
CONCEPT: A Column-
Oriented Memory
Controller for Efficient
Memory and PIM
Operations in RRAM
Nishil Talati
University of Michigan, Ann Arbor
and Technion—Israel Institute of Technology

Heonjae Ha
Stanford University

Ben Perach
Technion—Israel Institute of Technology

Ronny Ronen
Technion—Israel Institute of Technology

Shahar Kvatinsky
Technion—Israel Institute of Technology

Abstract—WhileDRAMcannoteasily scalebelowa20-nm technologynode,RRAM

suffers far less fromscalability issues.Moreover, RRAM’s resistivity enables its use for

processing-in-memory (PIM), potentially alleviating the vonNeumannbottleneck.

Unfortunately, becauseof technological idiosyncrasies, existingDRAM-centricmemory

controllerscannot exploit the full potential of resistiveRAM (RRAM). In this paper,we

present the designof amemorycontroller calledCONCEPT.Thecontroller is optimized to

exploit uniqueproperties ofRRAMtoenhance its performanceandenergyefficiency aswell

asexploitingRRAM’sPIMcapability.Weshow thatwithCONCEPT,RRAMcanachieve

DRAM-like performanceandenergy efficiencyonSPECCPU2006benchmarks. Furthermore,

usingRRAMPIMcapabilities,weshowa5� performancegainonadata-intensive in-memory

databaseworkloadcompared toa state-of-the-art CPU-memorycomputingmodel.

& THE PROCESS TECHNOLOGY scaling of DRAM

has so far facilitated low cost-per-bit by enabling

reduction in cell size. However, further scaling

has proven to be costly due to physical factors,

such as the difficulty of fabricating capacitors

Digital Object Identifier 10.1109/MM.2018.2890033

Date of publication 3 January 2019; date of current version

21 February 2019.

January/February 2019 0272-1732 � 2019 IEEE 33

IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained from all other uses, 
in any current or other future media, including reprinting/republishing this material for advertising or promotional
purposes, creative new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works



with high aspect ratio. Furthermore, because

commodity DRAM cannot process data, it needs

to be transferred to the CPU for processing via

a bandwidth-limited bus. This data transfer

severely limits the performance and the

energy efficiency of computers,1 a limitation

known as the von Neumann bottleneck.

The memory controller is a key component in

optimizing the performance and energy

efficiency of modern computing systems.

Its purpose is to deliver performance and power

optimizations by

intelligently sched-

uling memory

requests and

accessing data

given the limita-

tions of a memory

technology. DRAM

has been the tech-

nological choice for

building main mem-

ory systems for

several decades

mainly because of

its low access

latency and low

cost. Therefore, existing memory controllers

target DRAM, and their design constraints are

focused around that specific technology.

In this paper, we propose to employ resistive

RAM (RRAM) to tackle both the DRAM scaling

problem and the von Neumann bottleneck.

While prior art employs a traditional DRAM

memory controller to leverage unique properties

of RRAM,7 we propose a more fundamental and

novel solution to the problem: redesigning the

memory controller to optimize the data access

pattern as well as to perform processing-in-mem-

ory (PIM) using RRAM.

We make several key observations about the

technological idiosyncrasies that make DRAM

and RRAM incompatible. Motivated by these

observations, we propose a unique column-ori-

ented access protocol for RRAM, which we call R-

DDR, i.e., an RRAM-access protocol similar to

DDRx. This protocol is tailor made around the

design constraints of RRAM to best optimize its

performance and energy efficiency. Optimizations

proposed in the past7 are orthogonal to our

approach, which can be augmented on top of our

approach, which may lead to further benefits in

performance and energy efficiency of RRAM. In

addition to supporting efficient memory opera-

tions, R-DDR can also support PIM operations

using a technique called Memristor-Aided loGIC

(MAGIC).2 MAGIC-based PIM allows reducing data

transfer to the CPU and leveraging the ample

parallelism of the memory crossbar array3 to real-

ize efficient single instruction multiple data (SIMD)

operations. We extend the instruction set architec-

ture (ISA) and hardware of the memory controller

to support two additional instructions for PIM—

two-input MAGIC NOR and MAGIC NOT. Note that our

solution is motivation from how DDRx is highly

optimized for a technology (i.e., DRAM); however,

we believe that in the future with a heterogeneous

memory system, a programmable controller might

be useful to support various protocols optimized

for differentmemory technologies.

To evaluate our proposed system, we develop

a comprehensive device-to-architecture simula-

tion framework. Using this simulation framework,

we compare performance and energy efficiency of

ourmemory system against RRAM accessed using

DDR4 on SPEC CPU2006 workloads. The results

show that our approach improves performance

by 35% and reduces energy by 7%. These improve-

ments are the result of carefully designing the

memory controller around the constraints of

RRAM to optimize its memory access pattern.

