactId>
<version>${x.version}</version>

</dependency>
<dependency> <!-- Missing version -->

<groupId>bla</groupId>
<artifactId>blubb</artifactId>

</dependency>
</dependencies>
<modules><module>module-example</module></modules>
</project>

Figure 3: Example of a pom.xml

major version is allowed; or (iv) Any Upper Version: every equal or
higher version can be used.

3.3 Parsing CD Configuration Files
To detect the CD smells, we parse the configuration files and map
their content onto meta-models that we have created for each type
of configuration filesCD-Linter supports. Thesemeta-models cover
the parts of the configuration files that matter for the detection of
the CD smells. CD-Linter considers three types of configuration
files used for GitLab (.gitlab-ci.yml), Maven (pom.xml), and pip
(requirements.txt). In the following, we describe how we parse these
configurations for our purposes.

GitLab Configuration. From the .gitlab-ci.yml file, we capture the
list of jobs, the stages, and the variables. For each job, we record
the name, the stage, and the script lines (script, before_script,
after_script) as well as the retry, allow_failure, when, and
environment parameters. For the retry parameter, we keep track
of the maximum number of retries (max) and for which kinds of
failures the job is allowed to be retried (when). We filter out dot-
prefixed jobs as GitLab does not process them.

Maven and pip Configurations. TheMaven build tool is very pop-
ular among Java projects. Maven can automate various tasks, such
as the dependency resolution and the automated download from
a centralized repository. Figure 3 shows a configuration excerpt
("pom.xml"), in which two dependencies, foo.x and bla.blubb are
being defined.
From the pom.xml, we capture the unique coordinates of the

artifact (artifact ID, group ID, version), all defined properties, and
the coordinates of all dependencies. All properties are automatically
replaced with their actual value. We also include all referenced
modules recursively and link them together. Values such as versions
are then inherited from ancestor POMs where available.
As regards pip, the most used package manager for Python code,

two things are relevant. First, the file requirements.txt is often used
to define all dependencies that are required in the Python envi-
ronment to run a particular piece of software. These requirement

files can be hierarchical and include other requirement files that
are inherited. Second, the script line in the GitLab configuration
file often contains manual calls to pip to download external depen-
dencies. To find these, we search for the keyword pip install,
strip other pip options, and remove quotes from the arguments. It
is also possible to specify dependencies by pointing to files, folders,
and URLs to version control systems. We use simple heuristics to
detect these cases and exclude them from the linting.

3.4 Detection of the CD Smells
Having access to the parsed information in the meta-models, we
can proceed to implement various strategies that detect instances
of the four CD smells.

Fake Success. The allow_failure parameter set to true allows a
job to fail without impacting the rest of the build. Figure 2 shows an
example in which the build execution can succeed despite potential
errors in the unit_test job. We detect a Fake Success every time
a job’s definition contains allow_failure: true. Note that we
do not report Fake Success for the stages sast (static application
security testing) and dast (dynamic application security testing).
GitLab defines templates [14, 16] that contain allow_failure set
to true for the default job used in these stages.

Retry Failure. The retry parameter allows developers to con-
figure how many times a job is going to be retried in case of a
failure (see the example in Figure 2). We detect all cases in which
retry is set to a positive value. The proposed solution for such a
case is to control retry by matching a specific failure cause (e.g.,
when:runner_system_failure). We only found very few cases in
which projects used when, so we decided to simplify the detection in
CD-Linter and report all such usages of retry for now. Handling
these cases properly is a simple matter of implementation.

Manual Execution. The when parameter can also be used to spec-
ify when a job shall be executed. To detect manual triggers of steps,
we selected all jobs that contain when:manual in their definitions.
For example, job code_quality in stage build (Figure 2) needs to
be manually started by a user.
Not all manual triggers are a problem though. CI/CD advocates

the automated execution of all stages to ensure a releasable project
state at every point in time, however, it is acceptable to manually
decide when this release should happen. Therefore, we do not
report cases in which the manual execution only affects deploy
stages. Apart from using the default deploy stage, GitLab users
can also define custom deploy stages [13]. To build a comprehensive
list of deploy stage names, we extracted the stage names from a
random project sample of our dataset (see Section 4). We identified
all keywords that hint at a deploy stage such as ‘deploy’, ‘release’, or
‘publish’, and exclude jobs and stages that contain these keywords
in their name. Also, we did not report Manual Execution for jobs
in the triage and review stages, because GitLab suggests that
these stages should be started manually [15, 17]. Furthermore, we
excluded cases where the action parameter of environment is set
to stop, which is a manual way to shut down an environment used
in the build.
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Table 1: Fuzzy Version syntax in Python andMaven

