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RÉSUMÉ

Les coraux mous sont des espèces marines flexibles se déformant à l’effet des écoulements
d’eau. Au passage d’une vague, alors que le tronc principal vacille, un mouvement particulier
est observé: les branches se mettent à vibrer rapidement, avec de petits déplacements, et
transversalement à la direction de l’écoulement. Dans ce mémoire, nous expliquons l’origine
de ces vibrations et cherchons leur impact sur les coraux mous.

Le critère de Glauert-den Hartog étant invalidé pour une section de branche de corail idéalisée,
et les fluctuations de l’écoulement d’eau de mer ayant une fréquence de pic assez petite,
nous avançons que les vibrations induites par vortex (VIV) sont la cause la plus plausible
du mouvement rapide des branches. Par ailleurs, le fait que les coraux mous soient des
espèces se nourrissant en filtrant l’eau de ses particules comestibles, nous faisons l’hypothèse
que ces vibrations peuvent influencer leur taux d’alimentation. À l’aide d’un code maison
d’éléments finis d’interaction fluide-structure, en plus de scripts codés en Python, nous
avons simulé les trajectoires de particules sphériques autour d’un cylindre circulaire, puis
calculé le taux de capture. Nous avons trouvé que, lors de la synchronisation de fréquence,
les cylindres vibrants capturent jusqu’à 40% plus de particules que ceux fixés. Ainsi, les VIV
augmenteraient probablement le taux d’alimentation des coraux mous et leur offriraient une
meilleure nutrition.
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ABSTRACT

Soft corals are flexible marine species that deform when exposed to a flow of water. Under
the action of a wave surge, while the stem sways back and forth at the low frequency of
the wave, a yet unreported motion takes place: the branches vibrate at high frequency, with
small amplitude, and transverse to the water flow. The goal of this thesis is twofold: to
explain the origin of these vibrations, and to find their impact on soft corals.

Because the Glauert-den Hartog criterion is unfulfilled for an idealised coral branch, and
since the peak frequencies of the seawater disturbance are too small, we consider vortex-
induced vibrations (VIV) the only remaining probable cause of the observed rapid branch
motion. Given that soft corals are sessile passive filter feeders that catch particles brought
by currents, we hypothesise that these vibrations may affect their feeding rate. Using an in-
house monolithic fluid-structure interaction (FSI) finite element solver along with a Python
code, we simulated trajectories of spherical particles around a circular cylinder and calculated
the capture rate. We found that vibrating cylinders capture up to 40% more particles than
fixed ones at lock-in. Thence, VIV plausibly increase the rate of food capture and offer soft
corals better nutrition.
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CHAPTER 1 INTRODUCTION

In the very beginning of the Flow-Induced Vibration introduction, Robert D. Blevins portrays
a gloomy, though realistic, situation of the damage fluid-induced instabilities engender to
human constructions [15]. Engineers fear that fatigue and failure take upon bridges, stacks,
power transmission lines, aircraft control surfaces, offshore structures, heat exchangers, and
petroleum risers [16]. This constant apprehension about the presumed harmful vibrations,
though, seems to be unique to humans, and absent in the living nature. Soft corals, such as
the bipinnate sea plume Antillogorgia bipinnata, are found to live in peace with fluid-induced
instabilities. Under a sea wave action, soft coral colonies deform, bend, and streamline with
the flow, exhibiting a gentle back and forth swaying motion. Yet, as the flow speed peaks,
the branches start to vibrate rapidly with low amplitude [17]. This unusual rapid motion is a
mystery which has not been reported in the literature, at least to the extent of the content we
looked into. Why do soft corals have this peculiar vibration? This plain question certainly
holds a complex and intermingled answer from multiple scientific domains.

The vibrating soft coral constitutes a fluid-structure interaction (FSI) problem: it deals with
a flexible structure (soft coral branches) within a fluid flow (water currents) that induces an
excitation. The field of FSI flourished in the last century with a focus globally on industrial
applications, and has recently found a place in the realm of the living nature [18,19]. Studies
on the streamlining of slender beams under steady currents [20], the swaying motion of
thin plates in oscillatory flows [14, 21], and the modal shapes and frequencies of branching
structure [22–24] furthered our understanding of the motion of slender species in land and sea.
Soft corals dynamics display many of these features, but the rapid motion of the branches
is still an intriguing element that we do not have a clear answer for. We intend to provide
the scientific community a useful resource on the vibrational biomechanics of soft corals and
similar biological organisms in general.

Thinking of soft coral branches as slender flexible cylinders, we have reasons to believe that
vortex-induced vibrations might be implicated in this rapid motion. In fluid dynamics, vor-
tices are a core element for understanding flows [25–27]; in nature, they are a key mechanism
in the lives of species. There is evidence that black fly and mosquito larvae in water separate
the flow with their body to create vortices and bring more food up to their fans [28, 29]. In
terrestrial plants, when a raindrop splashes against spores in a leaf, a vortex ring appears
and disperses them along farther places [30]. As for soft corals, since they feed upon par-
ticles brought by the water flow, the vibrations caused by vortices may have an impact on
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food capture and nutrition. Biologists having long witnessed the role of hydrodynamics in
the plasticity of soft corals [31, 32], hence fluid mechanics would bring a part of answer to
their assumptions. We wish this thesis to bridge mechanics and biology, and that our results
will offer biologists insight to help decipher unexplained, or even unexplored, phenomena
associated with soft corals, and their relatives more broadly.

Moreover, the study of living systems to fulfill one’s curiosity is not useless in itself, and
might reveal series of inventions. In fact, “some of the highest achievements of the human
mind in science [...] have indeed been curiosity-driven,” asserted Michael P. Païdoussis in
his Fluid-Structure Interactions [33]. Species have always found solutions to cope with nat-
ural constraints and preserve their existence. As engineers, it is then wise to pick these
solutions and transpose them in concrete applications. We now witness a climbing trend
on designing flexible beams and flapping flags profitting from instabilities to produce en-
ergy [34–38], bioinspired morphing blades for wind turbines to increase power efficiency [39],
and underwater robotic fish to autonomously explore water environments [40]. We hope
that mechanicians and engineers shall find in the vibrating soft coral problem a source of
inspiration for industrial devices and energetics technologies, as well as a new paradigm for
biomimetics applications.

1.1 Literature review

The literature review is threefold. First we dive into the basic biological concepts of soft
corals. Then we present fluid-induced instabilities that usually take place in marine envi-
ronment and could potentially give rise to the soft coral vibrations. Finally, we review the
physics of filtering and particle collecting by stating theoretical, numerical, and experimental
works.

1.1.1 Biology of soft corals

Definition and classification

Soft corals are marine species that belong to the class Anthozoa, together with stony corals
and sea anemones [41] (Figure 1.1). They live attached to the sea bed, stuck to the same
place. In biology, such species are known as benthic (living in the sea bed) and sessile
(non-motile).

Species of the class Anthozoa are composed of a base unit organism called polyp, covering
their entire body (Figure 1.2). The polyp is tubular, and has a mouth, a digestive system,
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Figure 1.1 Examples of soft corals. Left: swollen knob candelabrum (Eunicea mammosa) [2].
Photo taken by © Charles G. Messing, reproduced with permission. Right: spiny sea rod
(Muricea elongata) [3].

and tentacles [42]. In its early life, it starts as a (planula) larva, swimming in the sea until
it hits a coral substrate and sticks to it. As it grows, it calcifies the region of contact, and
fastens with the coral substrate. It becomes a zooid, a polyp that is henceforth an integral
part of the coral [43].

A major subclass of Anthozoa is the group of corals with flexible skeleton: Octocorallia.
They are commonly referred to as octocorals, and are named as such because they all have
polyps with eight tentacles [42], as it could be noticed in Figure 1.2. Taxonomists distinguish
three families of octocorals: the blue coral, of order Helioporacea (8 species), sea pens of
order Pennatulacea (232 species), and soft corals and gorgonians (also called sea fans, rods,
and whips) of order Alcyonacea. This latter order is the main representative of octocorals
with more than 3400 species [44]. Old classifications emphasised the difference between soft
corals and gorgonians [45], because soft corals do not have an internal structure, contrary to
gorgonians. Yet, recent classifications have faded the boundaries between these two categories
as the number of discoveries of species in Alcyonacea has been accumulating [42]. In this thesis
we shall, accordingly, term all species of Octocorallia ‘soft corals’ (except if the difference is
intended), for we consider softness, or structurally speaking flexibility, the main biological
property of interest in the ensuing mechanical investigation.
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Figure 1.2 Close up picture of polyps covering a sea fan. They have eight tentacles, each of
them deploying pairs of nematocysts (stinging cells) opposite to each other [4] (Photo credits
© Jurgen Freund, with permission).

Nutrition

Soft corals are passive filter feeders. Like other sessile species, they wait passively for water
currents to filter their particulate nutritional content with their polyps. They require nitrogen
and phosphate components for proper growth [43]. Example of food particles that soft corals
feed upon are detritus and dissolved organic matter, phytoplankton (microalgae), protists
(e.g. dinoflagellates), larvae (e.g. nauplii), copepods, and small zooplankton (∼ 300 µm) [46].

The feeding process comprises four phases. When an edible particle comes close to the polyps,
tentacles stretch and catch it (encounter phase). To keep the particle retained, corals usually
activate their spines to pierce and neutralise it, or secrete adhesive mucous substance to
retain it (retention phase). A successive encounter and retention event is referred to by the
term ‘capture’. The next step is to bring the particle down to the polyp’s mouth (handling
phase), then ingest it (ingestion phase) [47].

If a coral relies entirely on ingested food, it is called heterotrophic. Conversely, phototrophic
corals carry in their tissue zooxanthellae [43], green microalgae symbionts, and photosynthe-
sise their own organic compounds from light. Finally, mixotrophic corals benefit from both
feeding modes alike [42]. In the West Indies, although most soft corals are mixotrophic, they
do not always make profit of the two feeding modes. For instance, soft corals of deep waters
receive hardly any light, hence do not rely much on photosynthesis. This is also the case
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for soft corals in turbid waters, because of suspended sand and other fine granular matter
screening light.

Besides, being mixotrophic is a powerful asset that soft corals possess, because they can
shift from one feeding mode to the other if some external stress impinges on their habitat.
In the San Blas achipelago, Panama, Baker [48] transplanted (scleractinian) corals of deep
waters into shallow-water sites. He found that corals regulated their microalgae distribution
to fit the light abundance in their new location. This response of the soft coral is known as
biological plasticity.

Plasticity

As their names suggest, soft corals have diverse morphologies (i.e. forms and shapes), from
long straight tubes (sea whips) to bushy structures (sea plumes) and flat sieves (sea fans).
This diversity continues even within the same species relative to their habitat. For example,
the species Antillogorgia bipinnata in deep waters has longer branches and larger polyps
than its counterpart in shallow waters [49]. Cadena and Sanchez [50] propose that having
long branches would help deep-water corals get as close as possible to the sea surface and
benefit from light, as well as reach higher food concentration above the boundary layer. By
this mean, soft corals are plastic because they are able to acclimatise to their surrounding
environment, i.e. change their morphology into a more suitable one [51,52].

As another manifestation of plasticity, Wainwright and Dillon [31] measured the orientation of
sea fans Gorgonia ventilana and Gorgonia flabellum while growing (Figure 1.3). They pointed
out that these corals have a preferred growth direction, perpendicular to the local speed. By
facing the water current and exposing a larger area, sea fans maximise the number of particles
intercepted, hence sieve food better [32]. Furthermore, Jeyasuria and Lewis [53] measured
the Young’s modulus of several soft corals, and found that deep water species are stiffer than
those of shallow waters. In fact, in waters with permanent turmoil and disturbance, flexibility
is a valuable property for soft corals because it allows deformation and reconfiguration, hence
reducing hydrodynamic drag [54]. Multiplying branches and promoting a bushy structure is
also a survival strategy that deep-water corals seek when transplanted in shallow waters [55].

While soft corals show plastic ability to get accustomed to their local environmental condi-
tions, they cannot stand the increase of temperature, water acidity, and many other negative
changes in climate that humans have brought about due to intense maritime transport,
chemical spills, and agricultural runoffs, to name but a few [56].
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Figure 1.3 Sea fans facing the direction of the water current [5]

Benefits, threats, and glimmer of hope

Corals have a primordial role in the marine ecosystem. They offer shelter and home to several
benthic species (e.g. small fish, urchins, lobsters, worms, etc.) [57]. They also protect coastal
areas from natural disasters. For instance, coral reefs deflect the direction of tsunami waves
and absorb their energy, hence reduce their height [58]. Economically, they provide regions
with substantial income through many goods and services such as tourism, shoreline protec-
tion, and fisheries. In 2003, the annual net benefits, from these three activities combined,
totalled ∼ $30 billions (US$, 2010) [59]. Unfortunately, many of these advantages are fading
away because of the heavy loss and damaging of coral reefs.

Corals rely entirely on the surrounding water to adjust their body temperature (poikilothermic
organisms) [43]. Being sensitive to temperature changes, corals bleach under a thermal stress,
i.e. lose their zooxanthellae and become white and pale [60]. Figure 1.4 shows bleaching of a
part of a soft coral. A temperature increase (or decrease) as faint as 1−2°C above (or below)
usual temperature extrema in tropical oceans may spark hot (cold) water bleaching [61].
Coral bleaching is all the more alarming in regions where the water stagnates and conserves
heat (e.g. ‘Give Up’ reefs [62]).

Additionally, as the ocean absorbs more and more emitted greenhouse gases and acidifies,
corals might face growth disturbances. The calcification rates of corals would drop down
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Figure 1.4 A bleaching soft coral (Sinularia polydactyla) (reproduced from [6])

by 57% if the concentration of carbon dioxide (CO2) doubles, and by 85% if it triples [63].
With this shortage in production of the main component of coral skeletons they become
shorter, hence cannot protect themselves from outside endeavours anymore (e.g. predators,
storms [43,64]).

Finally, curio dealing, poaching, and overharvesting spare not the coral fauna. Soft corals
like the organ pipe coral Tubipora musica and blue coral Heliopora coerulea have their charm
exploited for jewelry and ornament commerce, in a complete violation of the Convention on
International Trade in Endangered Species (CITES) [42].

These factors have put nearly 75% of the world’s coral reefs under threat [65]. Yet, within
this ecological crisis, many actions have been taken to protect reefs and preserve marine
ecology. A rewarding step has been to establish Marine Protected Areas (MPAs), which are
regions restricting destructive activities, hence promoting biodiversity and aquatic prosperity.
By 2011, there were 2679 MPAs covering 27% of the coral reefs around the globe [65]. Local
communities and social actors also provide a sustainable framework and healthy reef use
through the creation of Locally Managed Marine Areas (LMMAs). Last but not least, some
researchers think about coral farming as a worthwhile solution to regain impaired reefs [66].
Cultivating corals ex situ and transplanting them in the ocean would further reef restoration
and recover the ecological balance. In order to implement an adequate coral farming, it is
necessary to understand the biological and physical properties for coral growth and survival.
Thus, we propose in this project to examine how hydrodynamics and soft coral structure
combine to ensure optimal food particle interception, hence an appropriate growth.
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1.1.2 Flow-induced vibrations

A flexible structure is susceptible to vibrate when a fluid flow crosses over it. The resulting
interactions have been well identified, and large amounts of data have been collected [67].
Though, given the variety of flow conditions and body shapes, it is important to gather inter-
actions under categories sharing similar mechanical features, so that engineers can profit from
the prior knowledge when tackling a new problem. Naudascher and Rockwell [1] came with
a methodology to assess a flow-induced vibration, summarised in Table 1.1. One should first
pinpoint body and fluid oscillators. A flexible structure, or flexibly-mounted rigid structure,
are both examples of body oscillators; gravity waves or acoustic signals that represent fluid
oscillators. After that, the resulting vibration is classified into three categories based on the
source of excitation. If the upstream flow has fluctuating velocities or pressure, the vibration
is an extraneously-induced excitation (EIE). If a fluid instability drives the body oscillations
(e.g. Bénard-von Kármán instability, which forms vortices in the wake), then the motion is
an instability-induced excitation (IIE). Finally, if the fluid-dynamic forces on the body grow
while it oscillates, the motion is self-excited and classified as a movement-induced excitation
(MIE). Because of their complexity, some fluid-structure interactions may involve both fluid
and body oscillators, as well as two or three types of excitation altogether [1].

excitation oscillator
body fluid

EIE turbulence buffeting acoustic noise
IIE vortex shedding impinging shear layer
MIE flutter oscillating shock front

Table 1.1 Classification proposed by Naudascher and Rockwell [1]. After identifying the
oscillator (body, fluid, or both), the motion is either an extraneously-induced excitation
(EIE), an instability-induced excitation (IIE), a movement-induced excitation (MIE), or a
mix of them (inspired from [1]).

Extraneously-induced excitation

If a surface wave is regular (i.e. has a specific frequency) and passes over a structure, this
latter sways with the same frequency. In reality, though, the sea surface elevation is irregular
and comprises a wide range of frequencies. In response to this spectrum of surface waves,
the structure buffets, hence the resulting motion is classified as an extraneously-induced
excitation [1]. More generally, the power density spectrum also depends on the direction of
a surface wave, in addition to its frequency.
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Each region in the ocean has a specific spectral density (of surface elevation). The most
popular models that reliably describe spectral densities are the Pierson-Moskowitz and the
Joint North Sea Wave Project (JONSWAP) spectra [68]. The Pierson-Moskowitz spectrum
is general for fully developed wind seas, and has a peak frequency fpeak inversely proportional
to the wind speed Uw [69]

fpeak = 0.14 g

Uw
, (1.1)

where g is the gravitational acceleration. The JONSWAP spectrum extends the Pierson-
Moskowitz spectrum and fits the measurements in the North Sea [70]. Its peak frequency
is

fpeak =
(
gxf

U2
w

)−0.33
g

Uw
, (1.2)

where xf is the fetch of the blowing wind. These models are also adopted in the West Indies,
especially under hurricanes. Esquivel-Trava et al. [71] measured the spectral densities under
14 hurricanes in the Caribbean Sea and the Gulf of Mexico, in different directions, and
found that the Pierson-Moskowitz spectrum fitted the best their measurements, with a peak
frequency fpeak between 0.1 and 0.2 Hz.

Movement-induced excitation

Galloping is a movement-induced instability that arises for short bluff, non-circular (e.g.
prismatic, with sharp angles) bodies, such as bridge decks and iced electric wire conductors [1,
67]. The frequency of motion is usually slow, and the body oscillates with large displacements.
If the body put under the flow has lift and drag coefficients CL and CD changing with the
angle of attack α, the quasi-steady state theory states that once

dCL

dα + CD < 0, (1.3)

galloping arises. Inequality (1.3) is known as the Glauert-den Hartog criterion.

The fluidelastic instability is another movement-induced excitation appearing if structures
are arranged close to each other, perpendicular to the flow. Two cylinders put side-by-side
have a combined vortex shedding if the centre-to-centre separation space is less than 1.4
diameters [15]. If the separation space is between 2 and 3 diameters, they have a bistable
asymmetric shedding, and between 3 and 4 the vortex shedding becomes coupled. These sit-
uations generate synchronised vibration that causes relatively important displacements [72].
A separation space above & 4 have no effect on the cylinders, and each of them observes an
independent vortex shedding [15].
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Instability-induced excitation: Vortex-induced vibrations

If fluid particles rotate around a common centre, the motion is said to have a vortex mo-
tion [25]. The vorticity is the measure of the angular velocity in the fluid. It is always
present in real fluids around a body, because fluid particles adhere to the body surface and
shear with those moving close to them, creating a velocity gradient (hence vorticity). When
the Reynolds number Re is small, no vortex appears even with a non-zero vorticity. As
the Reynolds number increases, two whirls (vortices) rotating in opposite directions form a
recirculation region in the rear of the body [73]. This whirling zone oscillates starting from
Re ≈ 20 [74], and breaks into vortices that are shed periodically beyond Re ≈ 47, forming
the von Kármán vortex street [15]. Between Re = 47−150, the von Kármán vortex shedding
is laminar, as pictured in Figure 1.5, and becomes slightly turbulent above Re ≈ 150 [15].
At Re ≈ 180 − 194 vortices deform spanwise and transition into a three-dimensional shed-
ding [73,75].

Vortices are shed periodically with a frequency fv proportional to the upstream flow ve-
locity U0 and to the inverse of the characteristic length of the object D. The constant of
proportionality is the Strouhal number

St = fvD

U0
, (1.4)

which depends on the Reynolds number. The lift applied on the body is subsequently pe-
riodic, pushing the body upwards and downwards, which results, if the body is elastic, in
vortex-induced vibrations (VIV). From this perspective, VIV are classified as an instability-
induced excitation according to Naudascher and Rockwell [1].

Vortex-induced vibrations have received extensive amount of research. Among the earliest
inquiries into the link between the vortex shedding and body motion were the experiments

Figure 1.5 Pathlines showing a von Kármán vortex street in the wake of a fixed circular
cylinder [7].
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of Bishop and Hassan [67, 76], in which they forced a circular cylinder to vibrate at an
imposed frequency f . They found that when f approaches the vortex shedding frequency
fv, the body and wake oscillations synchronise, and the hydrodynamic forces amplify, in a
comparable manner with a harmonic oscillator [76]. They coined this phenomenon lock-in.
Feng reported the same amplification in the transverse span and phase angle of a cross-
flow restricted motion of circular and D-shaped cylinders [77]. The largest amplitudes are
obtained for the lowest products Mζ of the mass number of the body M and the damping
ratio ζ [78].