A comparison of our approach with other PIM

approaches shows that our system outperforms

PCM-based Pinatubo5 by 5� and achieves similar

performance to DRAM-basedAmbit.4

BACKROUND AND MOTIVATION

DRAM Scaling Problem

DRAM uses a capacitor to store charge that is

accessed by an access transistor. This capaci-

tive element is generally fabricated in a vertically

cylindrical structure to save chip area. To main-

tain the retention time requirement of the DRAM

device, the capacitance needs to be constant

at approximately 25 fF. DRAM scaling has so

far been facilitated by scaling a linear dimension

by 0.71� from generation to generation, and

hence, the surface area of the capacitor scales

by 0.5�. To compensate for the reduction in

To evaluate our pro-

posed system, we

develop a comprehen-

sive device-to-architec-

ture simulation

framework. Using this

simulation framework,

we compare perfor-

mance and energy effi-

ciency of our memory

system against RRAM

accessed using DDR4

on SPEC CPU2006

workloads.

Emerging Memory Technologies

34 IEEE MicroPublished by the IEEE Computer Society



surface area, the height of the capacitor needs to

be scaled by 2� to keep the capacitance

value the same. The aspect ratio of the capaci-

tor, which is the ratio of the height and its base

diameter, increases exponentially with tech-

nology scaling, and goes above 100� at the

sub-20-nm technology node; hence, DRAM com-

panies use costly sophisticated tricks to get

around this issue. These narrow cylindrical

cells are inherently unstable and mechanically

difficult to fabricate. On the other hand, if the

capacitor height is not scaled to compensate for

the increase in area, the capacitor can store

comparatively less charge. As a result, DRAM

refresh rate must be increased, reducing the per-

formance and increasing the energy consump-

tion of the memory system. Therefore, the

scaling of DRAM is a major challenge below the

20-nm technology node.

Von Neumann Bottleneck

Contemporary computing systems are based

on the von Neumann architecture, or an impro-

vised version of it, where data are processed

within the CPU and stored in memory (DRAM

being main memory). Since traditional DRAM

cells are charge based and they cannot process

data using the same cells that are used for stor-

ing data, data must be transferred outside the

memory bank or chip for processing. The result-

ing data movement between the memory and

the CPU causes major bottlenecks in terms of

performance and energy efficiency.1 A few con-

temporary approaches propose to use DRAM

sense amplifiers for computation. However,

doing so would still require data movement from

the memory cells to the sense amplifiers and

back; hence, they are limited by the bandwidth

available for data transfer between cell array

and peripheral circuits. One example of such an

approach is Ambit.4

RRAM and Data Access in RRAM

RRAM is a nonvolatile memory technology

that can store a logical value in terms of its resis-

tance. Typically, an RRAM device is fabricated

using a metal–insulator–metal (MIM) structure,

where the insulator is rich in oxygen ions. The

voltage across the RRAM device controls the

drift of the oxygen ions, allowing the formation/

rupture of conducting filaments, and thereby

forming distinct resistance states. The small

diameter of the conducting filaments makes

RRAM technology extremely scalable, and it is

thus an attractive candidate for a future low-cost

memory technology. Conventionally, RRAM

has two resistance states: the low-resistance

state, which represents logical 1, and the high-

resistance state, which represents logical 0.

The write operation in RRAM is performed in

two phases by applying write voltages via word-

lines (WLs) and bitlines (BLs)—SET (to write 1s)

and RESET (to write 0s). Read operations in

RRAM are performed by applying a voltage pulse

of typically lower magnitude than the write volt-

age and measuring the current flowing out of the

cell using current-based sense amplifiers. In addi-

tion to performing memory operations, RRAM

can also execute logical functions by realizing

unique circuit connections and applying voltages.

In this paper, we focus on MAGIC2 to perform

computation using RRAM cells. Advantages of

MAGIC include crossbar compatibility, stateful-

ness (which enables true PIM),6,11 functional com-

pleteness, and parallel execution.6 Bitwise SIMD

MAGIC NOR and NOT operations can be performed

inside RRAM to realize PIM merely by applying a

voltage pattern, and without any modification of

the conventionalmemory crossbar structure.

Why a New Memory Controller for RRAM?

RRAM and DRAM differ in various ways that

affect the memory controller.

