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1 Introduction 

1.1 Scope 

The scope of this document is a review of the state of the art in the interoperability of TEEs 

and portability of applications for TEEs. We further consider the interoperability aspects of 

TEE applications for e-health security, in the context of project ASCLEPIOS. Beyond a review 

of the state of the art, the document includes reviewing practical aspects of developing 

applications for some types of TEEs, a review of TEE application development and deployment 

frameworks and on-going standardization work, conducted both within project ASCLEPIOS 

and outside of it. 

1.2 Objectives 

The specific objectives of this document are as follows: 

• Review the current landscape of TEE implementations; 

• Describe practical aspects of developing applications for common TEEs; 

• Review existing projects for TEE application development and deployment; 

• Review of the standardization work towards TEE interoperability. 

1.3 Relation to Other Work Packages and Deliverables 

This document constitutes Deliverable D4.3 within Work Package 4. While it contains practical 

aspects of developing applications for TEEs (Specifically in Section 3), in this deliverable we 

look at the upcoming and on-going projects that aim to enable interoperability between TEEs. 

In many cases, such projects are not yet functional or have very limited functionality. 

Therefore, the deliverable focuses on the documented functionality rather than a first-hand 

experience. A notable exception, as noted above, is Section 3, where we describe application 

development for TEEs using the Open Enclave project1. 

 

This deliverable complements deliverables D4.1 and D4.2. In D4.1 we describe the key, 

firmware and workload management in several common TEE architectures. In D4.2 we 

describe the approaches to workload attestation and its use in project ASCLEPIOS. When it 

comes to other work packages, the contents of this deliverable may serve as a guidance in 

selecting a suitable TEE for software components supporting the ASCLEPIOS framework. 

1.4 Outlook 

Task 4.3 was initially designed with the goal of developing a framework facilitating the 
development of applications portable across Trusted Execution Environment (TEE) 
architectures. However, throughout the course of the task, its scope was adjusted considering 
the following three points identified in the course of WP4: 

                                                 
1 Open Enclave SDK https://openenclave.io/ 

https://openenclave.io/
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1. deployment, attestation and management of applications within the same TEE 
architecture remains underspecified, thus undermining the foundations of any 
application portability effort; 

2. relevant standardization efforts aim to create a common deployment and attestation 
architecture for applications in TEEs, with only one partial open-source 
implementation available; 

3. portability of applications across TEE architectures is an increasingly difficult problem 
due to the diverging architectural choices made by vendors for emergent features. 
Despite significant efforts so far, portability projects only have limited support for one 
TEE architecture, despite the declared goal of supporting several most relevant ones. 

The scope of this task was defined to address, in order, the factors defined above. As a result, 
work in Task 4.3 focused on the following: detailing in Section 3 the practical choices, trade-
offs and decisions for developing, attesting and deploying applications in a TEE (in particular, 
in Intel SGX using the OpenEnclave SDK), thus addressing point 1; contributing to the 
specification of - and implementing a prototype of - the Trusted Execution Environment 
Platform Architecture defined by the Internet Engineering Task Force (addressing point 2, 
described in Section 5), and evaluating in Section 4 the existing open-source projects that 
work towards application portability (addressing point 3).  
 
This document provides a comprehensive overview of the on-going efforts in terms of inter-
operability; it supports the implementation work on the Trusted Execution Environment 
Platform Deployer (TEEPD) within project ASCLEPIOS. TEEPD implements the Trusted 
Execution Environment Platform architecture defined in [4] and described in Section 5.1. 
Implementation, integration and evaluation of TEEPD will be continued throughout WP 5 
and WP 6 within project ASCLEPIOS. 
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2 Current TEE Landscape 

In this section, we review the landscape of user-programmable Trusted Execution 

Environments relevant in the context of medical data protection. The review includes both 

existing an upcoming (or announced) architectural approaches for Trusted Execution 

Environment. 

2.1 Approaches to TEE implementation 

2.1.1 Dynamic Root of Trust for Measurement  

The Trusted Computing Group (TCG) introduced Dynamic Root of Trust for Measurement 

(DRTM), also called “late launch”, in the TPM v1.2 specification in 2005. It is an alternative to 

the Static Root of Trust for Measurement (SRTM). Unlike SRTM which operates at boot time, 

DRTM allows the root of trust for measurement to be initialized at any point [1]. To implement 

this technology, Intel developed Trusted eXecution Technology (TXT), providing a trusted way 

to load and execute system software (e.g., OS or VMM). Its primary purpose is to detect the 

potential presence of certain types of attacks, notify system owners about the detected 

attacks and prevent the creation of an Measured Launch Environment in the event of a 

compromise [29]. This is done by combining the SRTM and DRTM capabilities, along with 

additional support in software and in the instruction set architecture (ISA). At power-on, 

SRTM is used to establish and extend a chain of trust from the Intel processor (and chipset) 

to and including the BIOS. Once booted, the operating system or an application executing on 

the operating system can initiate a measured launch sequence by invoking the 

GETSEC( SENTER)  instruction, which triggers the loading of the Measured Launch 

Initialization (SI NI T). Intel TXT makes no assumptions about the system state and provides a 

dynamic root of trust for late launch. Thus, TXT can be viewed as a hardware-assisted trusted 

execution environment capable of running security sensitive tasks, at the cost of a significant 

overhead on the late launch operation [1]. 

2.1.2 Intel Software Guard Extensions  

Intel SGX provides a TEE in recent processors since generation Skylake. Applications create 

secure enclaves to protect the integrity and confidentiality of the code being executed and its 

associated data [2]. Such enclaves rely for their security on a trusted computing base of code 

and data loaded at initialization creation time, processor firmware and processor hardware. 

Program execution in an enclave is transparent to both the underlying OS and other enclaves. 

Many mutually distrusting enclaves can operate on the platform. Intel SGX was applied widely 

adopted and used in several application domains, including cloud and network security [33-

35]. The SGX mechanism is illustrated in Figure 2. 
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The life cycle of an SGX enclave starts with a 

creation stage, when the ECREATE 

instruction invoked by the system software 

allocates a memory page for the SGX Enclave 

control structure and populates it with data 

about the memory size and layout of the 

enclave, made available by the system 

software. Once the enclave is created, 

system software uses the EADD instruction 

to load code and data into the enclave using 

the EEXTEND instruction to update the 

measurement of the enclave. Finally, the 

system software obtains an initialization token (EI NI TTOKEN) from a dedicated Launch 

Enclave and initializes the enclave (using the EI NI T instruction). Once the enclave is 

initialized, the application deployed to the enclave can execute [30]. A remote attestation 

protocol (not shown in Figure 2) allows an enclave to provide guarantees of its contents and 

that it runs on a genuine Intel processor with SGX enabled. An application using enclaves must 

ship a signed, plaintext shared library that can be inspected, (including by malicious attackers). 