Fuzzy Version Type Python Maven

Correct ==1.1.8 1.1.8
Missing Version empty empty
Only Major Version 1 1
Any Minor Version 1.* n/a
Any Upper Version >=1.1.8 [1.1.8,)

Fuzzy Version. The way dependencies are declared is specific
to the programming language and the corresponding dependency
management tool. For what concerns versioning, CD-Linter sup-
ports Python and Java projects (the latter using Maven). Table 1
shows a comparison of the version syntax.
Python projects typically use pip to manage their dependencies

and our meta-model contains information about all dependencies
that are either defined in the requirements.txt file or through di-
rect invocations of pip install.CD-Linter distinguishes between
several Fuzzy Version subcategories. (i) If no version is defined, we
report a Missing Version, (ii) if a version specifier only consists of a
single number, we report an Only Major Version violation, (iii) an
Any Minor Version when the minor release number is an asterisk,
and (iv) Any Upper Version if the version number only defines a
lower bound, but omits the upper bound (e.g., numpy>=10.4).
In Java projects, dependency resolution is typically handled by

the build tool. In the case ofMaven, dependencies are defined in
pom.xml. To detect Missing Version, we identify dependencies that
do not specify a <version> tag. In dependencies that define the
tag, we detect Only Major Version as we do in Python projects and
Any Upper Version checking whether the upper version in a range is
missing (e.g., [1.2.3,)). Any Minor Version is impossible by design
because at least a range will be always declared for minor releases.
When analyzing dependencies, CD-Linter handles transitive de-
pendencies by traversing the POM hierarchy recursively.
When reviewing the detection strategies (step 3 of Figure 1),

we realized how some libraries, such as Spring Boot, self-manage
dependency versioning [41]. We have compiled a list of affected
dependencies for which we do not report a Fuzzy Version CD smell
because omitting the version is acceptable in these cases.
As a reaction to developers’ feedback (RQ1), we differentiate

between libraries used in production code and tools used in the
pipeline. Not specifying a version for a tool is less critical, because
no source code relies on an API that might break in newer versions.
On the contrary, having a new version with fixed bugs and updated
features might even be advisable. To this end, we compiled a list of
tools used for Python and Java projects. These include, for example,
pipenv [31], pytest [34], pylint [33], and pip [30] for Python, and
JUnit [22], FindBugs [6], CheckStyle [1], and PMD [32] for Java
(the complete list is in our replication package [45]).

4 EMPIRICAL STUDY DESIGN
The goal of this study is to evaluate CD-Linter and determine
whether it can be useful for developers to avoid CD smells in their
CD pipeline. The quality focus is two-fold: the perceived usefulness
from original developers of projects where CD smells are detected
and the accuracy ofCD-Linter. The perspective is of researchers that

have developed CD-Linter and want to transfer it to practice. The
context consists of 5,312 open-source projects hosted onGitLab and
using CD. More specifically, the study answers the three research
questions formulated in Section 2.

4.1 Context Selection
To answer our research questions, we selected open-source projects
hosted on GitLab. Using the GitLab API, we filtered projects that
do not have at least one star or that are forked from other projects
to avoid duplicates. From the resulting 26,984 projects, we removed
all the projects that do not contain a .gitlab-ci.yml file in their
repositories (i.e., do not use GitLab as CD server). The last filter
left us with 5,312 projects that we could analyze for the presence
of CD smells. These projects have a diverse team size (from 1 to
633 members with a median of 2) and age (from 1 to 133 thousand
commits with a median of 75). Regarding the languages, our dataset
mainly includes JavaScript (16%), Python (14%), C (10%), Java (7%),
Go (4%), and Ruby (4.4%) repositories. Also, there are projects with
diverse CD adoption history.

4.2 Monitoring of the Opened Issues
We first run CD-Linter on the dataset of 5,312 projects that has
been described in Section 4.1. Then, we identified a random set of
CD smells in a way to achieve a balanced set of CD smells of each
type and at most one CD smell per project owner, to avoid flooding
the same owner with many issues. For Manual Execution we could
detect a maximum of 42 smells across owners, and we ended up
detecting a total of 168 CD smells.
Once the detected CD smells were uploaded to the CD-Linter

web-based platform, which can automatically report issues, each
issue was shown to two independent evaluators (two of the authors,
one of which was not involved in the CD-Linter implementation)
to remove false positives (object of a different study in Section 5.2).
Examples of false positives, which received a negative assessment,
are manually-triggered deployment jobs that were erroneously
reported as Manual Execution incidents. Each evaluator could read
the report generated by CD-Linter, browse the file in which the CD
smell was found, and, if needed, browse the entire repository and
its history through a GitLab link. Once two evaluators reported a
positive assessment, the issue was automatically posted and opened
on GitLab. The disagreement cases were discussed and, in case of
positive agreement, an issue was also opened. In total, we opened
145 issues.
We have monitored the issues over a period of 6 months (from

