
 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 1 of 42

Advanced Secure Cloud Encrypted Platform for

Internationally Orchestrated Solutions in

Healthcare

Project Acronym: ASCLEPIOS

Project Contract Number: 826093

Programme: Health, demographic change and wellbeing

Call: Trusted digital solutions and Cybersecurity in Health and Care

to protect privacy/data/infrastructures

Call Identifier: H2020-SC1-FA-DTS-2018-2020

Focus Area: Boosting the effectiveness of the Security Union

Topic: Toolkit for assessing and reducing cyber risks in hospitals and care centres

Topic Identifier: H2020-SC1-U-TDS-02-2018

Funding Scheme: Research and Innovation Action

Start date of project: 01/12/2018 Duration: 36 months

Deliverable:

D4.3 Interoperability of ITEEs in the context of eHealth systems

Due date of deliverable: 31/05/2020 Actual submission date: 30/05/2020

WPL: Nicolae Paladi/RISE

Dissemination Level: Public

Version: 1.1

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 2 of 42

Table of Contents

Table of Contents ... 2

List of Figures and Tables .. 4

Status, Change History and Glossary ... 5

1 Introduction ... 8

1.1 Scope ... 8

1.2 Objectives .. 8

1.3 Relation to Other Work Packages and Deliverables ... 8

1.4 Outlook .. 8

2 Current TEE Landscape .. 10

2.1 Approaches to TEE implementation ... 10

2.1.1 Dynamic Root of Trust for Measurement .. 10
2.1.2 Intel Software Guard Extensions .. 10
2.1.3 ARM TrustZone ... 12
2.1.1 IBM Protected Execution Facility .. 12
2.1.2 AMD Secure Encrypted Virtualization .. 13

2.2 Comparison of SGX and SEV ... 13

2.2.1 Memory limits .. 13
2.2.2 Usability ... 13
2.2.3 Integrity protection ... 14

3 Applications development for TEEs ... 16

3.1 Symmetric Searchable Encryption (SSE) and TEE .. 16

3.1.1 SSE ... 16
3.1.2 SSE components to be deployed in TEE ... 17
3.1.3 Architecture and implementation ... 18

3.2 Implementation with Intel SGX .. 19

4 TEE Interoperability .. 23

4.1 Enarx ... 23

4.1.1 High-level description .. 23
4.1.2 Security Model ... 23
4.1.3 TEE Hardware and CPU Support ... 24
4.1.4 Runtime requirements .. 24
4.1.5 Architectural components .. 24
4.1.6 Relation to ASCLEPIOS .. 25

4.2 Asylo ... 25

4.2.1 High-level description .. 25

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 3 of 42

4.2.2 Security Model ... 26
4.2.3 Architectural components .. 27
4.2.4 Interoperability / Portability ... 29

4.3 Open Enclave SDK ... 29

4.3.1 High-level description .. 29
4.3.2 Security Model ... 30
4.3.3 TEE Hardware and CPU Support ... 30
4.3.4 Architectural components .. 30

5 Standardization work ... 33

5.1 IETF TEEP .. 33

5.2 IETF RATS ... 35

5.3 Global Platform ... 35

5.3.1 Global Platform TEE system architecture .. 36
5.3.2 TEE management framework ... 37
5.3.3 TEE APIs .. 37
5.3.4 TEE Initial configuration ... 38

6 Conclusion ... 39

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 4 of 42

List of Figures and Tables

Figures

Figure 2 Intel SGX execution mechanism ... 11

Figure 3 AMD execution mechanism .. 13

Figure 4 Architectural view of the SSE scheme .. 16

Figure 5 High level description of SSE scheme within TEE ... 19

Figure 6 A typical example of Intel SGX based application .. 20

Figure 7 Intel remote attestation flow [25] ... 21

Figure 8 Enarx process flow overivew ... 25

Figure 9 Asylo process flow ... 27

Figure 10: Open Enclave based application architecture ... 31

Figure 11: Open Enclave adaptation of SSE as an example .. 31

Figure 12: Enclave Definition Language (EDL) code example ... 32

Figure 13 TEEP architecture .. 34

Figure 14 RATS conceptual data flow. .. 35

Figure 15 Remote attestation with TEEP and RATS. .. 35

Figure 16 Example of GlobalPlatform remote procedure call (ARM TrustZone). 36

Tables

Table 1: Status Change History .. 5

Table 2: Deliverable Change History ... 5

Table 3: Glossary ... 7

Table 4 comparison of SGX and SEV ... 14

Table 5 Comparison of SGX and AMD application security .. 15

Table 6 Comparison of SGX and SEV vulnerabilities ... 15

file://///Users/nicolae/Documents/distributed/projects/git/ASCLEPIOS/0.ASCLEPIOS-WP4/4.D4.3/1.Draft/Submission-D4.3%20-%20Interoperability%20of%20ITEEs%20in%20the%20context%20of%20eHealth%20systems.docx%23_Toc41596034
file://///Users/nicolae/Documents/distributed/projects/git/ASCLEPIOS/0.ASCLEPIOS-WP4/4.D4.3/1.Draft/Submission-D4.3%20-%20Interoperability%20of%20ITEEs%20in%20the%20context%20of%20eHealth%20systems.docx%23_Toc41596035

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 5 of 42

Status, Change History and Glossary

Status: Name: Date: Signature:

Draft:
Arash Vahidi

Nicolae Paladi
27/02/2020

Reviewed:
Razvan Venter

Christiaan Hillen
20/05/2020

Approved: Tamas Kiss 30/05/2020 Tamas Kiss

Table 1: Status Change History

Version Date Pages Author Modification

V0.1 18/03/2020 8 Nicolae Paladi Create working document

V0.2 18/03/2020 13 Nicolae Paladi Update TOC, add info about Enarx

V0.3 25/03/2020 15 Nicolae Paladi Expand Introduction

V0.4 10/04/2020 18 Nicolae Paladi Describe current TEE landscape

V0.5 04/05/2020 31

Amjad

Ullah/Hai-Van

Dang

Describe the Application development for

TEEs

V0.6 09/05/2020 34 Amjad Ullah Describe the Open Enclave SDK

V0.7 2020-05-11 34 Arash Vahidi

Updated sections about RATS, TEEP and

GlobalPlatform

V0.8 2020-05-11 39 Nicolae Paladi

Update description of Enarx; update

figures; write conclusion

V0.9 2020-05-12 41 Nicolae Paladi Review document, prepare for review

V1.0 2020-05-25 41 Nicolae Paladi Edit & address internal review comments

V1.1 2020-05-29 42 Nicolae Paladi Add Section 1.4, extend conclusion

Table 2: Deliverable Change History

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 6 of 42

Glossary

ACPI Advanced Configuration and Power Interface

AES Advanced Encryption Standard

CPU Central Processing Unit

CA Certificate Authority

DMA Direct Memory Access

DoS Denial of Service

DRAM Dynamic Read-Only Memory

EDMM Enclave dynamic memory management

EDL Enclave Definition Language

EPC Enclave Page Cache

EPCM Enclave Page Cache Map

FIQ Fast Interrupt Request

GDPR General Data Protection Regulation

HECI Host Embedded Controller Interface

HAIEE Hardware-Assisted Isolated Execution Environments

IETF Internet Engineering Task Force

IRQ Interrupt Request

ITEE Isolated Trusted Execution Environment

ME Management Engine

MEE Memory Encryption Engine

MMU Memory Management Unit

MPU Memory Protection Unit

NS Non-Secure

OEM Original Equipment Manufacturer

OS Operating System

PCI Peripheral Component Interconnect

PCR Platform Configuration Registers

PRM Processor Reserved Memory

REE Rich Execution Environment

ROM Read-Only Memory

RISE Research Institutes of Sweden

RSM Resume for System Management Mode

TA Trusted Application

TAM Trusted Application Manager

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 7 of 42

TEE Trusted Execution Environment

TEEP Trusted Execution Environment Platform

TOC Time-of-Check

TOU Time-of-Use

SEV Secure Encrypted Virtualization

SENTER Secure ENTER

SCR Secure Configuration Register

SGX Software Guard Extensions

SKINIT Secure Init and Jump with Attestation

SoC System-on-Chip

SMC Secure Monitor Call

SMI System Management Interrupt

SMM System Management Mode

SMU System Management Unit

SMRAM System Management RAM

SSE Symmetric Searchable Encryption

WASI Web Assembly System Interface

WASM Web Assembly

Table 3: Glossary

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 8 of 42

1 Introduction

1.1 Scope

The scope of this document is a review of the state of the art in the interoperability of TEEs

and portability of applications for TEEs. We further consider the interoperability aspects of

TEE applications for e-health security, in the context of project ASCLEPIOS. Beyond a review

of the state of the art, the document includes reviewing practical aspects of developing

applications for some types of TEEs, a review of TEE application development and deployment

frameworks and on-going standardization work, conducted both within project ASCLEPIOS

and outside of it.