The enclave page cache (EPC) is a 128 MiB area of memory predefined at boot, dedicated to 

storing enclave code and data. At most 93.5 MiB can be used by an application; the remaining 

area is used to maintain SGX metadata. Any access to an enclave page outside the EPC triggers 

a page fault. The SGX driver interacts with the CPU and decides which pages to evict. Traffic 

between the CPU and the system memory is kept confidential by the memory encryption 

engine (MEE) [2], also in charge of tamper resistance and replay protection. If a cache miss 

hits a protected region, the MEE encrypts or decrypts data before sending to, respectively 

fetching from, the system memory and performs integrity checks. Data can also be persisted 

on stable storage, protected by a seal key. This allows storing certificates and waives the need 

of a new remote attestation every time an enclave application restarts [3].  

The execution flow of a program using SGX enclaves is as follows. First, an enclave is created 

(see Figure 2, step 1). When a program needs to execute a trusted function (2), it invokes the 

SGX ECALL primitive (3). The program goes through the SGX call gate to bring the execution 

flow inside the enclave (4). After the trusted function is executed by one of the enclave’s 

threads (5), its result is encrypted and sent back (6) prior to returning control to the main 

processing thread (7) that continues the execution. Since its introduction, Intel SGX was and 

remains under intense scrutiny from the security research community. This resulted in 

exposing numerous security vulnerabilities [10-19]. A range of improvement have been 

proposed [20-22] and the SGX specification was updated on several occasions. 

Figure 1 Intel SGX execution mechanism 
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2.1.3 ARM TrustZone  
ARM TrustZone is a hardware feature to create isolated execution environments. It provides 

two environments (or “worlds”): the “secure world”, i.e. the Trusted Execution Environment 

(TEE), and the “normal world”, i.e. the Rich Execution Environment (REE). To ensure complete 

isolation between the two environments, TrustZone provides security extensions for 

hardware components including CPU, memory, and peripherals [1]. The two environments 

correspond to the security modes of the TrustZone enabled ARM CPU. Each processor mode 

has its own memory access region and privilege. Code running in the normal world cannot 

access the memory in the secure world, while code running in the secure world can access 

the memory in normal world. The secure and normal worlds can be identified by reading the 

NS bit in the Secure Configuration Register (SCR), modifiable in the secure world. TrustZone 

uses Monitor mode that only runs in the secure world to serve as a gatekeeper managing the 

switches between the two worlds. The normal world can call a special instruction called the 

Secure Monitor Call (SMC) to enter the Monitor mode and modify the NS bit to switch into 

the secure world [1]. From a user perspective, ARM TrustZone offers only limited 

programmability, since applications deployed in ARM TrustZone must be signed by the 

hardware vendor. In practice, this limits the number of TrustZone application providers. 

Another notable limitation of this approach is that there is no isolation among the applications 

running in TrustZone. 

 

2.1.1 IBM Protected Execution Facility 
IBM has announced in 2018 the Protected Execution Facility (PEF) technology [36]. PEF 

leverages a combination of the TPM and additional processor instructions to create a 

virtualization environment with enhanced security guarantees. PEF introduces Secure Virtual 

Machines (SVMs) and allows to protect SVM (including code and data ) against attacks from 

outside SVM components. PEF allows secrets to be embedded in SVM at creation, and 

supports conversion of existing VMs into SVMs. PEF does not limit amount of protected 

memory, allowing existing application code to run in an SVM. 

To enable PEF support, a new processor mode is added – the Ultravisor mode, that is higher 

privileged than the hypervisor mode. Architecturally, the Ultravisor is a shim layer beneath 

the hypervisor. The Ultravisor controls the memory space where the Secure VMs run, such 

that the hypervisor and normal VMs cannot reference the memory used by SVMs. Hypervisors 

must do an ultracall (a new type of syscall) to access secure memory or utravisor privileged 

resources; moreover, hypervisors can only see secure memory in encrypted form. PEF relies 

on a root of trust, implemented using TPMs available in OpenPOWER systems. The Ultravisor 

uses a secure channel to the TPM to get access to the symmetric key protecting the SVM [36]. 

To the best of our knowledge, no hardware supporting PEF is available at the moment. 
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2.1.2 AMD Secure Encrypted Virtualization 
AMD secure encrypted virtualization (SEV) provides transparent encryption of the memory 

used by virtual machines. This requires the AMD secure memory encryption (SME) extension 

to be available and supported by the underlying hardware. The architecture relies on an 

embedded hardware AES engine, located on the core’s memory controller. SME creates one 

key that is used to encrypt the entire memory. This is not the case for SEV, where multiple 

keys are being generated. The overhead of the AES engine is minimal [3].  

SEV delegates the creation of ephemeral 

encryption keys to the AMD secure 

processor (SP), an ARM TrustZone-enabled 

system-on-chip (SoC) embedded on-die [3]. 

These keys are used to encrypt the memory 

pages belonging to distinct virtual machines, 

by creating one key per VM. Similarly, there 

is one different key per hypervisor. These 

keys are never exposed to software executed 

by the CPU. AMD SEV allows to attest 

encrypted states by using an internal 

challenge mechanism, so a program can 

receive proof that a page is correctly encrypted [3]. From the programmer perspective SEV is 

transparent and the execution flow of a program using it is the same as a regular program. 

Notably different from Intel SGX, all the code runs inside a trusted environment, without a 

fine-grained separation of the “trusted” and “non-trusted” part of the code. The execution 

flow is illustrated in Figure 3. First, a program needs to call a function (Figure 3, step 1). The 

kernel schedules a thread to execute that function (2) before executing it (3). The execution 

returns to the main execution thread (6) until the next execution is scheduled (5) [3]. 

2.2 Comparison of SGX and SEV 

We briefly highlight the differences between these two technologies along three different 

criteria, summarized in Table 4, Table 5 and Table 6 below.  

2.2.1 Memory limits 
The EPC area used by SGX is limited to 128 MiB, of which 93.5 MiB are usable in practice by 

applications. The size of the EPC can be controlled (reduced) by changing settings in the UEFI 

setup utility from the BIOS of the machine. There is no such limit for SEV: applications running 

inside an encrypted VM can use all its allocated memory [3]. 

2.2.2 Usability 
To use SGX enclaves, a program must be modified—requiring a re-compilation or a relink—

e.g., using the official Intel SGX SDK. It is the responsibility of developers to decide which 

Figure 2 AMD execution mechanism 
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sections of the programs will run inside and outside the enclave. Several semi-automatic tools 

have been introduced to facilitate this process [31], [32]. As mentioned above, no changes 

need to be made to programs when using SEV [3]. 

2.2.3 Integrity protection 
Intel SGX has data-integrity protection mechanisms built-in. Memory pages read from EPC 

memory by an enclave are decrypted by the CPU, and then cached within the processor. In 

the reverse data flow, data that is being written to the EPC by an enclave is encrypted inside 

the CPU before leaving its boundaries. Data integrity is safeguarded by associating integrity 

protected metadata. The metadata is stored in a Merkle tree structure, the root of which is 

stored in SRAM, inside the processor. These integrity mechanisms incur an overhead that has 

been previously evaluated and shown to be acceptable for sequential read/write operations, 

but up to 10× for random read/write operations [3]. Conversely, to the best of our knowledge, 

the current version of AMD SEV (or SME) does not provide any integrity protection 

mechanism. This can be exploited to break the security guarantees of SEV [7-9, 24]. We expect 

that limitation to be addressed in future revisions. 

