
abstractPIM: Bridging the Gap Between
Processing-In-Memory Technology and Instruction

Set Architecture
Adi Eliahu, Rotem Ben-Hur, Ronny Ronen, and Shahar Kvatinsky

Andrew and Erna Viterbi Faculty of Electrical Engineering
Technion - Israel Institute of Technology

Haifa, Israel 3200003
{adieliahu, rotembenhur}@campus.technion.ac.il, ronny.ronen@technion.ac.il, shahar@ee.technion.ac.il

Abstract—The von Neumann architecture, in which the mem-
ory and the computation units are separated, demands massive
data traffic between the memory and the CPU. To reduce data
movement, new technologies and computer architectures have
been explored. The use of memristors, which are devices with
both memory and computation capabilities, has been considered
for different processing-in-memory (PIM) solutions, including
using memristive stateful logic for a programmable digital PIM
system. Nevertheless, all previous work has focused on a specific
stateful logic family, and on optimizing the execution for a
certain target machine. These solutions require new compiler
and compilation when changing the target machine, and provide
no backward compatibility with other target machines. In this
paper, we present abstractPIM, a new compilation concept and
flow which enables executing any function within the memory,
using different stateful logic families and different instruction set
architectures (ISAs). By separating the code generation into two
independent components, intermediate representation of the code
using target independent ISA and then microcode generation
for a specific target machine, we provide a flexible flow with
backward compatibility and lay foundations for a PIM compiler.
Using abstractPIM, we explore various logic technologies and
ISAs and how they impact each other, and discuss the challenges
associated with it, such as the increase in execution time.

Index Terms—Memristor, processing-in-memory, RRAM,
stateful logic, ISA

I. INTRODUCTION

In recent years, a plethora of data-intensive applications
has been developed. These applications require massive data
transfer between the memory and the central processing unit
(CPU), and have raised the need for processing-in-memory
(PIM) [1, 2]. Various new and emerging memory technologies,
e.g., resistive random access memory (RRAM) [3], often
referred to as memristors, have been explored lately for the
purpose of PIM. By applying voltage across the device,
it performs switching between two resistance values, high
resistance value (ROFF ) and low resistance value (RON ),
therefore can function as a binary memory element. In addition
to their storage capabilities, memristors can be also used for
computation - both application specific and general purpose.
Several methods have been proposed to use the memristor as
a computation unit for a specific task, e.g., vector-matrix mul-
tiplication using analog computation [4]. In this manner, the
dual-function memristor can perform efficient computing and
reduce data transfer requirements between the CPU and the
memory. Numerous accelerators integrating analog memristor-
based computations have recently been developed [5].

Together with the approach of using memristors to accel-
erate application-specific architectures, a different approach,
called ’stateful logic’, uses memristive memory cells as build-
ing blocks to construct logic gates within the memory array.
In this paper, we focus on stateful logic rather than analog
computation. Stateful logic enables programmable general-
purpose architectures since every memristive cell can be used
as a storage element, as well as an input, output or a register.
Several memristor logic gate families have been designed,
including MAGIC [6], IMPLY [7], and resistive majority [8].

Some stateful logic families can be easily integrated within a
memristive crossbar array with minor modifications. Designing
a functionally complete logic gate set using such a family,
e.g., a MAGIC NOR gate, enables in-memory execution of
any function. There are many logic gate families which have
been explored in the literature, and each of them has different
advantages. Previous efforts to execute a function within
the memory concentrated on utilizing a specific PIM family
and optimizing the latency, area or throughput using this
technology, e.g., SAID [9] and SIMPLER [10] for MAGIC
technology [6] and K-map based synthesis [11] for IMPLY [7].

While current approaches have substantially improved the
latency, area or throughput of a logic function execution, they
are strongly dependent on the PIM technique and its basic op-
erations, and therefore are bound to a specific target machine,
i.e., the machine on which the logic function is executed.
Flexibility in the used PIM technology has many motivations
since different logic families have different advantages. For
example, MAGIC provides memristive crossbar compatibility
and high parallelism, whereas CRS [12] provides flexibility
by executing 16 Boolean functions in a single operation.

