

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

Advanced Secure Cloud Encrypted Platform
for Internationally Orchestrated Solutions in

Healthcare

Project Acronym: ASCLEPIOS

Project Contract Number: 826093

Programme: Health, demographic change and wellbeing

Call: Trusted digital solutions and Cybersecurity in Health and Care
to protect privacy/data/infrastructures

Call Identifier: H2020-SC1-FA-DTS-2018-2020

Focus Area: Boosting the effectiveness of the Security Union
Topic: Toolkit for assessing and reducing cyber risks in hospitals and care

centres
Topic Identifier: H2020-SC1-U-TDS-02-2018

Funding Scheme: Research and Innovation Action

Start date of project: 01/12/2018 Duration: 36 months

Deliverable:
D5.1 Technical Integration Points and Testing Plan

Due date of deliverable: 31/05/2020 Actual submission date: 23/06/2020

WPL: UBI

Dissemination Level: Public

Version: v1.0

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 2 of 44

Table of Contents

Table of Contents ... 2

List of Figures and Tables .. 3

Status, Change History and Glossary .. 5

Executive Summary ... 7

1 Introduction ... 8

1.1 Objectives .. 8

1.2 Relationship to ASCLEPIOS Deliverables ... 8

1.3 Organization .. 8

2 ASCLEPIOS Integrated Framework Architecture ... 9

2.1 Methodology .. 9

2.2 The ASCLEPIOS Framework architecture .. 9

2.2.1 Description of ASCLEPIOS components ... 12
2.2.2 Component View of ASCLEPIOS ... 15
2.2.3 Description of ASCLEPIOS interfaces ... 17

3 Technical Integration and Planning .. 28

3.1 Additional Modules and Supporting Tools ... 28

3.1.1 Code Level Integration ... 28
3.1.2 Teams Communication – Slack .. 29
3.1.3 Keycloak as Authentication Proxy .. 29

3.2 Deployment of ASCLEPIOS Platform.. 29

3.2.1 ASCLEPIOS Docker Registry usage .. 30
3.2.2 MICADO and TEEPD (Trusted Execution Environment Platform Deployer) 30

3.3 Integration Planning .. 31

3.3.1 Development and Integration Iterations ... 31
3.3.2 Platform Releases .. 31

4 Testing and Technical Evaluation Plan ... 33

4.1 Unit Testing ... 34

4.2 Testing for the Integrated Platform .. 35

4.2.1 Integration Tests ... 36

4.3 ASCLEPIOS Complex Flows testing ... 37

4.3.1 ABAC based access control ... 37
4.3.2 ABAC and ABE based flow .. 38
4.3.3 ABAC and SSE based flow .. 38
4.3.4 ABAC and FE based flow ... 38

5 Conclusions .. 40

6 References ... 41

Appendix I - Asclepios Technical Architecture UML Schema .. 42

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 3 of 44

List of Figures and Tables

Figures

Figure 1: ASCLEPIOS overall architecture (source D1.2) .. 10

Figure 2: Early identifying of ASCLEPIOS components and their connections 11

Figure 3: ASCLEPIOS technical architecture – development view (part 1/2) 15

Figure 4: ASCLEPIOS technical architecture – development view (part 2/2) 16

Figure 5: ASCLEPIOS project group in GitLab ... 28

Figure 6: ASCLEPIOS Slack Workspace .. 29

Figure 7: ASCLEPIOS Milestones as part of the development and integration plan 32

Figure 8: Activity Timing at each level of test .. 33

Figure 9: STEP Phases .. 34

Figure 10: ABAC Policy Creation and Enforcement flow for testing 37

Figure 11: ABAC + ABE flow for testing .. 38

Figure 12: ABAC + SSE flow for testing .. 38

Figure 13: ABAC + FE flow for testing .. 39

Tables

Table 1: Status Change History .. 5

Table 2: Deliverable Change HistoryGlossary .. 5

Table 3: Glossary .. 6

Table 4: Services, Components and Mechanisms of ASCLEPIOS 12

Table 5: Details of the ABE-CS Interface .. 18

Table 6: Details of the SEE-CS Interface .. 19

Table 7: Details of the FE-CS Interface .. 19

Table 8: Details of the PEP-ENF Interface ... 20

Table 9: Details of the EMNET-COORD Interface .. 20

Table 10: Details of the FE-EMNET Interface ... 21

Table 11: Details of the CEAA-LOG Interface .. 21

Table 12: Details of the CEAA-IND Interface .. 21

Table 13: Details of the CEEA-REST Interface .. 22

Table 14: Details of the APAM-LOG Interface .. 23

Table 15: Details of APAM-REST Interface .. 23

Table 16: Details of the CASM-REST Interface .. 24

Table 17: Details of the ABAC-REST Interface .. 24

Table 18: Details of the ABE-REST Interface ... 25

Table 19: Details of the ABE-PLC Interface .. 25

Table 20: Details of the AMPL-FILE Interface .. 26

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 4 of 44

Table 21: Details of the AMPLE-PE Interface ... 26

Table 22: Details of the PEP-ENF Interface ... 27

Table 23 – Unit Test documentation example .. 35

Table 24 – Identified and Planned Integration Tests .. 36

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 5 of 44

Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Giannis Ledakis 12/06/2020 Giannis Ledakis

Reviewed: Gabriele Pierantoni 19/06/2020 Dr. Gabriele Pierantoni

Approved: Tamas Kiss 23/06/2020 Tamas Kiss

Table 1: Status Change History

Version Date Pages Author Modification

V0.1 09/04/2020 7
Giannis Ledakis
(UBI) TOC and initial content

V0.1 24/04/2020 23

Giannis
Ledakis,
Panagiotis
Parthenis (UBI) Section 2 and 3 first content

V0.2 06/05/2020 33

Panagiotis
Gouvas,
Giannis Ledakis
(UBI), Antonis
Michalas (TUT) First release with all sections in place

V0.3 14/05/2020 36 All partners
Defining the interfaces and complex
flows

V0.4 21/05/2020 38 All partners
Updates on interfaces and UML
schema, components description

V0.5 28/05/2020 41
Giannis Ledakis
(UBI)

Section 2 and 3 updates and
refactoring

V0.6 03/06/2020 41
Giannis Ledakis
(UBI)

Last version of interfaces to be
checked by partners

V0.7 09/06/2020 43

Giannis
Ledakis,
Konstantinos
Theodosiou
(UBI)

Added Complex testing flows
sequence diagrams, and defined
testing process

V0.8 17/06/2020 43
Giannis Ledakis
(UBI) Ready for review

V0.9 19/06/2020 43

Gabriele
Pierantoni
(UOW) Review Comments

V1.0 23/06/2020 46
Giannis Ledakis
(UBI) Final for submission

Table 2: Deliverable Change History

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 6 of 44

Glossary

AAPEM ABAC and ABE Policy Enforcement Mechanism

ABAC Attribute Based Access Control

ΑΒΕ Attribute Based Encryption

APAM ASLEPIOS Privacy Analytics Module

API Application Programming Interface

CA Certificate Authority or Certification Authority

CEEA
ASCLEPIOS Cybersecurity, Encryption and Access
Analytics for Healthcare Providers

CI Continuous Integration

CP-ABE Ciphertext-Policy Attribute-Based Encryption

CSP Cloud Service Provider

EU European Union

FE Functional Encryption

ITEE
Isolated Trusted Execution Environment

PM Person Month

STEP Systematic Test and Evaluation Process

SSE Symmetric Searchable Encryption

TEEPD Trusted Execution Environment Platform Deployer

UML Unified Modelling Language

WSGI Web Server Gateway Interface

XACML eXtensible Access Control Markup Language

Table 3: Glossary

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 7 of 44

Executive Summary

This deliverable provides the documentation of the technical architecture for the
ASCLEPIOS platform and the definition of the integration points among the framework's
mechanisms. Also, it contains the integration plan to guide the creation of the ASCLEPIOS
framework and prepare the deployment of the whole platform in the scope of WP6. The
testing and evaluation plan to verify the proper functioning and performance of the
integrated ASCLEPIOS platform provided, in order to guide both the integration and the
testing in the scope of the Work Package 5.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 8 of 44

1 Introduction

In this document, we provide an integrated analysis of the software resources developed in
WP2, WP3 and are the inputs for the implementation of the ASCLEPIOS platform. Based
upon the conceptual architecture of D1.2, and the advancements in the technical work-
packages since then, the technical architecture for the ASCLEPIOS platform and the specific
integration points are defined.