At lock-in, the shedding frequency sticks to the natural frequency of the body fv ≈ fn, and
the Strouhal number becomes equal to the inverse of the reduced velocity, defined as

Ur = U0

fnD

(
≈ 1
St

at lock-in
)
. (1.5)

Since St ∼ 0.15− 0.20 for circular cylinders at moderate Reynolds numbers [79], the lock-in
happens at reduced velocities of Ur ∼ 5− 7.

Unlike rigid structures, flexible cylinders with multiple natural frequencies have each of their
modes peaking for a range of critical reduced velocities. Tensioned cables can have as many
excited modes as 8 for the cross-flow vibration and 12 for the in-line vibration [80]. If
they are slender enough, they exhibit travelling waves when they have free endpoints, and
standing waves when they have pinned endpoints [81, 82]. A complex mixture of these wave
propagation manners occurs when a finite flexible structure is put under a shear flow [83]. A
flexible cantilever, on the other hand, observes a second large tip amplitude for Ur ∼ 20 [84],
and the more it bends, the larger the excitation range of reduced velocities it exhibits [85].

Phenomenological models of VIV are important in applications, since they display the main
fluid-structure dynamics as in real experiments and numerical simulations with much lower
cost, and equally importantly, unveil the fundamental aspects of this instability. According
to the classification of Païdoussis et al. [67], the types of VIV models are (i) forced system
models, (ii) fluidelatic system models, and (iii) coupled system models. In the first type, the
lift FL is harmonic and forces the motion of the body under the vortex shedding frequency

FL = 1
2ρfU

2
0DCL sin (2πfvt) , (1.6)

with the lift coefficient CL being constant, proportional to the amplitude of the measured
fluctuating lift coefficient. If we denote by y the transverse displacement of the solid, the
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forced system model reads

(ms +mf)ÿ + (rs + rf)ẏ + hsy = FL, (1.7)

withm being the mass, r the damping, h the stiffness, and the subscripts (.)s and (.)f referring
to the solid and the fluid respectively.

Beyond the forced system models, fluidelastic models consider a lift varying with the solid
motion through either global parameters (e.g. maximum amplitude A = maxt y(t), reduced
velocity Ur) or local, temporal variables (e.g. vertical displacement y and its temporal deriva-
tives ẏ and ÿ).

These previous models are restricted to harmonic oscillations and do not illustrate how
wake dynamics evolve and act upon the body [67]. The coupled system models rectify
this limitation and take the lift force as an unknown, coupled with the equation of the solid
motion. The basis of this idea came from the work of Bishop and Hassan who hinted that the
hydrodynamic load behaves as a ‘non-linear self-excited fluid oscillator’ [76]. An appropriate
model for the lift coefficient CL in expression (1.6) is the van der Pol equation [86]

C̈L + ε(2πfv)(C2
L − 1)ĊL + (2πfv)2CL = G. (1.8)

The van der Pol equation guarantees a lift coefficient growing when it has small values
(negative damping C2

L − 1 < 0), and stabilising when its has large values (positive damping
C2

L − 1 > 0) [87]. After a duration (short when ε is large), the wake motion reaches a
limit-cycle that depends only on the constants of the equation (1.8), whatsoever the initial
condition of CL.

The choice of the right-hand side function G of the equation (1.8) has been controversial
throughout decades. Hartlen and Currie were the first to suggest that G is proportional to
the transverse velocity [88]

G ∝ ẏ. (1.9)

The solution of this coupled system succeeded in reproducing the lock-in phenomenon and
the limit-cycle of the vertical amplitude, yet the reason of this choice lacks a sound physical
foundation [67]. This idea was put to test and discussed in the work of Facchinetti et al. [89]
(Figure 1.6, left), who showed that a coupling proportional to the transverse acceleration

G ∝ ÿ (1.10)

transposes more faithfully the real motion of a cylinder under VIV. The wake oscillator
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model of Facchinetti et al. has received interest in many applications like infinite flexible
cylinders [8, 34], slender cables under non-uniform flow [90, 91], and clamped beams bent
under drag [85].

Finally, there are models, known as Birkhoff wake oscillators, that stem from the dynamics
of the recirculation zone behind the solid, which swings up and down over a period, causing
the vibration of the body [92, 93]. Birkhoff oscillators replace the fluctuating lift coefficient
in equations (1.7) and (1.8) by the fluctuating rotation angle α of the wake. A possible
coupling with the van der Pol oscillator is through the transverse acceleration G ∝ ÿ, as in
the model of Nakamura [94,95]. The model of Tamura (Figure 1.6, right), on the other hand,
assumes that the length of the recirculating region changes in time, and derives a coupling
term proportional to the velocity and acceleration G = −aÿ− bẏ [9,96]. The dynamics found
using this latter coupling showed several features of VIV, matched experimental results [93],
and was extended to square cylinders [97] and flexible circular cylinders [98].

Vortex-induced vibrations have been an everyday challenge to engineers. The oil industry
fears the failure of risers in offshore drilling sites, tall chimney stacks are prone to toppling
down, and many human constructions are under the threat of vibrations. Engineers proposed
a plethora of techniques to control and attenuate, if not suppress, these vibrations: struc-
ture stiffening, strakes, shrouds, slats, ribbons [15], and even corrugated cylinders inspired
from harbor seal whiskers [99]. Yet, some recent trends have flipped the dark view of this
instability, and favourably harnessed the potential of VIV into beneficial applications such
as energy harvesting [34–37]. The topic of the present thesis falls within the same optimistic
scope, and we will see that triggering VIV might be an essential strategy for soft corals to
boost the number of edible particle interception, thence ensure a better nutrition.

1.1.3 Particle capture

In order to feed, coral polyps must encounter an edible particle, retain it, handle it to the
mouth, and ingest it [47] (see section 1.1.1). The capture phase (i.e. encounter + retention)
has been the main interest of many researchers in the mechanical and chemical fields, because
it deals with the motion of particulate matter in a flowing fluid, and have applications related
to the capture and sieving of dust, pollutants, or colloids. In the present mechanical context,
we will consider the terms ‘capture’ and ‘interception’ as synonyms of ‘encounter’, since we
assume that particles are retained as soon as they encounter an obstacle. We will also make
abstraction of the coral branch and polyps in particular, and consider a generic collector with
a circular cross-section of diameter D (i.e. circular cylinder) within a flow of an upstream
speed U0. Denoting the size and density of the particle as dp and ρp, and the fluid density and
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Figure 1.6 Schematics of the models of Facchinetti et al. (left) and Tamura (right) (repro-
duced from [8] and [9], with permission).

dynamic viscosity as ρf and µf , the important parameters associated with particle capture
are the ratio of densities, ratio of diameters, and the collector-based Reynolds number

ρ+ = ρp

ρf
, R = dp

D
, Re = ρfU0D

µf
. (1.11)

Capture mechanisms

According to Rubenstein and Koehl [100], the capture mechanisms are categorised into (i)
direct interception, (ii) inertial impaction, (iii) gravitational deposition, (iv) diffusional or
motile-particle deposition, and (v) electrostatic attraction.

A particle is directly intercepted when it hits the cylinder after ideally following exactly a flow
streamline, which is usually the case for massless particles. A dimensionless index assessing
the intensity of such a capture mode is

NDI = dp

D
(= R) , (1.12)

If a particle carries important inertia, however, it tends to deviate from the flow streamlines,
especially if they curve close to the collector. Rubenstein and Koehl propose the index

NI =
(ρp − ρf)d2

pU0

18µfD
= 1

18(ρ+ − 1)R2Re. (1.13)

The gravitational capture mode is similar to the inertial impaction, the particle velocity being
here the settling velocity. Finally, diffusional deposition concerns small particles subject to



15

Brownian motion, as well as motile, swimming particles that actively change their direction
relative to the flow. The intensity for both types is estimated with the following dimensionless
index

NM = D
U0D

, (1.14)

where the diffusional coefficient D is given by the Stokes-Einstein formula

D = kT

3πµfdp
, (1.15)

with k the Boltzmann constant and T the ambient temperature. The electrostatic attraction
is like the diffusional deposition, and happens if the particle and collector have opposite
electric charges.

Capture efficiency

Consider a cylindrical collector in uniform flow as illustrated in Figure 1.7. The collector is
deemed efficient if it intercepts a considerable number of particles over a certain duration.
The measure of the collector quality is the capture efficiency, denoted usually as η. When
Ninit particles are initially released, from the same starting line upstream from the collector,
η is expressed as [10]

η = N

Ninit
, (1.16)

with N the number of captured particles. This definition gives the fraction of particle that
the collector intercepts, but does not tell from where they were released. In fact, particles
launched sparsely would be dispersed relatively far from the collector and result in few inter-
ceptions, whereas the same set of particles launched very close to the horizontal streamline
would stay concentrated relatively near the collector and result in more interceptions. In
two-dimensional problems, a finer definition of η accounting for the release span is given
by [13,101]

η = Ṅ

C0U0D
, (1.17)

where Ṅ is the rate of capture (#/s) and C0 the particle concentration in the fluid (per unit
length, #/m2). The denominator Ṅinit = C0U0D represents the rate at which particles are
released, upstream from the collector, from a release window of length D. By analogy, if the
window from which the captured particles are released has a length of e (see Figure 1.7), we
have Ṅ = C0U0e, hence the efficiency becomes [11,12]

η = e

D
. (1.18)
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U0

−Uf,θ

U0

e

θc

D/2

dp/2
−Uf,r

(b)

(a)

θc

D/2

dp/2
e

Figure 1.7 Control volumes used by (a) Haugen and Kragset [10] and Espinosa-Gayosso et
al. [11,12] and (b) Weber and Paddock [13]. Particles that are ultimately captured enter from
the window of length e. The outermost captured particle hits the cylinder at the maximum
angle of capture θc. The radial and angular components of the fluid velocity are denoted Uf,r
and Uf,θ.
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Therefore, the calculation of the capture efficiency is possible without the knowledge of the
initial number of particles, and requires only the length of what we call the capture window.

Influence of diameter ratio and Reynolds number

The above definitions led to the study of capture from different perspectives. Experimentally,
Palmer et al. [101] counted the number of intercepted particles advected by a water flow
around a fixed rigid cylinder, and found that the capture efficiency, as defined in (1.17),
increases with the diameter ratio and Reynolds number according to the following power law

η = 0.224Re0.718R2.08. (1.19)

The majority of the particles were captured at the front side of the cylinder, over an angular
extension of±50°, whereas only 5% of them were found at the rear for high Reynolds numbers.

Haugen and Kragset [10] reproduced the numerical version of Palmer et al. experiments.
They simulated the flow around a cylinder with The Pencil Code [102] using the immersed
boundary method (IBM). They waited until the von Kármán vortex street establishes, then
spread the particles from a centred slot of a size of the collector diameter. These particles
were spheres undergoing only the hydrodynamic drag

FD = −1
2
CD

Cc
ρfπ

(
dp

2

)2

||up −Uf || (up −Uf); (1.20)

where up is the particle velocity, and Uf the local velocity of the flow field at the centre of
the particle. They used the Schiller-Nauman interpolation of the drag coefficient CD [103],
and corrected the force with the Stokes-Cunningham factor Cc because of the noncontinuum
aspects appearing when dealing with very small particles. The calculation of the capture
efficiency from relation (1.16) indicated a power law as in equation (1.19)

η ∼ Re0.7R2, (1.21)

and found no particle intercepted on the rear for Re = 20 − 200, in agreement with the
experiments of Palmer et al. [101].

Unlike the two previous studies, Espinosa-Gayosso et al. [12] calculated the capture efficiency
from (1.18) without simulating any particle advection. Assuming neutrally buoyant particles
do not cross streamlines, they calculated the (time-averaged) length e of the capture window
from a balance equation by virtue of mass conservation in the control volume represented in
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Figure 1.7(a)
η = e

D
= 2
U0D

∫ D/2+dp/2

D/2
−Uf,θ(r, θ)|θcdr, (1.22)

with Uf,θ being the angular component of the fluid velocity. The angle θc is where the farthest
captured particle hits the cylinder, and is defined implicitly through [12]

Uf,r(r, θ)|D/2+dp/2,θc = 0, (1.23)

with Uf,r being the radial component of the fluid velocity. For Re . 180 they ran two-
dimensional DNS, using OpenFOAM [104], because the vortex shedding stays parallel to
the main flow direction [75] (see section 1.1.2). Beyond Re = 180, they shifted to three-
dimensional simulations for a realistic calculation of η. They indicated that the quadratic
variation in the diameter ratio η ∼ R2 was valid only for small particles (R . 0.05), and
overestimating the capture rate for large particles. However, the power law in the Reynolds
number depended on the flow regime. When vortices appear (Re ≈ 47) they found η ∼ Re0.7

as in Palmer et al. [101]. Nonetheless, for 50 < Re < 180, the exponent 0.7 decreased
down to ∼ 0.65. Switching into three-dimensional DNS, they found that the exponent was
slightly smaller than 0.5 in the entire range 180 < Re < 1000. Had they continued with two-
dimensional DNS, the exponent would keep a value around 0.6-0.65. Haugen and Kragset [10]
used the same integral formula in (1.22), but, approximating the angular velocity Uf,θ using
boundary theory considerations, they analytically derived a power law η ∼ Re0.5, in contra-
diction with their numerical data. Haugen and Kragset [10] thought this discrepancy came
from the steady flow assumption when obtaining the integral form (1.22). Now the power
∼ Re0.7 turns out to be understandable since they kept two-dimensional computation for high
Reynolds flows. Espinosa-Gayosso et al. [12] concluded that three-dimensional simulations
are the right way to evaluate the capture efficiency above Re = 180.

Regarding low-Re flows, Espinosa-Gayosso et al. [11] proposed to work with the stream
function through

Uf,r = 1
r

∂ψ

∂θ
, Uf,θ = −∂ψ

∂r
. (1.24)

Since ψ = 0 at the cylinder edge r = D/2 (no-slip condition), they replaced (1.24) in (1.22)
and got

η = 2ψ (D/2 + dp/2, θc0)
U0D

. (1.25)

Here θc0 is the maximum angle of capture for a vanishing particle size, θc0 = limdp→0 θc.
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Instead of the implicit equation (1.23), they suggested a new definition of θc0

∂2Uf,r

∂r2

∣∣∣∣∣
D/2,θc0

= 0. (1.26)

Espinosa-Gayosso et al. [11] followed a theoretical-numerical hybrid approach to calculate η.
They took the asymptotic expression of the stream function including inertial effects that
Skinner [105] proposed using perturbation methods

ψ = a(∆)
(
r ln r − r

2 + 1
2r

)
+ Re

2

[
a2(∆)

32

(
2r2 ln2 r − r2 ln r + r2

4 −
1

4r2

)
+ b(∆)

8

(
r2 − 2 + 1

r2

)]
sin 2θ (1.27)

where r̃ = r/(D/2), and a and b are respectively odd third and first order polynomials in the
variable

∆ = 1
1/2− γ − lnRe/8 , (1.28)

with γ = 0.577215... the Euler-Mascheroni constant. Rather than using the approximate
polynomial expression of a and b, they numerically calculated them by fitting the equation
(1.27) to their DNS solution. The curve of the efficiency for Re < 47 was best approximated
by

η = 1
2.002− lnRe+ f(Re)

R2

(1 +R)k(Re) , (1.29)

with

f(Re) = 0.953 ln(6.25 +Re)− 1.62, (1.30)

k(Re) = 0.872 ln(19.1 +Re)− 1.92. (1.31)

Notice that the quadratic variation of η in the diameter ratio is still valid for viscous flows
since

R2

(1 +R)k(Re) ≈ R2 for R ≤ 0.05 and Re ≤ 10. (1.32)

The idea of expressing the capture efficiency with the stream function was presented back to
the paper of Weber and Paddock [13]. Using (1.24), they obtained the same equation (1.25),
though with a different control volume represented in Figure 1.7(b)

η = 2
U0D

∫ θc

0
−(D/2 + dp/2)Uf,r(r, θ)|D/2+dp/2dθ = 2ψ (D/2 + dp/2, θc)

U0D
. (1.33)
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The maximum angle of capture θc is defined here from the following condition

Uf,r < 0 for θ ∈ (−θc, θc). (1.34)

Because the particles are assumed to be small (dp � D), and since ψ and ∂ψ/∂r equal zero
at the cylinder edge (central streamline and no-slip condition), the development of ψ in (1.33)
into Taylor series yields

η =
d2

p

4U0D

∂2ψ

∂r2

∣∣∣∣∣
D/2,θc

= 1
4R

2

D
U0

∂2ψ

∂r2

∣∣∣∣∣
D/2,θc

 = 1
4R

2ξc, (1.35)

with ξc = (D/U0)∂2ψ/∂r2|D/2,θc being the dimensionless vorticity at the maximum capture
position. For Re ≤ 1, they used Kaplun’s approximation of the stream function [106,107]

ψ = U0D(∆− 0.87∆3)
(
r̃ ln r̃ − r̃

2 + 1
2r̃

)
sin θ, (1.36)

where ∆ is defined in equation (1.28). This implies that the dimensionless vorticity ξc simply
reads

ξc = 4(∆− 0.48∆3). (1.37)

In the range 1 < Re < 200, they took numerical results from literature and found that ξc

was best fitted with
ξc = 1.76Re0.52. (1.38)

Substituting the expressions (1.37) and (1.38) in (1.33), the final semi-analytical expression
of the capture efficiency is

η =

(∆− 0.48∆3)R2, Re ≤ 1,

0.44Re0.52R2, 1 < Re < 200.
(1.39)

The prior studies agreeing on the square variation of efficiency in the diameter ratio η ∼ R2,
the table 1.2 lists the different exponents n found in the scaling in the Reynolds number
η ∼ Ren.

Influence of collector motion

We have seen how the capture efficiency depends on the flow conditions and the particle size
in the case of a fixed collector. Yet, passive filter feeders and terrestrial collectors are flexible
and move continuously due to the surrounding flow. It is then important to consider the
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study method exponent range
Weber and Paddock [13] semi-analytical 0.520 1 < Re < 200

Palmer et al. [101] experimental 0.718 38 < Re < 486
Haugen and Kragset [10] 2D DNS, IBM 0.700 20 < Re < 1685

Espinosa-Gayosso et al. [12] 2D DNS 0.700 47 < Re . 100
3D DNS 0.500 180 < Re . 1000

Table 1.2 Summary of the exponents n found in the scaling of capture efficiency with the
Reynolds number η ∼ Ren, in the case of a fixed cylinder.

motion of the collector when conducting studies on living species.

To gain insight about the influence of collector motion on capture, McCombe and Acker-
man [108] imposed pure transverse and stream-wise oscillations for a set of amplitudes and
frequencies to a circular collector, launched particles, and calculated the capture efficiency as
did Palmer et al. [101]. They found that the transverse motion is beneficial for the capture
(up to 4 times higher), especially if the oscillations are rapid and the flow is of low Reynolds
number. However, as the Reynolds number increases, the capture efficiency drops below the
case of a fixed collector (by 20− 30% for Re ∼ 560).

In terrestrial vegetation, the best way to capture more particles is to let the collector free
to oscillate in both transverse and stream-wise directions. In a series of in-field experiments,
McCombe and Ackerman [108] counted the number of pollen grains captured by a timothy
grass (Phleum pratense) in four configurations: fixed, restricted to transverse motion only,
restricted to longitudinal motion only, and untethered (i.e. free to move). It was the latter
configuration that achieved the highest capture efficiency, followed by the case of transverse
motion only.

On the numerical side, Krick and Ackerman [109] simulated flows, with ANSYS CFX [110],
around cylinders vibrating transverse and stream-wise to the upstream fluid velocity. They
solved the unsteady Reynolds-averaged Navier-Stokes (URANS) equations with a k-ω SST
turbulence model. The particles were subjected to the drag FD and the pressure gradient
force

FP = −4
3π

(
dp

2

)3

∇p, (1.40)

where p is the fluid pressure. The drag FD was the same as in equation (1.20), though without
the Stokes-Cunningham correction factor. They calculated a scaled version of the efficiency

η = N

Ninit

(
linit

D

)
, (1.41)



22

with linit being the slot length from which particles are released (linit > D). As in McCombe
and Ackerman [108], they found that transverse vibrations increase the capture efficiency,
but only if the transverse amplitude Ymax is large (Ymax ≈ 1.06D), whereas barely vibrat-
ing cylinders (Ymax ≈ 0.06D) resulted in a decrease in η. When it comes to stream-wise
oscillations, they were overall detrimental for capture, even for large stream-wise amplitudes
Xmax ≈ 0.48D. Krick and Ackerman [109] pointed out the idea of ‘additional momen-
tum’, which says that a particle hitting a transversely oscillating cylinder acquires relative
momentum, hence is more likely to penetrate into the boundary layer, while in contrast a
longitudinally oscillating cylinder (Ymax � Xmax) results in a zero net momentum over a
period.

1.2 Synthesis

Biologists conducted a number of experiments on soft corals, in-field and in water flume, to
investigate how water flow affects the feeding rate [32,111–113]. Although these works came
with valuable results, their interpretation is not always clear, given that many factors can be
involved in the capture process such as the morphology of the branches, polyps size, tentacles
length, and swimming ability of food particles. It follows that data often have non-negligible
statistical variance and errors, which adds a certain difficulty in grasping the essentials of the
results. This disparity is among the reasons why interpretation of results is chiefly qualitative
and assumption-based. Furthermore, the numerous experimental methods, species, and food
particles considered yielded various results without any gateways, hence hard to utilise in
explaining phenomena. This is why a unified framework that extracts the common features
is deemed essential. A fluid mechanics scope is a good fit for this task. By clearing the
unneeded biological complexity and using scaled (i.e. dimensionless) parameters, it idealises
the study of soft corals intercepting food and uncovers basic mechanisms of particle capture.