August 2019 to February 2020). During this period, we collected 64
reactions, counting issues that have been upvoted/downvoted, com-
mented, assigned, or closed. 59 projects did not show any activity
during the observation period, so we decided to ignore them in our
analysis. The response rate of the remaining, active projects was
74%.We performed a card sorting [39] of the received 120 comments
to identify agreements and disagreements with our issues and their
motivations. The card sorting was performed by two authors that,
after a first round of independent tagging, met and merged their
annotations.
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In addition to the reactions, we checked the source code to see
whether a reported smell was removed or reintroduced in the obser-
vation period. In some cases, the smell was fixed despite a negative
reaction or without any reaction to the issue whatsoever.
Based on the developers’ reactions, issues have been classified

into the following 5 categories.
Ignored The issue has been closed without any further reaction.
Rejected The issue has been closed with a majority of downvotes
or with a negative feedback from the comments.

Pending The issue is still open and under discussion among the
maintainers without a clear agreement/disagreement.

Accepted The issue has been assigned for fix, has a majority of
upvotes, or a positive feedback.

Fixed The smell reported in the issue has been removed.
To address RQ1, we report and discuss the responses to the opened
issues for each smell type. We report the number and percentages of
positive and negative reactions, the rationale for rejecting the issues,
and provide examples of positive feedback and false positives. The
results of RQ1 directly improved CD-Linter (see Section 3.4).

4.3 Manual Validation of CD Smells
We executed the enhanced version of CD-Linter on the 5,312
projects, which resulted in the detection of 5,011 CD smells. Then,
we formed a sample to be manually validated. We selected, for
each owner, one CD smell of each type, if detected. Since for Fuzzy
Version we have four sub-categories, we considered one of each sub-
category (Missing Version, Only Major Version, Any Minor Version,
and Any Upper Version), if present. As result, we obtained a sample
that consists of 868 issues and achieves an error margin of ±3%
(setting a confidence level of 95% and a percentage of 50%). Then,
similarly to what was done in RQ1, each issue was independently
validated by two authors. After each annotator concluded the tag-
ging, we measured the Cohen’s kappa inter-rater agreement (k) [3].
We obtained k = 0.76, i.e., a high agreement, therefore no re-coding
was necessary. Finally, the two annotators discussed and solved the
disagreement cases. To address RQ2, we report the overall precision
of CD-Linter on the validated sample, defined as TP/(TP + FP ),
where TP : true positives and FP : false positives. We also computed
the recall, defined as TP/TTP (TTP : total true positives), using a
randomly selected sample of 100 projects (methodology similar to
Gallaba et al. [9]), making sure that those projects were not the
same used to calculate the precision.

4.4 Measurement of CD Smell Occurrences
To address RQ3, we run CD-Linter on the latest snapshot of the
5,312 projects described in Section 4.1. The analysis has been per-
formed on an Intel Xeon(R) CPU E5-2640 with 2.50GHz (4 cores)
with 4GB of available main memory and took a total of 74 seconds.
We report the number of CD smells of different types we detected,
as well as the percentage of projects and owners affected by at least
one CD smell of each type. The latter provides us with an idea of
the diffuseness of the considered CD smells.

5 EMPIRICAL STUDY RESULTS
In this section, we will answer the three research questions and
report on the results of the study defined in Section 4.

Figure 4: Reactions to the opened issues (over 6 months)

5.1 Are the CD Smells Detected by CD-Linter

Relevant to Developers?
During the observation period of 6 months, 64 projects reacted to
our issues (response rate of 74%), Figure 4 illustrates the reactions.
Overall, 53% of the project maintainers reacted positively to our
issues: 9% acknowledged the presence of a problem and are about
to solve it, and 44% fixed the reported CD smells. We have also
verified that the fixes were not reverted later and could not find
cases in which the reported CD smells were re-introduced.
Developers took on average 50 days to fix a CD smell, with a

maximum of 5.5 months and a minimum period of 1 hour. This
high variation is unsurprising for open-source projects because the
activity level or the commitment of contributors strongly depends
on each project. The mean resolution time for different kinds of
smells was 31 days for Fake Success, 55 days for Retry Failure, 43
days for Manual Execution, and 65 days for Fuzzy Version.
Looking at the negative cases, 9% of the issues were closed with-

out reactions (i.e., ignored issues) and 32% were rejected. Several
project maintainers that rejected issues provided us with reasons
why they want to keep the CD smell. We found other cases in which
developers rejected our issues simply because of a lack of trust in
automated issue-reporting tools. In the following, we describe the
reactions to each CD smell type (see Figure 4), the feedback we
received when the issues were rejected, and how we refined our
detection strategies based on the analyzed comments. We also re-
port the percentage of false positives that we found during the
assessment stage.