To further guide the integration, a set of tools has been used already (Git, Gitlab, KeyCloak,
Docker), while the integration plan to be followed has been prepared. Based on the
integration plan, this document provided the initial testing plan that verifies the proper
functioning of the integrated ASCLEPIOS platform, based on STEP methodology.

1.1 Objectives

The primary goal of this deliverable is to provide the integrated architecture description along
with the integration and test plan that will guide the integration of ASCLEPIOS framework.

1.2 Relationship to ASCLEPIOS Deliverables

This deliverable is utilizing the information provided in the deliverable D1.2[1], but also the
deliverables of WP2 and WP3. D5.1 provides the integration and testing plan for the
ASCLEPIOS framework; therefore, it will be the basis for WP5 tasks regarding integration
and testing, that will be reported in D5.2 and D5.3.

1.3 Organization

The rest of the document is organized as follows: In section 2, we present the technical
architecture of ASCLEPIOS framework, by describing the components and their interfaces.
In section 3, we provide additional information regarding the work to be performed and the
plan for delivering the two platform releases. In section 4, we elaborate on the testing and
evaluation of the ASCLEPIOS framework. Finally, section 5 provides a wrap-up and
concludes the document.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 9 of 44

2 ASCLEPIOS Integrated Framework Architecture

The ASCLEPIOS Integrated Framework encapsulates all the components needed for the
creation of the main asset of ASCLEPIOS and allows the context-aware, attribute-based
access and sharing of encrypted data. This ambitious goal will be achieved through different
encryptions techniques (ABE, SSE, FE). This part is covered by the components in WP2 and
WP3, while WP4 and WP6 outcomes, and will allow the proper deployment of the
ASCLEPIOS Integrated Platform over secure and trusted cloud resources for the needs of
the use cases covered by the ASCLEPIOS project.

2.1 Methodology

In this section, we introduce the methodology that has been used to generate the technical
architecture of ASCLEPIOS. In general, several approaches were used to complete the
definition of the architecture as it is provided in this document. Basically, relevant information
was collected by interacting with other technical WPs in the project (mainly WP2, WP3 and
WP4. All this information was incorporated in the conceptual architecture of ASCLEPIOS in
D1.2, and we further elaborated for the creation of the technical architecture in the scope of
WP5.

The technical architecture defines the technologies that are used to implement and support a
solution that fulfils the information and data architecture requirements [2], and the same time
it details the components and the communication between them.

2.2 The ASCLEPIOS Framework architecture

At D1.2, the high-level overview of ASCLEPIOS architecture was described, as illustrated in
Figure 1.

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

Figure 1: ASCLEPIOS overall architecture (source D1.2)

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 11 of 44

The whole ASCLEPIOS platform consists of the following eight discrete layers:
1. Trusted Cloud Provider,
2. Crypto Layer,
3. Analytics Layer,
4. Policy Enforcement Layer,
5. Registration Authority,
6. Users,
7. Attestation Layer,
8. Revocation Layer.

These layers represent the primary logical separation of the overall ASCLEPIOS platform.
However, in this deliverable, we are focusing on the actual software resources (e.g.
mechanisms, modules, components, services) that constitute the ASCLEPIOS framework
and their interactions.

The first step is to identify the software resources of the ASCLEPIOS framework. Based on
the architecture of D1.2, the advancements in the technical work packages WP2-WP4 we
performed aggregation exercises in both WP5 and WP7. Initially, each partner was
requested to define the components developing based on the work performed in the work
packages. Based on the actual requirements collected in WP1, we were able to describe
what type of software resource shall be created (e.g. a service, a backend only service, a
library or an agent) and what kind of functionality it shall offer, as shown in Figure 2.

Figure 2: Early identifying of ASCLEPIOS components and their connections

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 12 of 44

Based on this work, the following list of software components and mechanisms have been
collected.

• ASCLEPIOS Models and PoLicies Editors (AMPLE)

• ASCLEPIOS ABAC and ABE Policy Enforcement Mechanisms (AAPEM)

• Attribute-Based Encryption (ABE) server and client

• Symmetric Searchable Encryption (SSE) server and client

• Functional Encryption (FE) Analytics Server and Client

• ASCLEPIOS Privacy Analytics Module (APAM)

• Privacy-preserving distributed statistical computation (Emnet)

• Cybersecurity, Encryption and Analytics on CSP operations for Healthcare Providers
(CEAA)

• Trusted Authority

The mapping of the aforementioned components to the tasks Work Packages are presented
in Table 4.

Software resource Relevant Task(s)

SSE Server / Client T2.1

ABE server / Client T2.2 / T3.5

FE Server / Client T2.3

CEAA T2.4

EMNET T2.5

APAM T2.6

Model Editor part of AMPLE T3.1

AMPLE T3.2, T3.1, T3.3

Policy Interpreter of AMPLE T3.3

AAPEM T3.4

Trusted Authority T2.1/ T2.2 / T2.3

Table 4: Services, Components and Mechanisms of ASCLEPIOS

Finally, it has to be stated that some of these components are combined to “assets” that the
ASCLEPIOS consortium can exploit, as defined in deliverable D7.4[3].

2.2.1 Description of ASCLEPIOS components
Technical description of components is provided in the following subsections, covering their
functionality and role in the overall platform and also providing implementation details. A
more detailed description of the components is provided in the corresponding deliverables of
WP2 and WP3.

2.2.1.1 ABE Service/Client

The ASCLEPIOS ABE Server and Client provide the implementation of the asymmetric
encryption scheme that allows users with different keys to decrypt the same ciphertext. More
precisely, in a CP-ABE scheme, a user can encrypt data based on a policy. In addition to
that, each user gets a unique private key that also contains a list of personal attributes. By
acquiring this private key, the user can decrypt the generated ciphertext if and only if the
attributes that are attached to the key satisfy the policy that is bound to the underlying
ciphertext. In ASCLEPIOS, CP-ABE will play an essential role in storing and managing the
symmetric keys that will be generated by the users and will be used for the encryption of
their medical records with an SSE scheme.

More details about ABE Server and Client can be found in D2.2 [4].

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 13 of 44

2.2.1.2 SSE Server/Client

The Symmetric Searchable Encryption (SSE) schemes can be utilized by the ASCLEPIOS
demonstrators to achieve data sharing feature. The SSE scheme implementation offers a)
a Server-side part of the SSE scheme (SSE Server) which is responsible for storing
encrypted, sensitive data in MySQL1 database on ASCLEPIOS. The SEE Server provides a
RESTful API that is used by b) SSE Client. SSE Client is a JavaScript program running on
the client-side, and implementing the required SSE functionality based on a JSON object
that is given as input.

More details about ASCLEPIOS SSE can be found in deliverable D2.1[5].

2.2.1.2.1 Trusted Authority

The Trusted Authority component has been implemented for storing keys and metadata,
which are needed for uploading/ searching data. The trusted authority, however, will be used
as part of the general integration with other encryption schemes implemented in
ASCLEPIOS (ABE and FE). It is implemented using Python, Django framework2 and
Gunicorn3 Web Server Gateway Interface (WSGI) HTTP server.
More information for Trusted Authority can be found in the GitLab repository of SSE[11].

2.2.1.3 FE Server/Client

The ASCLEPIOS FE Analytics provides a set of services that can be used by healthcare
providers to perform statistical computations over encrypted numeric data. The component
has a server-client architecture. The client is responsible for the data encryption actions that
happen locally on the premises of the users who provide their data. The server handles the
key generation and distribution process, as well as the computation of the unencrypted result
of the function that is applied over the encrypted data.

The encryption, decryption and key generation functionalities of the FE Analytics are
implemented mainly in C++, although C is also used in some cases (depending on the FE
scheme used). Flask4, a lightweight WSGI web application framework, is used to implement
the RESTful API through which the FE Analytics services can be invoked. A Trusted
Authority is implemented to handle the key generation process using Intel SGX, but in the
integrated platform, we consider the usage of a joint Trusted Authority for all components.

More details about ASCLEPIOS FE Analytics can be found in deliverable D2.3[6].

2.2.1.4 EMNET

Emnet is a distributed system for running statistical algorithms on confidential data divided
among two or more different healthcare institutions where an algorithm runs on the
combined data of the parties’ databases without allowing any party to view the private data
of a healthcare institution. The statistics generated from the combined data for a group of
healthcare institutions are revealed, which are not sensitive information. Emnet supports
statistical computations on both encrypted and unencrypted data distributed across
healthcare institutions.

Emnet is implemented using Akka5, Jackson6, Django, Django Rest Framework and Apache
Kafka7, and will utilize the SSE scheme and FE analytics for computing on encrypted data.