In this paper, we show a new hierarchical compilation
method for PIM which is not restricted to a certain PIM
technology by separating the code generation into two com-
ponents: (1) intermediate code generation using target in-
dependent instruction set architecture (ISA), (2) microcode
generation for a specific target machine and PIM technology,
and executing the code using a third component: (3) runtime
execution. In the first component, which is independent of the
PIM technology, the compiler generates a compiled program
that consists of target independent instructions. In the second
component, performed by the PIM technology provider, these
instructions are translated into an execution sequence of micro-

IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained from all other uses,
 in any current or other future media, including reprinting/republishing this material for advertising 
 promotionalpurposes, creative new collective works, for resale or redistribution to servers or lists, 
or reuse of anycopyrighted component of this work in other works



operations supported by the target machine. In the third
component, at runtime, the compiled code instructions are sent
from the CPU to the memory controller, which contains the
instruction execution sequences from the second component.
The controller translates the instructions into micro-operations
and sends them to the memory. This third component is similar
to an instruction-level opcode being executed using micro-
operations in the x86 processors [13].

Figure 1 demonstrates the first and third flow components
of a half adder logic for different ISAs and target machines.
The first two implementations, shown in Figure 1(a) and 1(b),
demonstrate the use of the same target machine while using
different ISAs. The code is compiled for a machine that its
PIM technology supports only MAGIC NOR logic gates. How-
ever, the first example targets a controller which supports only
NOR ISA commands, whereas the second example supports
all the 2-input and 1-output logic functions as its ISA. In the
first component, a netlist and compiled program composed
of the ISA commands, dubbed instructions, are generated.
In Figure 1(a), the netlist is composed of five logic gates
that implement the half adder logic, and in Figure 1(b) it
is composed of two gates (AND and XOR). The number of
gates in the netlist is a representative of both the code size
(or number of commands sent from the CPU to the PIM
machine), and the control load between the CPU and the
memory controller. We will refer to it for the rest of the paper
as code size. The code size is also a means of estimation of
the code abstraction achieved by our flow. In these examples,
the code sizes are five and two, respectively. The second
component is the microcode generation, where each command
is translated to a sequence of MAGIC NOR operations and
is embedded in the controller. In the third component, the
code is executed. The commands are sent from the CPU to
the controller, and then from the controller to the memory;
hence, the code size is reduced with minimal changes to the
in-memory implementation, namely, adding a few states to the
memory controller to support other operations.

Figures 1(b), 1(c) and 1(d) demonstrate the use of the
same ISA while using different target machines. These three
examples use all 2-input logic functions as their ISA, but the
first machine uses MAGIC NOR technology, the second uses
MAGIC NAND technology and the third uses all MAGIC
2-input logic functions. This example demonstrates the ISA
definition flexibility and command hierarchy enabled by our
method, and the possible reduction in code size and reduc-
tion in the control load between the CPU and the memory
controller. It also demonstrates the backward compatibility
feature; in Figures 1(c)-(d), machines with technologies which
enable lower execution time are used, and yet the generated
intermediate code is backward compatible with other PIM
technologies. The separation into two independent code gen-
eration components also enables the exploration of the impact
of the ISA on the used target machine and vice versa.

This paper makes the following contributions:
1) Development of technology-independent and ISA-flexible

flow for executing any logic function to a memristive

Fig. 1. Compilation example for a half adder using various ISAs and target
machines. (a) A NOR ISA and MAGIC NOR target machine. (b) All 2-input
and single-output ISA and MAGIC NOR target machine. (c) All 2-input and
single-output ISA and MAGIC NAND target machine. (d) All 2-input and
single-output ISA and 2-input and single-output MAGIC target machine.

crossbar array. Our technique, called abstractPIM, presents
a hierarchical view and includes three components. It is
a solid foundation for implementation of compilers for
general-purpose memristive PIM architectures.

2) Examining the impact of the ISA and the target machine
on each other using abstractPIM, in terms of flexibility,
performance and code size.

3) A 56% reduction of the control load between the CPU
and the memory controller as compared to state-of-the-art
solutions [10], demonstrated for different benchmarks.