1.2 Objectives

The specific objectives of this document are as follows:

• Review the current landscape of TEE implementations;

• Describe practical aspects of developing applications for common TEEs;

• Review existing projects for TEE application development and deployment;

• Review of the standardization work towards TEE interoperability.

1.3 Relation to Other Work Packages and Deliverables

This document constitutes Deliverable D4.3 within Work Package 4. While it contains practical

aspects of developing applications for TEEs (Specifically in Section 3), in this deliverable we

look at the upcoming and on-going projects that aim to enable interoperability between TEEs.

In many cases, such projects are not yet functional or have very limited functionality.

Therefore, the deliverable focuses on the documented functionality rather than a first-hand

experience. A notable exception, as noted above, is Section 3, where we describe application

development for TEEs using the Open Enclave project1.

This deliverable complements deliverables D4.1 and D4.2. In D4.1 we describe the key,

firmware and workload management in several common TEE architectures. In D4.2 we

describe the approaches to workload attestation and its use in project ASCLEPIOS. When it

comes to other work packages, the contents of this deliverable may serve as a guidance in

selecting a suitable TEE for software components supporting the ASCLEPIOS framework.

1.4 Outlook

Task 4.3 was initially designed with the goal of developing a framework facilitating the
development of applications portable across Trusted Execution Environment (TEE)
architectures. However, throughout the course of the task, its scope was adjusted considering
the following three points identified in the course of WP4:

1 Open Enclave SDK https://openenclave.io/

https://openenclave.io/

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 9 of 42

1. deployment, attestation and management of applications within the same TEE
architecture remains underspecified, thus undermining the foundations of any
application portability effort;

2. relevant standardization efforts aim to create a common deployment and attestation
architecture for applications in TEEs, with only one partial open-source
implementation available;

3. portability of applications across TEE architectures is an increasingly difficult problem
due to the diverging architectural choices made by vendors for emergent features.
Despite significant efforts so far, portability projects only have limited support for one
TEE architecture, despite the declared goal of supporting several most relevant ones.

The scope of this task was defined to address, in order, the factors defined above. As a result,
work in Task 4.3 focused on the following: detailing in Section 3 the practical choices, trade-
offs and decisions for developing, attesting and deploying applications in a TEE (in particular,
in Intel SGX using the OpenEnclave SDK), thus addressing point 1; contributing to the
specification of - and implementing a prototype of - the Trusted Execution Environment
Platform Architecture defined by the Internet Engineering Task Force (addressing point 2,
described in Section 5), and evaluating in Section 4 the existing open-source projects that
work towards application portability (addressing point 3).

This document provides a comprehensive overview of the on-going efforts in terms of inter-
operability; it supports the implementation work on the Trusted Execution Environment
Platform Deployer (TEEPD) within project ASCLEPIOS. TEEPD implements the Trusted
Execution Environment Platform architecture defined in [4] and described in Section 5.1.
Implementation, integration and evaluation of TEEPD will be continued throughout WP 5
and WP 6 within project ASCLEPIOS.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 10 of 42

2 Current TEE Landscape

In this section, we review the landscape of user-programmable Trusted Execution

Environments relevant in the context of medical data protection. The review includes both

existing an upcoming (or announced) architectural approaches for Trusted Execution

Environment.

2.1 Approaches to TEE implementation

2.1.1 Dynamic Root of Trust for Measurement

The Trusted Computing Group (TCG) introduced Dynamic Root of Trust for Measurement

(DRTM), also called “late launch”, in the TPM v1.2 specification in 2005. It is an alternative to

the Static Root of Trust for Measurement (SRTM). Unlike SRTM which operates at boot time,

DRTM allows the root of trust for measurement to be initialized at any point [1]. To implement

this technology, Intel developed Trusted eXecution Technology (TXT), providing a trusted way

to load and execute system software (e.g., OS or VMM). Its primary purpose is to detect the

potential presence of certain types of attacks, notify system owners about the detected

attacks and prevent the creation of an Measured Launch Environment in the event of a

compromise [29]. This is done by combining the SRTM and DRTM capabilities, along with

additional support in software and in the instruction set architecture (ISA). At power-on,

SRTM is used to establish and extend a chain of trust from the Intel processor (and chipset)

to and including the BIOS. Once booted, the operating system or an application executing on

the operating system can initiate a measured launch sequence by invoking the

GETSEC(SENTER) instruction, which triggers the loading of the Measured Launch

Initialization (SI NI T). Intel TXT makes no assumptions about the system state and provides a

dynamic root of trust for late launch. Thus, TXT can be viewed as a hardware-assisted trusted

execution environment capable of running security sensitive tasks, at the cost of a significant

overhead on the late launch operation [1].

2.1.2 Intel Software Guard Extensions

Intel SGX provides a TEE in recent processors since generation Skylake. Applications create

secure enclaves to protect the integrity and confidentiality of the code being executed and its

associated data [2]. Such enclaves rely for their security on a trusted computing base of code

and data loaded at initialization creation time, processor firmware and processor hardware.

Program execution in an enclave is transparent to both the underlying OS and other enclaves.

Many mutually distrusting enclaves can operate on the platform. Intel SGX was applied widely

adopted and used in several application domains, including cloud and network security [33-

35]. The SGX mechanism is illustrated in Figure 2.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 11 of 42

The life cycle of an SGX enclave starts with a

creation stage, when the ECREATE

instruction invoked by the system software

allocates a memory page for the SGX Enclave

control structure and populates it with data

about the memory size and layout of the

enclave, made available by the system

software. Once the enclave is created,

system software uses the EADD instruction

to load code and data into the enclave using

the EEXTEND instruction to update the

measurement of the enclave. Finally, the

system software obtains an initialization token (EI NI TTOKEN) from a dedicated Launch

Enclave and initializes the enclave (using the EI NI T instruction). Once the enclave is

initialized, the application deployed to the enclave can execute [30]. A remote attestation

protocol (not shown in Figure 2) allows an enclave to provide guarantees of its contents and

that it runs on a genuine Intel processor with SGX enabled. An application using enclaves must

ship a signed, plaintext shared library that can be inspected, (including by malicious attackers).

The enclave page cache (EPC) is a 128 MiB area of memory predefined at boot, dedicated to

storing enclave code and data. At most 93.5 MiB can be used by an application; the remaining

area is used to maintain SGX metadata. Any access to an enclave page outside the EPC triggers

a page fault. The SGX driver interacts with the CPU and decides which pages to evict. Traffic

between the CPU and the system memory is kept confidential by the memory encryption

engine (MEE) [2], also in charge of tamper resistance and replay protection. If a cache miss

hits a protected region, the MEE encrypts or decrypts data before sending to, respectively

fetching from, the system memory and performs integrity checks. Data can also be persisted

on stable storage, protected by a seal key. This allows storing certificates and waives the need

of a new remote attestation every time an enclave application restarts [3].

The execution flow of a program using SGX enclaves is as follows. First, an enclave is created

(see Figure 2, step 1). When a program needs to execute a trusted function (2), it invokes the

SGX ECALL primitive (3). The program goes through the SGX call gate to bring the execution

flow inside the enclave (4). After the trusted function is executed by one of the enclave’s

threads (5), its result is encrypted and sent back (6) prior to returning control to the main

processing thread (7) that continues the execution. Since its introduction, Intel SGX was and

remains under intense scrutiny from the security research community. This resulted in

exposing numerous security vulnerabilities [10-19]. A range of improvement have been

proposed [20-22] and the SGX specification was updated on several occasions.

Figure 1 Intel SGX execution mechanism

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 12 of 42

2.1.3 ARM TrustZone
ARM TrustZone is a hardware feature to create isolated execution environments. It provides

two environments (or “worlds”): the “secure world”, i.e. the Trusted Execution Environment

(TEE), and the “normal world”, i.e. the Rich Execution Environment (REE). To ensure complete

isolation between the two environments, TrustZone provides security extensions for

hardware components including CPU, memory, and peripherals [1]. The two environments

correspond to the security modes of the TrustZone enabled ARM CPU. Each processor mode

has its own memory access region and privilege. Code running in the normal world cannot

access the memory in the secure world, while code running in the secure world can access

the memory in normal world. The secure and normal worlds can be identified by reading the

NS bit in the Secure Configuration Register (SCR), modifiable in the secure world. TrustZone

uses Monitor mode that only runs in the secure world to serve as a gatekeeper managing the

switches between the two worlds. The normal world can call a special instruction called the

Secure Monitor Call (SMC) to enter the Monitor mode and modify the NS bit to switch into

the secure world [1]. From a user perspective, ARM TrustZone offers only limited

programmability, since applications deployed in ARM TrustZone must be signed by the

hardware vendor. In practice, this limits the number of TrustZone application providers.