Fake Success. We found only one false-positive case and opened
27 issues that report Fake Success cases, achieving a response rate
of 70%. No issues were ignored, 10% of them were accepted, and the
CD smell was removed in 37% of the projects. 9 opened issues (47%
of the total) were instead rejected by the project maintainers. In
several cases, developers generally agreed on our reported violation
but decided to accept the CD smell nevertheless. Some developers
prefer that non-essential jobs may fail, for example, checks for out-
dated dependencies, execution of static analysis tools, or external
tools which might fail for unknown reasons. Other developers al-
low jobs, that are not fully implemented yet and, thus, should not
impact the final build status, to fail. These projects typically state
that they plan to remove the CD smell when the pipeline design
is completed. Another developer, while agreeing on the violation,
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did not fix the CD smell because allow_failure:true is recom-
mended for certain jobs that run static and dynamic application
security tests provided by GitLab. It is no longer necessary to use
this configuration flag explicitly (it has been moved to a template
and will be used implicitly through inheritance), but old tutorials
still describe it as a best practice. While failing the overall build
because of warnings raised by static analysis tools or errors in
external tools is a key CD principle [5], we completely agree that
projects should follow configuration recommendations of their CD
provider. CD-Linter recognizes these cases and does not report
them.

Retry Failure. We found 7 false positives for Retry Failure issues,
which corresponds to 16.7% of the validated sample. We reported
the remaining 19 smells with a return rate of 58% (the lowest rate
among all CD smell types). 9% of the maintainers confirmed the
existence of the problem and 55% removed the CD smell from the
configuration of their projects. Only 4 issues (36%) were rejected.
This CD smell seems to be introduced to “hide” flakiness instead of
solving it, thus, we decided to not modify our detection strategy.
One developer mentioned that she deploys her application to a
remote service that is randomly failing. Because the tool is out
of her control, she decided to automatically retry the job multiple
times hoping that it will succeed without breaking the overall build.

Manual Execution. Manual Execution is the category where we
found the largest percentage of false positives (26.2%), due to some
periodic deployment jobs that CD-Linter did not recognize. We
opened 16 issues and achieved a response rate of 81%. While 8% of
the reported CD smells were accepted and 38% were fixed, 31% were
ignored. Only 2 issues (15%) were rejected. In both cases, developers
agreed on the importance of detecting this CD smell, but they also
provided reasons for rejecting it. One of them set when:manual in
a job executed in a stage that is not fully integrated yet with the
rest of the pipeline. This can be addressed by allowing developers
to directly configure CD-Linter and ignore jobs that are not part
of the CD pipeline. The other developer rejected the issue because
of a lack of trust in an automated reporting tool. While this can be
a threat to the study, it does not constitute a problem in a usage
scenario where developers use the tool themselves.

Fuzzy Version. We only found 3 Fuzzy Version false-positive in-
stances, and we could open 24 issues achieving the highest response
rate (87%) among all CD smell types. 9% of the reported CD smells
were accepted and 48% fixed. While we cannot learn from the 9%
of the issues that were ignored, we used the comments from the
remaining 28% rejected issues to refine our detection strategy. Most
complaints concern the reports about tools for which the version
is left unspecified. In contrast to libraries, tools that are invoked in
the pipeline (e.g., tools that compute code coverage) should always
be updated to the latest version, especially because they might con-
tain security improvements. Furthermore, tools are dependencies
of the project rather than of the source code. Thus, in the case of
uncontrolled updates, such tools would not affect the outcome of
the build nor introduce errors, so we decided to incorporate this
feedback and exclude tools from the detection of Fuzzy Version.

Table 2: Detection precision for the four CD smells

CD Smell Type TP FP Precision

Fuzzy Version 454 107 0.81
Fake Success 213 0 1.00
Manual Execution 27 10 0.73
Retry Failure 57 0 1.00

Overall 751 117 0.87

Table 3: Detection precision for the Fuzzy Version subtypes

Type TP FP Precision

Missing Version 335 102 0.77
Any Upper Version 97 4 0.96
Only Major Version 20 1 0.95
Any Minor Version 2 0 1.00

RQ1 Summary:We received reactions from 74% of the projects.
53% of the project maintainers reacted positively to our issues,
either accepting (9%) or fixing (44%) the reported CD smells. In
the rejected issues, we received precious suggestions on how to
improve CD-Linter, which we incorporated whenever possible.