II. BACKGROUND AND RELATED WORK

A. Stateful Logic
In stateful logic families [14], the logic gate inputs and out-

puts are represented by memristor resistance. We demonstrate
the stateful logic operation using MAGIC [6] gates, which are
used as a baseline in this paper. Figure 2(a) depicts a MAGIC
NOR logic gate; the gate inputs and output are represented as
memristor resistance. The two input memristors are connected
to an operating voltage, Vg , and the output memristor is
connected to the ground. The output memristor is initialized at
RON and the input memristors are set with the input values.
During the execution, the resistance of the output memristor
changes according to the ratio between the input values and
the initialized value at the output. For example, when one or
two inputs of the gate are logical ’1’, according to the voltage
divider rule, the voltage across the output memristor is higher
than Vg

2 . This causes the output memristor to switch from RON

to ROFF , matching the NOR function truth table. The MAGIC
NOR gate can be integrated in a memristive crossbar array row,



Fig. 2. MAGIC NOR gates. (a) MAGIC NOR gate schematic. (b) MAGIC
NOR gate in a crossbar array configuration.

as shown in Figure 2(b). This enables massive parallelism in
executing gates in different rows in the same clock cycle.

B. Logic Execution within a Memristive Crossbar Array

Unlike CMOS logic, execution of an arbitrary logic function
with stateful logic is performed by a sequence of operations
and takes several clock cycles. In each clock cycle, one
operation can be performed on a single row, or on multiple
rows concurrently. A valid logic execution is defined by
mapping of every gate in the desired function to several cells
in the crossbar array, and operating it in a specific clock cycle.

Many tools to generate the sequence of operations and map
them into the memristive crossbar array cells have been dis-
cussed in the literature, e.g., YADAV [15] and SIMPLER [10].
However, the gap between target machine constraints and
architectural design choices, e.g., ISA, has never been ad-
dressed. Attempts have been made in existing mapping tools
to support complex operations in the in-memory execution,
e.g., 4-input LUT function [9]. However, their flexibility is
limited and they do not completely separate the intermediate
code generation and microcode generation, therefore they
impose target machine and ISA dependency and do not provide
backward compatibility with other target machines.

III. ABSTRACTPIM: THREE-COMPONENT CODE
EXECUTION FLOW FOR PIM

The abstractPIM flow includes two code generation compo-
nents and one execution component. In the first component, in-
termediate representation generation, the program is compiled
into a sequence of target independent instructions based on a
defined ISA. In the second component, microcode generation,
each instruction is translated into micro-operations that are
supported by the target machine. The translation is performed
once per instruction, and is embedded in the controller design.
We adopt an existing mapping flow and modify it to support
different ISAs and PIM technologies. In the third component,
runtime execution, the instructions in the compiled code are
sent from the CPU to the controller, which translates them into
micro-operations and sends them to the memory.

Existing logic execution methods use a set of basic logic op-
erations to implement a logic function. They rely on a memory
controller which is configured to perform these operations by
applying voltages on the rows and columns of the memory
array. In this paper, we assume that the memory controller is
configured to perform several logic operations, dubbed instruc-
tions. Their execution sequence is determined according to a
specific target machine and the PIM technology it supports.
For example, if the ISA includes an AND instruction and the
used technology is MAGIC NOR, 3 computation operations
and 1 initialization cycle will be executed one after the other

to run the AND instruction, as demonstrated in Figure 1(b),
gate 1. An alternative PIM technology that consists of NAND
gates will perform the same AND instruction using two NAND
computations and one initialization cycle (Figure 1(c)). The
instruction execution using different PIM technologies may
differ in the execution time and cell usage. Our approach raises
the system abstraction level and reduces the flow dependency
of the specific PIM technology. It also moves one step closer
towards defining a general instruction set to a memristor-based
PIM architecture and designing its compiler.

The controller support of complex instructions also reduces
the code size and hence the code transfer between the CPU
and the memory controller. However, there is a code size and
execution time trade-off; the reduction in the code size may
cause an execution time penalty. For example, in Figure 1, the
first NOR-based implementation takes 5TNOR clock cycles
to operate, where Top is the number of clock cycles required
for execution of an op operation. The second implementation,
however, takes a total of TAND + TXOR clock cycles. In a
machine which supports MAGIC NOR operations, the first
implementation takes 10 clock cycles (2 cycles per NOR),
and the second implementation takes 11 clock cycles (4 for
the AND2 gate and 7 for the XOR2 gate, according to Table I).
Some execution cycles are computation cycles and some are
initialization cycles, as further elaborated is Section V.

The instruction hierarchy in abstractPIM improves the flexi-
bility of the compilation flow, as demonstrated in Figures 1(b)-
(d). This is similar to high-level programming compared to
assembly coding, which can improve flexibility at the cost
of execution time penalty. While we demonstrate it using
MAGIC-based logic families, the flow can be easily used
for other target machines and stateful logic families. In our
study, we choose different groups of ISAs, and different target
machines that support different logic families. We demonstrate
how they can be used to execute different benchmarks, and
analyze the code size and execution time of the configurations.