1 https://www.mysql.com/
2 https://www.djangoproject.com/
3 https://gunicorn.org/
4 https://pypi.org/project/Flask/
5 https://akka.io/
6 https://github.com/FasterXML/jackson
7 https://kafka.apache.org/

https://www.mysql.com/
https://www.djangoproject.com/
https://gunicorn.org/
https://pypi.org/project/Flask/
https://akka.io/
https://github.com/FasterXML/jackson
https://kafka.apache.org/

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 14 of 44

More details about Emnet will be provided in deliverable D2.4.

2.2.1.5 CEAA

The ASCLEPIOS Cybersecurity, Encryption and Access Analytics for Healthcare Providers
(CEAA) component is responsible for delivering insights about data access patterns that
emerge from the usage of CSP operations by healthcare providers who leverage new data
encryption, decryption and fine-grained access control mechanisms, as the ones offered by
the ASCLEPIOS framework. In order to provide its functionalities, CEAA monitors the logs
created by these services and processes them to offer a better understanding regarding
encryption and decryption activities, data access patterns, normal and abnormal behaviours,
cyber threats and security incidents.

CEAA is implemented using Python and leverages the following open source technologies:
Filebeat8 (to monitor and ship the logs), Elasticsearch9 for indexing and querying, Kibana10
for the interactive visualizations.

More details about ASCLEPIOS CEAA can be found in deliverable D2.3[6].

2.2.1.6 APAM

The ASCLEPIOS Privacy Analytics Module, resulting from Task 2.6, is a web-based
application that offers insights for data subjects about the usage of their data through
ASCLEPIOS services that are provided to Healthcare Providers through a CSP.

This module collects all data access related logs for the various deployed services and
monitors performed requests and corresponding responses. Transparency enhancing tools
are defined based on these logs as a means to reveal the mentioned insights in a user-
friendly fashion through an interactive interface.

More details about APAM will be provided in deliverable D2.4.

2.2.1.7 AMPLE

The purpose of AMPLE is to provide all necessary design-time tools for creating, maintaining
and verifying access control policies of the ASCLEPIOS platform. AMPLE provides two
editors for developing the corresponding ABAC and ABE policies (ABAC Policies Editor
and ABE Policies Editor). Furthermore, it provides a Policy Validation component, where
policy developers can define rules for checking policy correctness, completeness or for
security awareness.

Moreover, AMPLE provides a configurable, common vocabulary for application-related
attributes, which can be further tailored to each application’s needs. This is crucial since both
access control methods (ABAC and ABE) relay on the use of attributes. This common
vocabulary is called Context-Aware Security Model (CASM) and is stored in AMPLE’s
internal repository. Finally, it offers an editor for displaying and modifying CASM. The models
created using AMPLE will serve the development of the Data Access Policies Interpretation
and will be exploited by the AAPEM (ABAC Enforcement mechanism as well as by the ABE
service).

Last, AMPLE includes a Policy Interpreter that translate ABAC policies to XACML format
and ABE policies to appropriate XML format which are appropriate for implementation (i.e.
input to AAPEM)

Lombok Java Library11, Apache Jena12 and Fuseki13 have been used for the implementation
of this component. More information for AMPLE can be found in deliverable D3.2[8].

8 https://www.elastic.co/beats/filebeat
9 https://www.elastic.co/elastic-stack
10 https://www.elastic.co/kibana

https://www.elastic.co/beats/filebeat
https://www.elastic.co/elastic-stack
https://www.elastic.co/kibana

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 15 of 44

2.2.1.8 AAPEM

The ABAC and ABE Policy Enforcement Mechanism (AAPEM) is responsible for the
enforcement of ABAC policies for authorization based on the contextual information and also
performing encryption and decryption using the ABE policies. AAPEM has been
implemented as a Spring Boot14 application that uses WSO2 Balana15.

More information for AAPEM can be found in deliverable D3.3[9].

2.2.2 Component View of ASCLEPIOS
For the development of the integrated platform, we had to identify the interactions between
the components and here provide more details about the actual components and interfaces,
using a collaborative online spreadsheet. Based on this information, we present the
component view of ASCLEPIOS framework. For readability purposes, we have split the UML
schema into two parts and added mentions of the specific interfaces that are presented
below in detail. In Figure 3 we present the two analytics components of ASCLEPIOS; all the
other components of the framework are providing logs to them, but this is not depicted in the
figures to avoid unnecessary links that would make the figure unreadable.

Figure 3: ASCLEPIOS technical architecture – development view (part 1/2)

11 https://projectlombok.org/
12 https://jena.apache.org/
13 https://jena.apache.org/documentation/fuseki2/
14 https://spring.io/projects/spring-boot
15 https://github.com/wso2/balana

CEEA-IND

CEEA-REST

CEEA-LOG

APAM-REST

APAM-LOG

https://projectlombok.org/
https://jena.apache.org/
https://jena.apache.org/documentation/fuseki2/
https://spring.io/projects/spring-boot
https://github.com/wso2/balana

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 16 of 44

Figure 4: ASCLEPIOS technical architecture – development view (part 2/2)

The source of this figure and a link to view UML graph online is provided in Appendix I -
Asclepios Technical Architecture UML Schema.
The following interfaces have been identified and presented in Figure 4:

• ABE-CS: ABE Server Interface for facilitating Client-Server communication.

• SSE-CS: SSE Server Interface for facilitating Client-Server communication.

• FE-CS: FE Server Interface for facilitating Client-Server communication.

• TA-API: Interface of the Trusted Authority component built initially for SSE usage.

• EMNET-COORD: Interface exposed by the EMNET Coordinator.

• FE-EMNET: Interface of FE used by EMNET Workers.

• CEAA-LOG: Syslog interface of CEAA for collecting logs.

• CEAA-IND: Internal interface of CEEA that provides the logs to the CEAA Indexing
and Query Engine and also to APAM.

ABE-REST

ABE-PLC

AMPLE-FILE

FE-CS

CASM-REST

PEP-ENF

TA-API

SSE-CS

AMPLE-PE

FE-EMNET

ABAC-REST

EMNET-COORD

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 17 of 44

• CEAA-REST: Interface of CEAA Analytics Engine used by the web interface of
CEEA.

• APAM-LOG: Syslog interface of APAM for collecting logs.

• APAM-REST: Interface of APAM Analytics Engine used by the web interface.

• CASM-REST: Interface of the Model editor that is used by the AMPLE UI.

• ABAC-REST: Interface of the ABAC policies editor that is used by the AMPLE UI.

• ABE-REST: Interface of the ABE policies editor that is used by the AMPLE UI.

• ABE-PLC: Interface of the ABE policies editor that is used ABE service.

• AMPL-FILE: Interface for the exchange of the policy file.

• AMPLE-PE: Connecting AMPLE policy Interpreter to the AAPEM.

• PEP-ENF: Communication between Policy Enforcement Point and the Policy
Enforcement engine.

These interfaces are the backbone of the integration process and are described with more
details in the following.

2.2.3 Description of ASCLEPIOS interfaces
In this section, we present with more details the information gathered about the interfaces
required for the implementation of the integrated platform by defining the communication
between the components developed in WP2 and WP4.
The following subsections describe these interfaces by detailing the following information:

• Description: describes the purpose of the interface.

• Component providing the interface: describes the component that is offering the
described interface.

• Consumer components: describes the components that are using the described
interface.

• Type of interface: REST, XML-RPC, GUI, Java API etc.

• Input data: describes data that is required by the described interface (e.g., Methods
or Endpoints, values and parameters of the interface)

• Output data: describes the data that is returned by the described interface (e.g., the
returned data of methods or REST call)

• Constraints: Any other constraints (e.g. specific prerequisites, data-types, encoding,
transfer rates) which apply to the interface.

• State: Synchronous/Asynchronous, Stream

• Responsibilities: Partner that is responsible for the implementation and usage of
the interface

2.2.3.1 ABE-CS Interface

Name: ABE-CS

Description Interface provided by ABE server used by a) the ABE Client and b) by the
AMPLE Policies Interpreter to provide the ABE encryption policies

Component providing
the interface

ABE server

Consumer components
or External Entities

ABE Client, AMPLE Policies Interpreter

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

ABE setup N/A pub_key,
master_key

ABE keygen pub_key,
master_key,
attributes

private_key

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 18 of 44

ABE encrypt pub_key,
file, policies

Encrypted
file

ABE decrypt Encrypted
file,
attributes,
public key,
private_key

file

Constraints -

Responsibilities TUT, UBITECH

Table 5: Details of the ABE-CS Interface

2.2.3.2 SSE-CS Interface

Name: SSE-CS

Description The interface of SEE Server that covers APIs relevant to uploading, search,
and update data. Client part is implemented in JavaScript in order to be used by
the applications of demonstrators. It includes:

• API that allows a user to encrypt a Json object, then send its ciphertext
to SSE server.