5.2 How Accurate Is CD-Linter?
Table 2 reports the detection precision of CD-Linter. As the table
shows, the detection precision varies between 73% of Manual Exe-
cution and 100% of Retry Failure and Fake Success, with an 81% for
Fuzzy Version. Looking at the results of different Fuzzy Version sub-
types, Table 3 indicates that the detection precision is the lowest
for the Missing Version category (77%), which, however, is the most
common one. Instead, when a version is not fully specified (i.e.,
Any Upper Version, Only Major Version, or Any Minor Version CD
smell), the CD-Linter accuracy raises to 95% or above.
In the following, we discuss false positives. As shown in Table 2,

we found no false positives for Retry Failure and Fake Success. Note
that this does not mean that CD-Linter would always be correct
in such cases because developers might use these options for a
specific, valid purpose.
For Manual Execution, false positives were mostly related to

cases where the job name, content, or even comments added to the
.gitlab-ci.yml file suggested that the job is related to a deploy-
ment activity that developers intentionally perform periodically,
and therefore manually trigger (e.g., issuing a release). Despite filter-
ing out jobs related to deployment, as explained in Section 3.4, we
still encountered unforeseen cases. Examples include a job named
test-prerelase (the typo in the job name made our filtering fail),
but also a job named push, which was pushing Docker images to
a repository (this case may or may not be fully automated). Also,
the names of several jobs with the when parameter set to manual
suggest that they should not be manually triggered. However, both
the implementation and a comment left there indicate that devel-
opers intentionally configured a manual job. Future work could
improve CD-Linter by using Natural Language Processing (NLP)
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techniques to analyze comments in CD configuration files to infer
the rationale of choices made by developers.
False positives of Fuzzy Version mostly relate to cases in which

dependencies for pipeline-related tools were lacking a version num-
ber. As a consequence of the preliminary analysis conducted with
developers in RQ1, we argue that libraries used in production code
should specify an exact version of a dependency, to avoid build
failures or introducing bugs. However, this may not be strictly nec-
essary for tools, because developers may want to always use the
latest version that have fixed bugs and enhanced features. We have
derived an initial list of such tools after the feedback from develop-
ers and exclude tools like coala [2] (rule-based linter), sphinx [40]
(documentation generation), and wheel [35] (packaging utility).
We estimated the recall of CD-Linter on a sample of 100

randomly-selected projects. Two authors individually inspected
the configuration files and agreed on the presence of 90 CD smells.
We applied CD-Linter to the same sample and could detect 85 of
the manually-identified incidents, achieving a recall of 94%. 3 false
negatives were Fuzzy Version smells. Two of them were not occur-
ring in script lines while the other affected a requirements.pip
file, a configuration file that is not considered by our tool. The
remaining 2 false negatives were Manual Execution smells. Those
smells were not detected by our tool because their names con-
tain deploy-related keywords. However, they were executed in
the stages metrics and build_unit_test. Section 3.4 established
name-based inclusion/exclusion criteria through inspecting a sam-
ple of projects, but it is not feasible to derive a simple heuristic that
can cover all cases. We believe that future iterations of CD-Linter
can remove these false negatives by considering other features of
the .gitlab-ci.yml (e.g., non-script lines in jobs) or other files
that are currently not supported, and by enabling developers to
configure their inclusion/exclusion criteria for job and stage names.

RQ2 Summary: CD-Linter has a precision of 87% and a recall
of 94%, with a perfect (100%) precision for Retry Failure and
Fake Success. The false positives for Manual Execution and
Fuzzy Version were caused by the current limitations of the
tooling and can be addressed in the future.

5.3 How Frequent Are the Investigated CD
Smells in Practice?

To understand the frequency of CD smells in practice, we analyzed
the latest snapshot of 5,312 projects (as described in Section 4.1).
Among them, 863 projects are either written in Java (and built with
Maven) or in Python and, therefore, qualify for an analysis of the
existence of CD smells in the wild, including Fuzzy Version, which
is the only language-specific smell. Note that 136 of the initially
considered projects were then deleted and were not available for
our analysis.
Table 4 illustrates the occurrence of CD smells in the analyzed

projects. We detected 2,874 instances of CD smells that affect 13%
of the projects (14% of the investigated owners). Fuzzy Version
is the most common CD smell (54.6%) and is present in 37.1% of
the analyzed projects. Fake Success and Retry Failure account for
22% and 18.5% of the identified CD smells respectively. While Fake
Success occurs in 5.4% of the projects, Retry Failure is present in

Table 4: CD smells in projects and owners
(# is “number of” and % is “percentage of” the analyzable instances)

Projects Owners

Smell Occurrences # % # %

Fuzzy Version 1,569 (54.6%) 320 37.1 242 37.0
Fake Success 633 (22.0%) 282 5.4 217 6.1
Retry Failure 532 (18.5%) 82 1.6 52 1.5
Manual Execution 140 (4.9%) 69 1.3 56 1.6