We have seen that data describing VIV on the one hand, and particle capture by fixed
collectors on the other hand, are abundant in literature. Surprisingly, though, we have no
study that connects VIV with particle capture. Even the handful of papers that examined
the effect of collector motion [108,109] were imposing oscillation frequencies and amplitudes,
not always covering the values seen in the living world. Species in nature vibrate in response
to the fluid flow, and the motion frequency and amplitude vary in an intertwined manner and
cannot be decoupled. The scarcity of data on vibrating collectors will let biologists unable
to draw clear and founded conclusions on particle capture process in species. Engineers
too are concerned with this shortage in data. In fact, VIV have been already recognised
as a promising driver for energy harvesting, so there are reasons to think they might bring
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advantage, yet hidden, to particle filtering as well. There is, hence, a real need to supply the
scientific community with an analysis of particle capture by collectors under VIV.

More and more studies are using computational fluid dynamics (CFD) to simulate the flow
and particle capture. Not only the computational capacities are constantly improving, but
the numerical simulations have the advantage over experiments of freely handling flow con-
ditions and changing parameter values, which provides data spanning several configurations.
In the previous works, we also note the diversity of CFD codes, as well as methods to com-
pute the flow field and particle advection. The calculation method of the capture efficiency
is not unique either, and consisted on counting each of the captured particles [10, 109] or
calculating the flux of captured particles through the capture window length [11, 12]. It
is always enriching to have data from different sources because they give the opportunity
to compare the level of credibility of methods. The numerical approach has, nevertheless,
caveats if the numerical errors are uncontrolled. For instance, using ANSYS CFX, Krick and
Ackerman [109] reported integration errors due to the removal of a number of particles when
the amplitude of the collector motion is large, and managed to introduce a correction factor.
Even though they insisted this correction may not alter qualitatively the results, it gave a
14-fold difference in values between the worst and best cases. Unlike commercial software,
in-house codes are better in controlling errors and spotting their origin, yielding more reliable
results.

1.3 Goals and outline

In this project, we inquire into the biomechanics of soft coral vibrations by confirming two
hypotheses:

• soft coral vibrations at the branch level are vortex-induced,

• vortex-induced vibrations increase the rate of food interception.

We adopt a numerical approach. We will compute fluid flows using CaDyF [114], an in-
house FSI finite element solver developed at Polytechnique Montréal. Besides, a Python
code [115] will import the output of CaDyF, solve the trajectories of particles advected by
the flow, and calculate the rate of interception.

In chapter 2 we present the numerical methodology and describe the simulation strategy of
CaDyF. Chapter 3 puts forward some arguments that support vortex-induced vibrations as
the most plausible cause of the soft coral branch motion, ruling out other types of flow-induced
instabilities. In chapter 4, we idealise the soft coral branch into a circular cylinder, assimilate
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food particles to spheres, and state the governing equations of the advection dynamics. We
also introduce the definition of the capture rate, and list the important dynamical variables
influencing the capture process. Chapter 5 is dedicated to the case of a fixed cylinder. This
step will help us understand the basics of the capture process without the influence of the
vibration frequency. In addition, we propose an analytical derivation of the power law that
the capture rate follows. In the subsequent chapter 6, we let the cylinder free to oscillate, and
analyse how the motion affects the capture rate. In chapter 7 we move on to three-dimensional
finite element simulations, using the Python based solver FEniCS, of a clamped Kirchhoff
rod under hydrodynamic drag and vortex-induced lift. Our main motivation is to reproduce
a realistic motion of a living soft coral branch under a wave action. In the end, chapter 8
discusses the results we obtained, proposes further improvements of our idealised model, and
paves the way for potential applications.
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CHAPTER 2 FLUID-STRUCTURE SIMULATIONS

This thesis is based mainly on two-dimensional flow simulations. CaDyF is the in-house
code we used in this study [114]. It has been developed over decades owing to the efforts
of students and professors at Polytechnique Montréal. CaDyF solves monolithically the
coupled fluid-structure system with a mixed finite element formulation. In this chapter, we
present the fluid-structure equations of a rigid body within a fluid flow, and explain the
numerical integration method.

2.1 Fluid-structure coupling

We describe the sea water as an incompressible fluid, of density ρf and dynamic viscosity µf .
In an Arbitrary Lagrangian-Eulerian (ALE) framework, the continuity and Navier-Stokes
equations read

∇ ·Uf = 0, (2.1)
∂Uf

∂t
+ [(Uf − V ) ·∇]Uf = 1

ρf

[
−∇p+ µf∇2Uf

]
, (2.2)

where Uf and p are respectively the fluid velocity and pressure. V is the velocity of the mesh
due to the body motion. Each element of the mesh acts as a linearly deforming solid of Lamé
coefficients λ and µ [116]. Denoting the derivative with respect to the original configuration
as ∇0, the equation of the mesh displacement χ is [117]

∇0 · S = 0, (2.3)

S = 2µE + λ(trE)I, (2.4)

where I is the identity tensor, and

E = 1
2
(
∇0χ+ ∇0χ

T
)

(2.5)

the strain tensor of that ‘pseudo-solid’ element. The velocity of the moving mesh is then
given by

∂χ

∂t
= V . (2.6)

On the other hand, the rigid body is a harmonic oscillator of mass m, damping coefficient c,
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and stiffness k. Its position X is solution of

m
d2X

dt2 + c
dX
dt + kX = Fhydro. (2.7)

Here Fhydro is the total hydrodynamic load on the rigid body

Fhydro =
∮

(Γ)

[
−pI + µf

(
∇Uf + ∇UT

f

)]
dn, (2.8)

with (Γ) being the boundary of the body and dn the integration element pointing outwards.

Denoting the upstream velocity as U0, and a characteristic length of the rigid body as D, we
use the following dimensionless variables

Ūf = 1
U0
Uf , V̄ = 1

U0
V , χ̄ = 1

D
χ, X̄ = 1

D
X,

p̄ = p

ρfU2
0
, t̄ = tU0

D
, n̄ = 1

D
n, ∇̄ = D∇, (2.9)

to obtain the fully coupled system

∇̄ · Ūf = 0, (2.10a)
∂Ūf

∂t̄
+
[
(Ūf − V̄ ) · ∇̄

]
Ūf =

[
−∇̄p̄+ 1

Re
∇̄2Ūf

]
, (2.10b)

∇̄0S = 0, S = 2µE + λ(trE), (2.10c)

E = 1
2
(
∇̄0χ̄+ ∇̄0χ̄

T
)
, (2.10d)

d2X̄

dt̄2 + 2ζ
(2π
Ur

) dX̄
dt̄ +

(2π
Ur

)2
X̄ = 1

M
F̄hydro, (2.10e)

F̄hydro =
∮

(Γ)

[
−p̄I + 1

Re

(
∇̄Ūf + ∇̄ŪT

f

)]
dn̄, (2.10f)

where

Re = ρfU0D/µf , (2.11)

Ur = 2πU0

D

√
m

k
, (2.12)

ζ = c

2
√
mk

, (2.13)

M = m

ρfD2 , (2.14)

are the Reynolds number, the reduced velocity, the damping ratio, and the mass ratio. For



27

every simulation case throughout this project we take ζ = 0 and M = 1.

2.2 Domain and boundary conditions

The fluid domain, in all the ensuing simulations, is the same, and large enough (−40 ≤ x̄ ≤
120 and −60 ≤ ȳ ≤ 60) to avoid confinement effects [118]. We discretised it into Taylor-Hood
(P2 − P1) triangular elements, as a result of which the velocity is third order accurate and
the pressure is second order accurate [119].

Initially, the fluid is at rest in the whole domain. The boundary conditions on the fluid
velocity Ūf are a uniform Dirichlet at the entry (x̄ = −40), homogeneous Neumann at the
exit (x̄ = 120), symmetry at the top and bottom boundaries (ȳ = ±60), and no-slip at the
rigid body edge (Γ). Finally, the node displacement χ̄ at (Γ) takes the same value as the
rigid body displacement.

2.3 Time integration

CaDyF integrates the coupled system (2.10) using hp-adaptive Backward Differential For-
mulas (BDF) methods [117]. The order and time step adjust automatically so that the local
truncation error remains smaller than a constant absolute tolerance equal to 10−5. When
the rigid body is fixed, CaDyF discards the equation (2.10e), and solves the fluid problem
in an Eulerian frame of reference (χ̄ = 0).
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CHAPTER 3 ORIGIN OF SOFT CORAL VIBRATIONS

At the first glance, it is not clear what causes the vibrations of the soft coral branches, because
many types of flow-induced instabilities may be involved, such as buffeting, galloping, or
fluidelastic vibrations. In this chapter, we will state simple and basic arguments to regard
these causes as improbable, and lay out the argument to conclude that the vortex-induced
vibrations are the only plausible source of the observed soft coral high frequency motion.

3.1 Clues about vortex-induced vibrations

To get an idea about the rough scale of the phenomenon, we analysed a video of a vibrating
bipinnate sea plume under a sea wave action [17] with the software imageJ [120]. First, by
tracking some debris moving with the flow, we estimated the water speed to U0 ∼ 10 cm/s.
Then, taking a branch diameter of D ∼ 2 mm [41,121], and assuming that the seawater and
pure water have the same kinematic viscosity νf = µf/ρf ≈ 10−6 m2/s, we found that the
Reynolds number is Re = U0D/νf ∼ 200. This value suggests that there is a von Kármán
vortex street downstream of the branches. Moreover, we followed parts of the branch having
pronounced displacements over several periods, and estimated the vibration frequency to
fn ∼ 7 − 9 Hz. Therefore, it yields a reduced velocity of Ur = U0/fnD ∼ 5 − 7. All these
ingredients are specific to VIV at lock-in.

3.2 Refuting buffeting

To see whether the soft coral vibration is due to a turbulence buffeting, we looked at the
wave spectral density of regions in the Gulf of Mexico. In the website of the National
Data Buoy Center (NDBC) [122], we collected recent measurements in the stations: Orange
Beach (Station 42012, south-east of Mobile, Alabama, depth 25.9 m), Galveston (Station
42035, east of Galveston, Texas, depth 16.2 m), Grand Isle Outer (Station 42093, Louisiana,
depth 33.5 m), and Edgmont Channel Entrance (Station 42098, Florida, depth 12 m). As
shown in Figure 3.1, all the spectra have a peak in amplitude at a frequency between 0.15
and 0.24 Hz, and drop beyond 0.5 Hz. This range of frequencies matches with the gentle
swaying motion of the soft coral, but does not suit the rapid motion of the branches. Even
if we consider that the spectral density follows the Pierson-Moskowitz spectrum, the peak
frequency would be fpeak = 0.14g/Uw. Then taking a wind velocity of Uw ∼ 5 m/s (10 knots)
yields fpeak ∼ 0.3 Hz. Therefore, the main harmonic in sea waves is, in any case, much smaller
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than the frequencies of the observed branch oscillations (fn ∼ 5 − 7 Hz, 20 times higher).
Buffeting is an implausible cause for the observed high frequency soft coral vibrations.

3.3 Refuting fluidelastic instability

Since the branches of a bipinnate sea plume Antillogorgia bipinnata lay side-by-side in the
same plane perpendicular to the flow, we may suspect fluidelastic vibrations. In general, they
are attached with uniform spacing along the vertical main stem. The separation distance
at the attachment level is about 3 to 8 diameters [41], and varies according to the habitat
(separation distance of about 7 diameters in deep waters [49]). Yet, as for a clamped flexible
beam, the vibrations have no effect near the clamped end, hence the instability takes place
only relatively away from the stem. Because the branches diverge away, they become more
isolated from each other, thus making the fluidelastic instability less probable. We based our
estimation on a dried A. bipinnata (Figure 3.2), and found that the separation distance was
between 4.5 diameters and 8.5 diameters. Since the fluidelastic instability occurs only when
the separation distance is less than 4 diameters (section 1.1.2, chapter 1), we consider the
branches independent and we do not expect a fluidelastic instability to appear.

3.4 Refuting galloping

The shape of a soft coral branch resembles, overall, a slender cylinder with a circular cross-
section. The polyps covering it have a size of only 10% or less of the branch diameter [41].
They represent, hence, a small geometrical perturbation of a circular cylinder. Under cross-
flow, the circular cylinder is ‘immune to galloping’ and is well-known to undergo only VIV
[67, 123]. The soft coral branch is then, by analogy, unlikely to gallop. But how unlikely is
it?

We decided to turn to a quantitative analysis and evaluate the Glauert-den Hartog criterion
[124,125]. It states that galloping can arise if

dCL

dα + CD < 0, (3.1)

where CL and CD are the lift and drag coefficients, and α the angle of attack. To find out
whether the soft coral fulfils this criterion, we simulated two-dimensional flows around an
idealised branch cross-section of A. bipinnata. Figure 3.3 shows the flow field around the
idealised coral branch cross-section with two diametrically opposed protuberances having a
size of 10% of the cylinder diameter. Considering the observed transverse displacements of
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Figure 3.1 Density spectra of regions in the Gulf of Mexico (National Data Buoy Center,
from March 31st to April 5th, 2020). Between parentheses is the sea depth in each region.
The highlighted dashed line marks the peak frequency.
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Figure 3.2 Dried bipinnate sea plume (Antillogorgia bipinnata) [2]. The separation space
between branches goes from 4.5 to 8.5 diameters. Photo by © Charles G. Messing, with
permission.
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the branch, the reasonable range of angles of attack is between 0° and 20°. We extracted
the fluid-dynamic coefficients and calculated the quantity dCL/dα+CD using a cubic spline
interpolation of data points as shown in Figure 3.4. This quantity is slightly decreasing,
but stays always positive and close to 1. Therefore, according to the Glauert-den Hartog
criterion, galloping is ruled out as a cause of soft coral vibrations.

Table 3.1 summarises the arguments presented in this chapter. We can claim that the rapid
motion of the soft coral branches is not extraneously-induced by turbulence buffeting nor
movement-induced by fluidelastic instability or galloping, and is rather due to vortices form-
ing in the wake behind the branch.

flow-induced instability category likelihood
probable improbable

Turbulence buffeting extraneously-induced excitation x
Fluidelastic instability movement-induced excitation x

Galloping movement-induced excitation x
Vortex-induced vibrations instability-induced excitation x

Table 3.1 Summary of the likelihood of each potential flow-induced instability as the cause
of the rapid motion of the soft coral branches.
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Figure 3.3 Vorticity contour plot of a flow around an idealised soft coral cross-section at
the angle of attack 20° (Re = 200). The cross-section is a circle, and polyps are the two
diametrically opposed arcs of circle. Their size is 10% of the circle diameter.
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Figure 3.4 Mean values of the fluctuating drag (�) and lift (�) coefficients of an idealised
branch cross section (Figure 3.3) at Re = 200. The bars refer to the maximum and minimum
values of the variables. We calculated the mean value of dCL/dα+CD ( ) from cubic spline
interpolation of data points.



35

CHAPTER 4 PARTICLE ADVECTION AND CAPTURE RATE

After diagnosing the main probable cause of the observed soft coral vibrations, in this chapter
we add a new ingredient to the the water flow-coral branch system: food particles. Our goal
is to simulate the trajectories of particles advected by the flow, detect the ones intercepted
by the branch, and quantify the rate of capture.

4.1 Branch model

The special skin texture of soft corals, as well as the series of polyps covering it, influence
certainly in its vicinity the fluid behaviour, thereby the particle capture. Yet, owing to
the small size of the polyps that cover the branch of A. bipinnata, which is about 10% of
the branch diameter [41], we decided to idealise the biologically complex soft coral branch
and consider a circular cylinder. This approach brings our study back into a familiar fluid
dynamics problem, aligns with the benchmark problem in the particle filtering literature, and
unmasks the basic mechanisms of particle interception.

We simulate fluid flows around fixed and vibrating cylinders, in order to highlight the dif-
ference in particle capture. We consider a spring-mounted cylinder subjected to a two-
dimensional cross-flow as schematised in Figure 5.1. The cylinder is a harmonic oscillator
free to move stream-wise and transverse to the main flow. The hydrodynamic load Fhydro, de-
fined in equation (2.10f), forces its motion. Therefore, its position Xcyl verifies the equation
(2.10e)

d2X̄cyl

dt̄2 +
(2π
Ur

)2
X̄cyl = F̄hydro. (4.1)

The cylinder stands initially at the position X̄cyl = 0. The domain contains 96 000 nodes
and 48 000 triangular elements, with smaller ones in the wake and close to the cylinder to
resolve the vortex shedding and the boundary layer (Figure 4.2). An example of flow solution
is shown in Figure 4.3.

4.2 Particle dynamics

4.2.1 Governing equations

We consider food particles as spheres of diameter dp and density ρp. We assume they have
no influence on the flow nor mutual interaction. Furthermore, these particles cannot change
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Figure 4.1 Schematics of particles advected by a flow around a free-to-oscillate cylinder

(a) (b)

Figure 4.2 Close-ups of the fluid mesh highlighting the densification of elements (a) in the
wake and (b) around the boundary layer.
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Figure 4.3 Vorticity contour of a flow around a vibrating cylinder at Re = 100 and Ur = 5

actively their trajectory, as in the case of a swimming plankton for instance. Neglecting
gravity and buoyancy effects, the remaining forces applied on a particle are the drag FD,
the pressure load FP, and the added mass force FA. The governing equations describing the
particle trajectory are

dxp

dt = up, (4.2a)
dup

dt = 1
mp

(FD + FP + FA), (4.2b)

where mp = ρpπd
3
p/6 is the mass of the particle, xp its position, and up its velocity.

Now let us give the expressions of these forces. First, the drag reads

FD = −1
2CDρfπ

(
dp

2

)2

||up −Uf || (up −Uf) , (4.3)

where CD is the drag coefficient of a sphere. It is a function of the particle-based Reynolds
number

Rep = ρf ||up −Uf || dp

µf
, (4.4)

which is unknown a priori. For this reason we considered the Schiller-Nauman interpola-
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tion [103]
CD = 24

Rep
(1 +Re0.687

p ), (4.5)

which is valid for Rep < 800.

Next, the pressure load is given by

FP = −4
3π

(
dp

2

)3

∇p. (4.6)

Finally, the added mass force is proportional to the acceleration of the particle relative to
the fluid

FA = −Cmρf
4
3π

(
dp

2

)3 (dup

dt −
dUf

dt

)
. (4.7)

Here Cm is the mass coefficient of a sphere. Neglecting the dependence of Cm on the confine-
ment of the particle as well as its position with respect to boundaries [126], we took it as a
constant equal to 1/2.

Using the following dimensionless numbers

ρ+ = ρp

ρf
, R = dp

D
,

we rewrite the particle-based Reynolds number as

Rep = ReR
∣∣∣∣∣∣ūp − Ūf

∣∣∣∣∣∣ , (4.8)

and the governing system (4.2) becomes

dx̄p

dt̄ = ūp, (4.9a)
dūp

dt̄ = F̄D + F̄P + F̄A = F̄total, (4.9b)

with

F̄D = − 18
ρ+R2Re

(
1 +Re0.687

p

) (
ūp − Ūf

)
, (4.10)

F̄P = − 1
ρ+∇̄p̄, (4.11)

F̄A = −Cm

ρ+

(
dūp

dt̄ −
dŪf

dt̄

)
. (4.12)
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4.2.2 Numerical solution

Temporal integration

We wrote a Python code [115] that imports the flow solution of CaDyF, which is in an ALE
frame, and integrates the system of equations (4.9) in a Lagrangian frame with a forward
Euler scheme. The particles start from the line x̄0 = −2 (for a given ȳ0) upstream from the
cylinder centre, where the flow is horizontal enough and unperturbed. The local fluid speed
is then assigned as their initial velocity.

The time step depends on the Reynolds number and the characteristics of the particle. To
find out an upper bound of the time step, let us rewrite the system of equations (4.9) as

dx̄p

dt̄ = ūp, (4.13a)

dūp

dt̄ = −
1 +Re0.687

p

τ
ūp + Φ(Ūf ,

dŪf

dt̄ , ∇̄p̄, Rep), (4.13b)

where
τ = ρ+R2Re

18

(
1 + Cm

ρ+

)
, (4.14)

and Φ regroups all remaining force terms (assuming ūp and Rep are independent, Figure
4.6). The integration scheme is

x̄n+1
p = x̄np + ∆t̄ūp, (4.15a)

ūn+1
p =

[
1−

(
1 +Renp

0.687
) ∆t̄
τ

]
ūnp + ∆t̄Φ(Ūn

f ,
dŪn

f
dt̄ , ∇̄p̄n, Renp). (4.15b)

Thus, a sufficient condition for the scheme stability is

∆t̄ < 2τ = 1
9(ρ+ + Cm)R2Re. (4.16)

Interpolation and capture criterion

The integration requires, at each time step, the fluid velocity and pressure at the particle
position. It is necessary then to find the element hosting the particle to interpolate these
variables. We used the particle tracer algorithm for unstructured grids proposed by Löhner
and Ambrosiano [127]. It searches recursively, neighbour to neighbour, the new host element
in the vicinity of the known previous one [128]. Having calculated the new position of the
particle, the code checks if this latter hits the cylinder boundary, as a result of which it is
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considered as captured. We refer to this capture definition as the solid contact criterion. The
reader is invited to see the details of the particle tracer algorithm and the implementation of
the solid contact criterion in appendices A and B.