• API that searches for encrypted data in SSE server by providing a
search content. SSE server will return encrypted files which contain the
searched keyword.

• API that allows a user to update the whole or part of a Json object
which is identified by its file_id.

• API that allows a user to delete a Json object which is identified by its
file_id.

• API that allows a user to upload a shared key to Trusted Authority.

Component
providing the
interface

SEE Server

Consumer
components or
External Entities

SEE CLIENT, EMNET Worker

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters of the
method

Return Values
of the method

GET /uploadData (data,file_id,pwd1,pwd2) True if
uploaded
successfully
False if
failed to
upload data

GET /search (data,pwd1,pwd2) Json object
contains the
number of
found
objects, and
their
content.
{count:
<number of
found
objects>,
objects:
<Array of
Json

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 19 of 44

objects,
which
contain
decrypted
data>}

 GET /updateData (data,file_id,pwd1,pwd2) True if
updated
successfully
False if
failed to
update

 GET /deleteData (file_id,pwd1,pwd2) True if
deleted
successfully
False if the
provided
file_id does
not exist

 GET /uploadKeyG (pwd1) True

Constraints N/A

Responsibilities UOW

Table 6: Details of the SEE-CS Interface

For more information on SEE interfaces can be found in the dedicated page in the project’s
GitLab page [11].

2.2.3.3 FE-CS Interface

Name: FE-CS

Description This interface allows the upload of encrypted data to be used in the FE
analytics

Component
providing the
interface

FE Analytics Server

Consumer
components or
External Entities

FE Analytics Client

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

POST /[function]/data encrypted
data

Constraints -

Responsibilities Suite5

Table 7: Details of the FE-CS Interface

2.2.3.4 TA-API Interface

Name: PEP-ENF

Description The “interface” of Trusted Authority. During early development phase
components used own implementations of Trusted Authority (for SSE, FE
and ABE). We consider at this stage the implementation of TA provided by
UOW as most complete and provide its API in this table.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 20 of 44

Component providing
the interface

Trusted Authority

Consumer components
or External Entities

ABE Server/Client, SSE Server/Client, FE Server/Client

Type of Interface REST API

API description Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

GET /api/v1/fileno/ TBD TBD

 GET /api/v1/longrequest/ TBD TBD

 GET /api/v1/search/ TBD TBD

 GET /api/v1/searchno/ TBD TBD

Constraints -

Responsibilities UOW

Table 8: Details of the PEP-ENF Interface

2.2.3.5 EMNET-COORD Interface

Name: EMNET-COORD

Description Interface exposed by the EMNET Coordinator and used for the registration of
EMNET Workers

Component
providing the
interface

EMNET Coordinator

Consumer
components or
External Entities

EMNET Worker

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters of the
method

Return
Values of
the method

GET /register WorkerID Registration
Result

GET /health WorkerID, Status Status 200

POST /report WorkerID,
Results

Status 200

Constraints -

Responsibilities NSE

Table 9: Details of the EMNET-COORD Interface

2.2.3.6 FE-EMNET Interface

Name: FE-EMNET

Description This interface handles the requests to perform FE functions over data

Component
providing the
interface

FE Analytics Server

Consumer
components or

FE Analytics Client, EMNET Worker

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 21 of 44

External Entities

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters of
the method

Return Values
of the method

GET /[function] identifiers of
data on which
to apply the
function

{“value”:[result
(numeric)]}

Constraints -

Responsibilities Suite5

Table 10: Details of the FE-EMNET Interface

2.2.3.7 CEAA-LOG Interface

Name: CEAA-LOG

Description This interface handles the collection of the logs generated by the ASCLEPIOS
services

Component
providing the
interface

CEEA Log Collector

Consumer
components or
External Entities

CEEA

Type of Interface Syslog

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

One method constantly running to monitor and
collect logs based on the filebeat.yml configuration
file

paths to get
the logs
from

log
contents

Constraints -

Responsibilities Suite5

Table 11: Details of the CEAA-LOG Interface

2.2.3.8 CEAA-IND Interface

Name: CEAA-IND

Description This interface is used to ship the logs to the CEAA Indexing and Query Engine

Component
providing the
interface

CEEA Log Collector

Consumer
components or
External Entities

CEEA Indexing and Query Engine, APAM

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

Filebeat sends the transactions directly to
Elasticsearch by using the Elasticsearch HTTP API

Indexing
and Query
Engine IP
and port

N/A

Constraints -

Responsibilities Suite5

Table 12: Details of the CEAA-IND Interface

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 22 of 44

2.2.3.9 CEAA-REST Interface

Name: CEAA-REST

Description This interface corresponds to the ElasticSearch Search API and enables the
execution of queries over the indexed data using the Elasticsearch Query DSL,
and also the API for storing results back in ElasticSearch(either per entry or
with batches).

Component
providing the
interface

CEEA Indexing and Query Engine

Consumer
components or
External Entities

CEEA Web Interface, CEAA Analytics Engine, APAM

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

POST /[index name]/_search The query
is provided
in JSON
format as
payload
body of the
request

Query
results in
JSON
format

POST /<index>/_update/<_id The query
is provided
in JSON
format as
payload
body of the
request

Query
results in
JSON
format

POST /<index>/_bulk The query
is provided
in JSON
format as
payload
body of the
request

Query
results in
JSON
format

Constraints -

Responsibilities Suite5

Table 13: Details of the CEEA-REST Interface

2.2.3.10 APAM-LOG Interface

Name: APAM-LOG

Description This interface handles the collection of the logs generated by the ASCLEPIOS
services

Component
providing the
interface

APAM Log Collector

Consumer
components or
External Entities

APAM

Type of Interface Syslog / REST API

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 23 of 44

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

REST interface to receive the logs on APAM paths to get
the logs
from

log
contents

Constraints -

Responsibilities AMC

Table 14: Details of the APAM-LOG Interface

2.2.3.11 APAM-REST Interface

Name: APAM-REST

Description Internal Interface that is used by the web interface of APAM

Component
providing the
interface

APAM Analytics Engine

Consumer
components or
External Entities

APAM Web interface

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return
Values of
the method

Component under implementation, so this internal
list of methods to be reported in D2.4

N/A N/A

Constraints -

Responsibilities AMC

Table 15: Details of APAM-REST Interface

2.2.3.12 CASM-REST Interface

Name: CASM-REST

Description Interface of the Model editor that is used by the AMPLE UI

Component
providing the
interface

CASM

Consumer
components or
External Entities

AMPLE UI

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return Values of
the method

GET /opt/attributes/

{attr_id} or
“all”