IV. CASE STUDY: VECTOR-MATRIX MULTIPLICATION

We showcase our flow with a vector-matrix multiplication
(VMM) benchmark (a 5 element vector and a 5×5 matrix
with 8-bit elements), which is useful in many applications,
e.g., neural networks. The benchmark is tested over a tar-
get machine with 1024-sized memristive memory row that
supports the MAGIC NOR logic family. The supported set
of operations (NOT, NOR2) by the target machine is called
TS0. Other logic families are discussed in Section VI. We first
compile the benchmark for a basic case, where the ISA is
also the technology set, i.e., TS0. The selection of this ISA
enabled a fair comparison between abstractPIM and existing
logic execution methods, such as SIMPLER [10], which do
not use a two-component code generation process. The used
technology sets supported by the target machines we use
and their instruction parameters are listed in Table I. Each
instruction has three parameters: the number of inputs (I), the
number of outputs (O) and the number of execution cycles (T).
The first two parameters are technology independent, whereas



TABLE I
INSTRUCTION EXECUTION CHARACTERISTICS FOR MAGIC FAMILIES
Instruction I O T0 T1 TS0 TS1 IS2 IS3

NOT 1 1 1+1 1+1 3 3 3 3

NOR2 2 1 1+1 2+1 3 3 3 3

NOR3 3 1 3+1 3+1 - - - 3

NOR4 4 1 5+1 4+1 - - - 3

OR2 2 1 2+1 1+1 - 3 3 3

OR3 3 1 4+1 2+1 - - - 3

OR4 4 1 6+1 3+1 - - - 3

AND2 2 1 3+1 1+1 - 3 3 3

AND3 3 1 6+1 2+1 - - - 3

AND4 4 1 9+1 3+1 - - - 3

NAND2 2 1 4+1 2+1 - - 3 3

NAND3 3 1 7+1 3+1 - - - 3

NAND4 4 1 10+1 4+1 - - - 3

XOR2 2 1 6+1 5+1 - - 3 3

XOR3 3 1 11+1 9+1 - - - 3

XOR4 4 1 16+1 15+1 - - - 3

XNOR2 2 1 5+1 5+1 - - 3 3

XNOR3 3 1 11+1 6+1 - - - 3

XNOR4 4 1 16+1 8+1 - - - 3

IMPLIES 2 1 2+1 2+1 - - 3 3

!IMPLIES 2 1 2+1 2+1 - - 3 3

MUX 3 1 7+1 4+1 - - 3 3

HA 2 2 7+1 6+1 - - 3 3

HS 2 2 6+1 5+1 - - 3 3

The execution time format is Tc + Ti , where Tc is the number of computation cycles and Ti is
the number of initialization cycles.

the last parameter is technology dependent. The parameter
corresponding to technology set N is TN . For example, the OR
instruction has two inputs and a single output (I = 2, O = 1),
and requires, when using a target machine that supports TS0,
three clock cycles for execution (T0 = 3, two computation
cycles and one initialization cycle). Using ISA=TS0 for the
VMM benchmark, there are 25470 execution cycles, out of
which, half are initialization cycles and half are computation
cycles. Therefore, the code size is 12735 instructions.

In attempt to reduce the code size, we used IS2, which con-
tains all the functions with 1 or 2 inputs and 1 output, exclud-
ing trivial functions, e.g., constant ’0’ and identity functions1.
The set also includes common combinational functions with
more than 2 inputs or more than 1 output. Since the number
of such functions is large, even for a small number of inputs,
we chose three functions which, according to experiments
we conducted, were useful in certain benchmarks: half adder
[HA], multiplexer [MUX] and half subtractor [HS]. Because
of the the circular dependency limitation of our flow, which
is further elaborated in Section V, some useful instructions,
e.g., 4-bit adder, could not be used. Using IS2, code size is
reduced by 52%, but execution time is increased by 16%.

To demonstrate the benefit of a larger number of instruction
inputs and reduce the execution time, IS3 was defined. It
contains the IS2 instructions, and the 2-input and single output
symmetric functions from IS2 extended to 3 and 4 inputs.
Using IS3, lower execution time and code size, as compared
to IS2, are achieved. The execution time is increased by only
8%, and the code size is reduced by 57%, as compared to TS0.