Another notable limitation of this approach is that there is no isolation among the applications

running in TrustZone.

2.1.1 IBM Protected Execution Facility
IBM has announced in 2018 the Protected Execution Facility (PEF) technology [36]. PEF

leverages a combination of the TPM and additional processor instructions to create a

virtualization environment with enhanced security guarantees. PEF introduces Secure Virtual

Machines (SVMs) and allows to protect SVM (including code and data) against attacks from

outside SVM components. PEF allows secrets to be embedded in SVM at creation, and

supports conversion of existing VMs into SVMs. PEF does not limit amount of protected

memory, allowing existing application code to run in an SVM.

To enable PEF support, a new processor mode is added – the Ultravisor mode, that is higher

privileged than the hypervisor mode. Architecturally, the Ultravisor is a shim layer beneath

the hypervisor. The Ultravisor controls the memory space where the Secure VMs run, such

that the hypervisor and normal VMs cannot reference the memory used by SVMs. Hypervisors

must do an ultracall (a new type of syscall) to access secure memory or utravisor privileged

resources; moreover, hypervisors can only see secure memory in encrypted form. PEF relies

on a root of trust, implemented using TPMs available in OpenPOWER systems. The Ultravisor

uses a secure channel to the TPM to get access to the symmetric key protecting the SVM [36].

To the best of our knowledge, no hardware supporting PEF is available at the moment.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 13 of 42

2.1.2 AMD Secure Encrypted Virtualization
AMD secure encrypted virtualization (SEV) provides transparent encryption of the memory

used by virtual machines. This requires the AMD secure memory encryption (SME) extension

to be available and supported by the underlying hardware. The architecture relies on an

embedded hardware AES engine, located on the core’s memory controller. SME creates one

key that is used to encrypt the entire memory. This is not the case for SEV, where multiple

keys are being generated. The overhead of the AES engine is minimal [3].

SEV delegates the creation of ephemeral

encryption keys to the AMD secure

processor (SP), an ARM TrustZone-enabled

system-on-chip (SoC) embedded on-die [3].

These keys are used to encrypt the memory

pages belonging to distinct virtual machines,

by creating one key per VM. Similarly, there

is one different key per hypervisor. These

keys are never exposed to software executed

by the CPU. AMD SEV allows to attest

encrypted states by using an internal

challenge mechanism, so a program can

receive proof that a page is correctly encrypted [3]. From the programmer perspective SEV is

transparent and the execution flow of a program using it is the same as a regular program.

Notably different from Intel SGX, all the code runs inside a trusted environment, without a

fine-grained separation of the “trusted” and “non-trusted” part of the code. The execution

flow is illustrated in Figure 3. First, a program needs to call a function (Figure 3, step 1). The

kernel schedules a thread to execute that function (2) before executing it (3). The execution

returns to the main execution thread (6) until the next execution is scheduled (5) [3].

2.2 Comparison of SGX and SEV

We briefly highlight the differences between these two technologies along three different

criteria, summarized in Table 4, Table 5 and Table 6 below.

2.2.1 Memory limits
The EPC area used by SGX is limited to 128 MiB, of which 93.5 MiB are usable in practice by

applications. The size of the EPC can be controlled (reduced) by changing settings in the UEFI

setup utility from the BIOS of the machine. There is no such limit for SEV: applications running

inside an encrypted VM can use all its allocated memory [3].

2.2.2 Usability
To use SGX enclaves, a program must be modified—requiring a re-compilation or a relink—

e.g., using the official Intel SGX SDK. It is the responsibility of developers to decide which

Figure 2 AMD execution mechanism

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 14 of 42

sections of the programs will run inside and outside the enclave. Several semi-automatic tools

have been introduced to facilitate this process [31], [32]. As mentioned above, no changes

need to be made to programs when using SEV [3].

2.2.3 Integrity protection
Intel SGX has data-integrity protection mechanisms built-in. Memory pages read from EPC

memory by an enclave are decrypted by the CPU, and then cached within the processor. In

the reverse data flow, data that is being written to the EPC by an enclave is encrypted inside

the CPU before leaving its boundaries. Data integrity is safeguarded by associating integrity

protected metadata. The metadata is stored in a Merkle tree structure, the root of which is

stored in SRAM, inside the processor. These integrity mechanisms incur an overhead that has

been previously evaluated and shown to be acceptable for sequential read/write operations,

but up to 10× for random read/write operations [3]. Conversely, to the best of our knowledge,

the current version of AMD SEV (or SME) does not provide any integrity protection

mechanism. This can be exploited to break the security guarantees of SEV [7-9, 24]. We expect

that limitation to be addressed in future revisions.

The main advantages of SEV in comparison to its main competitor - Intel SGX - are (1) memory

size, (2) efficiency and (3) No SDK or code refactoring are required. SGX allocates only 128MB

of memory for software and applications and thus, making it a good candidate for

microtransactions and login services. However, SEV's memory is up to the available RAM and

hence, making it a perfect fit for securing complex applications. Moreover, in situations

where many calls are required, like in the case of a multi-client cloud service, SEV is known to

be much faster and efficient than SGX. Table 4, Table 5 and Table 6provide a collective

comparison with the main features offered by SGX and SEV [3].

Table 4 comparison of SGX and SEV

TEE Access
Level

Memory Size SDK Attestation Protection

SGX Ring3 Up to 128MB Provided Through Intel
Remote
Attestation
Protocol

Confidentiality and
Integrity of the Code
and Data in the
Enclave

SEV Ring0 Up to Available
System
Memory

Not
Required

Through
AMD Secure
Processor

Confidentiality of
the Code and Data

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 15 of 42

Table 5 Comparison of SGX and AMD application security

SGX SEV

Initial design targeted Microservices
and small workload

Confidentiality and Integrity of the Code and Data
in the Enclave

Requires major software changes and
code refactoring

Does not require software changes and code
refactoring

SGX works with ring 3 and is NOT
suitable for many system calls

SEV works with ring 0 and is suitable for broader
range of workload

SGX is suitable for small but sensitive
workload

SEV is suitable for securing large enterprise level
applications.

Table 6 Comparison of SGX and SEV vulnerabilities

SGX SEV

Provides Memory Integrity Does NOT Provide Memory Integrity

Vulnerable to Side Channels Vulnerable to Side Channels

Vulnerable to DoS Attacks Vulnerable to DoS Attacks

Vulnerable to Speculative Attacks NOT Vulnerable to Speculative Attacks

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 16 of 42

3 Applications development for TEEs

3.1 Symmetric Searchable Encryption (SSE) and TEE

This section provides an overview to the practical aspects of application developments for

TEEs in the prospects of the SSE scheme proposed within the scope of ASCLEPIOS. The sub-

section 3.1 introduce SSE scheme, followed by a justification in subsection 3.2 why it is

necessary to run some components of the SSE scheme within the TEEs. Lastly, subsection 3.3

provides an overview to the implementation aspects of SSE components in combination with

two potential candidates of TEEs

3.1.1 SSE

The SSE is one of the core security components, currently under development, within the

scope of ASCLEPIOS. It is an encryption technique that enables the search on the outsourced

encrypted data while preserving the privacy of both data and search queries. Figure 3 presents

the high-level architecture of the SSE scheme. It mainly consists of three core components: a

Trusted Authority (TA), SSE Server, and a client application.

Figure 3 Architectural view of the SSE scheme

The Trusted Authority (TA) stores metadata which consists of the following two dictionaries:

one counts the number of files containing each keyword and the other counts the number of

previous searches on each keyword. These will be used to assist the client application to

search over the encrypted data. The number of files of corresponding keywords get updated

when a new file is added, while the number of searches changes after each search. Such

changes over number of files and searches results in generating search token differently over

time, even for a same keyword. This prevents the SSE Server from learning the search pattern.

The SSE Server represents the cloud service provider that is responsible for data storage. The

data sent for storage is encrypted with a symmetric encryption key (K1) and therefore, the

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 17 of 42

Server cannot decrypt the stored data. Furthermore, the SSE Server keeps a dictionary which

maps extracted keywords to data file identifiers. The extracted keywords in the dictionary are

not stored in plaintext; instead they are computed over some hash function with the keyword,

number of files containing the keyword, number of previous searches on the keyword, and a

symmetric key (K2) as input. Similarly, the way of computation on the extracted keywords

ensures the computed values get updated after each search and SSE server learns nothing

about the search queries. The key K2 is shared between the client application and TA, which

will use it to compute and provide the SSE server with a verification proof for search query.