<SchemaObject>
or
<SchemaObject>
array

GET /opt/attributes/{attr_id}/subattributes {attr_id} <SchemaObjec
t> array

GET /opt/attributes/search/by-name/{term}

{term} <SchemaObjec
t> array

GET/opt/attributes/search/properties/by-
attribute/{attr_id}

{attr_id} <SchemaObjec
t> array

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 24 of 44

PUT /opt/attributes/

application/
json
SchemaObj
ect

String message

POST /opt/attributes/{attr_id} {attr_id} String message

DELETE /opt/attributes/{attr_id} {attr_id} String message

DELETE /opt/attributes/{attr_id}/all {attr_id} String message

Constraints -

Responsibilities ICCS

Table 16: Details of the CASM-REST Interface

2.2.3.13 ABAC-REST Interface

Name: ABAC-REST

Description Interface of the ABAC policies editor that is used by the AMPLE UI

Component
providing the
interface

ABAC Policies Editor

Consumer
components or
External Entities

AMPLE UI

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters of the
method

Return Values
of the method

GET /opt/abac-policies/

{policy_id} or all <AbacPolicy>
or
<AbacPolicy>
array

PUT /opt/abac-policies/

<AbacPolicy> String
message

POST /opt/abac-policies/{policy_id}

{policy_id},
<AbacPolicy>

String
message

DELETE /opt/abac-policies/{policy_id} {policy_id} String
message

DELETE /opt/abac-policies/{policy_id}/all {policy_id} String
message

GET /opt/abac-policies/{policy_id}/rules {policy_id} <AbacRule>
array

GET /opt/abac-policies/rule/{rule_id}

{rule_id} <AbacRule>
array

PUT /opt/abac-policies/rule/ <AbacRule> String
message

POST /opt/abac-policies/rule/{rule_id} {policy_id},
<AbacRule>

String
message

DELETE /opt/abac-policies/rule/{rule_id} policy_id} String
message

POST /opt/abac-policies/rule/{rule_id} {rule_id},
<AbacRule>

String
message

DELETE /opt/abac-policies/rule/{rule_id}

{rule_id} String
message

Constraints N/A

Responsibilities ICCS

Table 17: Details of the ABAC-REST Interface

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 25 of 44

2.2.3.14 ABE-REST Interface

Name: ABE-REST

Description Interface of the ABE policies editor that is used by the AMPLE UI

Component
providing the
interface

ABE Policies Editor

Consumer
components or
External Entities

AMPLE UI

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters of the
method

Return
Values of the
method

GET /opt/abe-policies/

{policy_id} or “all” <AbePolicy>
or
<AbePolicy>
array

PUT /opt/abe-policies/

<AbePolicy> String
Message

POST /opt/abe-policies/{policy_id}

{policy_id},
<AbePolicy>

String
Message

DELETE /opt/abe-policies/{policy_id} {policy_id} String
Message

GET /opt/interpreter/abe-policy-to-
text/{policy_id}

{policy_id} String
Message

Constraints -

Responsibilities ICCS

Table 18: Details of the ABE-REST Interface

2.2.3.15 ABE-PLC Interface

Name: ABE-PLC

Description Interface of the ABE policies editor that is used ABE service

Component
providing the
interface

AMPLE Policy Interpreter

Consumer
components or
External Entities

ABE service

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the
interface

Parameters of the
method

Return Values of the method

GET /opt/interpreter/abe-
policy-to-text/{policy_id}

{policy_id} Attributes for ABE, i.e.:
(SecurityProtocolCertificate
='TLS' and
(NetworkLocation_hasSubn
et = '10.10.1.0/24' or
PhysicalLocation_address =
'Building-1'))

Constraints -

Responsibilities ICCS

Table 19: Details of the ABE-PLC Interface

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 26 of 44

2.2.3.16 AMPL-FILE Interface

Name: AMPL-FILE

Description Interface for the exchange of the policy file and enforcement of policy

Component
providing the
interface

AAPEM

Consumer
components or
External Entities

AMPLE Policy Interpreter

Type of Interface Filesystem, SOAP

Input data / Output
Data

Methods or endpoints of the interface Parameters
of the
method

Return Values of the
method

/addPolicy policy
version
policyId

addPolicyResponse16

Constraints File shall be validated and provided in XACML by the policy interpreter

Responsibilities UBITECH

Table 20: Details of the AMPL-FILE Interface

2.2.3.17 AMPLE-PE Interface

Name: AMPLE-PE
Description Interface responsible for providing the file from AMPLE policy Interpreter to

AAPEM

Component
providing the
interface

AMPLE Policy Interpreter

Consumer
components or
External Entities

AAPEM

Type of Interface REST

Input data / Output
Data

Methods or endpoints of the interface Parameters of the
method

Return Values of
the method

GET /opt/interpreter/abac-policy-to
xacml/

Policy_id XACML Policy (
in
text/xacml+xml/
format)

Constraints -

Responsibilities ICCS/UBITECH

Table 21: Details of the AMPLE-PE Interface

2.2.3.18 PEP-ENF Interface

Name: PEP-ENF

Description The “interface” for the creation of the access control point of facilitating the
ABAC logic.

Component providing
the interface

AAPEM

16 https://is.docs.wso2.com/en/5.9.0/develop/entitlement-with-apis/#policy-administration-api

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 27 of 44

Consumer
components or
External Entities

Access Control Point of Application (PEP)

Type of Interface Java API, or REST API

API description Methods or endpoints of the interface Parameters of
the method

Return Values
of the method

pdp.evaluate (or POST /pdp for REST) XACMLRequest AbstractResult
(Permit or
Deny)

Constraints JVM based application shall be used for the using the Java APIs

Responsibilities UBITECH

Table 22: Details of the PEP-ENF Interface

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 28 of 44

3 Technical Integration and Planning

Based on the identified interfaces of the components, the integration of the framework shall
take place. This means that a) the owners (or the responsible partners) of the components
providing the interface shall deploy their components and make the interface accessible to
the consumer components, and b) that owners (or the responsible partners) of the consumer
interfaces will adapt their components accordingly in order to facilitate the usage of the
interfaces. An integration plan has been prepared to guide the integration of the discrete
framework's mechanisms and software components, as presented in section 3.3.

In addition to the integration plan, we present additional tools that are going for the
integration (at section 3.1) and for the deployment (see section 3.2) of the framework.

3.1 Additional Modules and Supporting Tools

3.1.1 Code Level Integration
In the cases that multiple partners need to work on the same components, code-level
integration is supported with a code repository that is available for all partners that need to
work together or to store their component’s code safety. The source code repositories are
available at https://gitlab.com/asclepios-project, while a snapshot of the project group is
provided in Figure 5.

Figure 5: ASCLEPIOS project group in GitLab

Furthermore, we suggest using a Continuous Integration (CI) scheme based on Gitlab. CI
scheme will be documented further in deliverables D5.2 and D5.3

https://gitlab.com/asclepios-project

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 29 of 44

3.1.2 Teams Communication – Slack
For the easier communication during development and integration phase, we created a
dedicated slack17 group where technical partners and use case partners have joined.

Figure 6: ASCLEPIOS Slack Workspace

In the same time, weekly calls have been performed for the technical progress of
ASCLEPIOS. As most work packages are now finished, we plan to keep the Regular Calls of
ASCLEPIOS with focus on integration.

3.1.3 Keycloak as Authentication Proxy
For the proper set of ASCLEPIOS platform, an Authentication server and a Trusted Authority
must be present. Based on the study and experiments that were also made in the scope of
WP3, we consider Keycloak18 to be used as an Authentication Server. Keycloak is not an
authorization server, but it is a powerful authentication proxy for micro-services and legacy
systems. As such, it abstracts the functionality of identity extraction and identity verification
for different systems and for different protocols. In parallel, it is able to map users and roles
from existing legacy systems in what it calls authentication realms.

Keycloak is able to centralize the login-process of various systems through the
implementation of many protocols such as oAuth2.0[13] and OpenIDConnect[14] (a.k.a.
OIDC), and therefore it can be used a) for secure service-to-service communication for the
services of ASCLEPIOS, b) for authentication of the users of the demonstrator and c) for
securely providing the attributes of the demonstrators' users when ABAC is enforced.

3.2 Deployment of ASCLEPIOS Platform

We consider that each component that is developed or updated shall be created as a docker
based container image. In comparison to a virtual machine that needs to include
infrastructure configuration and the whole OS, a container image is a lightweight, stand-
alone, executable package that includes everything needed to run a piece of software,
including the code, a runtime, libraries, environment variables, and config files. A container is
a runtime instance of an image—what the image becomes in memory when actually
executed. In comparison to a Virtual Machine (VM) that is completely isolated, a container is
partially isolated from the host environment, as it uses the kernel calls and commands of the
host OS, but accessing host files and ports is possible only if configured to do so.

17 https://slack.com/intl/en-gr/
18 https://www.keycloak.org/

https://slack.com/intl/en-gr/
https://www.keycloak.org/

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 30 of 44

For dockerizing an application, a Dockerfile19 is needed. The Dockerfile contains instruction
on how to construct the instance of an image (called container). The Dockerfile contains
directives like:

• defining a base image to be used (e.g. ubuntu 18.04). The developer can login and
use ASCLEPIOS registry order to re-use the images already created as base
images, by using the command (FROM registry.gitlab.com/asclepios-
project/framework/<image_name>:tag)

• adding local files to the file system of the container

• commands to be executed upon initialization of the container (e.g. packages to be
installed)

• Ports to be exposed

• Commands that launch the applications

3.2.1 ASCLEPIOS Docker Registry usage
A docker registry has been set for the purposes of ASCLEPIOS development using Gitlab.
Developers that want to push an image to the repository should first tag it with the repository
and then push it using the following commands.

$ docker login registry.gitlab.com
$ docker build -t registry.gitlab.com/asclepios -project/framework/<image_name>:<tag> .
$ docker push registry.gitlab.com/asclepios -project/framework/<image_name>:<tag>

where:

• image_name: the name of the image. Typically, this is the same as the local
image name.

• tag: Optional as parameter but need to properly support the continuous
integration workflow. It is used for creating versions of the same image. For
the first iteration version 0.1 will be used as tag for all images. If developer
does not specify the tag, the docker will automatically set the tag latest.