The main advantages of SEV in comparison to its main competitor - Intel SGX - are (1) memory 

size, (2) efficiency and (3) No SDK or code refactoring are required. SGX allocates only 128MB 

of memory for software and applications and thus, making it a good candidate for 

microtransactions and login services. However, SEV's memory is up to the available RAM and 

hence, making it a perfect fit for securing complex applications.  Moreover, in situations 

where many calls are required, like in the case of a multi-client cloud service, SEV is known to 

be much faster and efficient than SGX. Table 4, Table 5 and Table 6provide a collective 

comparison with the main features offered by SGX and SEV [3]. 

 

 

 

 

Table 4 comparison of SGX and SEV 

TEE Access 
Level 

Memory Size SDK Attestation Protection 

SGX Ring3 Up to 128MB Provided Through Intel 
Remote 
Attestation 
Protocol 

Confidentiality and 
Integrity of the Code 
and Data in the 
Enclave 

SEV Ring0 Up to Available 
System 
Memory 

Not 
Required 

Through 
AMD Secure 
Processor 

Confidentiality of 
the Code and Data 
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Table 5 Comparison of SGX and AMD application security 

SGX SEV 

Initial design targeted Microservices 
and small workload 

Confidentiality and Integrity of the Code and Data 
in the Enclave 

Requires major software changes and 
code refactoring 

Does not require software changes and code 
refactoring 

SGX works with ring 3 and is NOT 
suitable for many system calls 

SEV works with ring 0 and is suitable for broader 
range of workload 

SGX is suitable for small but sensitive 
workload 

SEV is suitable for securing large enterprise level 
applications. 

 

Table 6 Comparison of SGX and SEV vulnerabilities 

SGX SEV 

Provides Memory Integrity Does NOT Provide Memory Integrity 

Vulnerable to Side Channels Vulnerable to Side Channels 

Vulnerable to DoS Attacks Vulnerable to DoS Attacks 

Vulnerable to Speculative Attacks NOT Vulnerable to Speculative Attacks 
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3 Applications development for TEEs 

3.1 Symmetric Searchable Encryption (SSE) and TEE 

This section provides an overview to the practical aspects of application developments for 

TEEs in the prospects of the SSE scheme proposed within the scope of ASCLEPIOS. The sub-

section 3.1 introduce SSE scheme, followed by a justification in subsection 3.2 why it is 

necessary to run some components of the SSE scheme within the TEEs. Lastly, subsection 3.3 

provides an overview to the implementation aspects of SSE components in combination with 

two potential candidates of TEEs 

3.1.1 SSE 

The SSE is one of the core security components, currently under development, within the 

scope of ASCLEPIOS. It is an encryption technique that enables the search on the outsourced 

encrypted data while preserving the privacy of both data and search queries. Figure 3 presents 

the high-level architecture of the SSE scheme. It mainly consists of three core components: a 

Trusted Authority (TA), SSE Server, and a client application. 

 

Figure 3 Architectural view of the SSE scheme 

The Trusted Authority (TA) stores metadata which consists of the following two dictionaries: 

one counts the number of files containing each keyword and the other counts the number of 

previous searches on each keyword. These will be used to assist the client application to 

search over the encrypted data. The number of files of corresponding keywords get updated 

when a new file is added, while the number of searches changes after each search. Such 

changes over number of files and searches results in generating search token differently over 

time, even for a same keyword. This prevents the SSE Server from learning the search pattern. 

  
The SSE Server represents the cloud service provider that is responsible for data storage. The 

data sent for storage is encrypted with a symmetric encryption key (K1) and therefore, the 
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Server cannot decrypt the stored data. Furthermore, the SSE Server keeps a dictionary which 

maps extracted keywords to data file identifiers. The extracted keywords in the dictionary are 

not stored in plaintext; instead they are computed over some hash function with the keyword, 

number of files containing the keyword, number of previous searches on the keyword, and a 

symmetric key (K2) as input. Similarly, the way of computation on the extracted keywords 

ensures the computed values get updated after each search and SSE server learns nothing 

about the search queries. The key K2 is shared between the client application and TA, which 

will use it to compute and provide the SSE server with a verification proof for search query. 

  
A client application, as the consumer of the SSE scheme, encrypts data with a symmetric 

encryption key, and creates a dictionary at the end-user side before sending them to the SSE 

Server for storage. Additionally, the application sends metadata to the TA such as number of 

files and number of searches of extracted keywords along with their hashed value. The hash 

computations prevent TA from learning the keywords content. 

  

When end-users wish to search over encrypted data, they provide the client application with 

searched keywords. Using the keywords and with metadata retrieved from TA, the client 

application creates search tokens and sends them to the SSE Server to retrieve the specific 

encrypted data from cloud storage. Upon receiving the search tokens, the SSE Server requests 

a proof from TA, which is computed with the shared key K2 and metadata of the keyword. 

Upon reception, the SSE Server verifies the proof. If the verification passes successfully, the 

SSE Server filters the stored ciphertext and returns the ones that match the query to client 

application. It further updates the stored dictionary with new values in the search tokens. 

Amongst the components of SSE, the TA and SSE Server components must be deployed and 

run within the trusted execution environment. Section 3.1.2 motivates this design choice. 

 

3.1.2 SSE components to be deployed in TEE 

One of the functional challenges in the domain of symmetric searchable encryption is to 

provide multi-client settings that enable multiple clients to perform searches over their 

outsourced encrypted data. Such a functionality required synchronization among many 

clients. In the context of the SSE scheme, the metadata is used to generate search tokens, and 

it gets updated after each search. The metadata storage at clients can easily leads to 

inconsistencies at client ends, hence leading to failure in terms of generating valid search 

tokens. Therefore, it is required that the metadata is synchronized amongst all clients. The 

complexity of synchronization can be easily overcome with the use of an external trusted 

component (Trusted Authority). In order to build a Trusted Authority, we rely on TEE to secure 

executions to generate verification proof for SSE server and the used symmetric key (K2). 

Additionally, TEE will also ensure the integrity of the executions, failure of which can fail 
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search operation of users. In addition to TA, the SSE server also needs to run in TEE. With the 

support of TEE, the integrity of executions at SSE server side can be verified before the client 

provides tokens to add or search data. Thus, the provided tokens will be protected inside TEE, 

and cannot be utilized by malicious host server to query for information, for e.g. verification 

proof, from TA. 

 

3.1.3 Architecture and implementation 
The initial implementation of SSE scheme is independent from any TEEs related aspects. 

Currently, we are in the process of transforming the SSE implementation such that it can only 

be deployed within the TEE and can be used only by following secure computational 

guidelines, e.g. the SSE components in itself will guarantee that the underlying execution 

environment is TEE, the components will remotely attest themselves to the remote party, and 

any secrets can be provisioned securely after the attestation process. In the following 

paragraphs, we provide the practical aspects in terms of SSE implementation related to TEE 

environment. 