� Row-oriented versus column-oriented access

mechanism: The DRAM access mechanism is

row oriented, where an access starts with

opening amemory row and reading its data to

the row buffer. Note that this operation is per-

formed irrespective of whether the request

type is read or write. In contrast, RRAM uses

different system resources for different oper-

ations (i.e., voltage drivers during write ver-

sus voltage drivers þ sense amplifiers during

read) as well as unique biasing schemes (i.e.,

half-select during write versus floating during

read). This means that the type of accessmust

be known in advance (which is sent using

the column command). Hence, the RRAM

access protocol needs to be column oriented

January/February 2019 35



(meaning centered around read/write (col-

umn) command rather than a row command)

as opposed to row oriented in DRAM. Note

that while we propose to change what RRAM

protocol should be centered around, each

row access (i.e., opening a memory row and

reading data to the row buffer) and column

access (i.e., reading/writing to few columns)

have the samemeaning as DDRx.

� Open-page versus closed page policies: RRAM

multiplexes multiple BLs to a single sense

amplifier to reduce the cost of the chip.5 As a

result, unlike DRAM, data from a full row are

not available at the row buffer during a read

operation. Consequently, the RRAM memory

controller cannot employ an open-page pol-

icy, and generally, a restricted closed-page

policy is used (i.e., closing the row immedi-

ately after an access is serviced).

� Refresh and restore: A few DRAM operations,

namely restore and refresh, are not required

in RRAM because of nondestructive reads

and high retention times of RRAM.

� PIM support: Since DRAM cells cannot per-

form PIM, the traditional memory controller

does not support PIM instructions. Thus, to

exploit PIM capabilities of RRAM, we need

to support PIM instructions for the RRAM

memory controller.

To demonstrate the disadvantages of access-

ing RRAM using the DRAM protocol, we model an

RRAM-based main memory as described in the

methodology section, and access it using DDR4-

2400. Figure 1 shows the execution time for differ-

ent workloads listed in Table 1. For these experi-

ments, we use a restricted closed-page policy

and the same auxiliary timing constraints as DDR4

(i.e., tCCD, tRRD, tFAW, and

tWRT).7 We model RRAM read

andwrite latencies by tCAS and

tWR, respectively. RRAM

accessed using a DDRx-based

memory controller is 66.3%

slower than DRAM. Addition-

ally, we will show in the next

sections that the access proto-

col also affects these values.

Finally, we will show how cus-

tomizing the memory control-

ler for RRAM can unleash its

full potential.

CONCEPT DESIGN
In this section, we

propose a memory controller

Figure 1. Execution time of RRAM accessed using the DDR4-2400-based memory controller normalized to

DRAM accessed using a similar memory controller.

Table 1. SPEC CPU 2006 workload setup.

Emerging Memory Technologies

36 IEEE MicroPublished by the IEEE Computer Society



to perform efficient memory

as well as PIM operations

in RRAM. The controller is

divided into the front-end

(responsible for receiving

and storing the memory

requests and PIM commands

such as MAGIC NOR/NOT) and

the back-end (responsible for

converting requests into

low-level technology-specific

commands and sending these

commands to access main

memory data while main-

taining timing constraints).

We present microarchitec-

tural modifications of transaction queues to sup-

port new PIM instructions. Then, we discuss our

proposed RRAM access protocol and the schedul-

ing algorithm.

CONCEPT Front-End Design

On a last-level cache miss, a request is trans-

ferred to the memory controller to perform a

memory transaction, and the front-end of the

memory controller is responsible for receiving

this request. First, the physical address is

decoded to a memory-specific coordinate in

terms of channel, rank, bank, row, and column.

In this paper, we assume a traditional scheme of

address decoding where upper bits of the physi-

cal address are mapped to rows to exploit row-

buffer locality, lower bits are mapped to col-

umns, and middle bits are mapped to bank

addresses. We then propose changes to modify

the transaction queue structure.

Figure 2(a) shows the extended ISA of our mem-

ory controller. The first two entries in the table are

conventional read and write instructions—a read

instruction with an address field and a write

instruction with an address as well as a data field.

The last two entries are the MAGIC instructions to

perform SIMD NOR and NOT operations. These

instructions are unique in that they use a higher

number of addresses than read/write without data.

MAGIC NOR instruction uses three addresses—two

for inputs and one for output. MAGIC NOT instruc-

tions use two addresses only—one for inputs and

one for output. To incorporate PIM instructions in

transaction queues, the fields of the transaction

queue can be naively extended to support three

addresses independently. However, this solution

would incur significant hardware overhead, and

thus is impractical. We propose to incorporate the

PIM instruction format in transaction queue struc-

ture with minimum area overhead. Our proposal is

based on four key observations.

� To reduce the pin count (and hence, the

packaging cost), the memory controller

sends row and column addresses in a time-

multiplexed fashion.

� The data field is muchwider (i.e., 512 bits) than

the address field (i.e., 15 bits for a rowaddress).