Overall 2,874 680 13.0 501 14.0

Table 5: CD smells across different .gitlab-ci.yml sizes
(# stays for “number of” and % is the percentage respect to the total)

.gitlab-ci.yml Size

Small Medium Long

Smell # % # % # %

Fuzzy Version 206 13.1 564 35.9 799 50.9
Fake Success 5 0.8 70 11.1 558 88.2
Retry Failure 2 0.4 5 0.9 525 98.7
Manual Execution 5 3.6 14 10.0 121 86.4

Overall 218 7.6 653 22.7 2,003 69.7

# Projects 67 9.9 208 30.6 405 59.6

1.6% of them. 4.9% of the CD smells were Manual Execution and
affected 69 projects (1.3% of the total).

Humble and Farley advocate that a CD pipeline should be com-
posed of at least three separate stages, i.e., compile, test, and de-
ploy [20]. However, organizations can call those stages differently,
introduce additional stages, and they can define multiple jobs
within one stage. This begs the question of whether more com-
plex pipelines are also more prone to contain CD smells, which
would make a tool like CD-Linter even more relevant. A qualita-
tive insight from our manual analysis of Section 5.2 indicated that
longer .gitlab-ci.yml files seem to contain more complex CD
pipeline definitions. We decided to split the analysis and discuss
the different subgroups separately.
We distinguish three groups, small, medium, and long, and define

these categories through the first and third quartile over the length
distribution of all .gitlab-ci.yml files. Small .gitlab-ci.yml
files have up to 15 lines (9.9% of the smelly projects have them),
while a long .gitlab-ci.yml file is of at least 55 lines (59.6% of
the files with CD smells are long). The other projects (30.6%) are
medium. In Table 5, we illustrate how CD smell instances are spread
across the different clusters and it is immediately clear that the clus-
ter of long .gitlab-ci.yml files contains most of the CD smells.
The cluster with small .gitlab-ci.yml files includes 7.6% of the
detected CD smells, with 13.1% of the total Fuzzy Version smells,
3.6% of the Manual Execution incidents, and a few of the other
CD smell types. Projects with medium .gitlab-ci.yml sizes con-
tain 35.9% of the Fuzzy Version smells, around 10% of the Fake
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Table 6: Break-down of Fuzzy Version smell
(YAML is .gitlab-ci.yml, POM is pom.xml, REQ is requirements.txt)

File Type

Category YAML POM REQ Total

Missing Version 684 (48.4%) 120 (8.5%) 609 (43.1%) 1,413
Only Major Version 0 (0.0%) 6 (46.1%) 7 (53.9%) 13
Any Minor Version 0 (0.0%) 0 (0.0%) 3 (100%) 3
Any Upper Version 2 (1.4%) 0 (0.0%) 138 (98.6%) 140

Overall 686 (43.7%) 126 (8.1%) 757 (48.2%) 1,569

# Files 169 (44.6%) 43 (11.3%) 167 (44.1%) 379

Success and Manual Execution problems, and 1% of Retry Fail-
ure, achieving 653 smells (22.7% of the total). The last cluster with
long .gitlab-ci.yml files contains the majority of the identify
CD smells (69.7%). 88.2% of the Fake Success smells, 86.4% of Man-
ual Execution incidents, and even 98.7% of the Retry Failure affect
this cluster. More than half of the Fuzzy Version instances affect
long .gitlab-ci.yml files. Within this cluster, we find that 40%
of the projects have Fuzzy Version smells, 17% have Fake Success
incidents, 6% are affected by Retry Failure and 4% contain Manual
Execution. Overall, 31% of the projects are affected by at least one
CD smell. While all other CD smells have more occurrences than
Fuzzy Version, the density of Fuzzy Version in long files is similar
to the density in the whole dataset (see Table 4).
Being the most common smell, we further analyzed Fuzzy Ver-

sion and investigated its sub-categories concerning the different
files that it can affect (Table 6). Overall, the Fuzzy Version incidents
are mainly detected in requirements.txt files. Those files were
affected by all Any Minor Version and (almost all) Any Upper Ver-
sion that we found, while Only Major Version is also present in
several pom.xml files. Missing Version is the most frequent Fuzzy
Version smell (1,413) and it is spread across the different files. While
.gitlab-ci.yml has the highest number of Missing Version occur-
rences (48.4% of the total), this Fuzzy Version type has 609 and 120
instances in requirements.txt and pom.xml respectively. Based
on these results, Fuzzy Version very frequently affect files differ-
ent from .gitlab-ci.yml. Thus, also CD pipelines that are not
so complex (i.e., small .gitlab-ci.yml) can contain several Fuzzy
Version incidents, which explains why this CD smell is not only
concentrated in long configuration files (Table 5).