A client application, as the consumer of the SSE scheme, encrypts data with a symmetric

encryption key, and creates a dictionary at the end-user side before sending them to the SSE

Server for storage. Additionally, the application sends metadata to the TA such as number of

files and number of searches of extracted keywords along with their hashed value. The hash

computations prevent TA from learning the keywords content.

When end-users wish to search over encrypted data, they provide the client application with

searched keywords. Using the keywords and with metadata retrieved from TA, the client

application creates search tokens and sends them to the SSE Server to retrieve the specific

encrypted data from cloud storage. Upon receiving the search tokens, the SSE Server requests

a proof from TA, which is computed with the shared key K2 and metadata of the keyword.

Upon reception, the SSE Server verifies the proof. If the verification passes successfully, the

SSE Server filters the stored ciphertext and returns the ones that match the query to client

application. It further updates the stored dictionary with new values in the search tokens.

Amongst the components of SSE, the TA and SSE Server components must be deployed and

run within the trusted execution environment. Section 3.1.2 motivates this design choice.

3.1.2 SSE components to be deployed in TEE

One of the functional challenges in the domain of symmetric searchable encryption is to

provide multi-client settings that enable multiple clients to perform searches over their

outsourced encrypted data. Such a functionality required synchronization among many

clients. In the context of the SSE scheme, the metadata is used to generate search tokens, and

it gets updated after each search. The metadata storage at clients can easily leads to

inconsistencies at client ends, hence leading to failure in terms of generating valid search

tokens. Therefore, it is required that the metadata is synchronized amongst all clients. The

complexity of synchronization can be easily overcome with the use of an external trusted

component (Trusted Authority). In order to build a Trusted Authority, we rely on TEE to secure

executions to generate verification proof for SSE server and the used symmetric key (K2).

Additionally, TEE will also ensure the integrity of the executions, failure of which can fail

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 18 of 42

search operation of users. In addition to TA, the SSE server also needs to run in TEE. With the

support of TEE, the integrity of executions at SSE server side can be verified before the client

provides tokens to add or search data. Thus, the provided tokens will be protected inside TEE,

and cannot be utilized by malicious host server to query for information, for e.g. verification

proof, from TA.

3.1.3 Architecture and implementation
The initial implementation of SSE scheme is independent from any TEEs related aspects.

Currently, we are in the process of transforming the SSE implementation such that it can only

be deployed within the TEE and can be used only by following secure computational

guidelines, e.g. the SSE components in itself will guarantee that the underlying execution

environment is TEE, the components will remotely attest themselves to the remote party, and

any secrets can be provisioned securely after the attestation process. In the following

paragraphs, we provide the practical aspects in terms of SSE implementation related to TEE

environment.

Figure 4, an adaptation of Figure 3, presents the high-level interactions of SSE components

amongst each other, when the TA and SSE Server runs in TEEs. These are additional

interactions to the basic functional interactions described in Figure 3. Since the Client

component is the consumer of both the TA and SSE Server, both these components must

remotely attest themselves to the Client. Remote attestation is the process of proving that

the service has been running in a secure hardware environment. Analogous to the Client, the

SSE server also uses some functions from the TA. Hence, the TA must prove itself to the SSE

Server by remotely attesting itself.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 19 of 42

Figure 4 High level description of SSE scheme within TEE

3.2 Implementation with Intel SGX

The implementation of the required aspects to make the TA and SSE Server components TEE

compliant depends on the underlying TEE technology. Currently, we are investigating Intel

SGX as one potential candidate to be used as TEEs. In the following paragraphs, we provide a

practical overview of how Intel SGX can be adapted in the context of SSE.

Intel SGX is a set of processor extensions for establishing a protected execution environment

within an application. Intel SGX guarantees the integrity and confidentiality of security-

sensitive computation performed on a computer where all the privileged software (kernel,

hypervisor, etc.) can be potentially malicious. The Intel SGX technology allows part of the

application to run in secure containers called enclaves. Such enclaves have dedicated memory

regions that are secured with on-chip memory encryption. The enclave has its own dedicated

code and private data to process. The data inside enclave cannot be accessed from outside.

Figure 5 illustrates a typical example of an Intel SGX based application. An SGX application

consists of two parts; untrusted and trusted. The trusted part of the application run in an

enclave, guaranteeing the integrity and confidentiality of the computation. The untrusted part

of such an application is responsible, along with any other non-secure computation, is to

create and initiate the necessary enclaves. On the other hand, the code running in the enclave

is responsible for the required secure computation over any confidential data that shall

restricted to the enclave.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 20 of 42

Figure 5 A typical example of Intel SGX based application

In the context of SSE, the TA and SSE Server components must run in such a TEE environment.

Both these components are REST based services that expose their key functions through REST

based interfaces. In light of the above-mentioned SGX based application example, both the

TA and SSE Server components are envisioned as follows:

1. The untrusted part of the component will provide REST interfaces to the key functions

of the component. In addition, each component will also provide a /challenge REST

interface that will be used by the remote party to demand the remote attestation from

the target component, the TA and SSE Server.

2. The key functions of each component will be implemented within the enclave or

respective component.

3. The rest interfaces for each function, as described in step 1, will make the ECALLs to

the respective key function of the enclave. The ECALLs are the entry to the enclave

and lets the computation move from the untrusted space to the trusted space.

Both components on the receipt of challenge REST call will initiate the remote attestation

process in order to attest itself to the remote party (or challenger). The entity that has to

attest itself is called the Verifier, whereas the entity that demand remote attestation is called

remote party (or challenger). In the case of SSE, as can be seen from Figure 3, the remote

attestation process can be carried out at the following three different occasions: (1) when the

TA attests itself to the client, (2) when the SSE Server attests itself to the client, and (3) when

TA attests itself to the SSE server. In the first two cases, the Client is the Challenger and TA

and SSE Server are the Verifiers, whereas in the last case, the SSE Server is the Challenger and

the TA is the Verifier. Irrespective of which component is the Challenger and which

component is the Verifier, Figure 6 presents the Intel SGX remote attestation flow.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 21 of 42

Figure 6 Intel remote attestation flow [25]

The brief description of each message appears in the above-mentioned Intel remote

attestation flow are as follows:

1. The off-platform Challenger requests the application running in intel SGX based TEE to

attest itself.

2. The Application requests its enclave to produce an attestation.

3. The enclave returns a local-attestation report.

4. The application forwards the local attestation report to the platform-oriented

Quoting enclave that verifies the local attestation report.

5. The Quoting enclave further converts the local attestation report to a remote

attestation report and sends back to Application.

6. The Application returns the remote attestation report to the off-platform Challenger.

7. The Challenger verifies the remote attestation report using the Intel attestation

service. Based on the verification, the Challenger makes decision and provision any

secret data, if required.

The implementation of TA and SSE Server components in light of the above-mentioned details

will require the use of following additional tools:

1. Intel SGX related software2: The following three tools/SDKs from the Intel SGX

software stack will be required for the development of both TA and SSE Server

components.

a. Intel SGX driver,

b. Intel SGX SDK,

c. Intel SGX platform software (PSW) SDK,

2 Intel(R) Software Guard Extensions for Linux OS https://github.com/intel/linux-sgx

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 22 of 42

2. Microsoft cpprestsdk3: The Microsoft C++ REST SDK or any other alternative SDK of

same nature will be required to implement the REST based untrusted part of both

components.

Further development, testing and deployment of SSE will require the availability of Intel SGX

based TEE. Microsoft Azure provides various virtual compute services that facilitate leveraging

Intel SGX to set up TEEs. More specifically, the current offering from Microsoft Azure, under

the theme of confidential computing, provides DCsv2-series virtual machines of various

ranges that are built on top of the latest generation of Intel Xeon processors capable of Intel

SGX technology. Currently, to the best of our knowledge, Microsoft Azure and Google Cloud

Platform are the only public cloud providers that facilitate Intel SGX capable virtual machines.

3 The C++ REST SDK https://github.com/microsoft/cpprestsdk

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 23 of 42

4 TEE Interoperability

We next review current development efforts towards enabling TEE interoperability and

portability. We review three active projects that aim to enable such interoperability. While

they have similar goals, the three projects build on vastly different assumptions, and adopt

different approaches in their architecture, design and implementation.

4.1 Enarx

4.1.1 High-level description
Enarx is an application deployment system that enables applications to run in Trusted

Execution Environments (TEEs) without being rewritten for particular platforms or SDKs. Enarx

handles attestation and delivery into a run-time “keep” based on WebAssembly, offering

developers a wide range of language choices for implementation. Enarx is CPU-architecture

independent, enabling the same application code to be deployed across multiple targets,

abstracting issues such as cross-compilation and differing attestation mechanisms between

hardware vendors [28].