� MAGIC operations can be performed only on

vectors present in the same RRAM bank (at

row granularity), so only one bank address is

required per instruction.

� PIM instructions consist only of addresses

and not data since they are performed on

operands already situated inside thememory.

We, thus, propose to reuse a few of the data-

field bits to create a complete MAGIC instruction

within the queue without significantly increasing

storage space. Figure 2(b) shows the design of a

modified transaction queue where two row

addresses are replicated within the unused data

field and a path to the multiplexer is created for

time-multiplexing them. Here, we assume that

the PIM instructions are executed row wise;

hence, three (two) row addresses and one bank

are required to execute a MAGIC NOR (NOT)

instruction on a bit-vector present across

a whole row. Although PIM operations can be

Figure 2. (a) ISA extension of the memory controller to support PIM instructions

using MAGIC. (b) Modified design of the transaction queue that can also support PIM

instructions. The different field lengths correspond to 4 Gb x8 DDR4 DRAM. Legends:

V—valid; Op—opcode. Bit widths in red font represent the proposed extension from a

traditional transaction queue design.

January/February 2019 37



performed at finer granularity by selecting/dese-

lecting different columns/rows for execution,3

this approach complicates the control logic and

peripheral circuit, and hence, in this paper, we

focus on exploiting full parallelism from a row,

assuming massive parallelism requirement from

the workload. Note that even if PIM accesses are

performed using more row address bits, it is

always possible to accommodate two row

addresses in the wide data field. This will mini-

mize the hardware overhead of incorporating

PIM instructions with more than one address.

The only insignificant overhead is because of a

somewhat complex instruction decoder, an addi-

tional bit for two-bit opcode [see Figure 2(b)],

and decoding logic for the multiplexer.

CONCEPT Back-End Design

Once the memory requests are latched at

the transaction queue, the back-end of the

memory controller is responsible for splitting the

requests into technology-specific commands and

sending these commands at specific time inter-

vals, in accordance with the timing constraints. In

this section, we present the R-DDR protocol: an

RRAM access protocol similar to DDRx, which can

incorporate bothmemory and PIM instructions.

R-DDR: An RRAMAccess Protocol Similar to DDR

Since read, write, and logic operations utilize

unique resources on the memory die, we propose

a column-oriented protocol R-DDR to access

RRAM instead of a row-based protocol. To service

a read request from the queue using this protocol,

the memory controller sends a read command

first rather than sending a

generic command like acti-

vate. This prepares the

memory to initiate a mem-

ory request since different

hardware blocks need to

be invoked for different

requests. Furthermore,

since both row and column

addresses are required to

be sent, R-DDR sends both

the addresses in a time-

multiplexed fashion one

after the other to avoid the

pin-count increase. This is

necessary to bias the correct WLs/BLs for write

and logic operations, as well as to multiplex the

correct BLs to the sense amplifiers. Once the row

and column addresses have been sent along with

the type of access, the memory starts servicing

the access.

When no memory request is being serviced, we

say that R-DDR is in the idle state. To eliminate leak-

age power in the idle state, we choose to bias all the

WLs/BLs to a ground voltage so that no current

flows through the arrays and data does not get cor-

rupted because of voltage jitters.

Read operations in R-DDR are performed by

activating the target WL with a read voltage and

multiplexing target BLs to be read to sense

amplifiers by means of a column address. Hence,

current flows from the driver and RRAM cells to

the sense amplifiers, where it is converted to a

full logical value. Figure 3(a) shows the timing

diagram of a read operation where there are four

latencies associated with reading data out from

the memory cells and transferring it to the I/O

pads once all the addresses are received:

1) address decoding latency (i.e., tDEC);

2) RC-delay of wires to bias WL to target voltage

(i.e., tCHARGE);

3) sampling and reading current flowing through

RRAM via sense amplifiers (i.e., tREAD);

4) the latency to transfer data from the sense

amplifiers to the I/O pads (i.e., CL/tCAS,

which is like DRAM).

After a time delay equal to the sum of these

four latencies, we can expect a data burst to

Figure 3. Timings and bus activities of different operations in R-DDR. (a) Read

operation. (b) Write operation (composed of SET and RESET phases). (c) MAGIC NOR

(L1) operation. (d) MAGIC NOT (L2) operation.

Emerging Memory Technologies

38 IEEE MicroPublished by the IEEE Computer Society



start at the data bus, after which, it takes four

clock cycles (i.e., tBURST) for all 64B to get trans-

ferred to the CPU.