Example of trajectories

An example of particle advection simulation is shown in Figure 4.4. We simulated the
trajectories of two particles in a flow at Re = 100 around a cylinder undergoing VIV with
Ur = 5. Before t̄ = 2.6, the two particles follow a relatively straight path. The instant
t̄ ≈ 2.6 represents a transition in the trajectory behaviour, and reveals the outcome of each
particle. On the one hand, the red upper particle succeeds in drifting upwards, far enough
form the cylinder to escape capture. It enters a region of negative vorticity (blue in Figure
4.4), acquires momentum, then crosses the cylinder. The blue lower particle, on the other
hand, slows down because it meets the stagnation point of the flow. From t̄ = 3.7 until its
capture at t̄ = 5.6, it remains too close to the cylinder, following its downward motion, then
ends up hitting its edge.

Figure 4.5 shows the time evolution of the ratios of the pressure load and added mass force to
the drag norms. We see that the hydrodynamic forces preserve the same proportions to each
other ||FP|| / ||FD|| ≈ 0.66 and ||FA|| / ||FD|| ≈ 0.33 before t̄ = 2.6. After that, these ratios
drop when the non-captured particle enters the negative vorticity region and crosses the
cylinder (t̄ ≈ 3.4). The drag becomes two times and twenty times greater than the pressure
load and the added mass force respectively. At this same time, the captured particle observes
an opposite action: both ratios peak, with the pressure load being eight times higher than,
and the added mass force almost equal to the drag. This peak in ratios occurs when the
particle is near the stagnation point, and its velocity relative to the fluid takes the lowest
value

∣∣∣∣∣∣ūp − Ūf

∣∣∣∣∣∣ ≈ 10−3 as depicted in Figure 4.6. The particle then immerses into the
boundary layer of the upper part of the cylinder around t̄ ≈ 3.7. We see that, between
t̄ = 3.7 and 4.5, the drag catches up with the pressure load while the added mass effect
dwindles. As the cylinder starts to move upwards (t̄ ≈ 4.5), the gap between the pressure
load and the drag widens again until the particle finishes up by being intercepted at t̄c = 5.6.

Finally, one thing to mention is that the particle-based Reynolds number stays always below
Rep ≈ 6 × 10−2 for both captured and non-captured particles, as represented in Figure 4.6.
This finding led us to derive an alternative method for trajectory calculation, which we invite
the reader to look over in appendix C.
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Figure 4.4 Snapshots of the trajectory of particles having a diameter ratio R = 0.031 advected
by a flow at Re = 100 and Ur = 5. After escaping the capture, the red particle enters in the
region of negative vorticity (t̄ = 3.7, dark blue), as a result of which it deviates downwards
(t̄ = 5.6). On the other hand, as soon as it approaches the cylinder, the blue particle slows
down, meets the stagnation point (t̄ = 3.7) and enters inside the boundary layer. It is worth
to mention that this particle remains confined within the boundary layer, and does not touch
the cylinder edge until t̄ = 5.6.
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by the norm of the drag for the (a) non-captured and (b) captured particles.
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graph also gives the profile of the variation of the particle relative velocity (in this example
ReR = 100× 0.031 = 3.1).

4.3 Capture rate

With the ability to simulate particle trajectories and detect the captured ones, we tackle the
rate at which the cylinder intercepts them. The capture rate Ṅ is the number of particles that
the cylinder captures per unit time. As illustrated in Figure 4.7, the particle that would be
ultimately captured enters necessarily through an opening that we call the capture window.
Thereby, the capture rate also equals the flux of particles through this capture window

Ṅ = C0U0e. (4.17)

Here C0 is the particle concentration per unit length (#/m2), which we assume constant and
uniform, and e is the length of the capture window.

4.3.1 Calculation strategy

Automated dichotomy

From the definition (4.17), we calculate the capture rate Ṅ through the length of the capture
window e. As shown in Figure 4.7, the capture window is determined by the initial ordinates
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Figure 4.7 Schematics of particle advected by a flow around a fixed cylinder. Particles are
launched from a distance −x0 upstream from the the cylinder. Because it starts near the
symmetry line, the blue particle is captured, whereas the red particle starts from a large
y-position and succeeds in crossing the cylinder and escaping capture. The gray particle is
the farthest particle that the cylinder intercepts. Its trajectory starts from the ordinate y2,
and defines the upper border of the capture domain. The length of the capture window is
equal to e = y2 − y1, and θc represents the maximum angle of capture.

y1 and y2 of the farthest particles (in gray) that are intercepted in lower and upper sides of
the cylinder, so its length is written as

e = y2 − y1. (4.18)

First, we consider captured (blue) and non-captured (red) particles, launched from the same
starting line x0 = −2 upstream from the cylinder. Their initial positions, yc and ync, are
necessarily bounds of either border, say the upper one (yc < y2 < ync). Next, we release
a third particle between the two previous ones, from the middle of their initial ordinates
ym = (yc + ync)/2. If it escapes capture, then the upper border y2 is necessarily between
the initial ordinates of this new particle and the former captured one (yc < y2 < ym).
Our Python code [115] repeats this dichotomic process until it reaches a resolution of one
thousandth of the particle diameter. An overview of the implementation of this method is
given in Algorithm 4.1.

Temporal decomposition

The borders of the capture region are, in fact, varying periodically in time as a result of
the vortex shedding and cylinder motion. Consequently, the capture rate is also periodic, to
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Algorithm 4.1 Part of the automated dichotomy process calculating an approximation of
ordinates y1,2 of the farthest captured particle intercepted in the lower and upper sides of the
cylinder.

Particle P c starting from yc is captured
Particle P nc starting from ync escapes capture

while |ync − yc| > dp/1000 do
ym = (yc + ync)/2
Simulate the trajectory of the particle Pm starting from ym

if Pm is captured then
yc ← ym

end if
if Pm escapes capture then

ync ← ym

end if
end while

# If ync > yc, it means that we found the ordinate y2 of the upper farthest captured particle,
# otherwise it is the ordinate y1 of the lower farthest captured particle.
return yc

which we propose the following time-dependent expression

Ṅ(t) = 〈Ṅ〉+ Ṅa sin
(2πt
T

+ ϕ
)
. (4.19)

The governing period T depends on the state of the cylinder. If this latter is fixed, T is the
vortex shedding period because it is the only periodic behaviour present in the system. If
it vibrates, T is the period of the stream-wise — not transverse – motion of the cylinder.
Indeed, the cylinder describes a lemniscate, such as the one in Figure 4.8, so it captures
particles in the same way whether during the upper or the lower loop.

We calculate the capture rate at instants t = 0, T/4, and T/2, and determine the three
unknowns in equation (4.19) from the following

〈Ṅ〉 = Ṅ(0) + Ṅ(T/2)
2 , (4.20a)

Ṅa =
√[
Ṅ(0)− 〈Ṅ〉

]2
+
[
Ṅ(T/4)− 〈Ṅ〉

]2
, (4.20b)

ϕ = arcsin
(
Ṅ(0)− 〈Ṅ〉

Ṅa

)
. (4.20c)
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Figure 4.8 Example of a (centred) limit-cycle trajectory of a cylinder at Re = 100 and Ur = 5.
The X-axis, Y -axis, and cylinder diameter are not to scale.

4.3.2 Dimensional analysis

In addition to time, the capture rate is a function of the fluid, cylinder, and particle properties
altogether

Ṅ [s−1], t[s], U0 [m s−1], ρf [kg m−3], µf [kg m−1s−1], D [m], k [N m−1], m [kg],

dp [m], ρp [kg m−3], C0 [m−2]. (4.21)

The Buckingham Π theorem [129] states that 11−3 = 8 independent dimensionless variables
fully describe the problem. We choose them

η = Ṅ

C0U0D
, t̄ = D

U0
, Re = ρfU0D

µf
, R = dp

D
, Ur = U0

D

√
k

m
,

ρ+ = ρp

ρf
, M = m

ρfD2 , c0 = C0D
2. (4.22)

Therefore, the dimensionless capture rate η in our case reduces to the capture efficiency,
according to definitions (1.17) and (1.18) (section 1.1.3, chapter 1), which itself equals the
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dimensionless length of the capture window

η = Ṅ

C0U0D
= e

D
= ē. (4.23)

Owing to the decomposition in equation (4.19), the dimensionless time t̄ intervenes only as
an argument in the sine function

η = 〈η〉+ ηa sin
(

2πt̄
T̄

+ ϕ

)
, (4.24)

with T̄ being the dimensionless governing period. Thus, the variables 〈η〉, ηa, and ϕ are
independent of t̄. Moreover, for all simulations in the present work, we kept the mass ratio
of the cylinder and the particle density ratio constant equal to M = 1 and ρ+ = 2, beside
a constant particle concentration (c0 = constant). Henceforth, the remaining variables that
determine the capture rate are the Reynolds number, the diameter ratio, and the reduced
velocity

Re = ρfU0D

µf
, R = dp

D
, Ur = 2πU0

D

√
m

k
, (4.25)

and we write
η = F (Re,R, Ur). (4.26)
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CHAPTER 5 CASE OF A FIXED CYLINDER

We begin our study progressively from the case of a fixed cylinder. Although the reduced
velocity is not defined for a motionless body, we assume that the cylinder is fixed in the
asymptotic case when Ur → 0 (infinite spring stiffness). We introduce, therefore, the particle
capture rate by a fixed cylinder as

ηfixed = lim
Ur→0

η = F0(Re,R). (5.1)

5.1 Numerical results

We simulated the trajectories of particles of diameter ratios between R = 0.008 and 0.1,
advected by flows at Reynolds numbers from Re = 3 to 300. The scheme in Figure 5.1
contrasts particles with the cylinder to have an idea of how small they are.

First, we evaluated the magnitude of the two terms in the temporal decomposition of the
capture rate η in (4.24), namely the mean capture rate 〈η〉fixed and the amplitude of the
transient rate ηa,fixed. Figure 5.2 shows the ratio ηa,fixed/〈η〉fixed versus the Reynolds number
for different particles. Since it is always less than 0.02, we consider that the sine function
in equation (4.24) can be considered as a small fluctuation of the mean capture 〈η〉fixed.
Therefore, in the ensuing sections, we will assume that ηfixed ≈ 〈η〉fixed and present results of
mean capture rate only.

Next, in order to see the influence of the particle size, we considered each flow with a specific
Reynolds number Re and calculated the capture rate for the diameter ratios 0.008 ≤ R ≤ 0.1.
The results are displayed in Figure 5.3(a). For small particles R ≤ 0.05, the mean capture
rate varies as the square of the diameter ratio 〈η〉fixed ∼ R2 for all Reynolds numbers. Large
particles R ≥ 0.05 also follow the same power law, but only for low Reynolds numbers
Re < 50. As Re increases, 〈η〉fixed deviates more and more above ∼ R2. Recalling that
vortices start to shed at Re ≈ 50, the gap between the mean capture rate and the square
variation in the diameter ratio, for large particles, becomes more pronounced as the von
Kármán street establishes.

In Figure 5.3(b) we look at the variation of the mean capture rate with the Reynolds number
for each single particle. We found that particles having R ≤ 0.031 follow the power law
in ∼ Re1/2 irrespective of the flow regime. As for the largest particles R = 0.05 and 0.1,
the mean capture rate follows this law before Re ≤ 50, then switches to a linear variation
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Figure 5.1 Schematics comparing particles and cylinder sizes. We recall that R = dp/D is
the diameter ratio.
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Figure 5.2 Ratio of the amplitude of the transient term ηa,fixed to the mean value 〈η〉fixed of the
capture rate by a fixed cylinder versus Reynolds number (0.008 ≤ R ≤ 0.1). The amplitude
ηa,fixed represents only a small fluctuation that does not exceed 2% of 〈η〉fixed. For Re < 50,
we found that ηa,fixed = 0, so we did not plot it in the graph.
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Figure 5.3 The mean capture rate for a fixed cylinder as a function of (a) the particle diameter
ratio for 3 ≤ Re ≤ 300, and (b) the Reynolds number for 0.008 ≤ R ≤ 0.1. The dashed lines
are power law fits, valid for specific ranges of data points listed in Tables 5.1 and 5.2.
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Re p incertitude r2 R-validity
300 2.15 0.11 0.87 ≤ 0.031
250 2.06 0.08 0.86 ≤ 0.031
200 2.01 0.10 0.86 ≤ 0.031
150 1.95 0.02 0.86 ≤ 0.031
100 2.14 0.05 0.88 ≤ 0.05
50 2.00 0.02 0.95 ≤ 0.05

Table 5.1 Exponents p found by fitting ∼ Rp to numerical data points in Figure 5.3(a), for
each Reynolds number Re.

R p incertitude r2 Re-validity
0.1 0.55 0.10 0.99 ≤ 50
0.05 0.51 0.08 0.99 ≤ 100
0.031 0.52 0.02 0.98 ≤ 250
0.015 0.47 0.04 0.95 ≤ 200
0.008 0.53 0.02 0.99 ≤ 300
0.1 1.03 0.09 0.99 ≥ 100
0.05 1.03 0.10 0.99 ≥ 50

Table 5.2 Exponents p found by fitting ∼ Rep to numerical data points in Figure 5.3(b), for
each diameter ratio R.

〈η〉fixed ∼ Re1 after.

In summary, we found that the best power function fit of the mean capture rate yields
(r2 = 0.99, Figure 5.4)

〈η〉fixed = 0.38R2.09Re0.52 (5.2)

as the Reynolds number and the diameter ratio verify R2Re1/2 < 0.028. This means that
equation (5.2) is valid even for large particles provided the flow is viscous, and in inertial
flows provided the particles are small.

5.2 Role of the boundary layer

5.2.1 Qualitative interpretation

Because the interception depends on the local state of the fluid close to the cylinder edge,
we introduce the boundary layer as an important factor in the interception mechanism. In
Figure 5.5 we drew the boundary layer thickness in the upper side of the cylinder for an
inertial flow (Re = 100), and superimposed small and large particles on it. We see that the
blue small particle R = 0.015 can be completely immersed into the boundary layer after
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Figure 5.4 The mean capture rate for a fixed cylinder versus R2Re1/2 for 3 ≤ Re ≤ 300 and
0.008 ≤ R0.1 ≤. The dashed line is the power function fit of data points for R2Re1/2 < 0.028
(r2 = 0.99): 〈η〉fixed = cRaReb with a = 2.09± 0.06, b = 0.52± 0.01 and c = 0.378± 0.044.

entering from near the stagnation point. Being inside, the particle decelerates and settles on
the cylinder edge. Yet, only particles launched from a fine region around the symmetry line
are able to reach the stagnation point and penetrate the boundary layer. Otherwise, they
would deviate before approaching to the cylinder, like the red one in Figure 5.5(a). From
this respect, the boundary layer ‘shields’ the cylinder from the majority of small particles,
leading to a narrow capture window e� D, hence a low capture rate.

On the other hand, the particle with a diameter ratio of R = 0.1 has a size larger than the
thickness of the boundary layer as shown in Figure 5.5(b). Therefore, even particles launched
relatively far from the symmetry line preserve their momentum, deviate less, and impact the
cylinder without any effect from the boundary layer. Thus, the capture window is wider and
the capture rate higher. The boundary layer ‘shield’ cannot resist big particles.

Now that we focused on a single flow and described how the size of the particles is related
to the capture rate, let us consider a single particle and see the influence of the Reynolds
number on the interception process. In Figure 5.6 we plotted the pathlines of a viscous and
inertial flows (Re = 3 and 100), which are representative of streamlines upstream from the
cylinder assuming the flow there is steady enough. For the viscous flow, these pathlines
diverge relatively far from the cylinder. Hence, particles ultimately captured are necessarily
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Figure 5.5 Numerical boundary layer thickness (bold black line) at Re = 100. (a) The blue
particle of R = 0.015 is small enough to enter inside the boundary layer and remain within
until capture. The red particle has the same size but launched far from the separation line.
The boundary layer deviates it and prevents the cylinder from interception. (b) The particle
of R = 0.1 is larger than the boundary layer, hence impacts the cylinder unaffected by the
boundary layer.
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launched from a narrow region around the symmetry line, say within the two pathlines
(C) in Figure 5.6(a). If not, they would diverge early like the pathlines (A) or (B), and
easily cross over the cylinder. For the inertial flow, conversely, as more fluid particles are
carried in proximity of the cylinder edge, pathlines compress and diverge less. Consequently,
even particles starting between the pathlines (B) and (C) in Figure 5.6(b), for example, will
acquire enough momentum to travel straightly till the stagnation point, then immerse into
the boundary layer and get intercepted. Thus, increasing the Reynolds number opens out
more the capture window and augments the capture rate.

5.2.2 ‘Direct interception’ versus ‘Inertial impaction’

We found earlier in this chapter that the mean capture rate 〈η〉fixed follows the power law in
equation (5.2) only when R2Re1/2 < 0.028. To identify the behaviour of particle dynamics in
this regime, we simulated the trajectory of the farthest captured particle having a small size of
R = 0.015 in a flow at Re = 100 (R2Re1/2 = 0.002 < 0.028). We examine the time evolution
of the total hydrodynamic force applied on the particle (see equation (4.9b)), projected in
the radial and angular directions F̄total,r = F̄total · er and F̄total,θ = F̄total · eθ, as represented
in the top of Figure 5.7. We notice that the trajectory comprises three phases. From the
starting line, the total force points almost radially away from the cylinder (F̄total,r > 0 and
|F̄total,θ|/F̄total,r � 1), meaning that the particle travels almost straightly without deviation
until it slows down as long as it gets close to the cylinder. We term this phase as the approach.
The next phase, the turn, is when F̄total,θ starts to increase and takes over F̄total,r. The fluid
slows down the particle near the stagnation point, then carries it sideways and curves its
trajectory. After that, during the settling phase, while the particle enters the boundary
layer, F̄total,r drops below zero and changes the sign. At that moment, the repulsive action
of the hydrodynamic load transitions into an attracting action towards the cylinder, and the
particle ends up being captured.

To check whether particle advection cases verifying the power law (5.2) share similar be-
haviour, we computed the trajectory of a larger particle R = 0.05 in a less inertial flow
Re = 50, yet still in the power law regime (R2Re1/2 = 0.018 < 0.028). As seen in the middle
of Figure 5.7, this particle also goes through the approach, turn, and settling phases: the
component F̄total,r peaks, decreases near zero, F̄total,θ arises and takes over F̄total,r, and finally
immerses the particle inside the boundary layer. Since the particle drifts and settles down
directly at the cylinder edge, we deduce that the regime where the power law (5.2) is valid
corresponds to the ‘direct interception’ capture mode.

In contrast, we computed an advection case of the large particle R = 0.1 at Re = 100. Here
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Figure 5.6 Pathlines illustrating the boundary layer thinning from (a) Re = 3 to (b) Re = 100.
We assimilate streamlines to pathlines prior to the cylinder because the flow there is weakly
transient. When the flow is viscous, the pathlines start to diverge far from the cylinder.
Small particles should be released in a fine region between the pathlines (C) in order to be
captured. When the flow is inertial, on the other hand, the pathlines compress and diverge
close to the cylinder. In this case, even particles released between the pathlines (C) and (B)
make their way until they hit the cylinder.
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R2Re1/2 = 0.1 > 0.028 and the capture rate 〈η〉fixed stops following the power law (5.2). In
the bottom of Figure 5.7, we first notice that this particle moves faster than the two smaller
ones discussed above, and the durations of the three phases shrink. In the approach phase,
F̄total,θ starts climbing up while F̄total,r is still important, meaning that the particle deviates
early and keeps a considerable radial momentum. We also point out that the trajectory is
not sharply curved, and the particle travels as much distance during the turn phase as during
the settling phase. Also, at the instant of capture, the magnitude of the radial and angular
components of the total force take values F̄total,r ≈ −0.3 and F̄total,θ ≈ 0.7, which are greater
than in previous cases. These features are different from those pictured in earlier simulations,
and show rather a particle moving rapidly and impacting the cylinder with high momentum.
Again we deduce, by analogy, that the regime where the power law (5.2) underestimates the
capture rate corresponds to the ‘inertial impaction’ capture mode.

We understood so far that the capture rate correlates positively with both the Reynolds
number and the diameter ratio. But how can we explain the square variation in the diameter
ratio? And why particles undergoing direct interception have a capture rate proportional to
the square root of the Reynolds number, or in other words, to the inverse of the boundary
layer thickness?

5.3 Power law derivation

In this section we propose an analytical derivation of the power law of the capture rate. We
assume that the flow is steady upstream from the cylinder, and we discard any temporal
variation. We start from the equation (1.18), and calculate the capture rate η through the
length of the capture window e. This latter intervenes in the following balance equation by
virtue of mass conservation on the control volume shown in Figure 5.8

∫
(A)
Ufdn+

∫
(S)
Ufdn+

∫
(C)
Ufdn+

∫
(B)
Ufdn = 0. (5.3)

The control volume is formed with: the capture window (A), the trajectories (S) of the
outermost captured particles, the cylinder’s arc of circle (C) defined between the maximum
capture angles ±θc, and the two segments (B) linking the cylinder edge and particle centre.
The vector dn is the integration element pointing outwards.

Because of the no-slip condition at the cylinder edge, the integral over (C) is equal to zero.
Also, assuming that the particles follow exactly the streamlines, the integral over (S) vanishes.
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Figure 5.7 Time evolution of the dimensionless radial F̄total,r and angular F̄total,θ components
of the total hydrodynamic force applied on the outermost captured particles. The radial
vector er points away from the cylinder and the angular vector eθ is clockwise (see Figure
4.7 for the polar frame definition). In the case of the particle R = 0.015 at Re = 100
(top), F̄total,r is positive during the approach phase (in yellow), meaning that it is repulsive.
Meanwhile, F̄total,θ is negligible, hence the particle keeps a straight path. In the turn phase
(in green) we have F̄total,θ > F̄total,r, and this latter keeps decreasing until it drops below
zero at t̄ ≈ 4.6. Subsequently, during the settling phase (in blue), the hydrodynamic force
becomes attractive. Apart from arriving at the cylinder more rapidly, the forces evolution
in the case R = 0.05 at Re = 50 (middle) shares the same features as above. However, for
R = 0.1 at Re = 100 (bottom), since F̄total,θ intersects with F̄total,r while this latter is still
around its peak, the particle deviates early before getting close to the cylinder. Also, the
force components take values of F̄total,r ≈ −0.3 and F̄total,θ ≈ 0.7, which are larger than in
previous cases.
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Figure 5.8 Control volume considered in equation (5.3) defining the capture window length.
Here Uf,θ is the angular component of the fluid velocity, and θc the maximum angle of
interception.