RQ3 Summary: The most frequent CD smell is the Fuzzy Ver-
sion (54.6% of the instances). Overall, CD smells affect 13% of
the analyzed projects and 14% of the owners, mainly occurring
in long configuration files.

6 THREATS TO VALIDITY
Threats to construct validity are related to possible imprecisions in
our measurements. They can be mainly related to possible mistakes
in theCD-Linter’s implementation, beyond what we could discover
by testing it. The extensive manual evaluation performed in RQ2
mitigates this threat. In addition, the results of RQ2, as well as the

feedback provided by developers (RQ1) gave us indications on how
to make CD-Linter more accurate.
Threats to internal validity concern factors, internal to our evalu-

ation, that could influence the results. One threat is the subjective-
ness of the manual validation of detected smells in RQ2 (precision
and recall). To limit this threat, we employed two evaluators, which
discussed and resolved the cases of disagreement. Also for the cod-
ing of comments that developers posted on opened issues (RQ1),
having two coders limited the subjectiveness of the results. The
reactions we got in RQ1 and the results of RQ3 may depend on
the characteristics of the analyzed projects. In particular, projects
with different degrees of maturity may adopt CD pipelines of differ-
ent complexity, and may or may not adhere to CD principles and
good practices. We have mitigated this threat through the project
selection criteria illustrated in Section 4.1.
Threats to external validity concern the generalization of our find-

ings. While we are aware that GitLab is not as popular as GitHub,
its adoption and number of repositories are increasing. As explained
in Section 4.1, GitLab gives the advantage of analyzing projects
using the same CD infrastructure. Besides considering a sample
(though relatively large) of projects, our evaluation is limited to
GitLab configuration files,Maven builds, and Python dependen-
cies. However, the detection principles explained in Section 3 can
be applied to other pieces of technology and the underlying con-
cepts would not change. In this paper, our purpose was to study the
reaction of developers to the detection of CD smells, rather than
coping with any possible technology.

7 DISCUSSION
The empirical evaluation of CD-Linter, especially the develop-
ers’ feedback collected in RQ1, allowed us to distill useful lessons
learned and formulate implications for future research in this area.

Linters Are Fast and Can Support the Pipeline Definition. Undoubt-
edly, a paramount advantage of linters is that they are fast and
that they can already be applied in early development phases. Our
experiments have shown that CD-Linter can analyze configuration
files from thousands of projects in the order of seconds. Many of
the contacted developers have acknowledged (and often fixed) CD
smells that we have pointed out in their projects. We can conclude
that using linters to support the pipeline definition and to catch
smells early on is, indeed, a promising research direction.

Issue Reporting Is Useful, but It Must Be Carefully Dosed. One prob-
lem we encountered in our empirical evaluation is that some de-
velopers are irritated by (and tend to discard) automatically-posted
issues. While we tried to elaborate on the opened issues that these
were the result of a manual review process, some developers still
considered our issues a sort of spam, even when the suggestion was
meaningful. Related research shows promising results when bots
are used to aid software engineers [24, 25], but we found that devel-
opers seem to be sensitive in the context of issue trackers. Despite
some negative reactions, our efforts were generally well-received
by developers though. To mitigate the negative effect described
above, one author followed-up on all comments on the opened
issues, to explain the purpose of CD-Linter, justify the opened
issue, and -most importantly- show that there was a human in the
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loop. Overall, involving open-source developers in our research
was valuable for both sides, but it was crucial to take the time and
talk to developers to show respect and emphasize the importance
of the research.

Linters Are Intrinsically Imprecise. A common issue of linters is
their intrinsic imprecision. Not every deviation from an advocated
principle is a smell and, often, a violation can only be assessed
when the specific context is being considered. Such decisions have
to be taken on a case by case basis for a project and go beyond the
scope of static analysis tools. This phenomenon is not specific to
CD-Linter though, low precision of static analysis tools has already
been reported as an adoption barrier multiple times [4, 23, 48]. In
our case, CD-Linter seems to balance precision and recall well.
Despite many rejected smell reports, the number of fixed reports
and the generally positive feedback that we have received from
developers indicate that developers appreciate the effort and that
tools like CD-Linter can have a positive effect on CD practices.

Long and Complex CD Configurations Are Often Smelly. While
we find relatively few instances of the CD smells in simple con-
figuration files, the density increases with the length (and com-
plexity). One explanation could be that developers have to cope
with phenomena such as flakiness, the need for manual job trig-
gers, accepting failures from some jobs, or special requirements for
dependency management. For such reasons, we expect CD-Linter
to be particularly beneficial for projects with a complex pipeline.