4.1.2 Security Model
The security model of Enarx aims for a minimal trusted computing base and relies on the

WebAssemly standard for its runtime and interface. We next describe the Enarx security

model in detail.

• Trusted CPU: like most other TEE architectures, Enarx assumes a trusted CPU. This is

a cornerstone assumption trustworthy computation.

• Trusted Microkernel: this component is provided by Enarx and is trusted to perform

standard kernel operations. An explicit goal of the project is to maintain the

microkernel footprint as small as possible and open source.

• Trusted WebAssembly runtime (WASM) - provided by Enarx, and is trusted to provide

the runtime for the application within the Enarx Keep, and includes silicon architecture

specific JIT (Just In Time) compilation for performance optimization.

• Trusted WebAssembly System Interface (WASI) - provided by Enarx and is an

interface for WebAssembly applications running on server-type systems (rather than

in browsers, for instance). It is focused on security and portability and is trusted.

• Trusted Application - The application layer is the workload provided by the client to

run within the Enarx Keep. It is not provided by Enarx but is considered trusted by the

client as it was provided by them.

Along with the list of trusted components listed above, the Enarx Security Model explicitly

notes two untrusted components. Both the Operating system kernel and the hypervisor are

explicitly not trusted.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 24 of 42

4.1.3 TEE Hardware and CPU Support
We next review the hardware and CPU support for execution in TEEs. While this list is

currently relevant, it will likely be become outdated soon, as vendors release new generations

with TEE support and the Enarx project evolves to support further platforms.

4.1.3.1 AMD SEV

AMD SEV is targeted at secure VMs. Developer applications attest to a signature by AMD,

which includes a hash of firmware, which in this context is code injected into the VM. The

firmware allows host to have some code within the TEE: that code will form an Enarx Keep.

Enarx runs as “firmware” which is injected into the VM4. AMD provides a signature from a key

burned into the CPU over a hash of the firmware to be loaded.

4.1.3.2 SGX

Enarx assumes for its functionality the presence of SGX 2 with Enclave dynamic memory

management (EDMM) support. Attestation is done only involving attester and verifier, using

the Data Center Attestation Primitives. In terms of CPU support, Intel 10th Gen Core CPUs are

primarily targeted for implementation. 9th Gen Core CPUs could work but are likely to be

harder to set up.

4.1.4 Runtime requirements

In terms of runtime requirements, the call-out API is implemented through the Web Assembly

System Interface (WASI). Furthermore, it requires the JIT Wasmtime, a standalone WASM JIT.

4.1.5 Architectural components

We next discuss the architectural components of Enarx.

4.1.5.1 Attestation

In order to run in an Enarx Keep, an application needs to attest two things:

1. The hardware TEE (Trusted Execution Environment) providing Keeps.

2. A measurement of the Enarx runtime. This means that trusted third party may need

to launch a service to abstract attestation. The way that this works is that the client

requests attestation from Enarx. Enarx supplies a blob. The client forwards this to

attestation service. The attestation service will then complete attestation of the

hardware environment and translate the measurements of Enarx into a something

which allows the developer to identify the specific version of Enarx.

4 Information on Enarx with SEV https://github.com/enarx/enarx/wiki/SEV-architectural

https://github.com/enarx/enarx/wiki/SEV-architectural

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 25 of 42

From the client’s point of view, the attestation steps of Enarx end up with the following two

cryptographically validated assertions:

1. The TEE type and version;

2. The Enarx version and integrity. The attestation processes associated with the various

hardware architectures are very different (as noted above under Section 4.1.3.

Providing a common mechanism to abstract this is expected to be a major part of the

work associated with project Enarx.

A high level overview of the Enarx process flow is illustrated in Figure 7.

Figure 7 Enarx process flow overivew

4.1.5.2 Enarx API & core

The Enarx project defines the WASI APIs and manages the attestation for all of the TEEs that

leverages the Enarx runtime.

4.1.6 Relation to ASCLEPIOS
Throughout project ASCLEPIOS, we continue monitor the development of project Enarx.

Whenever possible, we will re-use the best practices and lessons learned to implement

attestation and workload management for both AMD and Intel based platforms.

4.2 Asylo

4.2.1 High-level description
Asylo is an open source framework that enables applications to run in trusted execution

environments (TEEs) without requiring changes to the code [27]. Developers can choose any

enclave backend for their applications and use those enclaves to perform sensitive

calculations or store data in a secure manner. Currently, Asylo offers a docker image for Intel

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 26 of 42

Software Guard Extensions (SGX) but there are plans to support other TEEs like AMD Secure

Encryption Virtualization technology.

An enclave runs isolated from the rest of the system including the operating system kernel.

Usually applications implicitly trust the operating system but this comes with certain

drawbacks and risks. An application that runs encryption/decryption functions might be at

risk if the operating system is compromised since. Sensitive data like private keys may end up

in memory that will be accessible by the operating system, eliminating the security that the

application tries to offer. Such issues can escalate to cloud infrastructures. If a cloud service

provider wants to perform malicious actions then nothing can stop them since memory that

different VMs use, is accessible and readable.

By using an enclave, an additional protection layer is added, ensuring that sensitive

information will not be accessible by the operating system but only from specific enclaves.

There are mechanisms used to ensure that the enclave is isolated from the rest of the system.

This includes sealing, local and remote attestation and hardware-specific data structures that

provide integrity and trust to the enclave.

So far, developers have had a tough time utilizing such capabilities since running enclaves is

not a simple task. Enclaves need to be created and configured before they can run the

application's code, adding a new level of complexity to development. Asylo provides a

solution as it works like an application wrapper. A docker image that offers all necessary

runtime configuration for the enclaves to run is currently provided from the development

team. Using an API, calls can be made to and from the enclaves, transferring execution

between the trusted part of the application that runs in the enclave, and the untrusted part

that is accessible by the operating system kernel.

4.2.2 Security Model
Asylo aims to offer support for both software and hardware backends. Depending on an

application's requirements, a choice can be made between isolation provided by hardware

virtualization or an implementation of a proprietary CPU manufacturer such as Intel's SGX or

ARM TrustZone.

Integrating Asylo in an application, security guarantees are established to sensitive workloads.

Code and data that are protected by an enclave are secured against any vulnerability that is

caused by a malicious Guest virtual machine (VM), user or host operating system. In addition,

enclaves provide confidentiality and integrity guarantees for the communication between the

untrusted environment and the enclaves. Finally, local or remote attestation mechanisms

ensure the integrity of an enclave that executes the sensitive workloads.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 27 of 42

4.2.3 Architectural components
An application integrated with Asylo is divided into the Untrusted execution environment and

the Trusted execution environment. As illustrated in Figure 8, between those two, a Manager

component is responsible to coordinate all communication between the two environments

using secure communication channels. The trusted execution environment will contain the

implementation of the sensitive functions and public methods that will provide access to the

sensitive functions through the manager component. The untrusted execution environment

can invoke the sensitive functions by using the interface provided by the manager component.

During any interaction, certain data structures that are called Protocol Buffers are used.

Protocol buffers is a method to serialize structured data providing an easy way to transfer and

handle such data.

Figure 8 Asylo process flow

To get a better understanding of how Asylo works and how it can be used to run an application

in a TEE (i.e. containing a trusted and untrusted part), we will describe the procedure of how

an application that can be ported to Asylo. To this end, we will show how an application that

performs AES encryption and needs to use sensitive/private information (i.e.

encryption/decryption key(s)) can be integrated to Asylo and have this function run in an

enclave using Intel's SGX technology. We will divide the application into two parts, the Trusted

part which will be the code running in the enclave and the Untrusted part which will be

running outside the enclave and can be accessed by anyone.

The trusted part will provide three entry points that will be accessible from the untrusted

application through the manager component. These entry points are used to initialize and

finalize the enclave and run the encryption function (i.e. use the symmetric key in a trusted

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 28 of 42

mode in order to encrypt some data). The trusted application will also contain the

implementation of the encryption function.

The untrusted application will create an instance of the enclave manager and use it to

communicate with the enclave. First, the initialization phase takes place. This begins with the

call of the EnterandInitialize entry point. A protocol buffer message that contains

configuration settings is passed in order to set up the enclave. This step is essential as it is not

possible to run any code in the trusted environment without the proper initialization. Then

the application is ready to run the encrypt function by using the EnterandRun entry point.

Both input and output protocol buffers are passed to the entry point. In our case, a plain text

buffer will be passed as input along with an empty output buffer. The manager component

will transfer execution to the enclave, running the EnterandRun function. The enclave will

read the input, encrypt and populate the output buffer with the result ciphertext, which will

be returned to the untrusted application. Once the execution is done, the EnterandFinalize

entry point is used in order to destroy the enclave. This flow is illustrated in Figure 8.