Therefore, we are left with

− eU0 + 2
∫ D/2+dp/2

D/2
Uf,θdr = 0, (5.4)

with Uf,θ the angular component of the fluid velocity.

Now we introduce the stream function ψ and rewrite Uf,θ as

Uf,θ = ∂ψ

∂r
. (5.5)

Equation (5.4) becomes
eU0 = 2ψ(D/2 + dp/2, θc), (5.6)

considering that the cylinder edge is a streamline, i.e. ψ(D/2, θ) = 0. Switching to dimen-
sionless variables

ψ̄ = ψ

U0D
, ē = e

D
, (5.7)

and given the definition of η in equation (4.23), we get

η = ē = 2ψ̄(1/2 +R/2, θc). (5.8)

Next, assuming R� 1, we expand (5.8) to the second order in R around 1/2

η ≈ ψ̄(1/2, θc) +
(
R

2

)
∂ψ̄

∂r̄

∣∣∣∣∣
1/2,θc

+ 1
2

(
R

2

)2 ∂2ψ̄

∂r̄2

∣∣∣∣∣
1/2,θc

. (5.9)
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Again, ∂ψ̄/∂r̄|r̄=1/2 = 0 due to the no-slip condition, and the cylinder edge is a streamline
per se, so ψ̄|r̄=1/2 = 0. We obtain thus the quadratic variation in the diameter ratio

η ≈ 1
8R

2∂
2ψ̄

∂r̄2

∣∣∣∣∣
1/2,θc

. (5.10)

Up to this stage, all previous models [10, 12, 13] agree with the same quadratic variation in
the diameter ratio. Whereas they ended their analytical model at this step, here we push
further our derivation and propose a new approach to get into the square root variation in
the Reynolds number.

Since the particle diameter is too small compared to the cylinder (dp � D), its curvature is
much higher (d−1

p � D−1). In other words, the particle is so small that, once close enough
to the cylinder edge, this latter appears like a flat plate. We could arguably suppose, hence,
that the boundary layer of a cylinder has the same properties as for a plate, and use the
analytical expression of the stream function [130]

ψ̄ =
√

2x̄
Re

f

ȳ
√
Re

2x̄

 , (5.11)

where f is solution of the Blasius equation. However, we decide to work with a new system
of coordinates (θ, ρ) that transforms a flat plate into a circle, defined with a certain relation

x = x(θ, ρ), (5.12a)

y = y(θ, ρ). (5.12b)

The expression (5.11) is an inner expansion of the boundary layer solution to the order
O (1/Re), and it does not keep the same form just by simply inserting the new coordinate
system (5.12) into (5.11) [107]. According to Kaplun’s correlation theorem [131], we shall
first choose a system of coordinates such that the flat plate defined by (x, y = 0) should
correspond to the circle of radius D/2 defined by (θ, ρ = 0), then use the following

x(θ, ρ) ≈ x(θ, 0), (5.13a)

y(θ, ρ) ≈ ρ
∂y

∂ρ
(θ, 0), (5.13b)
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so that the stream function in the new system of coordinates becomes

ψ̄ = ψ̄

(
x(θ, 0), ρ∂y

∂ρ
(θ, 0)

)
. (5.14)

Let us consider the Joukowski transformation J [132]

z = J (Z) = Z + (D/2)2

Z
, (5.15)

and put
Z = (ρ+D/2)eiθ. (5.16)

Then for a fixed ρ, the variable Z draws a circle of radius ρ+D/2 as θ goes through [0, 2π].
Replacing (5.16) in (5.15) we obtain

z = x+ iy =
(
ρ+D/2 + (D/2)2

ρ+D/2

)
cos θ + i

(
ρ+D/2− (D/2)2

ρ+D/2

)
sin θ, (5.17)

yielding

x = x(θ, ρ) =
(
ρ+D/2 + (D/2)2

ρ+D/2

)
cos θ, (5.18a)

y = y(θ, ρ) =
(
ρ+D/2− (D/2)2

ρ+D/2

)
sin θ. (5.18b)

Here we see that ρ = 0, which corresponds to the circle of radius D/2, leads to y = 0, hence
the first condition of Kaplun’s theorem is verified. The transformation (5.18) is illustrated
in Figure 5.9.

y = 0

y

x

Y

X

J (Z) = z

ρ = 0

Figure 5.9 Joukowski transformation as defined in equations (5.15) and (5.18). The circle
ρ = 0 in the (X, Y )-plane corresponds to the flat plate y = 0 in the (x, y)-plane.
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Expanding around ρ = 0 we get

x(θ, ρ = 0) = cos θ, (5.19)

ρ
∂y

∂r
(θ, ρ = 0) = 2ρ sin θ, (5.20)

which reads in dimensionless variables

x̄(θ, ρ̄ = 0) = cos θ, (5.21a)

ρ̄
∂ȳ

∂ρ̄
(θ, ρ̄ = 0) = 2ρ̄ sin θ. (5.21b)

Therefore, replacing (5.21) in (5.14) we get

ψ̄ = ψ̄

(
x̄(θ, 0), ρ̄∂ȳ

∂ρ̄
(θ, 0)

)
=
√

2 cos θ
Re

f

2ρ̄ sin θ
√

Re

2 cos θ

 . (5.22)

Finally, coming back to the original variable r̄ = ρ̄ + 1/2, and since ∂2/∂r̄2 = ∂2/∂ρ̄2, the
second derivative of the stream function at the capture location of the outermost particle
r̄ = 1/2, θ = θc is

∂2ψ̄

∂r̄2

∣∣∣∣∣
1/2,θc

= (2 sin θc)2

√
Re

2 cos θc
f ′′(0), (5.23)

whence, from (5.10)

η ≈ sin2 θcf
′′(0)

2
√

2 cos1/2 θc
Re1/2R2. (5.24)

With f ′′(0) = 0.4696 [107,130], and taking for instance θc ≈ 80°, we find

η ≈ 0.38Re1/2R2. (5.25)

We got hence the same scaling (5.2) as in the curve fit of numerical data in Figure 5.4. We
understand then, from this theoretical derivation, that the quadratic variation in the diameter
ratio and exponent 1/2 in the Reynolds number are related to the smallness of particles and
the effect of the boundary layer thickness on the capture process, as qualitatively described
in section 5.2.1.
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CHAPTER 6 CASE OF A VIBRATING CYLINDER

After revealing the influence of the Reynolds number and diameter ratio on the capture rate
for a fixed cylinder, in this chapter we let the cylinder free to oscillate in cross-flow and in-line
directions, and study how the motion affects the interception of particles.

6.1 Numerical results

We present simulation results of particles having diameter ratios between R = 0.015 and 0.1,
advected by flows of Reynolds numbers from Re = 50 to 200. Even though VIV appear for
Reynolds numbers as small as Re = 20 [74], we discarded the cases 20 ≤ Re < 50 because
the vibration amplitude is too small to affect the capture rate. We varied the spring stiffness
of the cylinder so that the reduced velocity takes values 1 ≤ Ur ≤ 13.

Similarly to the previous chapter, we compare first the mean capture rate 〈η〉 and the am-
plitude of the transient rate ηa in the temporal decomposition of the capture rate in equa-
tion (4.24). As seen in Figure 6.1, the ratio ηa/〈η〉 is less than 0.1 for small and large reduced
velocities, and does not exceed 0.2 at lock-in Ur ∼ 5 (with the exception of four outliers).
Although we cannot neglect the temporal variation in η, unlike in the case of a fixed cylinder,
we chose to dedicate this chapter for the mean capture rate only, as we aim to depict how
vibrations influence the capture process overall.

Figure 6.2 shows the mean capture rate 〈η〉 as a function of the reduced velocity Ur. We
see that 〈η〉 is a bell-shaped function of the reduced velocity. It starts from almost the
same value as for a fixed cylinder (Ur ∼ 1), peaks at lock-in (Ur ∼ 5), then decreases down
for high reduced velocities. To evaluate the benefit that the vibration brings to particle
interception, we define the gain in capture rate δ as the relative difference between capture
rates by vibrating and fixed cylinders

δ = 〈η〉 − 〈η〉fixed

〈η〉fixed
. (6.1)

As shown in Figure 6.3, at lock-in (Ur ∼ 5), the gain in capture δ takes values from 20% to
40% depending on the particle size and Reynolds number. Moreover, as it is the case for the
mean capture 〈η〉, the gain δ also varies significantly with the reduced velocity Ur. This fact
suggests that a cylinder kinematic variable must intervene in the value of δ. Let us find out
this hidden variable.
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Figure 6.1 Ratio of the amplitude of the transient term ηa,fixed to the mean value 〈η〉fixed of
the capture rate by a vibrating cylinder versus reduced velocity for diameter ratios 0.015 ≤
R ≤ 0.1 and Reynolds numbers 50 ≤ Re ≤ 200.

6.2 Amplitude responses

We start by investigating the link between the gain δ and the amplitude response of the
cylinder. Figure 6.4 shows the dimensionless responses of the transverse and stream-wise
amplitudes of the cylinder, denoted Ȳmax and X̄max. The curves of δ, Ȳmax, and X̄max with
Ur look very similar: they all peak at lock-in, and decrease for small and large reduced
velocities. Indeed, Figure 6.5 shows that δ is positively correlated with Ȳmax and X̄max. The
vibrating cylinder captures 40% more particles than its fixed counterpart for Ȳmax ∼ 0.7 and
X̄max ∼ 5× 10−2.

This result is intuitive since a cylinder with large Ȳmax filters a wider cross-flow space and
is more likely to catch particles. Similarly, a cylinder with a large X̄max has more space
to accelerate against the stream and reach an important counter-current velocity (in fact,
the maximum stream-wise span and speed are proportional owing to the periodic motion,
X̄max ∝ dX̄max/dt̄). As a consequence, particles get into the cylinder with a higher relative
speed, hence hit it more often.

We mention, nonetheless, that the cylinder scores an overall loss in capture for Ur > 9 even in
the presence of vibration, in the detrimental zone 0 < Ȳmax . 0.3 and 0 < X̄max . 8× 10−3.
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Figure 6.2 Mean capture rate versus the reduced velocity for (a) the particle R = 0.031 and
(b) all particles, in fluid flows of Reynolds numbers 50 ≤ Re ≤ 200. The solid horizontal line
for each Reynolds number in (a) is the mean capture rate for a fixed cylinder 〈η〉fixed.



65

1 5 9 13
Ur

−10

0

10

20

30

40

δ
(%

)

Re = 200
Re = 150
Re = 100
Re = 50

Figure 6.3 Gain in capture rate versus reduced velocity for all particles R = 0.1, 0.05, 0.031,
and 0.015 in fluid flows of Reynolds numbers 50 ≤ Re ≤ 200.
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Figure 6.4 Response of (a) the transverse and (b) the stream-wise amplitudes
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Ȳmax = Ymax/D

−10

0

10

20

30

40

δ
(%

)
(a)

R = 0.1
R = 0.05
R = 0.031
R = 0.015

Figure 6.5 Gain in capture rate as a function of the (a) transverse and (b) stream-wise
amplitude of the cylinder. The x-axis in (b) is logarithmic to visualise better the staggered
data points.
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One way to explain this finding is that while Ur increases, the transverse oscillation of the
cylinder slows down, and its period becomes larger than the characteristic time of particle
advection. Particles then see a cylinder that switches places up and down slowly, staying a
long time in either side, hence giving them the chance to escape capture. For this reason,
the cylinder misses several interception events, so it would be better if it stayed fixed, or at
least in a quasi-steady state Ur > 20 [15]. From this description, we infer that the profiles of
the δ−Ur curves would have in common an ascending phase (0 < Ur < 5), a peak at lock-in
(Ur ≈ 5), a descending phase (5 < Ur < 9), a detrimental regime below zero (9 < Ur < 20),
and a plateau towards zero beyond the quasi-steady state (Ur > 20).

In the following sections we dig into kinematic parameters other than Ymax and Xmax that
characterise the capture rate.

6.3 Shape of the lemniscate

For a two-degree-of-freedom motion, the limit-cycle trajectory of a cylinder undergoing VIV
is a lemniscate (Figure 6.6). In this section, we further our analysis and analyse how the
shape of this lemniscate affects the capture rate.

6.3.1 Slenderness

We have seen that the relative capture rate increases with the amplitude responses of the
cylinder. Whereas Ymax and Xmax give the extension of the lemniscate, in this section we
combine them into a single parameter γ = Ymax/Xmax that we name the slenderness ratio of
the lemniscate.

Figure 6.7 shows that the gain in capture is a decreasing function of the slenderness ratio.
A cylinder with a thin lemniscate (high γ) travels the majority of its limit-cycle trajectory
normal to the flow and spends only little time in-line. Thereby, the relative speed of particles
with respect to the cylinder does not increase much, and the capture rate remains low. A
cylinder with an extended lemniscate (low γ), conversely, spends a longer time travelling
against the flow, hence it collects more particles.

Lemniscates with the same slenderness do not necessarily travel against the flow in the same
way. We will see that the lemniscate has another geometrical property that is also important
to consider in the capture process.
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Figure 6.6 Lemniscate trajectories of the cylinder versus reduced velocity at Re = 100. The
X-span of each lemniscate is magnified ≈ 13 times to elucidate the geometrical properties.
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Figure 6.7 Gain in capture versus slenderness of the lemniscate trajectory. Numerical data
points collapse well for low slenderness (γ < 0.4), which is the case at lock-in (see appendix D,
Figure D.3).
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6.3.2 Distortion

In Figure 6.6 we drew lemniscate limit-cycle trajectories that cylinder describe for various
reduced velocities. For low and high Ur, the lemniscate is vertically symmetric, similar to an
‘eight’. At lock-in, however, it distorts and becomes like a ‘boomerang’, whose centre shifts
towards the left. In this section we study the impact of the lemniscate distortion on the
particle capture.

For reduced velocities outside lock-in, for example Ur = 8 in Figure 6.6, the lemniscate is
eight-like and has upper and lower branches that are curved. Travelling against the flow, say
in the upper loop, the cylinder moves upwards then downwards, and spends little time with
a pure stream-wise velocity (at the tip of the loop). A boomerang-like lemniscate, on the
other hand, conserves an important stream-wise component of the velocity during the entire
upper or lower cycles, hence gets a higher capture rate. Nevertheless, to see the variation of
the gain in capture, how can we quantify the degree of distortion of a lemniscate?

Let us write the equation of a lemniscate in a plane. While the cylinder goes up and down
once, it moves back and forth twice. Thus, a parametric equation for this trajectory is

x(t) = Xmax cos(4πfnt), (6.2a)

y(t) = Ymax sin(2πfnt+ βπ/2). (6.2b)

The coefficient β in the phase of y(t) is what we call the distortion coefficient. It takes
values between 0 and 1. Figure 6.8 illustrates the shape of lemniscate sharing either the
same slenderness or distortion. For instance, a lemniscate with a unique slenderness ratio
of γ = 2 can be either eight-like if it has a distortion coefficient of β = 1/2, and boomerang-
like if β ≈ 1. Also it is worth to mention that β ≈ 0 is also a boomerang-like lemniscate,
though distorted in the opposite direction.

To calculate the distortion coefficient, we consider the instants t+ and t− when the cylinder
is in the downstream-most and upstream-most positions of the lemniscate

x(t+) = +Xmax = Xmax cos(4πfnt
+), (6.3a)

x(t−) = −Xmax = Xmax cos(4πfnt
−). (6.3b)

Then we obtain
t+ = 0, t− = 1/4. (6.4)
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Figure 6.8 The left and middle lemniscates share the same slenderness γ but have different
distortion parameters β, and vice versa for the middle and right ones. The upper branch of
the lemniscate where the cylinder travels against the stream is highlighted. Its length is the
counter-current distance dcc.

Using the normal positions at these instants

y(t+) = Ymax sin(βπ/2), (6.5a)

y(t−) = Ymax cos(βπ/2), (6.5b)

we calculate β through

β = 2
π

arctan
(
y(t+)
y(t−)

)
. (6.6)

Figure 6.9 shows the variation of the gain in capture versus the distortion coefficient. We
found that δ increases with the distortion of the lemniscate starting from β ≈ 0.6, and reaches
the maximum for β ≈ 0.75. Beyond, the lemniscate is too distorted and the cylinder captures
less particles. Symmetric lemniscates (β ≤ β∗ ≈ 0.62), on the other hand, are detrimental
for capture.

6.4 Counter-current distance

Finally, we elaborate on the above analysis and introduce a new quantity called the counter-
current distance, denoted dcc. It is the distance that the cylinder travels against the current,
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Figure 6.9 Gain in capture rate versus distortion coefficient of the lemniscate

either through the exterior or the interior branches of the lemniscate (highlighted in Figure
6.8 assuming a counter-clockwise motion in the upper loop).

We calculate dcc from the equation of the lemniscate (6.2). We first remove the temporal
variable. We have

x(t)/Xmax = cos(4πfnt)

= 2 cos2(2πfnt)− 1 = 1− 2 sin2(2πfnt), (6.7)

hence

sin(2πfnt) = ±
√

(1− x(t)/Xmax)/2, (6.8a)

cos(2πfnt) = ±
√

(1 + x(t)/Xmax)/2. (6.8b)

We insert (6.8) into

y(t) = Ymax sin(2πfnt+ βπ/2)

= Ymax [sin(2πfnt) cos(βπ/2) + cos(2πfnt) sin(βπ/2)] , (6.9)
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and obtain the equations of the four branches forming the lemniscate

y±,± = Ymax

±
√

1− x/Xmax

2 cos(βπ/2)±
√

1 + x/Xmax

2 sin(βπ/2)
 . (6.10)

The counter-current distance has the following expression

dcc =
∫ Xmax

−Xmax
ds(x) (6.11)

=
∫ Xmax

−Xmax

√
1 + y

′2
±,±(x)dx. (6.12)

Owing to the horizontal symmetry, the exterior branches y+,+ and y−,− and the interior ones
y+,− and y−,+ have the same distance, respectively de

cc and di
cc, which read

de
cc =

∫ Xmax

−Xmax

√
1 + y

′2
+,+(x)dx = Xmax

∫ 1

−1

√√√√1 + γ2

8

[
sin(βπ/2)√

1 + ζ
− cos(βπ/2)√

1− ζ

]2

dζ (6.13a)

di
cc =

∫ Xmax

−Xmax

√
1 + y

′2
+,−(x)dx = Xmax

∫ 1

−1

√√√√1 + γ2

8

[
sin(βπ/2)√

1 + ζ
+ cos(βπ/2)√

1− ζ

]2

dζ (6.13b)

Here we notice the importance of this new parameter: it summarises all the information of the
cylinder trajectory through the stream-wise span Xmax, the slenderness of the lemniscate γ,
and its distortion β. In Figure 6.10 we see that the gain in capture increases with the counter-
current distance. In support of the interpretation suggested in the above sections, this result
means that the larger the distance the cylinder travels against the stream, the higher the
number of particles it intercepts. Finally, as it is the case for the previous parameters, there
is a critical counter-current distance d̄∗cc ≈ 0.062 that the cylinder needs to surpass in order
for the vibrations to be beneficial.
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Figure 6.10 Gain in capture rate versus counter-current distance travelled by the cylinder.
The dashed line is a linear regression (r2 = 0.87): δ = (d̄cc − d̄∗cc)/d̄cc,0, with d̄∗cc = (6.18 ±
0.27)× 10−2 and d̄cc,0 = (5.07± 0.15)× 10−3.
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CHAPTER 7 ELASTIC ROD SIMULATIONS

We have simulated, so far, two dimensional flows around a spring-mounted rigid circular
cylinder, and calculated the capture rate of advected particles. Although this simplified
model depicts the essential mechanisms of particle interception, it has only a single frequency
and hides the richer dynamics of an entire slender soft coral branch.

In this chapter, we explore a more realistic image of the soft coral branch by considering
the motion of an elastic rod with a clamped end in three-dimensional space. Our goal is
to give visual aspects close to the real observations of a vibrating soft coral in ocean. We
will not run costly, time-consuming three-dimensional direct numerical flow simulations of a
slender cylinder; our strategy, instead, is to tap reduced-order models that reliably transpose
the dynamics of vortex-induced vibrations. We base our simulations chiefly on the works of
Facchinetti et al. [8, 89], which coupled the wake dynamics and rod response. Moreover, we
give our simulations a biomechanical feature by including the reconfigured shape of the rod
under drag, similar to the dynamics solved by Leclercq and de Langre [14,85]. Here, we use
the FEniCS code, a Python based finite element solver [133].

We start by deriving the Kirchhoff equations for a slender rod, and listing the main forces
applying on it. After verifying and validating our code, we present the motion of a rod under
fluid-dynamic drag and vortex-induced lift combined.