  

Figure 4, an adaptation of Figure 3, presents the high-level interactions of SSE components 

amongst each other, when the TA and SSE Server runs in TEEs. These are additional 

interactions to the basic functional interactions described in Figure 3. Since the Client 

component is the consumer of both the TA and SSE Server, both these components must 

remotely attest themselves to the Client. Remote attestation is the process of proving that 

the service has been running in a secure hardware environment. Analogous to the Client, the 

SSE server also uses some functions from the TA. Hence, the TA must prove itself to the SSE 

Server by remotely attesting itself. 
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Figure 4 High level description of SSE scheme within TEE 

  

3.2 Implementation with Intel SGX 

 

The implementation of the required aspects to make the TA and SSE Server components TEE 

compliant depends on the underlying TEE technology. Currently, we are investigating Intel 

SGX as one potential candidate to be used as TEEs. In the following paragraphs, we provide a 

practical overview of how Intel SGX can be adapted in the context of SSE.  

 

Intel SGX is a set of processor extensions for establishing a protected execution environment 

within an application. Intel SGX guarantees the integrity and confidentiality of security-

sensitive computation performed on a computer where all the privileged software (kernel, 

hypervisor, etc.) can be potentially malicious. The Intel SGX technology allows part of the 

application to run in secure containers called enclaves. Such enclaves have dedicated memory 

regions that are secured with on-chip memory encryption. The enclave has its own dedicated 

code and private data to process. The data inside enclave cannot be accessed from outside. 

  

Figure 5 illustrates a typical example of an Intel SGX based application. An SGX application 

consists of two parts; untrusted and trusted. The trusted part of the application run in an 

enclave, guaranteeing the integrity and confidentiality of the computation. The untrusted part 

of such an application is responsible, along with any other non-secure computation, is to 

create and initiate the necessary enclaves. On the other hand, the code running in the enclave 

is responsible for the required secure computation over any confidential data that shall 

restricted to the enclave. 
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Figure 5 A typical example of Intel SGX based application 

 

In the context of SSE, the TA and SSE Server components must run in such a TEE environment. 

Both these components are REST based services that expose their key functions through REST 

based interfaces. In light of the above-mentioned SGX based application example, both the 

TA and SSE Server components are envisioned as follows: 

1. The untrusted part of the component will provide REST interfaces to the key functions 

of the component. In addition, each component will also provide a /challenge REST 

interface that will be used by the remote party to demand the remote attestation from 

the target component, the TA and SSE Server. 

2. The key functions of each component will be implemented within the enclave or 

respective component. 

3. The rest interfaces for each function, as described in step 1, will make the ECALLs to 

the respective key function of the enclave. The ECALLs are the entry to the enclave 

and lets the computation move from the untrusted space to the trusted space. 

Both components on the receipt of challenge REST call will initiate the remote attestation 

process in order to attest itself to the remote party (or challenger). The entity that has to 

attest itself is called the Verifier, whereas the entity that demand remote attestation is called 

remote party (or challenger). In the case of SSE, as can be seen from Figure 3, the remote 

attestation process can be carried out at the following three different occasions: (1) when the 

TA attests itself to the client, (2) when the SSE Server attests itself to the client, and (3) when 

TA attests itself to the SSE server. In the first two cases, the Client is the Challenger and TA 

and SSE Server are the Verifiers, whereas in the last case, the SSE Server is the Challenger and 

the TA is the Verifier. Irrespective of which component is the Challenger and which 

component is the Verifier, Figure 6 presents the Intel SGX remote attestation flow. 
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Figure 6 Intel remote attestation flow [25] 

  

The brief description of each message appears in the above-mentioned Intel remote 

attestation flow are as follows: 

1. The off-platform Challenger requests the application running in intel SGX based TEE to 

attest itself. 

2.  The Application requests its enclave to produce an attestation. 

3.  The enclave returns a local-attestation report. 

4.  The application forwards the local attestation report to the platform-oriented 

Quoting enclave that verifies the local attestation report. 

5.  The Quoting enclave further converts the local attestation report to a remote 

attestation report and sends back to Application. 

6.  The Application returns the remote attestation report to the off-platform Challenger. 

7.  The Challenger verifies the remote attestation report using the Intel attestation 

service. Based on the verification, the Challenger makes decision and provision any 

secret data, if required. 

The implementation of TA and SSE Server components in light of the above-mentioned details 

will require the use of following additional tools: 

1. Intel SGX related software2: The following three tools/SDKs from the Intel SGX 

software stack will be required for the development of both TA and SSE Server 

components. 

a. Intel SGX driver, 

b. Intel SGX SDK, 

c. Intel SGX platform software (PSW) SDK, 

                                                 
2 Intel(R) Software Guard Extensions for Linux OS https://github.com/intel/linux-sgx 
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2. Microsoft cpprestsdk3: The Microsoft C++ REST SDK or any other alternative SDK of 

same nature will be required to implement the REST based untrusted part of both 

components. 

Further development, testing and deployment of SSE will require the availability of Intel SGX 

based TEE. Microsoft Azure provides various virtual compute services that facilitate leveraging 

Intel SGX to set up TEEs. More specifically, the current offering from Microsoft Azure, under 

the theme of confidential computing, provides DCsv2-series virtual machines of various 

ranges that are built on top of the latest generation of Intel Xeon processors capable of Intel 

SGX technology. Currently, to the best of our knowledge, Microsoft Azure and Google Cloud 

Platform are the only public cloud providers that facilitate Intel SGX capable virtual machines.  

 

                                                 
3 The C++ REST SDK https://github.com/microsoft/cpprestsdk 
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4 TEE Interoperability 

We next review current development efforts towards enabling TEE interoperability and 

portability. We review three active projects that aim to enable such interoperability. While 

they have similar goals, the three projects build on vastly different assumptions, and adopt 

different approaches in their architecture, design and implementation.  

4.1 Enarx 

4.1.1 High-level description 
Enarx is an application deployment system that enables applications to run in Trusted 

Execution Environments (TEEs) without being rewritten for particular platforms or SDKs. Enarx 

handles attestation and delivery into a run-time “keep” based on WebAssembly, offering 

developers a wide range of language choices for implementation. Enarx is CPU-architecture 

independent, enabling the same application code to be deployed across multiple targets, 

abstracting issues such as cross-compilation and differing attestation mechanisms between 

hardware vendors [28]. 

4.1.2 Security Model 
The security model of Enarx aims for a minimal trusted computing base and relies on the 

WebAssemly standard for its runtime and interface. We next describe the Enarx security 

model in detail. 

• Trusted CPU: like most other TEE architectures, Enarx assumes a trusted CPU. This is 

a cornerstone assumption trustworthy computation. 

• Trusted Microkernel: this component is provided by Enarx and is trusted to perform 

standard kernel operations. An explicit goal of the project is to maintain the 

microkernel footprint as small as possible and open source. 