Write operations in R-DDR are performed by

activating target WLs and BLs to write voltages

in two steps7—SET and RESET. The R-DDR proto-

col initiates a write request by sending the write

command along with row and column addresses

and the data that need to be written. The timing

diagram of write operations is shown in Figure 3

(b). There are five latencies associated with

write operations:

1) address decoding latency (i.e., tDEC);

2) the RC-delay to bias selected WLs and BLs for

SET process (i.e., tCHARGE);

3) the delay to SET the device itself (i.e., tSET)

and charge the array again for the RESET

operation (i.e., tCHARGE—required since

SET and RESET operations are performed

using different voltage levels and polarity

and they are applied to different cells);

4) the time to RESET the device (i.e., tRESET);

5) finally, the delay to precharge the array to the

idle state toprepare for next access (i.e., tPRE).

Logic operations in R-DDR are performed like

write operations. As shown in Figure 3(c) and (d), a

MAGIC NOR (NOT) operation is initiated by sending a

command and three (two) addresses for inputs and

outputs. The delay associatedwith this operation is

comprised of the delay to decode addresses (i.e.,

tDEC), the RC-delay to charge wires to appropriate

values (i.e., tCHARGE), time to perform logic itself

(i.e., tLOGIC), and the delay to precharge the array

to the idle state to prepare for the next operation.

Consecutive requests of the same type to different

rows in a bank are handled by first closing and pre-

charging the row of the preceding request to ser-

vice the next one. A more interesting case occurs

when two consecutive requests access the same

row. In DRAM, both reads andwrites are performed

using a row buffer that is generally much wider

than a single access. Because of this overprovision-

ing, once the data are read at the row buffer (which

incurs high latency of tRCD), subsequent requests

to the same row can be servicedwith amuch lower

latency (i.e., tCCD). Conversely, in RRAM, row

buffer is only used in read operations. In case

of back-to-back write and logic requests to

the same bank, even if they access the same row/

column, the array needs to be precharged to ser-

vice the next request. Moreover, although row buf-

fers are used in reads, not a full row is read out

because of bulky sense amplifiers, and hence, most

RRAM designs immediately precharge a row to ser-

vice next read. However, there is still some over-

provisioning while reading data out. We propose to

exploit this limited locality to service multiple read

requests to the same row with lower latency when

they hit on the narrow rowbuffer.

Consecutive requests of different types: When a

read request follows a write request, DRAM speci-

fies a timing constraint called tWTR, i.e., a write-

to-read bus turn-around delay. Although separate

I/O paths exist for read and write requests, tWTR

is nonzero because of internal bus and row buffer

sharing between read and write requests. This

gives rise to a long write-to-read turnaround time

(i.e., 7.5 ns), which reduces the DRAM bandwidth.

There are two ways to address this problem: by

having independent GIO (global I/O) buses for

reads andwrites that can reduce tWTR, or by buff-

ering write requests to clear the way for reads.

The latest DRAM architectures (such as HBM2—

high bandwidth memory) use independent

I/O lines—RGIO and WGIO—to increase core fre-

quency, and we also expect RRAM vendors to

adopt such a design to alleviate bottlenecks due

to tWTR. Nevertheless, even if this is not the case,

internal bus contention can be avoided by buffer-

ing write requests on the memory chip to delay

the write request and allow performance-sensi-

tive read requests to get serviced.

To exploit internal parallelism, DRAM can

access multiple banks in parallel concurrently.

Although such parallelism is desirable, it

increases the amount of current required to

service many requests, increasing the power con-

sumed in the chip. Furthermore, since the mem-

ory market is extremely cost sensitive, DRAM is

fabricated using a process with only three metal

layers, which can only withstand a certain amount

of power. Therefore, in practice, parallelism in

DRAM is regulated by two timing parameters—

tRRD (i.e., row-to-row delay) and tFAW (i.e., four-

bank activation window). To control instanta-

neous peak power at any time, activate commands

to different banks are separated by tRRD. Further-

more, tFAW is defined to specify a rolling time-

January/February 2019 39



frame in which a maximum of four banks can be

activated concurrently. This is to control the cur-

rent drawn from the source in a time window of

tFAW, and generally, tFAW>4�tRRD. Values of

these parameters change according to the geome-

try of the DRAM device, which changes the activa-

tion current. RRAM can be fabricated in metal

layers on a standard logic process and trades off

cost with performance by not requiring transis-

tors as access elements. We expect the logic layer

in RRAM to support much higher power as com-

pared to a cheap DRAM process, and as a result,

the tFAW to be constraint relaxed (i.e., tRRD ¼
4�tFAW) in RRAM.

Although implementing these optimizations

in RRAM incurs an increased cost, this cost is

marginal considering the benefits that would be

obtained by achieving DRAM-like performance in

RRAM. Furthermore, the cost-per-bit for RRAM is

lower than for DRAM. While it is also possible to

perform power and parallelism-related optimiza-

tions to improve its performance in DRAM as

mentioned above, we believe there is no justifi-

able reason for doing so, given the increased

cost, and given that DRAM performs well without

these optimizations.