7.1 Kirchhoff equations

We consider an elastic, straight rod with a clamped end, of a mass per unit length ml,
length L, and cross-section of characteristic length D. The scheme in Figure 7.1 illustrates
a circular rod, yet our equations are general for any cross-section. This rod has a flexural
rigidity EI and torsional rigidity GJ . For example, a circular cross-section has I/J = 2 and
G = E/2(1 + ν), where ν is the Poisson ratio. We refer to a position in the rod by the arc
length s ∈ [0, L], and will denote the position vector as w.

We build the material frame, along the rod, from the tangential vector t defined as [134]

t = ∂w

∂s
. (7.1)
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Figure 7.1 Illustration of a rod having a clamped end, within a fluid flow of upstream speed
U0 in the direction u0. The rod is meshed into elements of same length, each of them having
a local material frame (t,n, b).

The rate of change of the tangential vector along the deformed profile of the rod is [135]

∂t

∂s
= Ω× t. (7.2)

The vector Ω is called the Darboux vector, and quantifies the rate of rotation along the rod,
or in other words, the curvature of the rod.

The second vector of the material frame is the normal vector, denoted n, which also varies
as

∂n

∂s
= Ω× n. (7.3)

Thereby, the vectors t and n remain always orthogonal since

∂(t · n)
∂s

= (Ω× t) · t+ (Ω× n) · n = 0. (7.4)
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We complete the construction of the material frame with the binormal vector b defined as

b = t× n. (7.5)

Now we connect kinematic variables with the kinetics through the following constitutive
equation [134,135]

M = EIΩ + (GJ − EI)(Ω · t)t, (7.6)

withM the internal moment. This is a general formulation that includes twist, as the product
Ω · t might be non-zero for a given load. In particular, circular cross-sections experience no
twist for pure bending (Ω · t = 0) [134].

The internal moment varies proportionally to the internal force Fint (i.e. resultant of internal
stresses) via

∂M

∂s
= Fint × t. (7.7)

The variation of the internal force, finally, balances the external force per unit length fext

acting on the rod
∂Fint

∂s
= ml

∂2w

∂t2
− fext, (7.8)

assuming that external moments are absent.

We propose to work with the following dimensionless variables

t̃ = t

ts
, s̃ = s

L
, w̃ = 1

L
w, Ω̃ = LΩ, M̃ = L

EI
M , F̃int = L2

EI
Fint, f̃ext = L3

EI
fext,

(7.9)

with
ts = L2

√
ml

EI
(7.10)

being a characteristic time for the structural deformation. The governing equations hence
read

∂w̃

∂s̃
= t,

∂t

∂s̃
= Ω̃× t, ∂n

∂s̃
= Ω̃× n,

∂M̃

∂s̃
= F̃int × t,

∂F̃int

∂s̃
= ∂2w̃

∂t̃2
− f̃ext, (7.11)

with
M̃ = Ω̃ +

(
GJ

EI
− 1

)
(Ω̃ · t)t. (7.12)
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For a rod having a clamped end, the boundary conditions are

w|s=0 = wroot, t|s=0 = ∂w

∂s

∣∣∣∣∣
s=0

= troot, n|s=0 = (troot × u)/ ||troot × u|| ,

M |s=L = 0, Fint|s=L = 0, (7.13)

where we take u as a reference direction, which we choose to be the flow direction when
considering fluid-dynamic simulation problems in particular (section 7.2). In the following
we assume that the initial rod configuration is rooted at wroot = 0, and points towards the
direction troot. In dimensionless form, we have

w̃|s̃=0 = 0, t|s̃=0 = troot, n|s̃=0 = (troot × u)/ ||troot × u|| ,

Ω̃|s̃=1 = 0, F̃int|s̃=1 = 0. (7.14)

7.2 External forces

The external force f̃ext in (7.11) is general. Throughout this study, we will consider four
forces. The first force is the uniformly distributed load. It will serve as a benchmark for the
verification of our code. Then, the second force is the fluid-dynamic drag, which gives the
rod a reconfigured shape like in slender species in nature. The third force is the added mass
force, which affects the rod dynamics especially during important accelerations. Finally, the
fourth force is the vortex-induced force that brings about VIV along the rod.

7.2.1 Distributed load

The distributed load fdist points towards a certain unit vector u, and has a magnitude (per
unit length) of f0

fdist = f0u. (7.15)

Therefore, the dimensionless distributed load is

f̃dist = f̃0u, (7.16)

with
f̃0 = f0L

3

EI
. (7.17)



78

7.2.2 Drag

Suppose that the rod is within a fluid flow of upstream velocity U0 = U0u0. Following the
empirical work of Taylor [136], the axial component of the drag is neglected, and only the
components of the fluid velocity that are perpendicular to the rod, namely

u0,n = u0 · n and u0,b = u0 · b, (7.18)

generate load. The force that acts on an infinitesimal length ds expresses as

dFD = 1
2CDDρf (|U0 · n| (U0 · n)n+ |U0 · b| (U0 · b)b) ds (7.19)

= 1
2CDDρfU

2
0 (|u0,n|u0,nn+ |u0,b|u0,bb) ds, (7.20)

where CD is the drag coefficient of the rod cross-section. We deduce the drag per unit length

fD = ∂FD

∂s
= 1

2CDDρfU
2
0 (|u0,n|u0,nn+ |u0,b|u0,bb), (7.21)

which reads in dimensionless form

f̃D = CDCY(|u0,n|u0,nn+ |u0,b|u0,bb). (7.22)

The ratio
CY = ρfU

2
0DL

3

2EI (7.23)

is the Cauchy number, and compares the fluid-dynamic pressure to the elastic bending rigidity
of the rod [137].

We point out that, in transient simulations, we shall replace U0 by the fluid velocity relative
to the rod speed

Urel = U0u0 −
∂w

∂t
, (7.24)

hence replace u0 in (7.18) by
urel = u0 − λ

∂w̃

∂t̃
. (7.25)

The constant λ is
λ = L

U0ts
= StΓ

Ur
, (7.26)

with St the Strouhal number, Ur = StU0ts/D the reduced velocity, and Γ = L/D the aspect
ratio of the rod. Here λ gives an idea of the magnitude of the rod velocity with respect to
the fluid speed: a small λ indicates a slow rod motion, whereas a large λ indicates a fast rod
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motion.

We will refer to the relative direction by removing the subscript (.)0 from the variables

un = urel · n and ub = urel · b, (7.27)

so that we have in the dynamic case

f̃D = CDCY(|un|unn+ |ub|ubb). (7.28)

7.2.3 Added mass

Following the work of Leclercq and de Langre [14,85], we use the added mass force expression
for slender structures proposed by Candelier et al. [138] (notice the sign of the force and the
relative velocity definition (7.24))

fA = ma

[
U0
∂(unn+ ubb)

∂t
+ U2

0
∂ut(unn+ ubb)

∂s
− U2

0
2
∂(u2

n + u2
b)t

∂s

]
, (7.29)

with ma being the added mass per unit length. We define

ma = caπρfD
2/4, (7.30)

where ca is a coefficient depending on the shape of the cross-section (ca = 1 for a circular
cross-section). The dimensionless form of the added mass force take the following form

f̃A = πcaCY

2Γ

[
λ
∂(unn+ ubb)

∂t̃
+ ∂ut(unn+ ubb)

∂s̃
− 1

2
∂(u2

n + u2
b)t

∂s̃

]
. (7.31)

7.2.4 Vortex-induced lift

In the phenomenological wake-oscillator model of Facchinetti et al. [89], the lift induced by
vortices is perpendicular to the flow stream and rod axis. In our three-dimensional simula-
tions, we fix the direction of the lift u⊥0 as the normal to the plane defined by the flow and
initial rod configuration

u⊥0 = (troot × u0)/ ||troot × u0|| , (7.32)

which is also equal to n0 at the clamped end (u⊥0 = nroot). Though, we discarded the choice
of the instantaneous n = n(t̃, s̃) because it varies in time and in space, whereas the lift
direction in Facchinetti et al. [89] remains constant along the rod.
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The lift force can be expressed as

fVIV = 1
2CLDρfU

2
0u

2
bu
⊥
0 , (7.33)

where the time-fluctuating lift coefficient is written as [89]

CL = C0
L

2 q. (7.34)

The measured lift coefficient of a fixed rod cross-section during vortex shedding is defined as
C0

L, and q is the fluctuating variable which is solution of the van der Pol equation

∂2q

∂t2
+ ε

[
2πStU0|ub|

D

]
(q2 − 1)∂q

∂t
+
[

2πStU0|ub|
D

]2

q = A

D

∂2w

∂t2
· u⊥0 , (7.35)

with U0ub being the binormal component of the upstream flow velocity, perpendicular to the
rod. In the ensuing simulations we will take the same coupling constants A = 12 and ε = 0.3
as in Facchinetti et al. [89], which give correct results even for slender flexible structures.

We non-dimensionalise the expression of the vortex-induced lift

f̃VIV = C0
LCY

2 u2
bqu

⊥
0 , (7.36)

and the van der Pol equation

∂2q

∂t̃2
+ εωf |ub| (q2 − 1)∂q

∂t̃
+ ω2

f u
2
bq = ΓA∂

2w̃

∂t̃2
· u⊥0 , (7.37)

with
ωf = 2πStU0ts

D
= 2πUr. (7.38)

In the rest of this chapter, we will drop the notation (̃.) out of dimensionless quantities. Also,
we will denote the temporal derivative as ˙(.) and the spatial derivative as (.)′.

7.3 Variational formulation and solution strategy

7.3.1 Variational formulation

In order to solve the above system of equations in FEniCS, we need to write the variational
formulation of the governing system. We consider for each unknown w, t,n,Ω, and Fint, its
corresponding test function (̂.) that vanishes at both ends of the rod.
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For the static case, the variational problem reads

F =
∫ 1

0
L ds = 0 (7.39)

with

L = (w′ − t) · ŵ + (t′ −Ω× t) · t̂+ (n′ −Ω× n) · n̂

+ (Ω′ − Fint × t) · Ω̂ + (F ′int + fext) · F̂int. (7.40)

For the transient case, we introduce v = ẇ and keep only first-order temporal derivatives
in (7.11)

ẇ = v, (7.41)

v̇ = F ′int + fext. (7.42)

We consider a temporal subdivision with a constant time step ∆t, and choose a backward
Euler scheme

ẇk+1 = wk+1 −wk

∆t = vk+1, (7.43)

v̇k+1 = vk+1 − vk
∆t = F ′int,k+1 + fext,k+1. (7.44)

Finally, assuming that the solution at tk = k∆t is known, the variational formulation is

Fk+1 =
∫ 1

0
Lk+1ds = 0 (7.45)

with

Lk+1 =
(
w′k+1 − tk+1

)
· ŵ +

(
t′k+1 −Ωk+1 × tk+1

)
· t̂+

(
n′k+1 −Ωk+1 × nk+1

)
· n̂

+
(
M ′

k+1 − Fint,k+1 × tk+1
)
· Ω̂ +

(
wk+1 −wn

∆t − vk+1

)
· v̂

+
(
vk+1 − vn

∆t − F ′int,k+1 − fext,k+1

)
· F̂int. (7.46)

Likewise, if we include the vortex-induced lift accompanied with the van der Pol equation,
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we introduce p = q̇ and apply the same scheme as in (7.44)

q̇k+1 = qk+1 − qk
∆t = pk+1, (7.47)

ṗk+1 = pk+1 − pk
∆t

= −εωf |ub,k+1|(q2
k+1 − 1)pk+1 − ω2

f u
2
b,k+1qk+1 + ΓA

∆t (vk+1 − vk) · u⊥0 . (7.48)

The new variational form to solve is thus

Fk+1 =
∫ 1

0

(
Lk+1 + L van der Pol

k+1

)
ds, (7.49)

with Lk+1 defined in (7.46) and

L van der Pol
k+1 =

(
qk+1 − qk

∆t − pk+1

)
q̂

+
[
pk+1 − pk

∆t + εωf |ub,k+1|
(
q2
k+1 − 1

)
pk+1 + ω2

f u
2
b,k+1qk+1 −

ΓA
∆t (vk+1 − vk) · u⊥0

]
p̂.

(7.50)

7.3.2 Initial conditions and solving method

Initially, we assign the node positions of the mesh to the vector w|t=0,s = winit(s). In FEniCS
we extract directly the tangential vector of the initial configuration t0 of each element, then
calculate the normal vector from

ninit = (tinit × u)/ ||tinit × u|| . (7.51)

To calculate the initial value of the Darboux vector Ωinit and internal stress F int, init, we
cross-multiply the vector tinit with the equations (7.1), (7.1), and (7.7)

Ωinit = tinit ×
∂tinit

∂s
+ (binit ·

∂ninit

∂s
)tinit, (7.52)

F int, init = tinit ×
∂Minit

∂s
. (7.53)

When we consider transient simulations, we always take a zero initial velocity vinit = 0, and
we assign to q, at each node, a random value of order ∼ 10−3, with p = 0.

We mesh the rod into uniform intervals. These are one-dimensional elements embedded in a
three-dimensional space. We choose P1 Lagrange elements, and solve the nonlinear equations
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using the Newton method. An example of a static simulation is shown in Figure 7.2, where
a circular rod is subjected to drag.

Details about the FEniCS implementation in Python are provided in appendix E.

7.4 Verification

To verify that our code solves the equations correctly, we consider the problem of a rod
subject to a uniformly distributed load.

7.4.1 Static case

We calculate the discretisation error εN between a fine grid with N elements and a coarse
one with N/2 elements [139]

εN =
∣∣∣∣∣∣w0,N − w0,N/2

∣∣∣∣∣∣
2

=
 1
N/2

N/2∑
i=1
|w0,N(si)− w0,N/2(si)|2

1/2

, (7.54)

where the subscript (.).,N refers to the solution under a mesh of N elements, and

w0(si) = u0 ·w|si
, si = i

N/2 . (7.55)

We also calculate the observed order of accuracy p̂N [139]

p̂N = log(εN/2/εN)
log(2) . (7.56)

As expected from the use of P1 elements, the discretisation error is inversely proportional to
the square of the element size, and the observed order of accuracy is close to 2 (Figure 7.3).

7.4.2 Dynamic case

We now fix the mesh (N = 10) and look at the dynamic response of a rod under a distributed
load from t0 = 0 to the same final instant tf = Nf∆t. We consider here the temporal
discretisation error of the tip displacement

ε∆t = ||w0,2∆t − w0,∆t||2 =
2∆t

Nf/2∑
i=1
|wtip

0,2∆t(tk)− w
tip
0,∆t(tk)|2

1/2

, (7.57)
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Figure 7.2 Examples of static simulations. (a) Three-dimensional view of an initially straight
rod aligned with the y-axis in a flow in the u0 = ex direction. This rod has a Cauchy number
of CY = 100. Red arrows represent the drag magnitude. (b) Rod reconfiguration under
drag for different Cauchy numbers.
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Figure 7.3 Code verification for the rod deflection under distributed load of small magnitude
(N, f̃0 = 0.1) and a large magnitude (�, f̃0 = 10). (a) Discretisation error using the norm
L2. (b) Observed order of accuracy using the Richardson extrapolation. The dashed lines
refer to a quadratic variation.



86

where the subscript (.).,∆t refers to the solution with a time step equal to ∆t, and

wtip
0 (tk) = u0 ·w|t=tk,s=1, tk = k2∆t. (7.58)

Likewise, we calculate the observed order of accuracy p̂∆t

p̂∆ = log(ε∆/ε2∆t)
log(2) . (7.59)

Figure 7.4 shows that the discretisation error varies linearly with the time step and the
observed order of accuracy is close to 1, which is consistent with the use of a first order
backward Euler scheme.

7.5 Validation

Having verified the numerical solution, we now validate our code to ensure it reliably reflects
the physical problem.

7.5.1 Static case

Regarding the static case, we simulate two benchmarks. The first benchmark is the rod under
a distributed load. For a range of loads f̃0u, Figure 7.5(a) shows the numerical deflection of
the rod at the tip

δFEniCS = w|s=1 · u (7.60)

compared with the theoretical formula δth derived by Rohde [140], which is based on series
expansion. Taking the two leading terms in the approximation of δth, we found that the
numerical results match well with the theoretical solution even for considerable loads outside
the linear regime δ ∝ f̃0 (|δth − δFEniCS| /δth < 1.4%).

The second benchmark is a rod under drag. We evaluate the reconfiguration number, denoted
R, defined as the total drag FD applied on the elastic rod scaled by the total drag on a rigid
one

R = FD
/(1

2ρfDLCDU
2
0

)
. (7.61)

In our code, we extract R as follows

R =
∫ 1

0
u0 · fDds

/(1
2ρfDLCDU

2
0

)
. (7.62)
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Figure 7.4 Code verification for the distributed load of small magnitude (N, f̃0 = 0.1) and a
large magnitude (�, f̃0 = 10). (a) Discretisation error using the norm L2. (b) Observed order
of accuracy using the Richardson extrapolation. The dashed lines refer to a linear variation.
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Figure 7.5 Comparison of the FEniCS solution with theoretical (a) maximum deflection of a
rod under a distributed load and (b) reconfiguration number of a rod under drag.
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Gosselin et al. [20] proposed a theoretical model, supported with experiments, that finds the
reconfigured shape of a flexible thin, slender plate, and calculates the reconfiguration number
for a wide range of Cauchy numbers. Since Kirchhoff equations govern both slender beams
and rods, we compare our numerical results with the theoretical R − CY curve of Gosselin
et al. [20]. The comparison is shown in Figure 7.5(b). Here again, our simulations lay well
on the theoretical model (|Rth −RFEniCS|/Rth < 3.1%).

7.5.2 Dynamic case

Leclercq and de Langre [14] recorded the underwater motion of a thin plate fastened with an
actuator that oscillates for different sets of pulsations Ω and displacements A. To transpose
these experiments in our code, which fixes the clamped end, we make the rod sway back and
forth by applying an oscillating flow

U(t) = U0 sin (Ωt) , (7.63)

and choosing the corresponding velocity as

U0 = actuator displacement × actuator pulsation = AΩ. (7.64)

We consider low, moderate, and high pulsations ω = Ωts = 0.38, 1.07, 2.01, with three dif-
ferent actuator displacements α = A/L = 0.27, 0.46, 0.65. We simulate the rod deformation
over four periods and save the deformation profiles during the last period. We present ex-
perimental and numerical deformation profiles in Figure 7.6. Results match well with the
measurements of Leclercq and de Langre [14], especially for low and moderate pulsations.
The numerical deformation under high pulsation ω = 2.01 is also comparable. There is a
slight inclination in the cases α = 0.27, which is absent from the measurements of Leclercq
and de Langre [14]. We presume it comes from experimental features, due to important
inertia effects that our model of hydrodynamic forces is unable to capture (non-symmetry is
also present in experiments for the low pulsation and short displacement, and for high pul-
sation and moderate and high displacements, see top left, bottom centre, and bottom right
in Figure 7.6). This minor discrepancy, nevertheless, does not alter the overall comparison
and the shapes remain fairly similar.
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(a)

(b)

(c)

Figure 7.6 Deformation profiles of the plate experiments (black) of Leclercq and de Langre [14]
and rod simulations (purple) for the dimensionless flow pulsations ω = Ωts equal to (a) 0.38,
(b) 1.07, and (c) 2.01. In each case, the dimensionless actuator amplitude α = A/L goes from
0.27 (left), to 0.46 (middle), and 0.65 (right). The numerical equivalent case is a rod under
an oscillating flow of upstream velocity in equation (7.63). The aspect ratio of the plate and
rod is Γ = 10. The dashed lines represent the trajectory of the plate and rod tips.
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7.6 Simulation results

The code being verified and validated, we present simulations of a rod to visualise the defor-
mation in time and see how faithfully it depicts the motion of a living soft coral branch.

7.6.1 Problem statement

In a first set of simulations, we subjected the rod to an upstream flow that ascends linearly
from t = 0 to t = ts and plateaus afterwards, as shown in Figure 7.7(a)

U(t) = U0 min
(

1, t
ts

)
, (7.65)

recalling that ts = L2
√
ml/EI is the characteristic time for the structural deformation. This

preliminary case illustrates how a soft coral branch would reconfigure and vibrate if it stands
in a continuous, unidirectional water flow, such as in water flume experiments.

A second set of simulations considers the action of a gentle wave during one period Twave = 20ts,
shown in Figure 7.7(b)

U(t) = U0 sin
( 2πt
Twave

)
. (7.66)

This case is closer to the reality as the seawater speed descends back right after the complete
reconfiguration of the coral.

We varied the Cauchy number CY from 1 to 500. Provided the expression in equation (7.23),
a small CY physically reflects the case of either a low water flow speed (deep waters), a stiff
coral, or a short branch, whereas a large CY reflects the case of either a high water flow speed
(shallow waters), a bendy coral, or a long branch. The reduced velocity varies accordingly as

Ur = StU0ts
D

= StU0L
2

D

√
ml

EI
= St

√
πΓCY

4 χ, (7.67)

where
χ = mlL

πρfLD2/4 (7.68)

is the ratio of the structural mass to the added mass. Without further investigation about
the coral composition and its density, we consider here the simple case χ ∼ 1. Besides,
based on an online video of a vibrating soft coral [17], we took a rod having an aspect ratio
of Γ = 25.
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Figure 7.7 Time profile of the flow speed for the simulation cases: (a) unidirectional flow and
(b) wave surge.
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7.6.2 Unidirectional flow

We present first, in Figure 7.8, the stream-wise and transverse tip displacements of a rod
under a unidirectional flow stream. We note that the rod dynamics go through two stages.
The first stage is the reconfiguration process, where the rod bends without transverse motion
as a response to the flow stream. Once it totally reconfigures, the vortex-induced lift takes
over, excites the rod and reaches the limit-cycle. This is the vortex-induced vibration stage.
Although VIV affect also the stream-wise displacement (small oscillations in the plateau), this
latter remains negligible compared to the transverse displacement. This two-phase dynamics
(reconfiguration + vortex-induced vibrations) is also seen in the real vibrating soft coral [17].