• Trusted WebAssembly runtime (WASM) - provided by Enarx, and is trusted to provide 

the runtime for the application within the Enarx Keep, and includes silicon architecture 

specific JIT (Just In Time) compilation for performance optimization. 

• Trusted WebAssembly System Interface (WASI) - provided by Enarx and is an 

interface for WebAssembly applications running on server-type systems (rather than 

in browsers, for instance). It is focused on security and portability and is trusted. 

• Trusted Application - The application layer is the workload provided by the client to 

run within the Enarx Keep. It is not provided by Enarx but is considered trusted by the 

client as it was provided by them. 

Along with the list of trusted components listed above, the Enarx Security Model explicitly 

notes two untrusted components. Both the Operating system kernel and the hypervisor are 

explicitly not trusted. 
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4.1.3 TEE Hardware and CPU Support  
We next review the hardware and CPU support for execution in TEEs. While this list is 

currently relevant, it will likely be become outdated soon, as vendors release new generations 

with TEE support and the Enarx project evolves to support further platforms. 

4.1.3.1 AMD SEV 

 

AMD SEV is targeted at secure VMs. Developer applications attest to a signature by AMD, 

which includes a hash of firmware, which in this context is code injected into the VM. The 

firmware allows host to have some code within the TEE: that code will form an Enarx Keep. 

Enarx runs as “firmware” which is injected into the VM4. AMD provides a signature from a key 

burned into the CPU over a hash of the firmware to be loaded. 

4.1.3.2 SGX 

Enarx assumes for its functionality the presence of SGX 2 with Enclave dynamic memory 

management (EDMM) support. Attestation is done only involving attester and verifier, using 

the Data Center Attestation Primitives. In terms of CPU support, Intel 10th Gen Core CPUs are 

primarily targeted for implementation. 9th Gen Core CPUs could work but are likely to be 

harder to set up. 

4.1.4 Runtime requirements 

In terms of runtime requirements, the call-out API is implemented through the Web Assembly 

System Interface (WASI). Furthermore, it requires the JIT Wasmtime, a standalone WASM JIT. 

4.1.5 Architectural components 

We next discuss the architectural components of Enarx. 

4.1.5.1 Attestation 

In order to run in an Enarx Keep, an application needs to attest two things: 

1. The hardware TEE (Trusted Execution Environment) providing Keeps. 

2. A measurement of the Enarx runtime. This means that trusted third party may need 

to launch a service to abstract attestation. The way that this works is that the client 

requests attestation from Enarx. Enarx supplies a blob. The client forwards this to 

attestation service. The attestation service will then complete attestation of the 

hardware environment and translate the measurements of Enarx into a something 

which allows the developer to identify the specific version of Enarx. 

                                                 
4 Information on Enarx with SEV https://github.com/enarx/enarx/wiki/SEV-architectural 

https://github.com/enarx/enarx/wiki/SEV-architectural
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From the client’s point of view, the attestation steps of Enarx end up with the following two 

cryptographically validated assertions: 

1. The TEE type and version; 

2. The Enarx version and integrity. The attestation processes associated with the various 

hardware architectures are very different (as noted above under Section 4.1.3. 

Providing a common mechanism to abstract this is expected to be a major part of the 

work associated with project Enarx. 

A high level overview of the Enarx process flow is illustrated in Figure 7. 

 

Figure 7 Enarx process flow overivew 

4.1.5.2 Enarx API & core 

The Enarx project defines the WASI APIs and manages the attestation for all of the TEEs that 

leverages the Enarx runtime.  

 

4.1.6 Relation to ASCLEPIOS 
Throughout project ASCLEPIOS, we continue monitor the development of project Enarx. 

Whenever possible, we will re-use the best practices and lessons learned to implement 

attestation and workload management for both AMD and Intel based platforms. 

 

4.2 Asylo 

4.2.1 High-level description 
Asylo is an open source framework that enables applications to run in trusted execution 

environments (TEEs) without requiring changes to the code [27]. Developers can choose any 

enclave backend for their applications and use those enclaves to perform sensitive 

calculations or store data in a secure manner. Currently, Asylo offers a docker image for Intel 
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Software Guard Extensions (SGX) but there are plans to support other TEEs like AMD Secure 

Encryption Virtualization technology.  

  

An enclave runs isolated from the rest of the system including the operating system kernel. 

Usually applications implicitly trust the operating system but this comes with certain 

drawbacks and risks. An application that runs encryption/decryption functions might be at 

risk if the operating system is compromised since. Sensitive data like private keys may end up 

in memory that will be accessible by the operating system, eliminating the security that the 

application tries to offer. Such issues can escalate to cloud infrastructures. If a cloud service 

provider wants to perform malicious actions then nothing can stop them since memory that 

different VMs use, is accessible and readable.  

  

By using an enclave, an additional protection layer is added, ensuring that sensitive 

information will not be accessible by the operating system but only from specific enclaves. 

There are mechanisms used to ensure that the enclave is isolated from the rest of the system. 

This includes sealing, local and remote attestation and hardware-specific data structures that 

provide integrity and trust to the enclave.  

  

So far, developers have had a tough time utilizing such capabilities since running enclaves is 

not a simple task. Enclaves need to be created and configured before they can run the 

application's code, adding a new level of complexity to development. Asylo provides a 

solution as it works like an application wrapper. A docker image that offers all necessary 

runtime configuration for the enclaves to run is currently provided from the development 

team. Using an API, calls can be made to and from the enclaves, transferring execution 

between the trusted part of the application that runs in the enclave, and the untrusted part 

that is accessible by the operating system kernel. 

4.2.2 Security Model 
Asylo aims to offer support for both software and hardware backends. Depending on an 

application's requirements, a choice can be made between isolation provided by hardware 

virtualization or an implementation of a proprietary CPU manufacturer such as Intel's SGX or 

ARM TrustZone. 

 

Integrating Asylo in an application, security guarantees are established to sensitive workloads. 

Code and data that are protected by an enclave are secured against any vulnerability that is 

caused by a malicious Guest virtual machine (VM), user or host operating system. In addition, 

enclaves provide confidentiality and integrity guarantees for the communication between the 

untrusted environment and the enclaves. Finally, local or remote attestation mechanisms 

ensure the integrity of an enclave that executes the sensitive workloads. 
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4.2.3 Architectural components 
An application integrated with Asylo is divided into the Untrusted execution environment and 

the Trusted execution environment. As illustrated in Figure 8, between those two, a Manager 

component is responsible to coordinate all communication between the two environments 

using secure communication channels. The trusted execution environment will contain the 

implementation of the sensitive functions and public methods that will provide access to the 

sensitive functions through the manager component. The untrusted execution environment 

can invoke the sensitive functions by using the interface provided by the manager component. 

During any interaction, certain data structures that are called Protocol Buffers are used. 

Protocol buffers is a method to serialize structured data providing an easy way to transfer and 

handle such data. 