EXPERIMENTAL METHODOLOGY
To demonstrate the benefits of our memory

design, we compare the performance and energy

consumption of our memory system with DDR4-

accessed RRAM and DDR4-2400 DRAM. Further-

more, to present the benefit of supporting

MAGIC execution from the memory controller,

we compare our PIM

design with DDR4-2400

based CPU model, and

other DDRx-based similar

PIM designs, i.e., Pina-

tubo,5 and Ambit.4

We choose a HfOx-

based device8 for our com-

parison of RRAM and use

VTEAM device model12 to

fit its parameters to the

experimental data. Using

the voltage levels listed

in Table 2, we estimate

the array-level latency and

energy of read, write, and

MAGIC operations using

SPICE. Furthermore, we use NVSim13 to deter-

mine the latency and energy of peripheral circuit

(which also includes transferring data to and

from sense amplifiers and I/O pads).

To evaluate memory operations, we use

NVMain.14 We use SniperSim to gather the main

memory traces for the SPEC CPU2006 benchmark

suite for 500M instructions, after 100M instructions

towarm up the cache. The CPU consists of a 4-core,

2.4 GHz Nehalem processor with 2 MB/core, 16-way

LRU LLC. DRAM standard is DDR4-2400 17-17-17,10

with a capacity of 4 Gb with a single channel, a sin-

gle rank, 16-banks, and 8KBpage size. Theworkload

setup used to evaluate memory system is listed in

Table 1. Note that nCK represented the numbers

of clock cycles, and the clock period is 0.833 ns

(according toDDR4-2400 I/O speed).

To evaluate PIM operations, we use bitmap

indices to track users’ characteristics.4 The data-

base stores the gender and the per-day log-in activ-

ity of millions of users in memory. We run two

queries: how many unique users were active every

week for the past w weeks, and how many male

users were active each of the past wweeks. To exe-

cute these queries, 6w bitwise OR, (2w-1) bitwise AND

and (w þ 1) bitcount operations need to be per-

formed for all u-users. For all PIM approaches, we

accelerate bitwise AND/OR operations using PIM, and

bitcount operations are performed on the CPU. We

build an in-house simulator to compare perfor-

mance of the different approaches, where we

model latency of PIM operations and data transfer

between the CPU and main memory. For all

Table 2. Parameter values used for simulation.

Emerging Memory Technologies

40 IEEE MicroPublished by the IEEE Computer Society



PIM approached, the same I/O frequency and

memory organization are used as the baseline (i.e.,

4 Gb DDR4-2400). Ambit and Pinatubo numbers are

adopted from the original articles and are extended

for the configuration used for comparison. Since

our workload is data bound, we ignore the time

required to compute data on the CPU.

RESULTS

Memory Performance and Energy

Figure 4 compares performance and energy

efficiency of three approaches—DDRx-

accessed RRAM (baseline); DRAM; and R-DDR

accessed RRAM (this work). R-DDR gains 35%

speedup and 7% energy savings on average

compared to baseline. The reasons for the

improved performance include exploitation of

partial row-buffer locality, removal of unneces-

sary steps such as refresh and restore, and

redesign of timing constraints similar to

DDRx, but specifically for RRAM. The exploita-

tion of partial rowbuffer locality is a major

contributor to the superior performance, as it

allows us to perform read operations at a

much lower latency. In addition, relaxing aux-

iliary timing constraints such as tWTR and

tFAW contributes to the performance.

Energy benefits are thanks to the ability to

exploit partial row-buffer locality and reduced exe-

cution time. Employing a narrow row-buffer policy

reduces the number of reads that must be per-

formed from the RRAM array, hence saving the

read energy of requests hitting on the row buffer.

Furthermore, reduction in execution time of work-

load results in lower background energy. However,

energy savings of R-DDR is lower than perfor-

mance improvement compared to baseline

because energy consumption is dominated by

write requests.

PIM Performance

Figure 5(a) shows the normalized speedups of

Pinatubo, Ambit, and the proposed MAGIC-based

PIM approach compared to a von Neumann

machine for different numbers of weeks and users.