V. ABSTRACTPIM FLOW AND METHODOLOGY

The flow of abstractPIM is composed of three components,
as shown in Figure 3. In the first component, the intermediate
representation generation, the input is a Verilog program.
The program is synthesized using the Synopsys DC synthesis

1identity functions, which are in fact copy operations, can be useful in other
mapping methods [9, 16], but not in our row-based flow.

tool [17], where the synthesis standard cell library includes
the ISA in .lib format. The Synopsys DC synthesis tool was
chosen since it supports multi-output cell synthesis. Then, a
compiled program is generated using a modified and extended
version of the SIMPLER mapping tool [10]. This tool builds a
directed acyclic graph (DAG). In its original form, every node
represents a NOR gate in the netlist, since SIMPLER was
designed specifically for the MAGIC NOR family [6]. In the
modified mapping tool, each node represents a wider variety
of instructions based on the ISA. Using the DAG, the inputs
and outputs of the instructions are mapped to row cells in
the memristive array, and a compiled program is generated.
The I and O parameters are used to build the DAG and
are technology-independent. The T parameters (see Table I),
which are technology-dependent and determined in the second
component, are not used for compilation. Therefore, a com-
plete separation between the code generation components and
backward compatibility with other target machines is achieved.

The second component of the abstractPIM flow is microcode
generation. For each instruction, a microcode is generated by
synthesizing the instruction to a micro-operation netlist and
then to an execution sequence, which includes mapping to the
memristive crossbar array and intermediate computation cell
allocation based on specific PIM technology. The second com-
ponent input is the instruction implemented in Verilog. The
instruction is synthesized using the Synopsys DC synthesis
tool for a specific PIM technology, described in the synthesis
standard cell library. In this paper, we demonstrate the flow
with the MAGIC [6] family, and therefore we extended the
SIMPLER [10] mapping tool to support different MAGIC
operations instead of only MAGIC NOR. The execution times,
listed in Table I, were calculated using this flow. The second
component of abstractPIM can be replaced by handcrafted
execution sequences or other mapping tools, depending on the
PIM technology in use, which may produce even faster execu-
tion sequences. In the third component, runtime execution, the
two components outputs are used for full program execution.
Instructions are sent from the CPU to the controller, and micro-
operations are sent from the controller to the memory.

The SIMPLER mapping tool [10] traces the number of
available cells, and when they are all occupied, adds a cycle
which initializes several unused cells in parallel. However, not
all stateful logic families use initialization, therefore initializa-
tion cycles should not be part of the first component of the
flow so we remove them. In the second component, since the
flow is demonstrated using the MAGIC [6] family, we perform
initialization. As opposed to SIMPLER, the second component
is not aware of the full program and instruction dependencies,
therefore optimized parallel initialization cannot be performed.
Instead, output and intermediate computation cell initialization
is performed at the first cycle of each instruction execution
(if needed, additional initialization cycles can be added to
the instruction execution sequence). Overall, the component
separation enables flexibility and backward compatibility at
the cost of execution time penalty.

In both code generation components, each standard library



Fig. 3. abstractPIM general flow is composed of three components, two components are for code generation (differences between them are marked with
purple.), and the last component is for execution. (a) Intermediate representation generation. (b) Microcode generation. (c) Runtime execution.

Fig. 4. Compilation with multi-output instructions which creates a circular
dependency. (a) Generated netlist using single output gate synthesis. (b) Gen-
erated netlist using multi-output gate synthesis. (c) The graph that represents
netlist (a), which is a DAG and can be used for the mapping algorithm. (d)
The graph that represents netlist (b), which includes a cyclic dependency.

cell includes several parameters. Since existing commercial
synthesis tools are CMOS-oriented, we set these parameters
differently and according to our memristor synthesis flow.
Propagation delays, which are relevant for propagating signals
in CMOS logic, are irrelevant in the context of memristor
logic, where the execution time of each logic operation is a
single clock cycle, and are set to 0. The area parameter is set
equal for all the library cells, thus the synthesis does not prefer
any particular cell, and minimizes the number of cells in the
netlist, i.e., minimizes the code size.