To make our application more complete, we must also implement a decryption function. To

do so, we need to divide the EnterandRun entry point to EnterandEncrypt/EnterandDecrypt

or use the EnterandRun entry point in such a way where a flag that directs the application to

the function needs to run will be provided.

Asylo provides base code implementations for the TrustedApplication and EnclaveManager

classes for developers to use or modify. Also, a Bazel BUILD file is provided that defines the

enclave's logic stating which TEE backend to use.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 29 of 42

4.2.4 Interoperability / Portability
Interoperability is another challenge that developers must face when creating applications

that are using TEEs. Currently, choosing a TEE technology implies that vendor specific changes

will be made to the application to satisfy the requirements of the underlying TEE. Each TEE

has its own runtime configurations and ways to manage the isolates entities. Also, as research

develops and new vulnerabilities arise, a certain TEE technology might not be suitable

anymore and a move to a different vendor might be needed. This means that choosing which

TEE technology to use is a difficult task that needs to be examined thoroughly.

Asylo tackles portability as one of its main focuses. Once the application is adapted to the

Asylo API, the use of a different backend means simply re-compiling and re-packaging the

application. Changes to the code are not needed as the Asylo API was created with main aim

to work with various TEE technologies.

In ASCLEPIOS, we plan to use Asylo mainly for porting an ABE library into SGX. This task is

considered as rather demanding and it is expected to face certain difficulties due to the long

list of dependencies.

4.3 Open Enclave SDK

4.3.1 High-level description
The Open Enclave, an open source initiative from Microsoft, is a library for the development

of Trusted Execution Environment (TEEs) based applications in C and C++. The Open Enclave

SDK aims to provide a single unified enclave abstraction for developers to develop TEE based

applications independent from the underlying TEEs, hence enabling TEE agnostic secure

applications that can be utilize on any hardware-based TEEs.

The key design principle of Open Enclave is to facilitate generalization, thus enabling

developers to build enclave application model to minimize hardware and software specific

concepts. The Open Enclave SDK supports the following key functionalities:

1. Enclave creation and management: The Open Enclave provides all the necessary

function calls that are required for the management of the lifecycle of an enclave

within an application.

2. Enclave measurement and identity: Open Enclave provides the expressions of enclave

measurement and identity.

3. Communication: Open Enclave includes mechanisms for describing interfaces to

define Enclave in and out calls and also handles the data marshalling associated with

the in/out calls.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 30 of 42

4. Data sealing: Open Enclave provide functions to facilitate the sealing of runtime

Enclave data/secrets.

5. Attestation: Open Enclave provide mechanisms that facilitate both kind of attestation

procedures, i.e. local and remote.

6. Runtime and cryptographic libraries: Open Enclave provide pluggable cryptographic

libraries and runtime to facilitate the required cryptographic support inside enclaves.

The Open Enclave can be used directly on the hardware of proprietary CPU manufacturer such

as Intel's SGX or ARM TrustZone, and can also be used in the cloud virtualized environment.

E.g. currently, Microsoft Azure provides specialized VMs that support Intel SGX based TEEs

where Open Enclave based applications can be deployed.

4.3.2 Security Model
The integration of Open Enclave SDK in an application enable the developers to builds security

sensitive programs, where sensitive data can be protected by an enclave against malicious

access. The enclaves created through the Open Enclave SDK guarantees the confidentiality

and integrity of the data under processing inside the enclave as well as all the communication

between the enclave and the untrusted part of the application. The Open Enclave SDK, as

mentioned earlier, also facilitates both kind of attestation features to confirm the integrity of

the enclave to a challenger. In addition, the functionalities like data sealing and support of

cryptographic libraries/runtimes within enclave greatly enhance its suitability as a potential

candidate to build security sensitive applications that required to be executed in TEEs.

4.3.3 TEE Hardware and CPU Support
The Open Enclave SDK aims to generalize the development of the enclave applications across

TEEs from different hardware vendors. However, the current support is only available for Intel

SGX and ARM TrustZone. In terms of operating systems, the Open Enclave SDK support is

available for both Linux and Windows platforms.

4.3.4 Architectural components
Figure 9 depicts the high-level architecture of applications developed using Open Enclave. The

Node in the figure represents the TEE based machine that host Open Enclave based

application/s, e.g. Application 1 and 2 in this case. An application developed using Open

Enclave is structured in two parts, the untrusted part of the application and the trusted part.

The trusted part of the application must run within an Enclave. In the following figure, this

can be seen as the boxes labelled as Application Enclave. The enclaves of an application run

in TEE, where the untrusted part runs outside TEE. Each enclave, as can be seen from Figure

9, has its own private code and data. The enclave data is restricted only to the enclave and it

cannot be accessed from the untrusted part of the application and also not by other enclaves

of the same application. The untrusted part of the application is usually responsible to provide

interface to the external world in addition to any other untrusted computation. Hence any

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 31 of 42

external interaction, with the enclaves of the application, must be mediated through the

untrusted part of the application, represented as Host Application 1 and 2 in this case.

Figure 9: Open Enclave based application architecture

In order to better understand the operating procedure of the Open Enclave SDK and to put it

into the context of Asclepios project, let us consider the example of the interactions between

the two components, i.e. Client application and Trusted Authority (TA) from the SSE scheme.

The detailed description of SSE is earlier described in Section 3.1. The TA component in the

SSE scheme is responsible for handling the meta data required to facilitate searching over the

encrypted data. The TA is a REST service and it provides various functions related to the

management of meta data. For this example, we only consider the interaction of Client

Application with the TA for the two core functions, get and update metadata. The following

figure presents all the necessary interactions in light of the Open Enclave architecture earlier

explained and presented in the previous figure.

Figure 10: Open Enclave adaptation of SSE as an example

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 32 of 42

The TA component will be divided into the following two parts: (1) the Untrusted part, which

will be running outside Enclave and will consist of interfaces to enable interactions from

external components with TA, and (2) the Trusted part, which will be running inside the

enclave and provide implementation to the core functionality of TA. The enclave must provide

internal interfaces to the core functions that will be allowed to triggered from the untrusted

part of the TA.

The Open Enclave architecture relies on the Enclave Definition Language (EDL) for the

definition of the interfaces between the trusted and untrusted part. In the current example,

the Untrusted part, on the receipt of the requests for getMetaData and uploadMetaData,

triggers the corresponding enclave get and upload functions. These are secure enclave

functions and are required to run inside TEE. Therefore, calling these functions from the

Untrusted part pass the execution control from non-secured computation to secured

computation that happens in TEE. The code inside enclave is responsible to only perform the

secure computation and therefore if there is the need to execute some code from the

Untrusted part, the enclave code must trigger the corresponding interface of the Untrusted

part, such as calling the updateHostLog function in this case.

The following code snippet represents the corresponding EDL code that describe the

definitions of the above-mentioned three interfaces (entry points). As it can be seen from the

following code snippet that the enclaveGet and enclaveUpdate are the secure functions of the

enclave, whereas the updateHostLog is the interface to a function in the Untrusted part of TA.

It is important to note that the in/out parameters in the following code snippet are the

simplified version of the actual in/out parameters of corresponding TA functions.

Furthermore, it is important to note that the data communicated between the Client

application and the TA Enclave must be encrypted and the Untrusted part of the TA is also

unable to decrypt it. Only the Client Application and the TA Enclave will be able to decrypt the

communicating data.

Figure 11: Enclave Definition Language (EDL) code example

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 33 of 42

5 Standardization work

In this section we review the most relevant standardization work aimed at realising the

interoperability of TEEs.

5.1 IETF TEEP

As described above, TEEs use hardware enforcement combined with software protection to

secure trusted applications (TAs) and their data. Moreover, TEEs typically offer a more limited

set of services to TAs than is normally available to Untrusted Applications. Considering

diversity of TEE implementation (briefly overviewed in Section 3), TEEs offer different security

properties, different features, and different control mechanisms to operate the TAs. Some

vendors may themselves market multiple different TEEs with different properties attuned to

different markets. A device vendor may integrate one or more TEEs into their devices

depending on market needs. This highlights the need for an interoperable protocol for

managing TAs running in different TEEs of various devices. Furthermore, in this TEE

ecosystem, there often arises a need for an external trusted party to verify the identity,

claims, and rights of TA developers, devices, and their TEEs. This trusted third party is the

Trusted Application Manager (TAM) [4]. The focus of the IETF TEEP Work group is to create

such an interoperable protocol and ancillary technical details.

The Trusted Execution Environment Provisioning (TEEP) protocol addresses the following

problems [4]:

• An installer of an Untrusted Application that depends on a given TA wants to request

installation of that TA in the device's TEE so that the Untrusted Application can

complete, but the TEE needs to verify whether such a TA is authorized to run in the

TEE and consume potentially scarce TEE resources.