For a fair comparison, we include the execution

time to compute the end-to-end workload and

ignore cycles to send commands from the memory

controller to invoke PIM operations since the over-

head of sending commands that take a couple of

cycles is negligible compared to PIM operation that

takes several tens-hundreds of cycles, and it can

further be minimized by pipelining PIM execution

with sending commands. Note that although

MAGIC is proposed previously, the benefits of

MAGIC are enabled because of system proposed

modifications without which, it is not possible to

realize MAGIC. The figure shows that Pinatubo per-

forms similar to the CPU-based approach; Ambit

and our system outperform CPU by approximately

5�. Pinatubo’s low performance is attributed to its

Figure 4. IPC speedup and energy savings of R-DDR normalized to performance and energy consumption

of RRAM that is accessed using DDR4-2400 (higher is better). Write intensity (i.e., fraction of write requests in

all requests) is also shown for all workloads.

January/February 2019 41



limited compute parallelism due to sense amplifier

multiplexing. Both Ambit and MAGIC perform PIM

operations in parallel on vectors of size of a full row

with similar compute bandwidth. Moreover, since

thisworkload employs u(wþ 1) bit-readoperations

to the CPU for bitcount, data transfer between CPU

and memory takes around 90% of the execution

time in both architectures. Hence, with slightly

higherMAGIC latency,MAGIC still performs similar

to Ambit. However, benefits of MAGIC approach

will be more evident for workloads with greater

opportunity to reduce data transfer.

CONCLUSION
RRAM has the potential to solve the DRAM

scaling problem and the von Neumann bottle-

neck. However, merely replacing DRAM with

RRAM is not the answer. In this paper, we propose

CONCEPT—a column-oriented memory control-

ler for RRAM to optimize its data access pattern

as well as exploit PIM capabilities. We show that a

memory controller designed around the techno-

logical constraints of RRAM can achieve close-to-

DRAM performance. Furthermore, supporting

PIM operations in RRAM can result in a 5�
speedup compared to a state-of-the-art CPU-mem-

ory based vonNeumannmodel.

ACKNOWLEDGMENT
This work was carried out when the first

author was at the Technion—Israel Institute of

Technology. This work was supported in part by

the European Research Council under the Euro-

pean Union’s Horizon 2020 Research and Innova-

tion Programme under Grant 757259, in part by

the Viterbi Fellowship at the Technion Computer

Engineering Center, in part by the EU ICT COST

Action IC1401, and in part by the Israel Science

Foundation under Grant 1514/17.

& REFERENCES

1. A. Pedram, S. Richardson, M. Horowitz, S. Galal, and

S. Kvatinsky, “Dark memory and accelerator-rich

system optimization in the dark silicon era,” IEEE Des.

Test, vol. 39, no. 10, pp. 39–50, Apr. 2017.

2. S. Kvatinsky et al., “MAGIC - Memristor-Aided loGIC,”

IEEE Trans. Circuits Syst. II, Express Briefs, vol. 61,

no. 11, pp. 895–899, Sep. 2014.

3. N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic

design within memristive memories using memristor-

aided loGIC (MAGIC),” IEEE Trans. Nanotechnol.,

vol. 15, no. 4, pp. 635–650, Jul. 2016.

4. V. Seshadri et al., “Ambit: In-memory accelerator for

bulk bitwise operations using commodity DRAM

technology,” in Proc. 50th Annu. IEEE/ACM Int. Symp.

Microarchit., Oct. 2017, pp. 273–287.

5. S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie,

“PINATUBO: A processing-in-memory architecture for

bulk bitwise operations in emerging non-volatile

memories,” in Proc. 53rd Annu. Des. Automat. Conf.,

Jun. 2016, pp. 1–6.

6. J. Reuben et al., “Memristive logic: A framework for

evaluation and comparison,” inProc. 27th Int. Symp.

Power TimingModel., Optim. Simul., Sep. 2017, pp. 1–8.

7. X. Cong et al., “Overcoming the challenges of crossbar

resistivememory architectures,” inProc. IEEE Int. Symp.

High Perform. Comput. Archit., Feb. 2015, pp. 476–488.

8. H. Y. Lee et al., “Evidence and solution of over-RESET

problem for HfOx based resistive memory with sub-ns

switching speed and high endurance,” in Proc. Int.

Electron Devices Meet., Dec. 2010, pp. 19.7.1–19.7.4.

Figure 5. Speedup of Pinatubo, Ambit, and proposedMAGIC-based PIM normalized to vonNeumann-based

computingmachine for query execution in bitmap indices (higher is better). Legends:w—#weeks; u—#users.

Emerging Memory Technologies

42 IEEE MicroPublished by the IEEE Computer Society



9. J. Zhou, K. H. Kim, and W. Lu, “Crossbar RRAM

arrays: Selector device requirements during read

operation,” IEEE Trans. Electron Devices, vol. 61,

no. 5, pp. 1369–1376, May 2014.

10. “4Gb one-die DDR4 SDRAM Datasheet Rev. J,”

Micron, Inc., Boise, ID, USA, Jul. 2017.