AbstractPIM supports multi-output instructions, but not all
kinds of multi-output instructions can be used in it, since some
may lead to bogus dependencies that hinder the execution map-
ping. Figure 4 shows an example of such bogus dependencies,
in which, the input is the function code: g = ab, h = cdef . In
Figure 4(a), the code is compiled using single-output instruc-
tions (AND2 instruction), and in Figure 4(b), it is compiled
using multi-output instructions (an instruction which computes
two AND2 operations, marked in blue). Figures 4(c) and 4(d)
show the graphs corresponding to the netlists in Figures 4(a)
and 4(b), respectively. While there is no combinational loop
in both netlists, a circular dependency was created between
the two 2-output AND2 cells. Since abstractPIM relies on
the graph acyclic structure, instructions which might cause
cyclic dependency cannot be used. A sufficient condition that
guarantees no such loops will be created, is to use only cells
in which all the outputs depend on all the inputs, e.g., half
adder. Future work will ensure support of any multi-output
instruction, thus enabling more flexibility in planning the ISA.

After developing abstractPIM and composing the ISAs, the
code size and execution time were explored. We show the
two metrics separately, due to the absence of a natural metric

Fig. 5. Normalized code size with respect to TS0 for different ISAs.

that combines both of them2. We used the EPFL benchmark
suite [18]. Each benchmark was tested with different technol-
ogy sets and ISAs, listed in Table I, within a 512-sized row.
One benchmark, max, could not be mapped to a 512-sized row
and was therefore tested with a 1024-sized row.

VI. RESULTS

The abstraction achieved by our flow using different ISAs
reduces the code size as compared to an implementation based
on a specific PIM technology. Figure 5 shows the code size
needed for the execution of each benchmark using different
ISAs: TS0, TS1 (used as ISAs and not as technology sets),
IS2 and IS3. The code size is determined only by the ISA,
and is independent of any target machine. Since the chosen
sets are subsets of each other, i.e., TS0 ⊂ TS1 ⊂ IS2 ⊂ IS3,
then CSTS0 > CSTS1 > CSIS2 > CSIS3, where CSset is
the code size of set. Using TS1, IS2 and IS3 reduced the code
size by 30%, 40% and 56% compared to TS0, respectively.

For execution time evaluation, we compiled the benchmarks
with the different ISAs and for the different target machines
to demonstrate the flexibility and PIM technology indepen-
dence achieved by our flow. We used two “native” configu-
rations: TS0/TS0, TS1/TS1, and four “abstract” configurations:
TS0/IS2, TS0/IS3, TS1/IS2, and TS1/IS3, where the notation is
target-machine/ISA. We also compare the results to a single-
component target-specific flow, SIMPLER [10].

The results are shown in Figure 6. When comparing
TS0/TS0 with SIMPLER, the execution time is approximately
doubled, since in our flow, every NOR or NOT operation
takes an additional cycle for initialization. In SIMPLER, which
operates at full program context and not at single instruction
context, multiple initialization cycles can be combined and
therefore the number of initialization cycles is negligible.

2Weighted product of code-size and execution-time were found misleading.



Fig. 6. Normalized execution time with respect to TS0/TS0 for the different
target machines and ISAs.

When comparing target machines that use native config-
urations (TS0/TS0 vs. TS1/TS1) we observe that the target
machine which is more capable (TS1) runs faster (30%).
When comparing target machines that use the same abstract
configuration (TS0/IS2 vs. TS1/IS2 and TS0/IS3 vs. TS1/IS3)
we also observe that the target machine which is more capable
runs faster (32% and 33%, respectively). When comparing
the execution time of a native configuration (TS0/TS0 and
TS1/TS1) with that of an abstract configuration using the same
target machine, we see that the abstract configuration is slower.
TS0/IS2 and TS0/IS3 are 24% and 8% slower than TS0/TS0,
respectively. Comparing the native TS1/TS1 configuration with
the relevant abstract configurations exhibits similar results.

The above observations are quite expected. An important but
less obvious benefit of abstractPIM is shown when changing
a target machine. For example, when the target machine is
upgraded from TS0 to TS1, a program that has been compiled
natively (TS0/TS0) executes the same number of cycles when
running on TS1 (if TS0 ⊂ TS1, otherwise even slower).
However, a program that has been compiled in the first place
using IS3 (IS2) runs 27% (16%) faster than on the original
machine – no recompilation needed. This is reflected by
comparing TS1/IS3 (TS1/IS2) vs. TS0/TS0.

Another observation is that among abstract ISAs, higher
abstraction usually exhibits better performance, as shown by
comparing TS0/IS3 vs. TS0/IS2 (13%) and TS1/IS3 vs. TS1/IS2
(13%). With higher abstraction it is expected that the execution
time will increase compared to native configuration since
using basic instructions allows finer granularity. On the other
hand, using abstract ISAs reduces the number of instructions,
together with the number of initialization cycles. The two
opposite trends cause different benchmark behaviors.