  

 

Figure 8 Asylo process flow 

 

To get a better understanding of how Asylo works and how it can be used to run an application 

in a TEE (i.e. containing a trusted and untrusted part), we will describe the procedure of how 

an application that can be ported to Asylo. To this end, we will show how an application that 

performs AES encryption and needs to use sensitive/private information (i.e. 

encryption/decryption key(s)) can be integrated to Asylo and have this function run in an 

enclave using Intel's SGX technology. We will divide the application into two parts, the Trusted 

part which will be the code running in the enclave and the Untrusted part which will be 

running outside the enclave and can be accessed by anyone. 

  

The trusted part will provide three entry points that will be accessible from the untrusted 

application through the manager component. These entry points are used to initialize and 

finalize the enclave and run the encryption function (i.e. use the symmetric key in a trusted 
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mode in order to encrypt some data). The trusted application will also contain the 

implementation of the encryption function. 

  

The untrusted application will create an instance of the enclave manager and use it to 

communicate with the enclave. First, the initialization phase takes place. This begins with the 

call of the EnterandInitialize entry point. A protocol buffer message that contains 

configuration settings is passed in order to set up the enclave. This step is essential as it is not 

possible to run any code in the trusted environment without the proper initialization. Then 

the application is ready to run the encrypt function by using the EnterandRun entry point. 

Both input and output protocol buffers are passed to the entry point. In our case, a plain text 

buffer will be passed as input along with an empty output buffer. The manager component 

will transfer execution to the enclave, running the EnterandRun function. The enclave will 

read the input, encrypt and populate the output buffer with the result ciphertext, which will 

be returned to the untrusted application. Once the execution is done, the EnterandFinalize 

entry point is used in order to destroy the enclave. This flow is illustrated in Figure 8.  

 

 
To make our application more complete, we must also implement a decryption function. To 

do so, we need to divide the EnterandRun entry point to EnterandEncrypt/EnterandDecrypt 

or use the EnterandRun entry point in such a way where a flag that directs the application to 

the function needs to run will be provided.  

  

Asylo provides base code implementations for the TrustedApplication and EnclaveManager 

classes for developers to use or modify. Also, a Bazel BUILD file is provided that defines the 

enclave's logic stating which TEE backend to use. 
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4.2.4 Interoperability / Portability 
Interoperability is another challenge that developers must face when creating applications 

that are using TEEs. Currently, choosing a TEE technology implies that vendor specific changes 

will be made to the application to satisfy the requirements of the underlying TEE. Each TEE 

has its own runtime configurations and ways to manage the isolates entities. Also, as research 

develops and new vulnerabilities arise, a certain TEE technology might not be suitable 

anymore and a move to a different vendor might be needed. This means that choosing which 

TEE technology to use is a difficult task that needs to be examined thoroughly.  

  

Asylo tackles portability as one of its main focuses. Once the application is adapted to the 

Asylo API, the use of a different backend means simply re-compiling and re-packaging the 

application. Changes to the code are not needed as the Asylo API was created with main aim 

to work with various TEE technologies. 

 

In ASCLEPIOS, we plan to use Asylo mainly for porting an ABE library into SGX. This task is 

considered as rather demanding and it is expected to face certain difficulties due to the long 

list of dependencies.  

4.3 Open Enclave SDK 

4.3.1 High-level description 
The Open Enclave, an open source initiative from Microsoft, is a library for the development 

of Trusted Execution Environment (TEEs) based applications in C and C++. The Open Enclave 

SDK aims to provide a single unified enclave abstraction for developers to develop TEE based 

applications independent from the underlying TEEs, hence enabling TEE agnostic secure 

applications that can be utilize on any hardware-based TEEs.  

  

The key design principle of Open Enclave is to facilitate generalization, thus enabling 

developers to build enclave application model to minimize hardware and software specific 

concepts. The Open Enclave SDK supports the following key functionalities: 

1. Enclave creation and management: The Open Enclave provides all the necessary 

function calls that are required for the management of the lifecycle of an enclave 

within an application. 

2. Enclave measurement and identity: Open Enclave provides the expressions of enclave 

measurement and identity. 

3. Communication: Open Enclave includes mechanisms for describing interfaces to 

define Enclave in and out calls and also handles the data marshalling associated with 

the in/out calls. 
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4. Data sealing: Open Enclave provide functions to facilitate the sealing of runtime 

Enclave data/secrets. 

5. Attestation: Open Enclave provide mechanisms that facilitate both kind of attestation 

procedures, i.e. local and remote. 

6. Runtime and cryptographic libraries: Open Enclave provide pluggable cryptographic 

libraries and runtime to facilitate the required cryptographic support inside enclaves. 

The Open Enclave can be used directly on the hardware of proprietary CPU manufacturer such 

as Intel's SGX or ARM TrustZone, and can also be used in the cloud virtualized environment. 

E.g. currently, Microsoft Azure provides specialized VMs that support Intel SGX based TEEs 

where Open Enclave based applications can be deployed. 

4.3.2 Security Model 
The integration of Open Enclave SDK in an application enable the developers to builds security 

sensitive programs, where sensitive data can be protected by an enclave against malicious 

access. The enclaves created through the Open Enclave SDK guarantees the confidentiality 

and integrity of the data under processing inside the enclave as well as all the communication 

between the enclave and the untrusted part of the application. The Open Enclave SDK, as 

mentioned earlier, also facilitates both kind of attestation features to confirm the integrity of 

the enclave to a challenger. In addition, the functionalities like data sealing and support of 

cryptographic libraries/runtimes within enclave greatly enhance its suitability as a potential 

candidate to build security sensitive applications that required to be executed in TEEs. 

4.3.3 TEE Hardware and CPU Support  
The Open Enclave SDK aims to generalize the development of the enclave applications across 

TEEs from different hardware vendors. However, the current support is only available for Intel 

SGX and ARM TrustZone. In terms of operating systems, the Open Enclave SDK support is 

available for both Linux and Windows platforms. 

4.3.4 Architectural components 
Figure 9 depicts the high-level architecture of applications developed using Open Enclave. The 

Node in the figure represents the TEE based machine that host Open Enclave based 

application/s, e.g. Application 1 and 2 in this case. An application developed using Open 

Enclave is structured in two parts, the untrusted part of the application and the trusted part. 

The trusted part of the application must run within an Enclave. In the following figure, this 

can be seen as the boxes labelled as Application Enclave. The enclaves of an application run 

in TEE, where the untrusted part runs outside TEE. Each enclave, as can be seen from Figure 

9, has its own private code and data. The enclave data is restricted only to the enclave and it 

cannot be accessed from the untrusted part of the application and also not by other enclaves 

of the same application. The untrusted part of the application is usually responsible to provide 

interface to the external world in addition to any other untrusted computation. Hence any 
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external interaction, with the enclaves of the application, must be mediated through the 

untrusted part of the application, represented as Host Application 1 and 2 in this case. 

 

 

Figure 9: Open Enclave based application architecture 

 

In order to better understand the operating procedure of the Open Enclave SDK and to put it 

into the context of Asclepios project, let us consider the example of the interactions between 

the two components, i.e. Client application and Trusted Authority (TA) from the SSE scheme. 