On the other hand, VIV lead to different transverse displacement modes depending on the
Cauchy number. In Figure 7.9, we present the frontal and lateral deformation of the rod for
1 ≤ CY ≤ 500. When the flow speed is moderate, the Cauchy number is low, the rod resists
the drag and does not bend much. In this case, the frontal profile of the rod resembles the
first modal shape of a cantilever. When the flow speed gets stronger, however, the Cauchy
number increases, and the rod curves more with the flow. We can notice in Figure 7.9, for
Cauchy numbers 5 ≤ CY ≤ 50, that the important displacements are located at the tip and
the middle of the rod, like the second modal shape of a cantilever. If the coral had longer
branches, for instance, they would streamline even more with the flow since the Cauchy
number would take higher values. In Figure 7.9 we can distinguish the formation of a second
zero-displacement node for 75 ≤ CY ≤ 250, and barely a third one for CY ≥ 300, meaning
that the rod transitions into high order modal shapes. It appears from the online video [17]
that the deformation of bipinnate sea plume branches looks more like the simulation cases of
Cauchy numbers 1 ≤ CY . 50. In fact, branches are not extremely bent, and the transverse
displacements have either none or only one zero-displacement node, i.e. first and second
modal deformations.

Regarding the area facing the stream, rods under moderate and high Cauchy numbers have
relatively small transverse amplitudes with multiple nodes. In addition, we notice that they
bend considerably. As a consequence, the frontal exposure area shrinks: the rod covers a
small effective area of capture, and is less likely to intercept particles. The rod with low
Cauchy number is no more likely to intercept particles, because even if the transverse span is
important and the exposure area is larger, the motion is slow, which would let many particles
escape and lead to a loss in capture. Thus, a trade-off is imposed, indicating the existence of
an optimal combination of fluid and structural properties that verifies the best capture rate.
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Figure 7.8 Time plot of the stream-wise w0 = w · u0 ( ) and transverse w⊥ = w ·
u⊥0 ( ) displacements of the tip at (a) CY = 5 and (b) CY = 100, in the case of a
unidirectional current. The dashed line ( ) corresponds to the variation of the flow
speed U(t) (not to scale). After that the rod streamlines with the flow and reaches a final
reconfigured shape (orange area), vortex-induced vibrations arise (yellow area). We see that
increasing the Cauchy number bends the rod and triggers VIV more rapidly.
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Figure 7.9 Frontal and lateral profiles of the rod in the case of a unidirectional flow. The
vertical line in the left is a scale referring to the initial position of the rod.
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7.6.3 Wave surge

Here we tackle the more natural case of a rod under a wave surge during a period. Figure 7.10
compares the transverse and stream-wise tip displacements of a rod under unidirectional and
oscillatory flows. In this latter case also, the onset of the VIV synchronises with the complete
bending of the rod. The difference is that the rod stays at this reconfiguration state only
during the peak of the wave surge. As soon as the flow speed starts to drop, the hydrodynamic
drag relaxes and the rod returns back, progressively, to its initial state. The result that we
found interesting during this phase is that the VIV do not fade away and the rod keeps
vibrating while returning to its initial state. Subsequently, the rod sweeps a more expanded
area, and the effective area of capture is larger than in the unidirectional flow case. The
presence of waves in the flow is thence important, from a nutritional point of view, in the life
of a soft coral, suggesting that the outcome of particle capture experiments in water flume
should be taken with reserve. Also it makes sense why it is recommended to ensure a wave
generator in aquarium before one purchases soft corals...
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Figure 7.10 Time plot of the stream-wise w0 = w · u0 ( ) and transverse w⊥ = w · u⊥0
( ) displacements of the tip in the case of (a) a unidirectional flow and (b) a wave surge,
with the dashed line ( ) showing the variation of the flow speed U(t) (not to scale). Both
cases have a Cauchy number of CY = 100. The coloured area refers to the phase where the
rod is completely bent, in which case VIV are present and the frontal area facing the stream
is small.
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CHAPTER 8 DISCUSSION AND CONCLUSION

8.1 General summary of the particle capture model

The main take-home message from chapters 5 and 6 is that vortex-induced vibrations are
beneficial for particle interception at the synchronisation range of reduced velocities. We
showed that a two-degree-of-freedom oscillating cylinder can capture up to 40% more particles
under VIV at lock-in than in the absence of vibration.

We found that the mean capture efficiency (also dimensionless capture rate in our case) is
the product of two independent functions

〈η〉 = 〈η〉fixed (1 + δ) . (8.1)

The factor 〈η〉fixed is the scale of 〈η〉 that gives the order of magnitude of the capture rate,
and depends on the properties of the flow through the Reynolds number Re and the advected
particles through the diameter ratio R. We can describe the role of the boundary layer as
a ‘shield’ that protects the cylinder from incident particles, which weakens with increasing
Reynolds number due to its thinning. For small particles, or bigger ones in viscous flows, the
mean capture rate of a fixed cylinder scales as 〈η〉fixed ∼ R2Re1/2.

Once the magnitude of the efficiency is determined, δ quantifies the gain in particle capture
due to VIV. As a function of the reduced velocity Ur, it has a bell-shaped variation, with a
peak at the synchronisation range of frequencies. Accordingly, δ depends on the geometrical
characteristics of the lemniscate limit-cycle trajectory of the cylinder, such as the amplitudes
Ymax and Xmax, the slenderness ratio γ, and the distortion factor β. In particular, the gain
δ increases with the distance the cylinder travels against the stream, namely the counter-
current distance dcc. Indeed, incident particles boost their relative momentum with respect
to the cylinder frame of reference and penetrate easily into the boundary layer. This explana-
tion of the capture efficiency by the counter-current distance is kinematic and encompasses,
therefore, the idea of ‘additional momentum’ of Krick and Ackerman [109], which is based
on the cylinder momentum in the transverse direction only.

It is worth to mention that δ is well correlated with the kinematic parameters of the cylinder
at lock-in (large Ymax and Xmax, low γ), yet we still miss a clear trend in the range where
the capture is detrimental (low Ymax and Xmax, large γ). Therefore, instead of shortly saying
that capture increases or decreases with the cylinder amplitudes, we cautiously emphasise
that this statement is true only beyond certain critical amplitudes (Ymax, Xmax > Y ∗max, X

∗
max,
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γ < γ∗). We point out, though, that the existence of a detrimental regime might be peculiar
to the rigid cylinder which has a single frequency, and becomes irrelevant in the case of
a flexible slender structure which has multiple natural frequencies. Indeed, if two lock-in
frequencies are relatively close to each other, the gain in capture would not find any gap
to drop below zero. Thus, once it decreases after the first peak, it shall increase again and
reach the following peak, and so forth for each lock-in range corresponding to each mode of
vibration of the flexible slender structure. For this reason, a real flexible cylinder may not
have any detrimental regime at all, and VIV would be beneficial irrespective of the reduced
velocity.

8.2 Limitations

Regarding the motion of the cylinder, we decided, for the sake of simplicity, to keep the mass
number constant at M = 1, and neglect the structural damping ζ = 0. Since the amplitude
response of the cylinder decreases with the product Mζ [78], we expect that the capture
rate would also decrease as a consequence of the correlation δ = δ(Ymax) we obtained in
Figure 6.5(a).

Concerning the particles, we simulated trajectories using a single density value ρp. For denser
particles, the capture rate would increase because they would carry more inertia, deviate less,
and be more likely to hit the cylinder. In the Reynolds number range we considered in our
project (Re ∼ 100), the simulations of Espinosa-Gayosso et al. [141] showed that heavy
particles (ρ+ = 2.6) score a higher capture rate than neutrally buoyant ones (ρ+ = 1). How
does the capture rate increase with density? We let the door open for a parametric study to
determine a potential power law scaling.

Even though it was ignored in previous works, we deemed the added mass force on particles
relevant to be included in the present project. Yet, we took an always constant mass coef-
ficient Cm, which is an assumption that becomes invalid when the particle gets close to the
cylinder wall. The confinement effects would become important and prevent the particle from
hitting the wall, which also means that Cm would increase considerably during the approach.
Future simulations might consider Cm as a function of the distance to the wall, or model the
subsequent repulsive force and include it in the momentum equation [142].

Lastly, the purpose of the elastic rod simulations in chapter 7 was mainly qualitative and
we did not have the opportunity to dig into quantitative aspects. We encourage forthcoming
projects to take over these simulations and investigate, for instance, how the Cauchy num-
ber, or equivalently the reduced velocity, influences the deformation profile, the amplitude
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responses, or the effective capture area. Besides, given that soft corals grow within the seabed
boundary layer, it would be fruitful to consider a non-uniform water speed, which is more
reasonable for corals that have branches emerging non-perpendicular, inclined upwards from
the main stem (like in Figure 3.2). Another possible improvement of the model would be
to add a stream-wise component in the vortex-induced load, so that the rod may exhibit a
lemniscate limit-cycle trajectory.

8.3 Into a realistic soft coral branch

8.3.1 Motility and Brownian motion

Medium and large size food particles are usually motile, and can actively change their trajec-
tories, for example by swimming. One way to include the motility in the particle trajectory
integration is to add a random displacement at each time step

xp,n+1 = xp,n + ∆tup,n + δxrandom. (8.2)

The magnitude
∣∣∣∣∣∣δxrandom

∣∣∣∣∣∣ shall be proportional to, or positively correlated with, the mobility
coefficient µ, the ambient temperature T , as well as decreasing with the upstream flow
velocity U0. A possible multiplicative factor could be the dimensionless index NM proposed
by Rubenstein and Koehl [100]

NM = µkT

U0D
, (8.3)

where k is the Boltzmann constant.

On the other hand, the time cost was a major limitation in simulating trajectories of very
small particles (e.g. organic debris), because the upper bound of the time step decreases as
the square of the particle size. Since these types of particles might be subjected to Brownian
motion, one can circumvent this hurdle by solving transient advection-diffusion equations for
scalar transport. The capture rate can then be extracted from the distribution of the scalar
concentration around the cylinder edge.

8.3.2 Capture criterion

To describe the capture process, we assumed that a particle is retained as soon as it encounters
the cylinder edge (i.e. capture = encounter + retention). A possible improvement of the
capture criterion is to model a retention duration τret for each particle that depends on the
momentum at the position of the encounter. We think, for example, that a particle hitting
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the cylinder straight at the front with high momentum would stay firmly implanted for a
longer duration (long τret) than one landing slowly on its edge (short τret). The value of τret

might wax and wane whether the soft coral is slimy and secretes continuous mucus (extend
τret) or the particle is motile and strives to detach quickly from the branch (e.g. zooplankton,
reduce τret). Finally, setting a critical retention duration Tret, the particles verifying τret ≥ Tret

would be counted as captured.

In reality, polyp tentacles activate and stretch when prey are near, and capture them before
hitting the soft coral branch. Instead of a solid contact, an elaborate criterion of capture
would consider ‘danger zones’ having areas related to the tentacle reach. Because motile
particles can dodge between tentacles and escape capture, each danger zone would have a
specific probability of a successful catch. This probability would depend on the polyp angular
position relative to the flow as well, since polyps in the front and the sides are more likely to
capture particles than those in the rear [32].

8.3.3 Third dimension

The capture rate Ṅ and the amplitudes Ymax and Xmax have the same frequency response.
We infer that this result remains valid even if the cylinder has multiple natural frequencies.
Thus, we may extend our two-dimensional correlation between the capture rate Ṅ and the
transverse amplitude Ymax into a three-dimensional capture rate. Suppose we find the trans-
verse vibration envelope Ymax(s), s ∈ [0, L], of a rod of length L with a clamped end, such as
the results presented in Figure 7.9. Then we can decompose the structure into small elements
of length ds, and calculate the total rate as

Ṅ3D =
∫ L

0
Ṅ2D(Ymax)ds. (8.4)

This idea is possible to implement with a finite element analysis as in chapter 7, or a reduced-
order model like the one proposed by Leclercq and de Langre [85]. If the real arborescent
morphology of soft corals is taken into account, then it is worth importing a whole 3D scan
(e.g. computed tomography scan). A prospective work might extract its principal spatial
and temporal modes [22–24], and apply the formula (8.4). Another option is to compute
three-dimensional DNS of the fluid-particle problem. This procedure has the advantage
to delineate the fluid flow around morphological details, and has been used in biomedical
simulations [143].

The 3D scan also gives the possibility to 3D-print a whole soft coral for experiments. If
desired, the size of the branch can be magnified (for example to facilitate particle counting)
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while rescaling the flow variables. Rather than conducting experiments on real corals, this
technique is non-invasive, and permits the repetition of experiments several times, for long
durations, without caring about the living conditions of species such as light exposure, water
cleaning, etc. It also has the benefit of experimenting particle interception over different
species, and analyse the role of each branch morphology in the capture process. This idea
was already tested for some marine organisms [144].

8.4 Biological implications

One of the main outcomes of our simulations is the existence of an optimal reduced velocity
Uopt

r that ensures the maximum capture rate, which corresponds to the lock-in frequency
Uopt

r ≈ 5. Since the reduced velocity, in our harmonic oscillator model, is inversely propor-
tional to the square root of the spring stiffness, a cylinder which is too stiff or too soft would
bring Ur into low or high values, then without any noticeable gain in capture. Therefore,
assuming that the same conclusions persist for a cross-section of a real soft coral, this latter
must have an optimal stiffness that guarantees the best capture rate.

Because the soft coral branches are attached into the main vertical stem, they structurally
resemble an elastic rod. In this case, the reduced velocity reads as in equation (7.67)

Ur = St
U0

D

√
mL4

EI
, (8.5)

where St is the Strouhal number, L the length of the branch, m the mass per unit length
(including the added mass), E the Young’s modulus, and I the moment of inertia. Given
that I ∼ D4, and writing m ∼ ρD2, we see that the optimal properties of the soft coral
branch have to verify

StU0

(
ρ

E

)1/2 L2

D2 ∼ Uopt
r (= constant ≈ 5). (8.6)

Introducing the speed (of sound) cs =
√
E/ρ and the aspect ratio Γ = L/D, we obtain

Γ2U0

cs
= constant, (8.7)

or equivalently
cs

Γ2 ∝ U0. (8.8)

This equation links the morphological properties of the soft coral (Γ and cs) on the left-hand



103

side with the ambient water speed (U0) on the right-hand side.

Does this relation mean that soft corals exhibit morphological plasticity according to the
local predominant currents? If so, which mechanical property is the most appropriate for
soft corals to tune? A basic reasoning based on the relation (8.8) reveals that in deep waters
where the flow is globally calm (small U0), soft corals would need either thin branches (slender
phenotype, large Γ), or a soft skeleton (small cs). Conversely, in shallow waters where the
flow is turbid (high U0), they would need either thick branches (stout, bushy phenotype,
small Γ), or a stiff skeleton (large cs). Here a physiological compromise is necessary between
choosing to tune the aspect ratio Γ or the stiffness represented by cs. Indeed, a deep-water
soft coral with both thin branches and soft skeleton is probably too weak to resist external
endeavours (predators for instance). Similarly, a shallow-water soft coral with both thick
branches and stiff skeleton would require too much energy to maintain a proper metabolism.
We hypothesise that tuning the aspect ratio Γ is the preferred solution. This fact is supported
by the measurements of Jeyasuria and Lewis [53] and Sanchez et al. [49], and can also be
inferred if we notice that the aspect ratio is squared in equation (8.8).

Then, is geographical distribution of soft coral species linked with the turbidity? Biologists
might set up in-field expeditions to collect data and inquire into this issue. From a mechanical
viewpoint, equation (8.8) may be refined since the capture depends also on the degree of
reconfiguration of the branch as well as the effect of buoyancy, among other factors. Hence,
combining biological evidence and mechanical calculations will provide exciting models for
predicting soft coral distribution in ocean.

8.5 Bioinpiration

Studying soft coral vibrations led us to give results on the efficiency of a vibrating collector.
These results might be worth to consider in projects dealing with dust and pollutant filtering,
especially in industries where hygiene measures are high and strict (e.g. food, pharmaceutical
industries).

As we dealt with flexible structures under VIV, the present research can be intended to design
bioinspired energy harvesters in the sea. At the time when VIV represent a major threat
to offshore energy production, introducing a marine energy harvester will be a rewarding
incentive for engineers to seek – instead of suppress – VIV and use them as a principal
supplier to harness clean and renewable energy.

Last but not least, the vibrating soft coral might serve as a paradigm in biomimetics. We
thought about crafting smart scarecrows in farms to actively prevent birds from picking
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crops and seeds. Smart scarecrows shall be placed against the ambient wind direction, and
fabricated with materials such that the lock-in reduced velocity corresponds to the local wind
speed. A breeze will then shake the scarecrow arms up, and create an impression of a real
human chasing birds!
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APPENDIX A NEIGHBOUR-TO-NEIGHBOUR ALGORITHM

In this appendix we present the neighbour-to-neighbour algorithm for interpolation in un-
structured grids [127,128]. It is the most suitable interpolation, easy-to-implement technique
for particle-in-cell codes, such ours, in which physical particles do not jump over many ele-
ments in a single time step. Instead of dividing the entire domain into bins or tree structures,
the neighbour-to-neighbour algorithm searches the new element starting from the vicinity of
the prior known one.

Let Pn and Pn+1 be the particle positions at time steps n and n+1 as shown in Figure A.1. We
first feed the algorithm with an initial guess, which we always choose to be the host element
of Pn, denoted En (expect for the first time step n = 0 where a loop over the entire domain
finds the host element of the initial position P0 of the particle). Then, if Pn+1 is in En, there
is no need to continue and En+1 is exactly En. If not, we look at the edge s−n from which the
particle has left En. The next most probable guess we choose is the element E ′n that shares
the edge s−n with En. We verify again if Pn+1 is in E ′n, and repeat this recursive process
until we find the new host element. Algorithm A.1 summarises the neighbour-to-neighbour
algorithm as we implemented it in Python.

Now, how do we check if a point P is in a certain element E? As schematised in Figure A.2,
we simply calculate the shape functions of the element E at P , denoted N1, N2, and N3. If
0 ≤ N1, N2, N3 ≤ 1, then P ∈ E. Otherwise, P /∈ E and there is at least one negative shape
function since N1 +N2 +N3 = 1. In this case, s− is the edge of E facing the node with the
most negative shape function.

En+1

En

E ′n

s−n

Pn+1

Pn

Figure A.1 Schematics of a particle crossing an element between two time steps
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Algorithm A.1 Neighbour-to-neighbour algorithm, at time step n > 0

Initial guess: E∗ ← En, with En being the host element of Pn

while Pn+1 /∈ E∗ do
Find the element E ′n that shares s−n with E∗
E∗ ← E ′n

end while

En+1 ← E∗.

1

2

3
s−

N1 < 0

s−

N2 < N1 < 0

(a) (b)

N1 = 1

N1 = 0

N2 = 0
N2 = 1

1

2

3

Figure A.2 Examples highlighting the edge s− of an element E regarding the position of
the point P ( ). In the case (a), only the shape function N1 is negative, hence s− is the
edge 2 − 3. In the case (b), both N1 and N2 are negative, but N2 has the smallest values,
hence s− is the edge 1− 3.
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APPENDIX B SOLID CONTACT CRITERION

In this project, the body intercepting spherical particles was always a circular cylinder. The
criterion of solid contact in this case is straightforward: if dp and D are respectively the
particle and the cylinder diameters, and xp and Xcyl the position of their centres, then the
contact occurs when ||xp −Xcyl|| ≤ (dp + D)/2. For a general shape, however, the above
method is not viable anymore. This appendix presents a geometrical method to detect the
solid contact of a particle with a body of any shape.

Let us consider a closed, simply connected geometry (G ) with edges oriented counter-clockwise,
as illustrated in Figure B.1(a). A particle with a non-zero size touches (G ) once its centre
enters the shaded region (S ) with rounded corners. This region is the extension of (G ):
edges are translated away with the distance dp/2 in the direction of their outward normal,
and connected with arcs of circle, whose centres are the vertices and having the same radius
dp/2. The blue particle in Figure B.1(a) is an example of a captured particle that have a
centre inside (S ).

Now let Pi be the vertices of (G ), and P the particle centre. We begin by calculating the
projection hi of P on each edge PiPi+1

hi = PiP · ni, (B.1)

with
ni = PiPi+1

||PiPi+1||
× ez. (B.2)

Here hi is algebraic, i.e. can be either positive or negative. A necessary condition for a solid
contact is then

hi ≤ dp/2 for all vertices Pi. (B.3)

The red particle in Figure B.1(a) verifies this condition, but it is not captured because it
stands in a region, near the corner P4, that is not included in (S ). In other words, the
condition (B.3) is only necessary since it does not exclude the sharp corners of the extended
geometry (this case is more apparent for bodies with sharp angles, like the vertex P2 in
Figure B.1(a)). One way to circumvent these regions is to consider each vertex Pi, and take
the normals of the two edges to which it belongs, namely ni−1 and ni. If P lays within the
surface defined between ni−1 and ni, then it is close to the vertex Pi and we should check
its type as sketched in Figure B.1(b). If it is convex, there is no need to round the corner
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=
P1 P2

P3P4

n2

n1

= +

dp/2

(S )

condition (B.3) condition (B.4)

dp

h2

Concave Convex

(b)

(a)

(G )

Figure B.1 (a) Schematics of the solid contact criterion for a right trapezoid (G ). All vertices
are concave. The shaded area with rounded corners (S ) is the indicator of the solid contact
(dashed line). It is obtained by translating each edge of the trapezoid with the distance dp/2
outwards, and connecting them with arcs of circle. Notice that the centre of the red particle
is still outside (S ), even though it verifies the condition (B.3), hence no contact is detected.
Conversely, the centre of blue particle has entered (S ), thus the solid contact occurs. (b) The
boundary of the shaded area is rounded at the concave vertex, and sharp at the convex one.
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and condition (B.3) is also sufficient. If it is concave, then P is inside the rounded corner if
it stands at a distance less or equal than dp/2 from Pi. We can merge these statements into
the following condition

If, for a certain vertex Pi, (ni−1 × PiP ) · ez > 0 and (PiP × ni) · ez > 0,

then ||PiP || ≤ dp/2. (B.4)

The clause (ni−1 × ni) · ez > 0 means that we go through concave vertices only.