The flexibility and code size reduction advantages of ab-
stractPIM come with a cost. The additional execution cycles
per benchmark result in proportional additional energy con-
sumption and lower effective lifetime. We believe that higher
abstraction is worth the cost of these limitations.

VII. CONCLUSIONS

This paper presents a hierarchical compilation concept and
method for logic execution within a memristive crossbar
array. The proposed method provides flexibility, portability,
abstraction and code size reduction. The abstractPIM flow
lays a solid foundation for a compiler for a memristor-based
architecture, by enabling automatic mapping and execution of
any logic function within the memory, using a defined ISA.

ACKNOWLEDGMENT

This research is supported by the ERC under the European
Unions Horizon 2020 Research and Innovation Programme
(grant agreement no. 757259).

REFERENCES

[1] S. Hamdioui et al., “Memristor for computing: Myth or
reality?,” DATE, pp. 722–731, Mar. 2017.

[2] D. Ielmini and H.-S. P. Wong, “In-memory computing
with resistive switching devices,” Nature Electronics,
vol. 1, pp. 333–343, Jun. 2018.

[3] M. Angel Lastras-Montaño and K.-T. Cheng, “Resistive
random-access memory based on ratioed memristors,”
Nature Electronics, vol. 1, pp. 466–472, Aug. 2018.

[4] W. Woods and C. Teuscher, “Approximate vector ma-
trix multiplication implementations for neuromorphic
applications using memristive crossbars,” IEEE/ACM
NANOARCH, pp. 103–108, Jul. 2017.

[5] L. Deng et al., “Model compression and hardware accel-
eration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, pp. 1–48, Mar. 2020.

[6] S. Kvatinsky et al., “MAGIC-memristor-aided logic,”
IEEE TCAS II, vol. 61, pp. 895–899, Nov. 2014.

[7] J. Borghetti et al., “’memristive’ switches enable ’state-
ful’ logic operations via material implication,” Nature,
vol. 464, p. 873—876, Apr. 2010.

[8] E. Testa et al., “Inversion optimization in majority-
inverter graphs,” NANOARCH, pp. 15–20, Jul. 2016.

[9] V. Tenace et al., “SAID: A supergate-aided logic synthe-
sis flow for memristive crossbars,” DATE, pp. 372–377,
Mar. 2019.

[10] R. Ben-Hur et al., “SIMPLER MAGIC: Synthesis and
mapping of in-memory logic executed in a single row to
improve throughput,” IEEE TCAD, Jul. 2019.

[11] J. Bürger et al., “Digital logic synthesis for memristors,”
Reed-Muller, pp. 31–40, Jan. 2013.

[12] E. Linn et al., “Beyond von neumann - logic operations
in passive crossbar arrays alongside memory operations,”
Nanotechnology, vol. 23, p. 305205, Jul. 2012.

[13] “P6 family of processors hardware developer’s manual.”
http://download.intel.com/design/PentiumII/manuals/
24400101.pdf.

[14] J. Reuben et al., “Memristive logic: A framework for
evaluation and comparison,” PATMOS, pp. 1–8, Sep.
2017.

[15] D. N. Yadav, P. L. Thangkhiew, and K. Datta, “Look-
ahead mapping of boolean functions in memristive cross-
bar array,” Integration, vol. 64, pp. 152 – 162, Jan. 2019.

[16] R. Ben Hur et al., “SIMPLE MAGIC: Synthesis and in-
memory mapping of logic execution for memristor-aided
logic,” IEEE/ACM ICCAD, pp. 225–232, Nov. 2017.

[17] P. Kurup et al., Logic Synthesis Using Synopsys. Springer
Publishing Company, Incorporated, 2nd ed., 2011.

[18] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The
EPFL combinational benchmark suite,” IWLS, 2015.

http://download.intel.com/design/PentiumII/manuals/24400101.pdf
http://download.intel.com/design/PentiumII/manuals/24400101.pdf

	Introduction
	Background and Related Work
	Stateful Logic
	Logic Execution within a Memristive Crossbar Array

	abstractPIM: Three-component Code Execution Flow for PIM
	Case Study: Vector-Matrix Multiplication
	abstractPIM Flow and Methodology
	Results
	Conclusions