The detailed description of SSE is earlier described in Section 3.1. The TA component in the 

SSE scheme is responsible for handling the meta data required to facilitate searching over the 

encrypted data. The TA is a REST service and it provides various functions related to the 

management of meta data. For this example, we only consider the interaction of Client 

Application with the TA for the two core functions, get and update metadata. The following 

figure presents all the necessary interactions in light of the Open Enclave architecture earlier 

explained and presented in the previous figure. 

 

 

Figure 10: Open Enclave adaptation of SSE as an example 
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The TA component will be divided into the following two parts: (1) the Untrusted part, which 

will be running outside Enclave and will consist of interfaces to enable interactions from 

external components with TA, and (2) the Trusted part, which will be running inside the 

enclave and provide implementation to the core functionality of TA. The enclave must provide 

internal interfaces to the core functions that will be allowed to triggered from the untrusted 

part of the TA.  

 

The Open Enclave architecture relies on the Enclave Definition Language (EDL) for the 

definition of the interfaces between the trusted and untrusted part. In the current example, 

the Untrusted part, on the receipt of the requests for getMetaData and uploadMetaData, 

triggers the corresponding enclave get and upload functions. These are secure enclave 

functions and are required to run inside TEE. Therefore, calling these functions from the 

Untrusted part pass the execution control from non-secured computation to secured 

computation that happens in TEE. The code inside enclave is responsible to only perform the 

secure computation and therefore if there is the need to execute some code from the 

Untrusted part, the enclave code must trigger the corresponding interface of the Untrusted 

part, such as calling the updateHostLog function in this case.  

 

The following code snippet represents the corresponding EDL code that describe the 

definitions of the above-mentioned three interfaces (entry points). As it can be seen from the 

following code snippet that the enclaveGet and enclaveUpdate are the secure functions of the 

enclave, whereas the updateHostLog is the interface to a function in the Untrusted part of TA. 

It is important to note that the in/out parameters in the following code snippet are the 

simplified version of the actual in/out parameters of corresponding TA functions. 

Furthermore, it is important to note that the data communicated between the Client 

application and the TA Enclave must be encrypted and the Untrusted part of the TA is also 

unable to decrypt it. Only the Client Application and the TA Enclave will be able to decrypt the 

communicating data. 

 

 

Figure 11: Enclave Definition Language (EDL) code example 
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5 Standardization work 

In this section we review the most relevant standardization work aimed at realising the 

interoperability of TEEs. 

5.1 IETF TEEP 

As described above, TEEs use hardware enforcement combined with software protection to   

secure trusted applications (TAs) and their data. Moreover, TEEs typically offer a more limited 

set of services to TAs than is normally available to Untrusted Applications. Considering 

diversity of TEE implementation (briefly overviewed in Section 3), TEEs offer different security 

properties, different features, and different control mechanisms to operate the TAs. Some 

vendors may themselves market multiple different TEEs with different properties attuned to 

different markets. A device vendor may integrate one or more TEEs into their devices 

depending on market needs. This highlights the need for an interoperable protocol for 

managing TAs running in different TEEs of various devices. Furthermore, in this TEE 

ecosystem, there often arises a need for an external trusted party to verify the identity, 

claims, and rights of TA developers, devices, and their TEEs. This trusted third party is the 

Trusted Application Manager (TAM) [4]. The focus of the IETF TEEP Work group is to create 

such an interoperable protocol and ancillary technical details. 

 

The Trusted Execution Environment Provisioning (TEEP) protocol addresses the following 

problems [4]: 

•  An installer of an Untrusted Application that depends on a given TA wants to request 

installation of that TA in the device's TEE so that the Untrusted Application can 

complete, but the TEE needs to verify whether such a TA is authorized to run in the 

TEE and consume potentially scarce TEE resources. 

• A TA developer providing a TA whose code itself is considered confidential wants to 

determine security-relevant information of a device before allowing their TA to be 

provisioned to the TEE within the device. An example is the verification of the type of 

TEE included in a device and that it can provide the required security protections. 

• A TEE in a device intends to determine whether an entity that wants to manage a TA 

in the device is authorized to manage TAs in the TEE, and what TAs the entity is 

permitted to manage. 

• A TAM (e.g., operated by a device administrator) wants to determine if a TA exists (is 

installed) on a device (in the TEE), and if not, install the TA in the TEE.  

• A TAM wants to check whether a TA in a device's TEE is the most up-to-date version, 

and if not, update the TA in the TEE. 
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• A TA developer wants to remove a confidential TA from a device's TEE if the TA 

developer is no longer offering such TAs or the TAs are being revoked from a user (or 

device). For example, if a subscription or contract for a service expired, or a payment 

by the user has not been completed or has been rescinded. 

• A TA developer wants to define the relationship between cooperating TAs under the 

TA developer's control and specify whether the TAs can communicate and share data 

and key material. 

The TEEP notional architecture (illustrated in Figure 12) considers one or several actors (such 

as a Trusted Application Developer, or Device Administrator) the deploy TAs over one or 

several TAMs. Whenever a TA is to be installed on a device carrying a TEE, the first step is to 

install a support application. Next, the support applications invoke the TEEP Broker (part of 

the software support for the TEE available on the platform) to request the installation of (or 

updates to) TAs in the TEE. The TEEP broker, deployed on devices with TEEs, contacts the TAM 

in order to poll for TAs (or updates) and transfers the received data to the TEEP Agent that 

manages the installation and patching of TAs inside the TEE. 

 

 

Figure 12 TEEP architecture 

 

Note that the IETF TEEP Working Group is active at the moment of writing and the TEEP 

Architecture document [4] remains work in progress. Therefore, deviations from the problem 

statement and illustration above can be expected. Within project ASCLEPIOS, RISE has 

contributed to the formulation of the Trusted Execution Environment Platform (TEEP) 

architecture. Furthermore, RISE leads an implementation of the TEEP Architecture, realized 

within project ASCLEPIOS as the TEEP Deployer (TEEPD) component. 
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5.2 IETF RATS 

 

Remote attestation, discussed above, is a cornerstone for establishing the trustworthiness of 

workload executing in a TEE. The IETF RATS working groups focuses on establishing a 

standardized attestation procedure with cross-vendor TEE support [5]. 

 

 

Figure 13 RATS conceptual data flow. 

 
RATS defines a universal set of terms that can be mapped to various existing and emerging 

Remote Attestation Procedures, under the simplified model seen in Figure 13. For remote 

attestation RATS maps different attestation components to their TEEP counterpart as seen in 

Figure 14. 

 

 

Figure 14 Remote attestation with TEEP and RATS.  

 

This standard is discussed in detail in ASCLEPIOS D4.2, to which we refer readers for more 

information. 

5.3 Global Platform 

Global Platform works on the standardization and interoperability of application management 

within a TEE to deliver flexible security that answers the unique requirements of a range of 

different markets and use cases. The benefits of this work are as follows: 

• Device manufacturers can embed a standardized and certified TEE that meets the 

needs of service providers for the protection of digital services from fraud and attack. 