Findings Should Be Reported Quickly. One of our lessons learned
from RQ1 was that identified issues need to be reported timely,
otherwise the issue may disappear or not be valid. In some cases,
the CD smell was resolved already by the time we were done with
validating it, so the reported issues were unnecessary. Generally,
timely reporting is essential in case of issues that involve line num-
bers because these are fragile due to frequent source code changes
and can be soon outdated. In these cases, it might be helpful not to
link to the latest version in the repository, but to the exact commit
that has been analyzed for the issue.

Overall, this paper shows a promising future for linters of CI/CD
pipelines. Future linters can extend the ideas in several ways, for
example, not only considering dependency versions but also other
versioned entities in the build configuration, like build plugins or
container images, in which the build is run. The results in this paper
emphasize the need for more research on linters in this domain.

8 RELATEDWORK
This section describes related work about bad practices and their
identification in CI/CD and infrastructure-as-code scripts.

8.1 Bad Practices in CI/CD
In their landmark books about CI [5] and CD [20], previous re-
searchers outlined wrong decisions while applying CI/CD. The
lack of build automation and project visibility together with the
inability to create deployable software are a few examples of those
practices that prevent organizations from achieving the expected
benefits. Duvall collected these and other bad practices in a cat-
alog of 50 anti-patterns (and their corresponding patterns) that

occur during several steps of a CI/CD pipeline [29]. Zampetti et al.
[49] empirically characterized CI bad practices, finding commonal-
ities but also differences with the ones advocated by Duvall [29].
Anti-patterns also occur because developers face several barriers
when adopting CI/CD [18]. For instance, developers need to debug
failures occurring on a remote server and maintain complex build
infrastructures.
The catalogs of anti-patterns and the studies discussed above

constitute the foundations of our work, as we use them to derive
principles for which CD-Linter detects smells.

8.2 Detection of Smells in Development
Workflows

Several researchers have proposed approaches to automate the
identification, and, in some cases, the removal of problems arising
in build and, more in general, Infrastructure as Code (IaC) scripts.
Gallaba et al. [9] developed an approach for detecting and elim-

inating misuses such as the presence of unused properties and
bypassed security checks in Travis-CI build scripts. While we also
statically analyze configuration files, our approach detects those
anti-patterns that are violations of CI/CD principles.
Deviations from such principles have been also investigated by

Vassallo et al. [44]. They proposed CI-Odor, a tool that analyzes
artifacts produced during CI such as logs and revisions to detect
anti-patterns (e.g., builds become slow, developers work on feature
branches for a longer period) that occur over time and cause a CI
decay. Differently from this work, we focus on the anti-patterns
that can be statically detected in configuration files.
Troubleshooting build failures is challenging and often causes

delays in the delivery process. A previous work [47] has proposed a
taxonomy of build failures based on their root causes. Researchers
have implemented solutions that automatically repair some of these
build failure types [27, 42]. Another tool [46] improves the un-
derstandability of build failures through log summarization. De-
spite those approaches, developers still allow failures [8, 10]. This
strengthens our motivation for including Fake Success in our linter.
Finally, other related works are devoted to the detection of smells

in IaC scripts. Sharma et al. [38] leveraged best practices associated
with code quality management to assess configuration code quality
and derived a catalog of configuration smells for IaC scripts devel-
oped in Puppet. While those smells are more similar to traditional
code smells (i.e., they concern with maintainability and understand-
ability of Puppet code), CD-Linter detects smells specific to the
CI/CD configuration where developers violate principles. Rahman
et al. [36] implemented a linter that detects seven types of security
problems in IaC scripts. Their work is complementary to ours as it
deals with a very specific category of problems related to IaC scripts.
Many of their security smells can also occur in CI/CD pipelines.

9 SUMMARY
Previous work has introduced generic [44] or specialized [9, 36]
linters that can help developers to improve their CD configurations.
In contrast to previous work on CI smells that relies on historical
information [44], in this paper, we proposed CD-Linter, a static
analysis tool able to identify four types of CD smells in CD pipelines,
right when they are introduced in the pipeline configuration. Our
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empirical evaluation has shown that the supported CD smells are
relevant in practice, that CD-Linter is accurate, and that the sup-
ported smells frequently occur in the wild. Linters generally suffer
from many false positives, sometimes up to 90% and more [48],
but CD-Linter reaches a precision of 87% and recall of 94%, which
represent acceptable results and a good compromise. In a large set
of 5,312 projects, we found that 31% of pipelines with long config-
uration files are affected by at least one instance of the detected
smells. The empirical evaluation of CD-Linter and the developers’
feedback that we have received for RQ1 illustrated the usefulness of
CD-Linter and allowed us to distill useful insights that can foster
the adoption of CD-Linter in practice and stimulate research on
similar tools to further advance this area.
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