Similarly, an image can be pulled by executing:

$ docker pull registry.gitlab.com/asclepios-project/framework/<image_name>:<tag>

Optionally, dedicated registry per component can also be used.

3.2.2 MICADO and TEEPD (Trusted Execution Environment Platform Deployer)
Regarding the deployment of ASCLEPIOS, the resources deployed in the scope of WP6 will
be used, while we will also use the outcomes of WP4 regarding trusted execution. Isolated
Trusted Execution Environment (ITEE) provides advanced protection for Healthcare
applications. RISE developed TEEPD (Trusted Execution Environment Platform Deployer)
based on IETF standards for deploying and managing workloads in TEEs. RISE and UoW
implemented TEE using Software Guard Extensions (SGX). SGX allows defining private
regions of memory, called enclaves, whose contents are protected and unable to be either
read or saved by any process outside the enclave itself. SGX provides mechanisms to
manage workloads in an ITEE instance including actions to deploy and update, start and
stop the workload process, as well as clean up the environment once the workload is not
needed.

UoW developed the MiCADO framework20 (Microservices-based Cloud Application-level
Dynamic Orchestrator) in the H2020 COLA (Cloud Orchestration at the Level of Application)

19 https://www.docker.com/
20 https://micado-scale.eu/

https://www.docker.com/
https://micado-scale.eu/

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 31 of 44

project. MiCADO is a highly customizable multi-cloud orchestration and auto-scaling
framework for Docker containers and Virtual Machines orchestrated by Kubernetes.
UoW extended MiCADO to incorporate support for TEE.

Several ASCLEPIOS security services, such as the SSE Implementation and the Trusted
Authority (TA) can be deployed inside SGX environment to protect data.

3.3 Integration Planning

Following the aspects presented above, internal artefacts produced by the technical work
packages WP2 and WP3 will be continuously integrated, and WP4 advancements will allow
the deployment of the platform.

3.3.1 Development and Integration Iterations

Iteration #: 2020-06-01 to 2020-06-30 Iteration lead: Giannis L.
Prototype feature:

Expected partner contributions:
ICCS:
UBITECH:
UOW:
TUT:
AMC:
SUITE5:
NSE:
Result:

Working prototype feature description:
Presentables (what and how):.
Open questions: N/A
Open problems: N/A
Learnings/decisions: TBD

The Regular Calls of ASCLEPIOS with focus on integration will be used as checkpoints
through the usage of iterations.

Finally, It has to be stated that as some technical partners of WP2 are not participating in
WP5 or participating with a very small number of PMs. This could cause and issue by not
having those partners able to adapt their components for integration purposes, but we have
already identified this issue we have agreed on a scheme

3.3.2 Platform Releases
In the same time, we plan two major releases of the ASCLEPIOS integrated platform for
M21 and M27. The aim is to integrate the components into ASCLEPIOS platform and
instantiate it for each use cases.

The first major release of ASCLEPIOS will include the integration of the basic components
developed in the technical work packages. The goal is to present basic capabilities
integrated until M21. Then by M27, further enhancements or modifications will be provided in
the final release of the ASCLEPIOS platform. However, smaller iterations with changes in
the architectural design and the development will be used through the project duration.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 32 of 44

Based on the plan of having to two releases of ASCLEPIOS framework, the consortium had
to make decisions regarding the specific functionalities that will be supported on each
release, in order to coordinate the development, iteration and testing process.

To properly support this during development, we have created on the project GitLab
dedicated milestones in order to be able to plan and track the advancements on all
developed components and the integrated platform.

Figure 7: ASCLEPIOS Milestones as part of the development and integration plan

3.3.2.1 1st Platform Release

The first release of ASCLEPIOS is due on M21. The goal is to complete the first cycle of
integration. The actual deadline is dictated by the deliverable D5.2 that will document the
platform status and provide installation and usage instructions. As already stated, the first
release will focus on the integration of the basic components of the platform and will allow
testing and evaluation at the perspective of the use cases until the second release is
officially provided.

The following points shall be covered in the first release.

o Full integration and testing of flows for the creation and enforcement of policies for
ABAC, and ABE and ABAC Synergy

o The first integration of SSE
o The first integration of FE
o The first integration of analytics services (CEEA)
o Define with details the flows for ABAC/SSE Synergy and ABAC/FE Synergy

3.3.2.2 2nd Platform Release

The second platform release will be provided on M32. It will include the full implementation
of the components in order to allow full testing and evaluation at the perspective of the use
cases until M36.

The final release of the integrated platform will include:

o Full integration and testing of the flows for ABAC/SSE Synergy and ABAC/FE
Synergy

o Full integration of logs to the analytics services
o Full integration of Keycloak for service to service communication, and user

authentication
o User interface finalization

o Containerization of ASCLEPIOS services for deployment with WP6 toolkit

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 33 of 44

4 Testing and Technical Evaluation Plan

This section presents the platform testing as part of the overall evaluation strategy in the

context of ASCLEPIOS. It has to be mentioned that the technical testing and evaluation will

be based on STEP (Systematic Test and Evaluation Process), a well-established industry

methodology for testing and evaluation activities in information technology and software

projects. The testing will be performed to verify the proper functioning and performance of

the integrated ASCLEPIOS platform, in the scope of task 5.3, and the results will be reported

in deliverables D5.2 and D5.3.

STEP assumes that the total testing job is divided into levels during planning. A level

represents a particular testing environment (e.g., unit testing usually refers to the level

associated with program testing in a programmer's personal development library). Simple

projects, such as minor enhancements, may consist of just one or two levels of testing (e.g.,

unit and acceptance), while for complex projects, more levels might be needed(e.g., unit,

function, subsystem, system, acceptance testing, alpha, beta, etc.) [10].

Figure 8: Activity Timing at each level of test

STEP provides a model that can be used as a starting point in establishing a detailed test

plan, but it is intended to be tailored and revised, or extended to fit each particular test

situation.

The three major phases in STEP that are employed at every level include: planning the

strategy (selecting strategy and specifying levels and approach), acquiring the testware

(specifying detailed test objectives, designing and implementing test sets), and measuring

the behaviour (executing the tests and evaluating the software and the process). The phases

are further broken down into eight major activities, as shown in Figure 8.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 34 of 44

Figure 9: STEP Phases

STEP specifies when the testing activities and tasks are to be performed, as well as what

the tasks should be and their sequence, as shown in the figure above. The timing emphasis

is based on getting most of the test design work completed before the detailed design of the

software. The trigger for beginning the test design work is an external, functional, or black

box specification of the software component to be tested. For this reason, it is important to

plan early the tests to be performed.

In ASCLEPIOS, we define the following facets of testing:

• Unit testing that can be performed by the separate development teams when new

functionalities are developed.

• Integration testing performed by the development teams in order to test the smooth

co-operation between the various layers and components. The integration tests and

also any unit tests that will be created for the project validation will be continuously

executed based on continuous integration (CI) scheme

• Testing of a set of advanced scenarios based on demonstrators’ needs.

These testing facets are presented in the following sections.

4.1 Unit Testing

An important part of both the integration and the validation process is the execution of unit
tests. Unit tests are the tool to test the functional modules of software. A suitable unit test is
applied to the piece of code without any dependencies on other code parts. Therefore, the
developer of the particular layers will test their components by means of unit tests before
integrating them into the full application. In the case of ASCLEPIOS framework,
development is based on the development of standalone components but also on the
adaptation and integration of existing components. Therefore, unit testing at the lowest level
not a primordial part of the general testing methodology of ASCLEPIOS, as the main focus is
the integration testing.

Unit testing will be used as an additional mechanism of validating the developed code, as a
task that each component developer can use in order to verify proper functionality before the
integration of the component in ASCLEPIOS Framework. Usually, all unit-tests are executed
during the build-process, unless they are defined to be ignored (marked as @Ignored for
Java applications). This practically means that each release of a component has is
guaranteed regarding its stability and the same time allows developers to better control the
level of test coverage on their components.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 35 of 44

The exercise of creating unit tests is still in early stages and the documentation of Unit tests
will be provided with more details for all components in deliverable D5.3.
.

Table 23 – Unit Test documentation example

Unit Test Case Documentation Form

Unit Test Reference Code #UT1

Component AAPEM

Tester Junit

Short Description

This test case is responsible for testing policy enforcement.

Input Data

Output Data

Success response code

Apart from the tests that guarantee the functional correctness of the components, it is
important to make tests at the integration level for a complete testing and validation process.
This means that integration tests shall be created and used for all identified interfaces and to
some major platform functionalities. This can be done using unit testing on the methods that
are implementing the integration, in order to make them part of continuous integration and
continuous testing process.