      D4.3 Interoperability of ITEEs in the context of eHealth systems 
 

Work Package 4   Page 36 of 42 

 

• Service providers are free to focus on enhancing their offerings by using a secure 

component to solve security challenges. They can also develop their service just once 

and deploy it universally across any device with a certified TEE, with the assurance that 

security levels will be consistent across devices.  

• Digital service users benefit from greater simplicity, convenience, security and privacy 

for their digital services and personal data. 

 

 

GlobalPlatform defines a mechanism for secure communication between normal and trusted 

applications. The aim is to allow procedure calls that can carry small (e.g. a number) or large 

parameters (e.g. a large memory area) from normal applications in rich OS into trusted 

applications and back in a secure manner. For this the standard defines a very narrow API 

where up to 4 parameters are allowed in each call. The underlying Trusted OS is responsible 

for handling call routing and transferring parameters between the security domains in a 

transparent but secure manner. 

 

Figure 15 Example of GlobalPlatform remote procedure call (ARM TrustZone). 

 

Figure 15 illustrates steps necessary for routing a procedure call with GlobalPlatform on 

platforms that require full isolation between secure an and unsecure applications and OS:es. 

 

The key TEE standardization artifacts produced by GlobalPlatform are the TEE system 

architecture; TEE management framework, TEE initial configuration and TEE APIs , as 

described in [37]. 

 

5.3.1 Global Platform TEE system architecture  
The TEE system architecture document [38] explains the hardware and software architectures 

behind the TEE. It introduces TEE management and explains concepts relevant to TEE 

functional availability in a device [37]. The document describes the general device 
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architecture associated with the TEE and provides a high-level overview of the security 

requirements of a TEE [38], without mandating an implementation architecture. The 

document outlines different hardware and software architectures to answer to the TEE 

security and functional requirements. Computing devices offer a Rich Execution Environment 

(REE), providing a hugely extensible and versatile operating environment, introducing both 

new capabilities and vulnerabilities to software threats. The TEE System Architecture outlines 

the high-level functional and security features of a TEE operating alongside the REE and 

providing a safe area of the device to protect assets and execute trusted code [37]. 

 

5.3.2 TEE management framework 

The Global Platform TEE Management Framework [39] describes the security model for the 

administration of Trusted Execution Environments (TEE) and of Trusted Applications (TA), as 

well as of the corresponding Security Domains (SD). It describes the roles and responsibilities 

of the stakeholders involved in the administration of a TEE and TA, the life cycle of 

administrated entities, mechanisms involved in administration operations, and the protocols 

used to perform such operations [39].  In particular, the framework defines methods for 

remotely and dynamically managing TEEs, including data and key provisioning, security 

domain management, trusted application (TA) management, audit, and overall TEE 

management [37]. The framework further presents the roles and responsibilities of the 

different stakeholders involved in the administration of TEEs and TAs, the life cycle of 

administrated entities, mechanisms involved in administration operations, and the protocols 

used to perform these operations [37]. The framework enables this by defining protocols and 

interfaces that can be accessed either through the GlobalPlatform TEE Client API [40] or via 

extensions to the recently released TEE Internal Core API [41].  

5.3.3 TEE APIs 
The Global Platform TEE API specifications include the TEE Client API Specification [40] and 

the TEE Core API Specification [41]. The TEE Client specification defines a communications API 

for connecting Client Applications executing in an REE with security related Trusted 

Applications running inside a TEE [40]. Global Platform TEE Client API specification considers 

a TEE that is a trusted environment within the main device system-on-a-chip. Additionally, it 

might complement traditional security environments such as a UICC SIM card. The document 

contains implementation guidelines for Client Applications running within the rich operating 

environment and which use Trusted Applications, Trusted Applications running inside the TEE 

which need to expose an externally visible interface to Client Applications and the TEE and 

the communications infrastructure required to access it [40]. 
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The Global Platform Internal Core API Specification [41] defines a set of C APIs for the 

development of Trusted Applications running in TEEs, reachable through the GlobalPlatform 

TEE Client API, considered specifically protected against malicious attacks and only running 

code trusted in integrity and authenticity.  The APIs defined in the Internal Core API 

specification are defined for the C programming language and provide a set of functionalities 

to TA developers, including basic OS-like functionalities (memory management, timer, and 

access to configuration properties), communication means with client Applications running in 

the REE; as well as facilities for trusted storage, cryptographic operations and peripheral 

interface and Event handling [41]. 

 

5.3.4 TEE Initial configuration 

The GlobalPlatform Device TEE Initial Configuration document [42] describes common 

implementation requirements of core features of the GlobalPlatform Device Specification 

[37]. It defines configurations logically grouping together certain specifications to provide a 

coherent and consistent package. Furthermore, the document specifies configuration 

requirements for implementing the TEE initial configuration of GlobalPlatform TEE 

Specifications [42]. It refines the features of the internal core [40] and the client specification 

[41]. It is primarily targeted towards TEE vendors and application developers and is the basis 

for the development of a test suite for use in the compliance program. The TEE initial 

configuration combines the TEE Client API [40] and Internal Core [41] Specifications, updated 

in response to the latest feedback from the TEE testing and compliance ecosystem’s live 

implementations. The configuration, along with the functional and security test suites, aims 

to enhance TEE interoperability and security and facilitate TEE vendors to ensure compliance 

with GlobalPlatform’s Device Specification [37]. 
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6 Conclusion 

 

In this document we reviewed the interoperability of Trusted Execution Environments (TEEs). 

We started with a brief review of the approaches to implementing Trusted Execution 

Environments. We further focused on two TEE architectures (Intel SGX and AMD SEV) 

implemented by the most popular commodity server platform vendors (Intel and AMD 

respectively). Next, we provided an account of the implementation of a Trusted Application 

designed to run in a Trusted Execution Environment within project ASCLEPIOS. Further, we 

reviewed the major efforts towards interoperability between TEE architectures (Enarx, Asylo 

and OpenEnclave). Finally, we reviewed the major standardization efforts towards TEE 

interoperability. In particular, we discussed IETF TEEP, which was the target of contributions 

from project ASCLEPIOS; IETF RATS, which aims to describe a cross-platform TEE attestation 

protocol; and Global Platform, which focuses primarily on the standardization and 

interoperability of application management within TEEs.  

 

This document describes a comprehensive view of TEE interoperability and may serve as a 

guide in choosing the suitable target TEE architecture for components within the ASCLEPIOS 

framework. This document complements the earlier deliverables D4.1 and D4.2, which focus 

on application management within TEEs and on remote attestation procedures for various 

TEE architectures. The review of interoperability efforts contained in this document 

contributes to the implementation of the Trusted Execution Environment Deployer (TEEPD) 

component. Implementation work on TEEPD will continue beyond WP4: in particular, TEEPD 

will be integrated with the ASCLEPIOS platform in WP5 and will be evaluated as part of the 

ASCLEPIOS demonstrator in WP6.  
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