11. A. Haj Ali, R. Ben Hur, N. Wald, R. Ronen, and

S. Kvatinsky, “Not in name alone: Amemristivememory

processing unit for real in-memory processing,” IEEE

Micro, vol. 38, no. 5, pp. 13–21, Sep./Oct. 2018.

12. S. Kvatinsky, M. Ramadan, E. G. Friedman, and

A. Kolodny, “VTEAM—A general model for voltage

controlled memristor,” IEEE Trans. Circuits Syst. II,

Express Briefs, vol. 62, no. 8, pp. 786–790, Aug. 2015.

13. X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim:

A circuit-level performance, energy, and area model

for emerging nonvolatile memory,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol. 31, no.

7, pp. 994–1007, Jul. 2012.

14. M. Poremba and Y. Xie, “NVMain: An architectural-

level main memory simulator for emerging non-volatile

memories,” in Proc. IEEE Comput. Soc. Annu. Symp.

VLSI, Amherst, MA, USA, Sep. 2012, pp. 392–397.

Nishil Talati is currently working toward the PhD

degree at the Computer Science and Engineering

Department, University of Michigan, Ann Arbor. His

current research interests include computer architec-

ture, main memory systems, and emerging memory

technologies. He received the B.Eng. degree in elec-

trical engineering from BITS Pilani, India, in 2016,

and the MSc degree in electrical engineering from

Technion—Israel Institute of Technology in 2018.

Contact him at talatin@umich.edu.

Heonjae Ha is currently working toward the

PhD degree in electrical engineering at Stanford

University. Prior to joining the Ph.D. program, he

worked from 2009 to 2013 with SK Hynix, where his

main role was to design and validate mobile DRAMs.

His current research is focused on understanding

and improving the energy efficiency of DRAMs. He

received the BEng degree in electronics engineering

from Korea University in 2006 and the MS degree

in electrical engineering from Stanford University

in 2009. Contact him at hunjaeha@stanford.edu.

Ben Perach is currently working toward the PhD

degree in electrical engineering at the Technion—Israel

Institute of Technology. His current research interests

include computer architecture with a focus on

processor design, and field-programmable gate

arrays, security, and data networks. He received the

BSc degree in mathematics from The Hebrew Univer-

sity of Jerusalem, Jerusalem, in 2010, and the MSc

degree in electrical engineering fromTel Aviv University

in 2017. Contact him at bperach@gmail.com.

Ronny Ronen is a senior researcher at the Andrew

and Erna Viterbi Faculty of Electrical Engineering,

Technion—Israel Institute of Technology. He was

with Intel from 1980 to 2017 in various technical and

managerial positions. In his last role, he led the Intel

Collaborative Research Institute for Computational

Intelligence (ICRI-CI). Until 2011, he was a senior

staff computer architect in the Intel Development

Center in Haifa and before that the director of Micro-

architecture Research in that center. In these roles,

he led/was involved in the initial definition and path-

finding of major leading-edge Intel processors.

Earlier, he led the development of several system

software products and tools including the Intel Pen-

tium processor performance simulator and several

compiler efforts. He holds more than 70 issued

patents and has published more than 20 papers.

He received the BSc and MSc degrees in computer

science in 1978 and 1979, respectively, both from

the Technion—Israel Institute of Technology. He is

an IEEE Fellow and was an Intel Senior Principal

Engineer. Contact him at ronny.ronen@technion.ac.il.

Shahar Kvatinsky is an assistant professor at the

Andrew and Erna Viterbi Faculty of Electrical Engineer-

ing, Technion—Israel Institute of Technology. From

2006 to 2009, he was with Intel as a circuit designer

and was a Postdoctoral Research Fellow at Stanford

University from 2014 to 2015. He is an editor of Micro-

electronics Journal and has been the recipient of the

2015 IEEE Guillemin-Cauer Best Paper Award, the

2015 Best Paper of Computer Architecture Letters,

Viterbi Fellowship, Jacobs Fellowship, ERC starting

grant, the 2017 Pazy Memorial Award, the 2014 and

2017 Hershel Rich Technion Innovation Awards, the

2013 Sanford Kaplan Prize for Creative Management

in High Tech, 2010 Benin prize, and six Technion

excellence teaching awards. His current research is

focused on circuits and architectures with emerging

memory technologies and design of energy efficient

architectures. He received the BSc degree in

computer engineering and applied physics and

the MBA degree in 2009 and 2010, respectively,

both from the Hebrew University of Jerusalem, and

the Ph.D. degree in electrical engineering from the

Technion—Israel Institute of Technology in 2014.

Contact him at shahar@ee.technion.ac.il.

January/February 2019 43