4.2 Testing for the Integrated Platform

Integration testing is the phase in software testing in which individual software modules are
combined and tested as a group. Integration testing in ASCLEPIOS can also be seen as an
extension of unit testing. The main idea of integration testing is to start from two components
to test the interface between them. In some cases, more than two components can
participate in a common test. Eventually, this process will be expanded in order to test all the
integrated components of the platform.

The goal of integration testing is to identify problems that occur when components are
combined. By using a test plan that suggests the usage of unit tests before combining
components, the errors discovered when in integration tests are most probably related to the
interface between them. This method reduces the number of possibilities of errors to a far
simpler level of analysis.

In general, integration testing can be done in a variety of ways, but the following are three of
the most common strategies:

• The top-down approach of integration testing requires the highest-level modules to

be tested and integrated first. This allows high-level logic and data flow to be tested

early in the process, and it tends to minimize the need for drivers. However, the need

for stubs complicates test management, and low-level utilities are tested relatively

late in the development cycle. Another disadvantage of top-down integration testing

is its poor support for early release of limited functionality.

• The bottom-up approach requires the lowest-level units to be tested and integrated

first. These units are frequently referred to as utility modules. By using this approach,

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 36 of 44

utility modules are tested early in the development process, and the need for stubs is

minimized. The downside, however, is that the need for drivers complicates test

management and high-level logic and data flow are tested late. Like the top-down

approach, the bottom-up approach also provides poor support for early release of

limited functionality.

• The third approach, sometimes referred to as the umbrella approach[12], requires

testing along with functional data and control-flow paths. First, the inputs for functions

are integrated into the bottom-up pattern discussed above. The outputs for each

function are then integrated in a top-down manner. The primary advantage of this

approach is the degree of support for the early release of limited functionality. It also

helps minimize the need for stubs and drivers. The potential weaknesses of this

approach are significant, however, in that it can be less systematic than the other two

approaches, leading to the need for more regression testing.

For the integration testing of ASCLEPIOS, we chose the last option (umbrella approach), as
it combines the best of both approaches. It allows all participating entities, to execute
simultaneously multiple testing in several components. In the next section, the basic
integration tests that have been identified and tested so far, are presented.

4.2.1 Integration Tests
As it is important for ASCLEPIOS to ensure the proper integration of the components, tests
that are based on functions that cover different components will be used. In these tests
methods from different components are combined in order to achieve the needed
functionality, so the focus is given to the combination of pieces that create a basic integrated
functionality.

Table 24 – Identified and Planned Integration Tests

Test
ID

Test Interface(s)
Tested

Components
Used

Short Description

IT1 ABE basic test ABE-CS ABE Client,
ABE Server

Testing the ABE Client-
Server communication

IT2 SSE basic test SSE-CS SSE Client,
SSE Server

Testing the SSE Client-
Server communication

IT3 FE basic test FE-CS FE Client, FE
Server

Testing the FE Client-
Server communication

IT4 EMNET basic test EMNET-
COORD

EMNET
Coordinator,
EMNET
Workers

Testing the EMNET
Coordinator-Workers
communication

IT5 FE/EMNET test FE-EMNET EMNET
Workers, FE
Server

Testing the EMNET FE
Server communication

IT6 CEAA basic log test CEAA-LOG CEAA, all
components

Testing the logs Syslog
interface of CEAA for
collecting logs\

IT7 APAM- basic log test APAM-LOG APAM, all
components

Testing the proper log
collection throuh the
Syslog interface of APAM

IT8 APAM/CEEA test APAM-
CEEA

APAM, CEEA Testing the
communication between
APAM and CEEA

IT9 CASM editor test CASM-
REST

AMPLE UI,
CASM

Testing of AMPLE UI and
communication with

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 37 of 44

CASM

IT10 ABAC editor test ABAC-
REST

AMPLE UI,
ABAC policies
editor

Testing of AMPLE UI and
ABAC policies editor

IT11 ABE editor test ABE-REST AMPLE UI,
ABE policies
editor

Testing of AMPLE UI and
the ABE policies editor

IT12 Policy file exchange test AMPL-FILE AAPEM,
AMPLE Policy
Enforcer

Testing the proper
exchange of the policy file

IT13 Policy interpretation test AMPLE-PE AAPEM,
AMPLE Policy
Enforcer

Testing the AMPLE policy
Interpreter connectivity
with AAPEM

IT14 ABAC enforcement test PEP-ENF AAPEM Policy
Enforcement
Engine,
Access
Control Point

Testing the proper
Communication between
Policy Enforcement Point
and the Policy
Enforcement Engine

The results of these tests will be reported in D5.2 and D5.3, based on the actual integration
of the components at each stage.

4.3 ASCLEPIOS Complex Flows testing

Based on the discussions we had in the consortium, it is important to allow the combination
of the offered access control mechanism and the security/ encryption mechanisms. For this
reason, dedicated tests will be created for the validation of more complex flows. The results
of these tests will be reported in D5.2 and D5.3, according to the plan presented in section
3.3.2. These flows will also be evaluated through the pilot usage of the platform; our goal in
the scope of this deliverable is to assure the proper function of the platform based on the
need to support such scenarios.

4.3.1 ABAC based access control
Authorization based on ABAC will be tested in the scope of the testing of the integrated
platform. As presented in Figure 10, the flow to be tested includes the creation of a new
policy through the UI and then test the proper enforcement on an access control point of a
test application. As an additional step, we can update the policy in order to ensure that the
enforcement is dynamically applied.

Figure 10: ABAC Policy Creation and Enforcement flow for testing

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 38 of 44

4.3.2 ABAC and ABE based flow
In the context of ASCLEPIOS, we propose the combined use of ABAC and ABE policies for
authorization in ABE decryption. We consider a two-step process where ABAC policy is first
applied on access attempts to resources (either data or functionality). Subsequently, if an
ABAC permit is granted, ABE policy is applied in order to recover the resource symmetric
decryption key. This process is shown in Figure 11.

Figure 11: ABAC + ABE flow for testing

4.3.3 ABAC and SSE based flow
Similar to the flow presented in 4.3.2, ABAC will also be used for SSE usage. We consider a
two-step process where ABAC policy is first applied on access attempts to SEE server and
subsequently, if an ABAC permit is granted, SEE service is used. This process is shown in
Figure 12.

Figure 12: ABAC + SSE flow for testing

4.3.4 ABAC and FE based flow
Similar to the flow presented in 4.3.2, ABAC will also be used for FE usage. We consider a
two-step process where ABAC policy is first applied on access attempts to FE server and
subsequently if an ABAC permit is granted, FE service is used. This process is shown in
Figure 13.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 39 of 44

Figure 13: ABAC + FE flow for testing

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 40 of 44

5 Conclusions

This deliverable is the continuation of the work reported in the deliverable D1.2, where the
initial, conceptual view of the architecture was presented. Here our work was focused on the
analysis and refinement of every possible interaction in the system architecture; therefore,
we provided an updated view of the components and the interfaces between them. The
integration of ASCLEPIOS Framework will be reported in the upcoming deliverables D5.2
and D5.3, along with possible modifications made in the interfaces.

In section 3 we provide useful material and information regarding the toolkit that is already
used for the integration and deployment of the platform. The planning of the integration is
also included, as created through the discussions among consortium partners; two main
releases will be provided, first at M21 and the second, final release of ASCLEPIOS at M27.

Finally, the testing and evaluation plan to verify the proper functioning and performance of
the integrated ASCLEPIOS platform are presented in section 4, while the testing results (an
outcome of Task 5.3), the detailed information about the CI (an outcome of Task 5.2), and
the Quality Assurance (an outcome of task T5.4) will be provided in D5.2 and D5.3 that are
reporting the outcomes of the work package t.