To recapitulate, we have

solid contact⇐⇒ P ∈ (S )⇐⇒

 condition (B.3),

condition (B.4).
(B.5)

Finally, worth to notice that for a punctual particle, (S ) shrinks into (G ) and the vicinity
of the vertices vanishes, thereby the solid contact criterion reduces to the condition (B.3)
with dp = 0.

Here is the solid contact detection algorithm as we implemented it in Python (the single
loop in our code is divided in two parts here for the sake of clarity):
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Algorithm B.1 Solid contact criterion for a body of general shape

for PiPi+1 in edges do
ti ← PiPi+1/ ||PiPi+1||
ni ← ti × ez
hi ← PiP · ni

if hi > dp/2 then
return particle is outside (S )

end if

end for
# Condition (B.3) is fulfilled.

for Pi in vertices do
if (ni−1 × PiP ) · ez > 0 and (PiP × ni) · ez > 0 then

# P is within two normals
if ||PiP || ≤ dp/2 then

# Condition (B.4) is fulfilled.
return particle is inside (S )

else
return particle is outside (S )

end if

end if
end for
# There is no vertex Pi that fulfills the first clause of the condition (B.4). Condition (B.3)
alone is hence sufficient.

return particle is inside (S )
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APPENDIX C ALTERNATIVE TRAJECTORY CALCULATION

In this appendix we provide an alternative method to compute the trajectories of particles.
We thought about this approach when we found that the particle-based Reynolds number Rep

for a particle with a diameter ratio R = 0.031 was always less than 6× 10−2 (see Figure 4.6).
We assume, throughout the ensuing derivation, that we solve trajectories of particles keeping
Rep so small, during the whole simulation, that we can simplify the factor 1+Re0.687

p ≈ 1 in the
expression of the drag in equation (4.10). The governing equations of particle advection (4.9)
become

dx̄p

dt̄ = ūp, (C.1a)

dūp

dt̄ = − 18
ρ+R2Re

(
ūp − Ūf

)
− 1
ρ+∇̄p̄− Cm

ρ+

(
dūp

dt̄ −
dŪf

dt̄

)
. (C.1b)

We will drop out the dimensionless notation (̄.) for the sake of convenience.

The system of equations (C.1) has the form of an ordinary differential equation with a right-
hand side forcing term

dxp

dt = up, (C.2a)
dup

dt + 1
τ
up = F . (C.2b)

Here
τ = 1

18(ρ+ + Cm)R2Re (C.3)

is the characteristic time, and

F = 1
τ
Uf −

1
ρ+ + Cm

∇p+ Cm

ρ+ + Cm

dUf

dt (C.4)

the forcing term, which depends implicitly on time through the particle position

F (t) = F (xp(t)). (C.5)

If we use the combined variable z = (xp,up), we can rewrite the system of equations (C.2)
as

dz
dt +Az = f, (C.6)
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where
f = (0,F ), (C.7)

and

A =
0 −1

0 1/τ

 . (C.8)

The solution of equation (C.6) is the sum of the homogeneous solution and a particular
solution

z = z0 exp(−tA) +
∫ t

0
exp((s− t)A)f(s)ds, (C.9)

with z0 = (xp0,up0).

Noticing that
τA = (τA)2 = · · · = (τA)n , n ≥ 1, (C.10)

we have

exp(−tA) = I + (e−t/τ − 1)τA =
1 τ(1− e−t/τ )

0 e−t/τ

 . (C.11)

Recall that f is a function of the position of the particle, i.e. f(s) = f(z(s)). At a certain
time step tn = n∆t, we have

zn = z0 exp(−tnA) +
∫ n∆t

0
exp((s− n∆t))f(z(s))ds. (C.12)

Then we rewrite the integral as a discrete sum

zn = z0 exp(−tnA) +
n−1∑
i=0

∫ (i+1)∆t

i∆t
exp((s− n∆t)A)f(z(s))ds, n ≥ 1. (C.13)

Our idea is to approximate each integral on the interval [i∆t, (i+1)∆t] using the trapezoidal
rule
∫ (i+1)∆t

i∆t
exp((s− n∆t)A)f(z(s))ds ≈ ∆texp((i− n)∆tA)f(zi) + exp((i− n+ 1)∆tA)f(zi+1)

2

≈ ∆texp(−tn−iA)f(zi) + exp(−tn−i−1A)f(zi+1)
2 ,

(C.14)

denoting tn−i = (n− i)∆t and zi = z(i∆t).
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We insert (C.14) into (C.13) and obtain

zn ≈ z0 exp(−tnA) + ∆t
2

[
n−1∑
i=0

exp(−tn−iA)f(zi) +
n∑
i=1

exp(−tn−iA)f(zi)
]

(C.15)

Taking apart the first term in the first summation and the last term in the second summation,
we get

zn ≈ z0 exp(−tnA) + ∆t
[

exp(−tnA)f(z0) + exp(−t0A)f(zn)
2 +

n−1∑
i=1

exp(−tn−iA)f(zi)
]
.

(C.16)

Finally, because t0 = 0, the final approximate of zn is

zn ≈ z0 exp(−tnA) + ∆t
[

exp(−tnA)f(z0) + f(zn)
2 +

n−1∑
i=1

exp(−tn−iA)f(zi)
]
. (C.17)

Now we are at a stage where we have the unknown zn is both sides. Fortunately, f(zn)
has a null first component f(zn) = (0,F (xpn)), and is not multiplied by any matrix in
equation (C.17). Therefore, the first component of zn, namely the particle position xpn,
depends only on the history of the trajectory strictly prior to the instant tn. Using the
expression of exp(−tA) in equation (C.11), we find

xpn ≈ xp0 + τ(1− e−tn/τ )up0 + ∆t
[
τ(1− e−tn/τ )

2 F (xp0) +
n−1∑
i=1

τ(1− e−tn−i/τ )F (xpi)
]
.

(C.18)

Having calculated xpn, we insert it in the second component of zn, namely the particle
velocity upn

upn ≈ e−tn/τup0 + ∆t
[
e−tn/τ

2 F (xp0) + 1
2F (xpn) +

n−1∑
i=1

e−tn−i/τF (xpi)
]
. (C.19)

In the Python code which integrates particle trajectories, explained in chapter 4, the func-
tion that lasts the most during a time step is the particle tracer function. Then we gain
nothing if we keep equations (C.18) and (C.19) as they are, since we will still need to find
the flow solution at each particle position. Yet, these formulae are worth to implement when
the user interpolates the flow solution in the whole domain into continuous functions (using
cubic interpolation, Lagrange, Tchebytchev polynomials, etc.) In this way, the calculation of
the particle trajectory is as simple as a straightforward evaluation of the terms of a sequence.
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APPENDIX D CYLINDER RESPONSES

In this appendix, we present the numerical responses of the cylinder obtained from the DNS
in CaDyF. These include the responses of the transverse and stream-wise amplitudes Ymax

and Xmax, the slenderness ratio γ = Ymax/Xmax, the distortion coefficient β, and the counter-
current distance dcc. After extracting Ymax and Xmax, β is calculated from equation (6.6),
and dcc from equation (6.13). We also plotted the phase diagrams of these parameters in
order to see their variation irrespective of the reduced velocity. The last two figures show the
vortex shedding frequency response and the Strouhal number against the Reynolds number.
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Figure D.1 Response of (a) transverse and (b) stream-wise amplitudes
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Figure D.2 Transverse amplitude versus stream-wise amplitude
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Figure D.4 Slenderness ratio versus distortion coefficient of the lemniscate limit-cycle trajec-
tory.
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Figure D.6 Slenderness ratio versus stream-wise amplitude
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Figure D.7 Distortion coefficient versus transverse amplitude
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Figure D.8 Distortion coefficient versus stream-wise amplitude
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Figure D.9 Response of the counter-current distance response. Here again, since dcc depends
on the distortion coefficient, we cannot provide data for Ur ≤ 3.5.
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Figure D.10 Counter-current distance versus transverse amplitude
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Figure D.11 Counter-current distance versus stream-wise amplitude
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Figure D.12 Counter-current distance versus slenderness ratio
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Figure D.13 Counter-current distance versus distortion coefficient
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APPENDIX E FENICS IMPLEMENTATION

This appendix describes the implementation of the rod simulations in FEniCS. We cover
only the major steps of the code, and let the interested reader check the entire scripts at
the Github page of the code [145]. Although this code is intended to solve the Kirchhoff
equations, it might serve as a starting point for extended rod theories. Furthermore, the
code formalism might be adapted, with the necessary modifications, for plate simulations
using shell elements. We would like to acknowledge the demo of ‘Elastic 3D beam structures’
by Bleyer [146] which triggered the idea of simulating 1D structures in a 3D space.

Minimum working example for static simulations

Mesh

The first step in every FEniCS simulation is to create the model and generate the mesh.
There are many ways to generate a meshed geometry in FEniCS, but the only way we found
to create a geometry inside a domain of dimension strictly smaller than the space dimension
(e.g. rods, shells in 3D space) is to generate an .xml file. The mesh stored in an .xml file
has the following syntax

<do l f i n xmlns : d o l f i n=" http ://www. f e n i c s p r o j e c t . org ">
<mesh c e l l t y p e=" i n t e r v a l " dim=" 3 ">

<v e r t i c e s s i z e="n_{v} ">
<vertex index=" 0 " x=" x0 " y=" y0 " z=" z0 "/>
<vertex index=" 1 " x=" x1 " y=" y1 " z=" z1 "/>
<vertex index=" 2 " x=" x2 " y=" y2 " z=" z2 "/>
. . .

</v e r t i c e s >
<c e l l s s i z e="n_{c} ">

<l i n e index=" 0 " v0=" 0 " v1=" 1 "/>
<l i n e index=" 1 " v0=" 1 " v1=" 2 "/>
. . .

</ c e l l s >
</mesh>

</do l f i n >
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We create the mesh using

mesh = Mesh( ’ f i l ename ’ )

coords = mesh . coo rd ina t e s ( )
n_coords = mesh . num_vertices ( )

Here n_coords is the number of vertices of the mesh, and coords is the
(n_coords, 3) array of their coordinates.

Spaces

The solution space is composed of five unknowns, each of them being a vector. In FEniCS
such a space is called a mixed space. We start by defining a vector finite element (P1 Lagrange
element in this case)

c e l l = mesh . u f l _ c e l l ( )

Ve = VectorElement ( ’ Lagrange ’ , c e l l , degree=1)

then the solution space V is created through

element = MixedElement (Ve , Ve , Ve , Ve , Ve)
V = FunctionSpace (mesh , element )

We will also create a vectorial function space with a single vector finite element. It will serve
us to create independent vectorial functions

Vt = FunctionSpace (mesh , Ve)

Material frame

In terms of the mesh, the tangential vector t0 of the initial configuration represents the
normal facet of each interval element. First we save the facets into an array

f a c e t s = [ ]
for k in range ( n_coords ) :

f a c e t s . append ( [ Facet (mesh , k ) . normal ( i ) for i in range ( 3 ) ] )
f a c e t s = np . array ( f a c e t s )
f a c e t s [ 0 ] ∗= −1
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We flip the direction of the first facet because it points towards the exterior of the rod. The
next step is to create a vectorial function, and assign it the values of the facets in each vertex

t0 = Function (Vt)

v2dt = vertex_to_dof_map (Vt)

T0 = t0 . vec to r ( ) [ : ]
for v in v e r t i c e s (mesh ) :

i = v . index ( )
T0 [ v2dt [ i ∗ 3 : ( i +1)∗3 ] ] = f a c e t s [ i ]

t0 . vec to r ( ) [ : ] = T0

Because the ith coordinate of the array T0 does not correspond to its value at the vertex of
index i, we need to map the vertices with the right degrees of freedom using
vertex_to_dof_map(Vt).

There is another alternative to assign a function. Taking the vector n0 as an example, we
write

n0 = Function (Vt)

n0_ufl = c r o s s ( t0 , as_vector ( u0 ) )
n0_ufl /= sq r t ( dot ( n0_ufl , n0_ufl ) )

n0 . a s s i gn ( p r o j e c t ( n0_ufl , Vt ) )

Here we used directly the definition of n0 in equation (7.13). One should notice that n0_ufl
is a UFL expression, and requires the UFL representation of the force direction u0 using
the function as_vector. We assign the values of the function n0 by projecting its UFL
representation on the space Vt.

Function declaration and initial conditions

Now we define the unknown vector sol with its test function sol_. Since the equilibrium
equation involves the components of sol apart, we split it using the function split (not to
confuse with the UFL method .split())

t , n , Omega , Fint , w = s p l i t ( s o l )
t_ , n_, Omega_, Fint_ , w_ = s p l i t ( sol_ )
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We also define the binormal vector

b = c r o s s ( t , n )

Variational formulation

The derivative with respect to the curvilinear coordinate s equals the product of the gradient
and the direction of the tangent ∂/∂s = t ·∇. In FEniCS we define it as follows [146]

def tgrad (u ) :
return dot ( t0 , grad (u ) )

Now we write each term of the lagrangian (7.40)

dwds = tgrad (w)
L_dwds = dot (dwds − t , w_)

dtds = tgrad ( t )
L_dtds = dot ( dtds − c r o s s (Omega , t ) , t_)

dnds = tgrad (n)
L_dnds = dot ( dnds − c r o s s (Omega , n ) , n_)

M = Omega + (GJ/EI − 1)∗ dot (Omega , t )∗ t

dMds = tgrad (M)
L_dMds = dot (dMds − c r o s s ( Fint , t ) , Omega_)

dFds = tgrad ( Fint )
L_dFds = dot ( dFds + fext , Fint_ )

The external force fext should be defined along the whole rod except at the root, where we
let it free from any effort constraint. For this, we define an Expression through subclassing.
We write

class ForceMagnitude ( UserExpress ion ) :
def __init__( s e l f , magnitude , ∗∗kwargs ) :

s e l f . magnitude = magnitude
super ( ) . __init__(∗∗ kwargs )
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def eval ( s e l f , va lues , x ) :
i f not (np . array_equal (x , coords [ 0 ] ) ) :

va lue s [ 0 ] = s e l f . magnitude
else :

# i . e . don ’ t app ly at the roo t
va lues [ 0 ] = 0

# Di s t r i b u t e d load
distr_mag = ForceMagnitude (magnitude=f0 , degree=3)
f_d i s t r = distr_mag∗u0_ufl

# Drag
un = np . dot (n , ufl_u0 )
ub = np . dot (b , ufl_u0 )

drag_mag = DragMagnitude (magnitude=Cd∗Cy , degree=3)
f_drag = drag_mag∗(un∗abs (un)∗n + ub∗abs (ub)∗b)

The interpolation degree in distr_mag and drag_mag is set to 3, but can be any order greater
than the finite element order.

Finally, we obtain the variational form

F = (L_dtds + L_dnds + L_dMds + L_dFds + L_dwds)∗dx ( degree=1)

When the element is embedded in a space of a different dimension, it is important to specify
the element order in the integral dx(degree=1).

Boundary conditions

After defining the boundary domains in the geometry (which are points in our case, more
precisely)

def root (x , on_boundary ) :
return near (x [ 0 ] , coords [ 0 , 0 ] ) \

and near (x [ 1 ] , coords [ 0 , 1 ] ) \
and near (x [ 2 ] , coords [ 0 , 2 ] )
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def t i p (x , on_boundary ) :
return near (x [ 0 ] , coords [−1 ,0 ] ) \

and near (x [ 1 ] , coords [−1 ,1 ] ) \
and near (x [ 2 ] , coords [−1 ,2 ] )

we apply the boundary conditions on variables in their respective subspaces

t_root = t0 ( coords [ 0 ] )
n_root = n0 ( coords [ 0 ] )

bc_t = Dir ichletBC (V. sub (0 ) ,
Constant ( ( t_root [ 0 ] , t_root [ 1 ] , t_root [ 2 ] ) ) ,
root )

bc_n = Dir ichletBC (V. sub (0 ) ,
Constant ( ( n_root [ 0 ] , n_root [ 1 ] , n_root [ 2 ] ) ) ,
root )

bc_Omega = Dir ichletBC (V. sub (2 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , t i p )
bc_Fint = Dir ichletBC (V. sub (3 ) , Constant ( ( 0 . , 0 . , 0 . ) ) , t i p )

bc = [ bc_t , bc_n , bc_Omega , bc_Fint ]

Solving

We solve the equation using the Newton method. We first calculate the Jacobian of the
variational formulation

Jac = de r i v a t i v e (F , s o l )

then initialise the solver

problem = Nonl inearVar iat iona lProb lem (F, so l , bc , Jac )
s o l v e r = Non l i n ea rVar i a t i ona lSo l v e r ( problem )

s o l v e r . parameters [ ’ newton_solver ’ ] [ ’ maximum_iterations ’ ] = 50
s o l v e r . parameters [ ’ newton_solver ’ ] [ ’ r e l a t i v e_ t o l e r an c e ’ ] = 1e−6
s o l v e r . parameters [ ’ newton_solver ’ ] [ ’ ab so lu t e_to l e rance ’ ] = 1e−8
s o l v e r . parameters [ ’ newton_solver ’ ] [ ’ re laxat ion_parameter ’ ] = 0 .8
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and finally launch the simulation

s o l v e r . s o l v e ( )

Additional features for transient simulations

Additional variable

Since we reduce the temporal order of the governing equation by considering the new variable
v = ẇ, the mixed function space V must have 6 subspaces

element = MixedElement (Ve , Ve , Ve , Ve , Ve , Ve)
V = FunctionSpace (mesh , element )

Also, because we consider a backward Euler scheme, we need to create the solution function
sol_old of the prior time step

s o l = Function (V)
sol_ = Function (V)

so l_old = Function (V)

The function sol_old must be initialised with the initial configuration of the rod

S0 = so l_old . vec to r ( ) [ : ]

for v in v e r t i c e s (mesh ) :
i = v . index ( )

t0_i = t0 ( coords [ i ] )
n0_i = n0 ( coords [ i ] )

Omega0_i = Omega0( coords [ i ] )
Fint0_i = Fint0 ( coords [ i ] )

w0_i = coords [ i ]
v0_i = [ 0 . , 0 . , . 0 ] # zero i n i t i a l v e l o c i t y

S0 [ v2d [ i ∗18+ 0 : i ∗18+ 3 ] ] = t0_i
S0 [ v2d [ i ∗18+ 3 : i ∗18+ 6 ] ] = n0_i
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S0 [ v2d [ i ∗18+ 6 : i ∗18+ 9 ] ] = Omega0_i
S0 [ v2d [ i ∗18+ 9 : i ∗18+12] ] = Fint0_i
S0 [ v2d [ i ∗18+12: i ∗18+15] ] = w0_i
S0 [ v2d [ i ∗18+15: i ∗18+18] ] = v0_i

so l_old . vec to r ( ) [ : ] = S0

The function Omega and Fint can be created with the same method we explained above for
the vector n0 using equations (7.52) and (7.53).

Time-dependent forces

In the case where the upstream velocity is time-dependent, we consider an Expression of
the normalised speed U(t)/U0 that comprises the time variable

class Speed ( UserExpress ion ) :
def __init__( s e l f , t_n , ∗∗kwargs ) :

s e l f . t_n = t_n

super ( ) . __init__(∗∗ kwargs )

def eval ( s e l f , va lues , x ) :
speed = speed_funct ion ( s e l f . t_n)
va lues [ 0 ] = speed

u_rel = speed∗u0_ufl − lmbda∗v

un = np . dot (n , u_rel )
ub = np . dot (b , u_rel )

drag_mag = ForceMagnitude (magnitude=Cd∗Cy , degree=3)
f e x t = drag_mag∗(un∗abs (un)∗n + ub∗abs (ub)∗b)

where the function speed_function returns the normalised speed at t_n. Notice that in the
dimensionless relative velocity u_rel, the parameter lmbda should not be a time-dependent
expression because it is inversely proportional to the speed magnitude U0 – not the variable
speed U(t) – as in equation (7.26).
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After splitting the mixed variables sol and sol_old, we add the definition of v and the
discretised acceleration into the internal stress equation

L_dFds = dot ( dFds + f ex t − ( v − v_old )/ dt , Fint_ )
L_dwdt = dot ( (w − w_old )/ dt − v , v_)

in order to finally obtain

L = L_dwds + L_dtds + L_dnds + L_dMds + L_dFds + L_dwdt
F = L∗dx ( degree=1)

Time integration

A possible implementation layout of the time integration loop is

t_n = 0

for n in range (Nt ) :
t_n += dt

# # # # # # # # # # #
# Update the va lue o f a l l time−dependent e xp r e s s i on s
drag_mag . t_n = t_n
. . .
# # # # # # # # # # #

s o l v e r . s o l v e ( )

# # # # # # # # # # #
# Resu l t s e x t r a c t i o n
# # # # # # # # # # #

so l_old . a s s i gn ( s o l )
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