• A TA developer providing a TA whose code itself is considered confidential wants to

determine security-relevant information of a device before allowing their TA to be

provisioned to the TEE within the device. An example is the verification of the type of

TEE included in a device and that it can provide the required security protections.

• A TEE in a device intends to determine whether an entity that wants to manage a TA

in the device is authorized to manage TAs in the TEE, and what TAs the entity is

permitted to manage.

• A TAM (e.g., operated by a device administrator) wants to determine if a TA exists (is

installed) on a device (in the TEE), and if not, install the TA in the TEE.

• A TAM wants to check whether a TA in a device's TEE is the most up-to-date version,

and if not, update the TA in the TEE.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 34 of 42

• A TA developer wants to remove a confidential TA from a device's TEE if the TA

developer is no longer offering such TAs or the TAs are being revoked from a user (or

device). For example, if a subscription or contract for a service expired, or a payment

by the user has not been completed or has been rescinded.

• A TA developer wants to define the relationship between cooperating TAs under the

TA developer's control and specify whether the TAs can communicate and share data

and key material.

The TEEP notional architecture (illustrated in Figure 12) considers one or several actors (such

as a Trusted Application Developer, or Device Administrator) the deploy TAs over one or

several TAMs. Whenever a TA is to be installed on a device carrying a TEE, the first step is to

install a support application. Next, the support applications invoke the TEEP Broker (part of

the software support for the TEE available on the platform) to request the installation of (or

updates to) TAs in the TEE. The TEEP broker, deployed on devices with TEEs, contacts the TAM

in order to poll for TAs (or updates) and transfers the received data to the TEEP Agent that

manages the installation and patching of TAs inside the TEE.

Figure 12 TEEP architecture

Note that the IETF TEEP Working Group is active at the moment of writing and the TEEP

Architecture document [4] remains work in progress. Therefore, deviations from the problem

statement and illustration above can be expected. Within project ASCLEPIOS, RISE has

contributed to the formulation of the Trusted Execution Environment Platform (TEEP)

architecture. Furthermore, RISE leads an implementation of the TEEP Architecture, realized

within project ASCLEPIOS as the TEEP Deployer (TEEPD) component.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 35 of 42

5.2 IETF RATS

Remote attestation, discussed above, is a cornerstone for establishing the trustworthiness of

workload executing in a TEE. The IETF RATS working groups focuses on establishing a

standardized attestation procedure with cross-vendor TEE support [5].

Figure 13 RATS conceptual data flow.

RATS defines a universal set of terms that can be mapped to various existing and emerging

Remote Attestation Procedures, under the simplified model seen in Figure 13. For remote

attestation RATS maps different attestation components to their TEEP counterpart as seen in

Figure 14.

Figure 14 Remote attestation with TEEP and RATS.

This standard is discussed in detail in ASCLEPIOS D4.2, to which we refer readers for more

information.

5.3 Global Platform

Global Platform works on the standardization and interoperability of application management

within a TEE to deliver flexible security that answers the unique requirements of a range of

different markets and use cases. The benefits of this work are as follows:

• Device manufacturers can embed a standardized and certified TEE that meets the

needs of service providers for the protection of digital services from fraud and attack.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 36 of 42

• Service providers are free to focus on enhancing their offerings by using a secure

component to solve security challenges. They can also develop their service just once

and deploy it universally across any device with a certified TEE, with the assurance that

security levels will be consistent across devices.

• Digital service users benefit from greater simplicity, convenience, security and privacy

for their digital services and personal data.

GlobalPlatform defines a mechanism for secure communication between normal and trusted

applications. The aim is to allow procedure calls that can carry small (e.g. a number) or large

parameters (e.g. a large memory area) from normal applications in rich OS into trusted

applications and back in a secure manner. For this the standard defines a very narrow API

where up to 4 parameters are allowed in each call. The underlying Trusted OS is responsible

for handling call routing and transferring parameters between the security domains in a

transparent but secure manner.

Figure 15 Example of GlobalPlatform remote procedure call (ARM TrustZone).

Figure 15 illustrates steps necessary for routing a procedure call with GlobalPlatform on

platforms that require full isolation between secure an and unsecure applications and OS:es.

The key TEE standardization artifacts produced by GlobalPlatform are the TEE system

architecture; TEE management framework, TEE initial configuration and TEE APIs , as

described in [37].

5.3.1 Global Platform TEE system architecture
The TEE system architecture document [38] explains the hardware and software architectures

behind the TEE. It introduces TEE management and explains concepts relevant to TEE

functional availability in a device [37]. The document describes the general device

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 37 of 42

architecture associated with the TEE and provides a high-level overview of the security

requirements of a TEE [38], without mandating an implementation architecture. The

document outlines different hardware and software architectures to answer to the TEE

security and functional requirements. Computing devices offer a Rich Execution Environment

(REE), providing a hugely extensible and versatile operating environment, introducing both

new capabilities and vulnerabilities to software threats. The TEE System Architecture outlines

the high-level functional and security features of a TEE operating alongside the REE and

providing a safe area of the device to protect assets and execute trusted code [37].

5.3.2 TEE management framework

The Global Platform TEE Management Framework [39] describes the security model for the

administration of Trusted Execution Environments (TEE) and of Trusted Applications (TA), as

well as of the corresponding Security Domains (SD). It describes the roles and responsibilities

of the stakeholders involved in the administration of a TEE and TA, the life cycle of

administrated entities, mechanisms involved in administration operations, and the protocols

used to perform such operations [39]. In particular, the framework defines methods for

remotely and dynamically managing TEEs, including data and key provisioning, security

domain management, trusted application (TA) management, audit, and overall TEE

management [37]. The framework further presents the roles and responsibilities of the

different stakeholders involved in the administration of TEEs and TAs, the life cycle of

administrated entities, mechanisms involved in administration operations, and the protocols

used to perform these operations [37]. The framework enables this by defining protocols and

interfaces that can be accessed either through the GlobalPlatform TEE Client API [40] or via

extensions to the recently released TEE Internal Core API [41].

5.3.3 TEE APIs
The Global Platform TEE API specifications include the TEE Client API Specification [40] and

the TEE Core API Specification [41]. The TEE Client specification defines a communications API

for connecting Client Applications executing in an REE with security related Trusted

Applications running inside a TEE [40]. Global Platform TEE Client API specification considers

a TEE that is a trusted environment within the main device system-on-a-chip. Additionally, it

might complement traditional security environments such as a UICC SIM card. The document

contains implementation guidelines for Client Applications running within the rich operating

environment and which use Trusted Applications, Trusted Applications running inside the TEE

which need to expose an externally visible interface to Client Applications and the TEE and

the communications infrastructure required to access it [40].

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 38 of 42

The Global Platform Internal Core API Specification [41] defines a set of C APIs for the

development of Trusted Applications running in TEEs, reachable through the GlobalPlatform

TEE Client API, considered specifically protected against malicious attacks and only running

code trusted in integrity and authenticity. The APIs defined in the Internal Core API

specification are defined for the C programming language and provide a set of functionalities

to TA developers, including basic OS-like functionalities (memory management, timer, and

access to configuration properties), communication means with client Applications running in

the REE; as well as facilities for trusted storage, cryptographic operations and peripheral

interface and Event handling [41].

5.3.4 TEE Initial configuration

The GlobalPlatform Device TEE Initial Configuration document [42] describes common

implementation requirements of core features of the GlobalPlatform Device Specification

[37]. It defines configurations logically grouping together certain specifications to provide a

coherent and consistent package. Furthermore, the document specifies configuration

requirements for implementing the TEE initial configuration of GlobalPlatform TEE

Specifications [42]. It refines the features of the internal core [40] and the client specification

[41]. It is primarily targeted towards TEE vendors and application developers and is the basis

for the development of a test suite for use in the compliance program. The TEE initial

configuration combines the TEE Client API [40] and Internal Core [41] Specifications, updated

in response to the latest feedback from the TEE testing and compliance ecosystem’s live

implementations. The configuration, along with the functional and security test suites, aims

to enhance TEE interoperability and security and facilitate TEE vendors to ensure compliance

with GlobalPlatform’s Device Specification [37].

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 39 of 42

6 Conclusion

In this document we reviewed the interoperability of Trusted Execution Environments (TEEs).