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 41 of 44

6 References

1. A., Michalas et al., 2019. D1.2 ASCLEPIOS Reference Architecture, Security and E-
health Use Cases, and Acceptance Criteria. ASCLEPIOS Deliverable

2. https://www.sciencedirect.com/topics/computer-science/technical-architecture
3. ASCLEPIOS D7.4
4. R., G., Roessink et al., 2020. D2.2 Attribute-Based Encryption, Dynamic Credentials

and Ciphertext Delegation and Integration in Medical Devices. ASCLEPIOS
Deliverable

5. A., Michalas et al., 2019. D2.1 Symmetric Searchable Encryption and Integration in
Medical Devices. ASCLEPIOS Deliverable

6. Biliri et al., 2020 D2.3 GDPR-compliant and Privacy-Preserving Analytics for
Healthcare Providers. ASCLEPIOS Deliverable

7. Y., Verginadis et al., 2019. D3.1 ASCLEPIOS Security and Policies Model.
ASCLEPIOS Deliverable

8. Y., Verginadis et al., 2020. D3.2 ASCLEPIOS Models Editor and Interpretation
Mechanism. ASCLEPIOS Deliverable

9. P.Gouvas et al., 2020. D3.3 Context-aware ABAC Enforcement Mechanism.
ASCLEPIOS Deliverable

10. An Overview of the Testing Process | Preface.
https://flylib.com/books/en/2.174.1/an_overview_of_the_testing_process.html

11. ASCLEPIOS SSE GitLab : https://gitlab.com/asclepios-project/ssemanual
12. http://www.technofunc.com/index.php/erp/178-what-is-integration-testing
13. OAuth 2.0, https://oauth.net/2/
14. OpenIDConnect, https://openid.net/connect/

https://flylib.com/books/en/2.174.1/an_overview_of_the_testing_process.html
https://gitlab.com/asclepios-project/ssemanual
http://www.technofunc.com/index.php/erp/178-what-is-integration-testing

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 42 of 44

Appendix I - Asclepios Technical Architecture UML Schema

The following code in PlantUML language21 can be used in any PlantUML server in order to
generate a high-resolution figure of the architecture.22

@startuml
' ---
skinparam defaultTextAlignment center
' ---
'top to bottom direction
left to right direction
scale 2/3
skinparam linetype polyline
skinparam linetype ortho

node "Trusted Authority" {
interface "HTTP " as tainterface
}

node "ABE" {
component "ABE Server" as abeserver
interface "HTTP" as abeAPI
abeserver - abeAPI
abeserver -> tainterface
}

node "ASCLEPIOS ABAC and ABE Policy Enforcement Mechanisms (AAPEM)" {
 component "Policy Enforcement Engine" as pepengine
 component "OIDC connect server" as caauthority
 interface "HTTP" as pepApi
 interface "HTTP" as caaAPI
 interface "HTTP" as fileshareAPI
caauthority - caaAPI
pepengine - pepApi
pepengine - fileshareAPI

[ABE Connector] --> abeAPI
}

node "ASCLEPIOS Models and PoLicies Editors (AMPLE)" {
database CASM
[Policies Interpreter] --> fileshareAPI
interface "HTTP" as abaceditApi
[ABAC Policies Editor] - abaceditApi

[Policies Interpreter] - abeAPI
interface "HTTP" as casmeditApi
[CASM Editor] - casmeditApi
interface "HTTP" as abeeditApi
[ABE Policies Editor] - abeeditApi
interface "HTTP" as validationApi
[Policies Validation tool] - validationApi

21 https://plantuml.com/
22Direct Link to online version of the graph

https://plantuml.com/
http://www.plantuml.com/plantuml/png/dLR1Zjis43s7Np7OIpP0XGBfVH55LL03wqQ5dUx1s0DDZRr4A58WgKM4elzUagwuf9TAWFXWYFDcvhqPKYD-C9PgEms2l8NgPtx4VELof9eEqEE9JiBkyPkj1J_B0QK5vlvG_tJsjrQDO1KSbRNAKN2Dp78bYS2JzO3cvoURs8bXL22y__KtGX9jWakqyuWmAZ7xHGbJsZufGgJg4MxsUZ8MUwWdPzJSpZVm3-6-c1Db3lzZl-_W1gW1IwEPa7-N-FfZwoEO6aObKTfWWHtgPzGXZ1xHXDLrrWMjkms9Jb0LJ7Ulk2Fxhhblkytd7TGVwmQexC7JTqfmDaChJqep31kqHVP49JU3WTkwxjhjEoyR815UY6hbcKiCIaSSCQpoeC-RtnktbXAP1VDIDgDqwIY1KkKkNpto4XQ2NGlAs8aBD4zKXoQHX0Qg9IvAXMgXIKrvXeDlM7CfGEb7gAgxPGj2gmkzthgrCA7RdRhdZAE1jkSkt3TtszsteRazjVH83K9JxxP03hw_mNVZonerMhpmvOhAnyIj7OClvH2sEYOBn3vFvhJA5cihzzqCaIQeZjapREqe9nBRiaByRefdAdXF_GlkN98I_evsi4e9boftJPDzsS15pZ0Ad7mdmex00nvXixY5jkSvrlsoqbUzylhNdIZxeLVKlhwBcVJyd7vgePPKp9Opau-c34fdr6bbH6KWTKJBCrIvUNLKHLMxNJudWoNLOCoAY0mDT741rIgG2udZkfcFg0sooK-CNw2LJCzZE5XKzabpRfkshjzTARvNPsYK465I15aCAHNgR5BDkzau4sIu5xSyGvMQ8INOo1w_SNaEOlwQKC_910vHt7kWNkCBPbV4mfc4G9MZcQAxLzWXzC9myx-2nv9JyJj9dKC4tcSIeBf63qtRrl35eCxUWRjNVjToIg_y9OCd198yLnKKQPAlUAVvCsLpSW3SZ9y4kd7UrU5JkSv7Hpe0a6JX-7mOFBJ7bAvvsUZ8a-wlZwKBKEnjT8aWoOAWAdZaMcA72vxbGnKSux78tW6N9qElr1JsCPjKOJzsemCkTv73hcsX4Hob3NCmVxdX4FpfE0hEmkXxVEESiYZoKgDhCcDeZ5ChhLO2EkLqX8AwjYjbWyeZRuZxy-pBrO4SFcMgiibtVV6xvqTDzRny4CLbILuUq_j5Riq6LiwPOtcRYhV3wtCzwg3PZvQU6wlvSRBOWx7KkYLdL80lPBAX4t3RRlziz-7O7y8ZF2ZzrNzvoiSI1ucMAQLxBaE69QnPRE6ibFpozDNTZtskzw28vpUu3oZxQH3_0G00

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 43 of 44

interface "UI " as ampleui
[AMPLE Web Interface] --> validationApi
[AMPLE Web Interface] --> casmeditApi
[AMPLE Web Interface] --> abeeditApi
[AMPLE Web Interface] --> abaceditApi
[AMPLE Web Interface] --> ampleui
[Policies Interpreter] - validationApi
}

node "FE Analytics" {
component "FE Analytics Server" as feserver
interface "HTTP" as feserverapi
feserver - feserverapi
feserver -> tainterface
}

node "SSE" {
component "SSE Server" as sseserver
interface "HTTP" as sseserverapi
sseserver - sseserverapi
sseserver -> tainterface
}

node "Cybersecurity, Encryption and Analytics (CEAA)" {
component "Log Collector" as ceaalogs
interface "Syslog " as ceaalogsapi
ceaalogs - ceaalogsapi
component "Indexing and Query Engine" as ceaaindexer
interface "Syslog " as internallogsapi
ceaaindexer - internallogsapi
ceaalogs -> internallogsapi
[Analysis Engine] -> internallogsapi
interface "HTTP " as analinterface2
ceaaindexer - analinterface2
[CEEA User Interface] -> analinterface2
[Analysis Engine]
interface "UI " as Interfceaa
Interfceaa -- [CEEA User Interface]
}

node "Privacy Analytics Module (APAM)" {
interface "UI " as Interfapam
Interfapam - [APAM WEb Interface]
Component "Analytics Engine" as apamanalytics
interface "HTTP " as apamanalinterface
apamanalytics - apamanalinterface
[APAM WEb Interface] -> apamanalinterface
interface "Syslog " as apamlogsapi
[Log Collector] - apamlogsapi
apamanalytics -> analinterface2
}

node "User Space" {
 [SEE Client] --> sseserverapi
 [User application] --> [SEE Client]

 D5.1 Technical Integration Points and Testing Plan

Work Package 5 Page 44 of 44

 Interface "Access Control Point" as PEP
 [User application] - PEP
PEP --> pepApi
[FE Client] --> feserverapi
component "ABE Library" as abelibrary
abelibrary --> abeAPI
abelibrary --> tainterface
[FE Client] --> tainterface
[SEE Client] --> tainterface
}

node "Privacy preserving distributed statistical computation (EMNET)" {
[EMNET Worker]
interface "HTTP " as emnetcoordination
[EMNET Coordinator] - emnetcoordination
[EMNET Worker] -> emnetcoordination
[EMNET Worker] --> feserverapi
[EMNET Worker] --> abeAPI

}
@enduml