We started with a brief review of the approaches to implementing Trusted Execution

Environments. We further focused on two TEE architectures (Intel SGX and AMD SEV)

implemented by the most popular commodity server platform vendors (Intel and AMD

respectively). Next, we provided an account of the implementation of a Trusted Application

designed to run in a Trusted Execution Environment within project ASCLEPIOS. Further, we

reviewed the major efforts towards interoperability between TEE architectures (Enarx, Asylo

and OpenEnclave). Finally, we reviewed the major standardization efforts towards TEE

interoperability. In particular, we discussed IETF TEEP, which was the target of contributions

from project ASCLEPIOS; IETF RATS, which aims to describe a cross-platform TEE attestation

protocol; and Global Platform, which focuses primarily on the standardization and

interoperability of application management within TEEs.

This document describes a comprehensive view of TEE interoperability and may serve as a

guide in choosing the suitable target TEE architecture for components within the ASCLEPIOS

framework. This document complements the earlier deliverables D4.1 and D4.2, which focus

on application management within TEEs and on remote attestation procedures for various

TEE architectures. The review of interoperability efforts contained in this document

contributes to the implementation of the Trusted Execution Environment Deployer (TEEPD)

component. Implementation work on TEEPD will continue beyond WP4: in particular, TEEPD

will be integrated with the ASCLEPIOS platform in WP5 and will be evaluated as part of the

ASCLEPIOS demonstrator in WP6.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 40 of 42

Bibliography

[1] Zhang, Fengwei, and Hongwei Zhang. "SoK: A study of using hardware-assisted isolated

execution environments for security." Proceedings of the Hardware and Architectural Support

for Security and Privacy 2016. 2016. 1-8.

[2] McKeen, Frank, et al. "Intel® software guard extensions (intel® sgx) support for dynamic memory

management inside an enclave." Proceedings of the Hardware and Architectural Support for

Security and Privacy 2016. 2016. 1-9.

[3] Göttel, Christian, et al. "Security, performance and energy trade-offs of hardware-assisted

memory protection mechanisms." 2018 IEEE 37th Symposium on Reliable Distributed Systems

(SRDS). IEEE, 2018.

[4] Mingliang Pei, et al. "Trusted Execution Environment Provisioning (TEEP) Architecture". Internet

Engineering Task Force (IETF). draft-ietf-teep-architecture-08 (work in progress), 2020.

[5] Henk Birkholz, et al. "Remote Attestation Procedures Architecture". Internet Engineering Task

Force (IETF), draft-ietf-rats-architecture-02 (work in progress), 2020.

[6] Morbitzer, Mathias, et al. "Severed: Subverting amd's virtual machine encryption." Proceedings

of the 11th European Workshop on Systems Security. 2018.

[7] R. Buhren, C. Werling och J.-P. Seifert, ”Insecure Until Proven Updated: Analyzing AMD SEV's

Remote Attestation,” i Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, 2019.

[8] Wilke, Luca, et al. "SEVurity: No Security Without Integrity--Breaking Integrity-Free Memory

Encryption with Minimal Assumptions." arXiv preprint arXiv:2004.11071 (2020).
[9] GlobalPlatform Technology, TEE Internal Core API Specification Version 1.2.1

Public Release, May 2019, Document Reference: GPD_SPE_010

[10] M. Bishop, ”Race Conditions, Files, and Security Flaws;or the Tortoise and the Hare Redux,”

TechnicalReport CSE-95-8, University of California at Davis, 1995.

[11] Y. Swami, ”SGX Remote Attestation is not Sufficient,” i BlackHat USA, 2017.

[12] P. Kocher, J. Horn, A. Fogh, a. D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz och Y. Yarom, ”Spectre Attacks: Exploiting Speculative Execution,” i 40th

IEEE Symposium on Security and Privacy, 2019.

[13] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D.

Genkin, Y. Yarom och M. Hamburg, ”Meltdown: Reading Kernel Memory from User Space,” i

27th USENIX Security Symposium (USENIX Security 18), 2018.

[14] J. Szefer, ”Survey of Microarchitectural Side and Covert Channels, Attacks, and Defenses,” J.

Hardware and Systems Security, vol. 3, pp. 219-234, 2019.

[15] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun och A.-R. Sadeghi, Software Grand

Exposure: SGX Cache Attacks Are Practical, 2017.

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 41 of 42

[16] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang och C. A. Gunter, Leaky

Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX, 2017.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin och T. H. Lai, SgxPectre Attacks: Stealing Intel Secrets

from SGX Enclaves via Speculative Execution, 2018.

[18] W. He, W. Zhang, S. Das och Y. Liu, ”SGXlinger: A New Side-Channel Attack Vector Based on

Interrupt Latency Against Enclave Execution,” i 2018 IEEE 36th International Conference on

Computer Design (ICCD), 2018.

[19] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas och C. W. Fletcher, ”MicroScope:

Enabling Microarchitectural Replay Attacks,” i Proceedings of the 46th International Symposium

on Computer Architecture, New York, NY, USA, 2019.

[20] V. Costan, I. Lebedev och S. Devadas, ”Sanctum: Minimal Hardware Extensions for Strong

Software Isolation,” i 25th USENIX Security Symposium (USENIX Security 16), Austin, 2016.

[21] S. Hosseinzadeh, H. Liljestrand, V. Leppänen och A. Paverd, ”Mitigating Branch-Shadowing

Attacks on Intel SGX Using Control Flow Randomization,” i Proceedings of the 3rd Workshop on

System Software for Trusted Execution, New York, NY, USA, 2018.

[22] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen och A.-R. Sadeghi, ”DR.SGX:

Automated and Adjustable Side-Channel Protection for SGX Using Data Location

Randomization,” i Proceedings of the 35th Annual Computer Security Applications Conference,

New York, NY, USA, 2019.

[23] D. Lee, D. Kohlbrenner, S. Shinde, D. Song och K. Asanović, Keystone: An Open Framework for

Architecting TEEs, 2019.

[24] M. Morbitzer, M. Huber, J. Horsch och S. Wessel, ”SEVered: Subverting AMD's Virtual Machine

Encryption,” i European Workshop on Systems Security (EuroSec'18), 2018.

[25] Johnson, Simon, et al. "Intel® software guard extensions: Epid provisioning and attestation
services." White Paper 1 (2016): 1-10.

[26] Open Enclave Software Development Kit https://openenclave.io/sdk

[27] Asylo project https://asylo.dev/

[28] Enarx project documentation https://github.com/enarx/enarx/wiki

[29] W. Arthur and D. Challener, A Practical Guide to TPM 2.0: Using the Trusted Platform Module in
the New Age of Security. Berkely, CA, USA: Apress, 2015.

[30] Paladi, Nicolae: Trust but Verify-Trust Establishment Mechanisms in Infrastructure Clouds. PhD
Dissertation No. 104. Lund University, 2017.

[31] Tsai, Chia-Che, Donald E. Porter, and Mona Vij. "Graphene-SGX: A Practical Library {OS} for
Unmodified Applications on {SGX}." 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC}
17). 2017.

[32] Wang, Huibo, et al. "Running Language Interpreters Inside SGX: A Lightweight, Legacy-
Compatible Script Code Hardening Approach." Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security. 2019.

https://openenclave.io/sdk
https://asylo.dev/
https://github.com/enarx/enarx/wiki

 D4.3 Interoperability of ITEEs in the context of eHealth systems

Work Package 4 Page 42 of 42

[33] Paladi, Nicolae, and Christian Gehrmann. "TruSDN: Bootstrapping trust in cloud network
infrastructure." International Conference on Security and Privacy in Communication Systems.
Springer, Cham, 2016.

[34] Paladi, Nicolae, Linus Karlsson, and Khalid Elbashir. "Trust anchors in software defined
networks." European Symposium on Research in Computer Security. Springer, Cham, 2018.

[35] Medina, Jorge, Nicolae Paladi, and Patrik Arlos. "Protecting OpenFlow using Intel SGX." 2019
IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN).
IEEE, 2019.

[36] Protected Execution Facility On Power - Guerney Hunt, Ram Pai & Michael Anderson, IBM. At
the 2019 OpenPOWER Summit, August 19-20 2019, San Diego, USA https://sched.co/SfRU

[37] Global Platform: Introduction to Trusted Execution Environments. May 2018. URL:
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-
Environment-15May2018.pdf

[38] GlobalPlatform Technology TEE System Architecture Version 1.2. November 2018
Document Reference: GPD_SPE_009.

[39] GlobalPlatform Device Technology TEE Management Framework, Version 1.0. November 2016
Document Reference: GPD_SPE_120

[40] GlobalPlatform Device Technology TEE Client API Specification, Version 1.0. July 2010
Document Reference: GPD_SPE_007

[41] GlobalPlatform Technology TEE Internal Core API Specification Version 1.2.1. May 2019
Document Reference: GPD_SPE_010

[42] GlobalPlatform Device TEE Initial Configuration. Version 1.1, November 2016
Document Reference: GPD_GUI_069

https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf

