

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

Advanced Secure Cloud Encrypted Platform
for Internationally Orchestrated Solutions in

Healthcare

Project Acronym: ASCLEPIOS

Project Contract Number: 826093

Programme: Health, demographic change and wellbeing

Call: Trusted digital solutions and Cybersecurity in Health and Care
to protect privacy/data/infrastructures

Call Identifier: H2020-SC1-FA-DTS-2018-2020

Focus Area: Boosting the effectiveness of the Security Union
Topic: Toolkit for assessing and reducing cyber risks in hospitals and care

centres
Topic Identifier: H2020-SC1-U-TDS-02-2018

Funding Scheme: Research and Innovation Action

Start date of project: 01/12/2018 Duration: 36 months

Deliverable:
D3.3 Context-aware ABAC Enforcement Mechanism

Due date of deliverable: 31/05/2020 Actual submission date: 16/06/2020

WPL: ICCS

Dissemination Level: Public

Version: final

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 2 of 43

Table of Contents

Table of Contents ... 2

List of Figures and Tables .. 3

Status, Change History and Glossary .. 5

Executive Summary ... 7

1 Introduction ... 8

1.1 Objectives .. 8

1.2 Relationship to ASCLEPIOS Deliverables ... 8

1.3 Organization .. 9

2 Relevant SOTA in authorization for medical data access ... 10

2.1 Authorization Background – Theoretical Concepts ... 10

2.2 ABAC as a best-of-breed Access Control Mechanism .. 11

3 ABAC Reference Implementations ... 14

3.1 XACML in a Nutshell ... 14

3.2 NGAC in a Nutshell ... 17

3.3 Comparative analysis .. 18

3.3.1 Separation of Authorization Functionality from Proprietary Operating
Environment .. 19
3.3.2 Attribute and Policy Management .. 19
3.3.3 Operational Efficiency and Policy Combination .. 19

4 ABAC Tool Suites ... 21

4.1 Balana ... 21

4.2 PaaSword .. 23

4.3 AuthzForce .. 24

4.4 Keycloak .. 25

5 ASCLEPIOS Authorization mechanism .. 28

5.1 Synergy of ABAC and ABE ... 28

5.1.1 Sample Flows - Authorization based on ABAC and ABE Policies.................... 29

5.2 Components & Interfaces of ASCLEPIOS Authorization Engine 33

5.3 Policy Authoring Environment ... 34

5.3.1 Policy Validation ... 36

6 Conclusions .. 42

7 References ... 43

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 3 of 43

List of Figures and Tables

Figures

Figure 1 Relationship of D3.3 to deliverables of WP3 .. 9

Figure 2 ABAC Indicative Information Flow .. 13

Figure 3 XACML Flow & Architectural Components ... 14

Figure 4 Usage of XML Artefacts .. 15

Figure 5 Sample XSD of Policy ... 16

Figure 6 Sample XSD of Request ... 16

Figure 7 Sample XSD of Response .. 17

Figure 8 Two Example Assignment and Association Graphs (source:[10]) 18

Figure 9 Balana PDP .. 21

Figure 10 Carbon Policy Filter .. 22

Figure 11 Carbon Attribute Finder .. 23

Figure 12 AuthZForce core components .. 25

Figure 13 Keycloak Realm Administration .. 26

Figure 14 OIDC Signalling .. 26

Figure 15 ABE Flow .. 28

Figure 16 – Generic Authorization process (BPMN view) ... 29

Figure 17 – Complete Write Flow ... 31

Figure 18 – Complete Read Flow ... 33

Figure 19 Components & Steps for the Auhorization process .. 33

Figure 20 –ABAC Policy creation .. 35

Figure 21 –ABAC Policy rule creation ... 35

Figure 22 AMPLE welcome page ... 37

Figure 23 Policy validation editor .. 37

Figure 24 Policy validation results .. 38

Figure 25 Policy inspection rule: Check network location zone .. 39

Figure 26 Security awareness rule: Check the use of modern HTTPS (TLS v3) 39

Figure 27 Security awareness rule: Check the use of an Authentication method 39

Figure 28 ABAC policy for checking whether an incoming request detected during working
days and hours ... 40

Figure 29 ABAC rule for checking whether it is not a working day 40

Figure 30 ABAC rule for checking whether it is not a working hour 40

Figure 31 ABAC rule that permits access if none of the previous rules match 40

Figure 32 ABE policy requiring that only a Pathologist can access protected resource 40

Figure 33 Policy validation sets and rules ... 41

Figure 34 Policy validation results for ABAC policy .. 41

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 4 of 43

Figure 35 Policy validation results for ABE policy (sorted by validation rule) 41

Tables

Table 1: Status Change History .. 5

Table 2: Deliverable Change HistoryGlossary .. 5

Table 3: Glossary .. 6

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 5 of 43

Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Panagiotis Gouvas 27/05/2020

Reviewed: Evmorfia Biliri 05/06/2020

Approved: Tamas Kiss 16/06/2020

Table 1: Status Change History

Version Date Pages Author Modification

V0.1 03/04/2020 5
Giannis Ledakis
(UBI) TOC

V0.1 22/04/2020 20
Panagiotis Gouvas
(UBI) Sections 2, 3

V0.3 05/05/2020 29
Panagiotis Gouvas
(UBI)

Section 4, updates on section
2,3

V0.4 14/05/2020 31
Yiannis
Verginadis(ICCS)

Authorization flow with ABE
and ABAC

V0.5 19/05/2020 33
Panagiotis Gouvas
(UBI) Section 5 complete

V0.6 23/05/2020 38
Ioannis Patiniotakis
(ICCS) Added policy validation part

V0.7 25/05/2020 40
Panagiotis Gouvas
(UBI)

Updates on all sections, Intro,
Conclusions

V0.8 27/05/2020 41
Panagiotis Gouvas,
Giannis Ledakis Ready for review

V0.9 30/05/2020 41
Yiannis
Verginadis(ICCS) Review

V0.9.1 03/05/2020 44

Panagiotis Gouvas
(UBI), Giannis
Ledakis (UBI)

Updates based on ICCS
review

V0.9.2 05/05/2020 44
Evmorfia Biliri
(SUITE5) Review

V0.1 16/05/2020 44
Giannis Ledakis
(UBI) Final for Submission

Table 2: Deliverable Change History

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 6 of 43

Glossary

ABAC Attribute Based Access Control

ΑΒΕ Attribute Based Encryption

ACL Access Control List

ACM Access Control Mechanism

AMPLE ASCLEPIOS Models and PoLicies Editors

BPMN Business Process Model and Notation

CASM Context-Aware Security Model

DAC Discretional Access Control

IBAC Identity Based Access Control

JWT JSON Web Token

MAC Mandatory Access Control

NGAC Next Generation Access Contro

OAUTH Open Authorization

OIDC Open Id Connect

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

RBAC Role Based Authorization & Control

SOTA State of the Art

XACML eXtensible Access Control Markup Language

XSD XML Schema Definition

Table 3: Glossary

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 7 of 43

Executive Summary

The need of a trusted environment in which only authorized users are permitted to access
data is of imperative importance and is a blocking factor for adopting cloud systems when
sensitive data are treated, as the case of the health care domain. Our goal is to enhance the
access control mechanisms that can be used in the healthcare. WP3 is addressing this exact
topic by defining and evaluating contextual information (e.g., the identity of a user, its role,
patterns of access, connection type, etc.) and attributes that characterize sensitivity levels of
data. Based on the work reported on this deliverable, access control policies will be enforced
as part of two different authorisation paradigms; i) the Attribute Based Access Control
(ABAC layer which permits or denies access and/or editing rights to (encrypted) EHRs; and
ii) the Attribute-Based Encryption (ABE layer which handles the way sensitive data should be
decrypted. The decision of adopting the model of ABAC for medical data is elaborated along
with its architecture implications. Furthermore, although ABAC is a pure authorization
scheme, the synergy that ABAC has with ABE is discussed since ABE entails some
characteristics of authorization without being an authorization framework per se.

The Balana ABAC engine is a cornerstone of ASCLEPIOS Context-Aware Authorization
Engine presented in this deliverable. However, ASCLEPIOS Context-Aware Authorization
Engine is using a combination of ABAC with Attribute-Based-Encryption to augment the
authorization functionality in a distributed cloud environment. These two schemes are
complemented by an identity management scheme that abstracts the extraction of
authentication info. Hence the Context-Aware Authorization Engine is efficiently combining
OpenIDConnect signalling for Identity Extraction (user authentication), ABAC Policy
Enforcement for accessing allowing/disallowing access to an ABE Server that issues
attribute-based encryption/decryption keys.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 8 of 43

1 Introduction

WP3 focuses on defining and evaluating contextual information (e.g., the identity of a user,
its role, patterns of access, connection type, etc.) and attributes that characterize sensitivity
levels of data. This information is considered in ASCLEPIOS before granting any data
access request. Based on such information, the contextual model was developed in D3.1[1],
and building on it a number of enforcement rules can be created as the most elementary
structural elements of policies. Indicatively, attributes that are organized in a hierarchical
structure may include concepts related to: i) the device from which there is an access
attempt, ii) the actor that tries to access the data (e.g. location, IP, role in the healthcare use
case, etc.) and iii) historical data that reveal patterns of access (e.g. frequency, usual dates
or hours of access, the usual duration of access, previously accessed data, etc.). Such
concepts, along with a number of properties that interrelate them, serve as background
knowledge for the ASCLEPIOS access control policies. These access control policies are
then enforced as part of two different authorization paradigms that are employed in
ASCLEPIOS in sequence for achieving even higher levels of security controls. These
paradigms are the Attribute-based Access Control (ABAC) and the Attribute-based
Encryption (ABE).
This deliverable reports on the theoretical aspects of the adopted Access Control
Mechanism that has been employed. The reader is introduced in the theoretical background
of different Access Control models. The decision of adopting the model of ABAC for medical
data is elaborated along with its architecture implications. Furthermore, although ABAC is a
pure authorization scheme, the synergy that ABAC has with ABE is discussed since ABE
entails some characteristics of authorization without being an authorization framework per
se. However, this synergy has to be fully clarified because it is the cornerstone of the
advanced security characteristics that are offered by ASCLEPIOS.

1.1 Objectives

The primary objectives of this deliverable are to:
1. Elaborate on the various Authorization schemes
2. Justify the decision to follow ABAC as a basic means of implementing access control
3. Elaborate on the decision to adopt XACML as formal language for ABAC policies
4. Discuss the synergy of ABAC and ABE in the frame of ASCLEPIOS

1.2 Relationship to ASCLEPIOS Deliverables

The deliverable documents the Context-Aware Authorization Engine that has been
developed in the frame of work package 3. Therefore, it builds on deliverables D3.1[1] and
D3.2[2], as depicted in Figure 1.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 9 of 43

Figure 1 Relationship of D3.3 to deliverables of WP3

1.3 Organization

Chapter 2 provides a formal definition of what is an authorization scheme. It also shortly
elaborates on the different schemes that have been proposed historically. Chapter 3
elaborates on ABAC that is the preferred scheme. The two most prominent implementations
of ABAC are discussed. The selection of XACML is justified.
Chapter 4 provides an overview of the existing software artefacts that could be used as a
basis for implementing the ASCLEPIOS authorization engine. A short description of the most
prominent open-source implementations that are provided along with their traits. Chapter 5
presents the actual mechanism by analysing the synergy among ABAC and ABE, providing
the overview of the authorization workflow and elaborating on the developed extensions of
the AMPLE editor (presented in D3.2) towards policies validation and security
awareness.Chapter 6 concludes this deliverable.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 10 of 43

2 Relevant SOTA in authorization for medical data access

2.1 Authorization Background – Theoretical Concepts

ASCLEPIOS framework is a security and privacy-by-design framework for accessing
medical data. To this end, one of the core aspects that such a framework should deal with is
logical access control to generated data. It should be clarified that authorization should not
be confused with authentication. Authentication deals with the problem of proving the
identity of a natural person or a system entity that aims to interact with a resource while
authorization deals with the problem of providing logical access control to these
resources. The logical access control is always bound to specific actions that the natural-
person/systemic entity (hereinafter subject) wishes to perform i.e. discovering, reading,
creating, editing, deleting, and executing.
These resources belong administratively to organizational entities that are responsible for
providing proper policies that dictate the allowance or disallowance of an action as
mentioned above. If the subject that requires to perform an operation with the resource
satisfies the authorization policy established by the resource owner, then the subject is
authorized to perform the desired operation on that resource.
Taking into consideration all the above, a set of questions are raised. These are:

• Is there a universal way of describing the aforementioned policies that dictates
allowance/disallowance?

• If not such a universal way exists, how allowance/disallowance works in different
systems?

In order to answer these questions, we have to trace back to the theoretical concepts of
authorization. The “problem statement” of an authorization request entails some concepts
that are common in all approaches. These include: the subject (a.k.a. requestor), the
object (a.k.a. resource), the action (to the resource), the environmental context, the
defined policy (or policies) and the policy-evaluation business logic (a.k.a. Policy
Enforcement). Unfortunately, there is no universal authorization system that covers
modelling-wise and implementation-wise all functional requirements of all systems. Such
functional requirements may be contradictive e.g.:

• Dynamic authoring of policies by several actors simultaneously (versus static
definition of policies)

• Separation of enforcement business logic with the policy-authoring environment

• Dynamic expansion of policies during the operation of the authorization system
without disruption of the resource

As a result, it should be clarified that, in absence of a one-size fits all solution, there are
many proposals that attempt to provide “holistic” solutions. “Holistic” refers to the fact
that they try to cover many corner-cases; yet they compromise one feature in favor of
another based on their area of applicability. This is justifiable by the fact that some functional
and non-functional requirements are more crucial than others in specific systems. For
example, the decision of allowing or disallowing a system-call of a process to the
Linux kernel has completely different requirements from a decision of allowing or
disallowing a doctor to access a medical record on a specific system.
Practically, when we refer to an Access Control Mechanism (a.k.a. ACM) we refer to three
distinct aspects:

• The way the concepts subject, object, action, environmental context and
authorization policy are modelled and serialized

• The way the policy evaluation of allowance/disallowance works (i.e. the signaling
that has to be performed)

• The functional and the non-functional requirements that are promoted by the
specific ACM (i.e. central access control entity).

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 11 of 43

Throughout the last 30 years, several Access Control Mechanisms have been proposed,
with each having its advantages and limitations. However, for the sake of completeness, the
four more dominant ACMs will be listed:

• MAC: Mandatory Access Control refers to a type of access control by which a

central entity (e.g. an operating system kernel) constrains the ability of a subject or

initiator to access or generally perform some sort of operation on an object or target

by referring to the object per se (directly).

• DAC: In contrast to MAC, Discretionary Access Control (DAC) allows users to

make policy decisions and/or assign security attributes. An example of DAC is

the traditional Unix system with the users, groups, and read-write-execute

permissions. MAC-enabled systems allow policy administrators to implement

organization-wide security policies that users cannot override or modify. DAC allows

security administrators to define central policies to be enforced for all users

• IBAC/ACLs: Identity Based Access Control (IBAC) employs mechanisms such as

access control lists (ACLs) to capture the identities of those allowed to access the

object. If a subject presents a credential that matches the one held in the ACL, the

subject is given access to the object. Individual privileges of the subject to perform

operations (read, write, edit, delete, etc.) are managed on an individual basis by

the object owner. Each object needs to have ACL and set of privileges assigned to

each subject. As result, in IBAC the authorization decisions are made prior to any

specific access request; for each subject to be placed on an ACL, the object owner

must evaluate identity, object, and context attributes against policy governing the

object and decide whether to add the subject to the ACL. As this decision is static a

notification process is required for the owner to reevaluate and perhaps remove a

subject from the ACL to represent subject, object, or contextual changes. Failure to

remove or revoke access over time leads to users accumulating privileges.

• RBAC (Role Based Authorization & Control) employs pre-defined roles that carry

a specific set of privileges associated with them and to which subjects are

assigned[5]. In RBAC, access is predetermined by the person assigning the roles to

each individual and explicitly by the object owner when determining the privilege

associated with each role. At the point of an access request, the access control

mechanism evaluates the role assigned to the subject requesting access and

the set of operations this role is authorized to perform on the object before

rendering and enforcing an access decision.

• ABAC (Attribute-Based Access Control) uses attributes, and policies that express

boolean rule sets that can evaluate many different attributes before allowing

access. ABAC, therefore, avoids the need for capabilities (operation/object pairs) to

be directly assigned to subject requesters or to their roles or groups before the

request is made. IBAC and RBAC can be seen as special cases of ABAC, with IBAC

using the attribute of “identity” and RBAC using the attribute of “role”

As already mentioned, different ACMs are accompanied by different architectural merits and

as such a crucial question looms: which is the best-fit ACM for ASCLEPIOS?

2.2 ABAC as a best-of-breed Access Control Mechanism

In order to identify the best-fit ACM we must trace back to the functional and non-functional
requirements of ASCLEPIOS, defined in deliverable D1.2[4]. In medical systems, the most
crucial requirements are dynamicity in policy creation and separation of concerns
among policy definition and policy enforcement. There requirements imply that an access

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 12 of 43

policy can be defined by more than one policy-makers (e.g. a patient, a doctor). Such
policies shall be able to update dynamically based on specific constraints that are not a-
priori related to requestors (e.g. i share my medical record to all doctors of hospital or to
all doctors of hospital X that belong to department Y).
“Dynamicity” is the key factor that drives our decision. More specifically, a Mandatory
Access Control scheme is inappropriate since the policy definition point is unique and the
resources have static properties based on which allowance and disallowance is provided.
In an analogous manner DAC schemes are not capable to fit in our requirements. Although
they allow the objects to define their own values for the policy properties; the properties per
se are totally static (i.e. they cannot be extended).
Furthermore, IBAC and Access Control Lists suffer from a severe drawback. Although they
support extensible attributes for subjects & objects the exhaustive list of authorization
decisions should be defined prior to any request. Hence, we pay a huge penalty for the
offered dynamicity.
On the other hand, RBAC and ABAC can satisfy our needs. As already discussed, RBAC is
a specialization of ABAC (according to which one subject attribute is addressed as Role) and
as such we will adopt the generalized ABAC.
In general, using ABAC removes the need for capabilities (operation/object pairs) to be
directly assigned to subject requesters or to their roles or groups before the request is
made[5]. Instead, when a subject requests access, an ABAC-compliant engine makes an
access control decision based on a) the assigned attributes of the requester, b) the assigned
attributes of the object, c) the environment conditions, and d) a set of policies that are
specified in terms of those attributes and conditions.
Furthermore, policies in ABAC are created and managed without direct reference to users
and objects, while also users and objects can be provisioned without reference to policy.
For the interest of ASCLEPIOS Framework this separation of policies forom users and
objects is important as it allows the support of advanced real life scenarios (e.g. the
emergency access to a patient’s data). In contrast, in any non-ABAC multi-organizational
access method example, the access to an object (e.g. patient’s medical data) outside of the
subject’s originating organization would require the subject’s identity to be pre-
provisioned in the target organization and prepopulated on an access list.
For the sake of clarity, we will differentiate hereinafter in the deliverable the concepts of
ABAC and ABAC Reference Implementations. Following the strict definition of NIST[5] we
will refer to ABAC as the “access control method where subject requests to perform
operations on objects are granted or denied based on assigned attributes of the subject,
assigned attributes of the object, environment conditions, and a set of policies that are
specified in terms of those attributes and conditions”. Following this definition, the terms
“attribute”, “subject”, “object”, “operation”, “policy” and “environmental condition” will be
unambiguously used based on the following definitions:

• Attributes are characteristics of the subject, object, or environment conditions.

Attributes contain information given by a name-value pair.

• A Subject is a human user or a systemic entity, such as a device that issues access

requests to perform operations on objects. Subjects are assigned one or more

attributes.

• An Object is a system resource for which access is managed by the ABAC system,

such as devices, files, records, tables, processes, programs, networks, or domains

containing or receiving information. It can be the resource or requested entity, as

well as anything upon which an operation may be performed by a subject including

data, applications, services, devices, and networks.

• An Operation is the execution of a function at the request of a subject upon an

object. Operations include read, write, edit, delete, copy, execute, and modify.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 13 of 43

• Policy is the representation of rules or relationships that makes it possible to

determine if a requested access should be allowed, given the values of the attributes

of the subject, object, and possibly environment conditions.

• Environment conditions represent operational or situational context in which

access requests occur. Environment conditions are detectable environmental

characteristics. Environment characteristics are independent of subject or object, and

may include the current time, day of the week, location of a user, or the current threat

level.

Any ABAC system should implement the conceptual flow that is depicted on Figure 2.
According to this flow any subject can perform an access request for a specific operation
regarding a specific medical record (step 1).

Figure 2 ABAC Indicative Information Flow

The access request is handled by the ABAC reference implementation engine, which
consults a policy repository (step 2a) in order to come to the set of attributes that have to be
examined in order to reach a decision of “allow” or “deny”. The attribute examination phase
checks subject attributes (step 2b), object attributes (step 2c) and environmental attributes
(step 2d) in order to perform the actual assessment (step 3).
As a result, ABAC is our final decision. However, it should be clarified that ABAC is a
theoretical framework not a standard. In the next section we will elaborate on which standard
will be used for the ASCLEPIOS Authorization engine.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 14 of 43

3 ABAC Reference Implementations

As already discussed, there are many reference implementations of the ABAC model. One
example of an access control framework that is consistent with ABAC is the eXtensible
Access Control Markup Language (XACML) [6]. Another example is the Next Generation
Access Control (a.k.a. NGAC) standard [7]. These two are considered to be the most
notable ones. The in-detail comparison between the two reference implementations super-
exceeds the scope of this deliverable. However, we will provide a brief overview of the two
proposals in order to justify our selection.

3.1 XACML in a Nutshell

XACML is an OASIS [8] standard that describes both a policy language and an access
control decision request/response language. Both languages use XSD [9] notations; hence
policy definition and request/response elements are serialized as XML elements. The policy
language details the general access control requirements and provides extension points for
new functions, data types, combining logic, etc. In the other hand, the request/response
language allows forming a query that asks whether a given action should be allowed. The
response shall include an answer on the request allowance using one of the fololwing four
values:

• Permit

• Deny

• Indeterminate (an error occurred or some required value was missing, so a decision
cannot be made)

• Not Applicable (the request can't be answered by this service).
The specification defines five main components (see Figure 3) that handle access decisions;
namely Policy Enforcement Point (PEP), Policy Administration Point (PAP), Policy Decision
Point (PDP), Policy Information Point (PIP), and a Context Handler.

Figure 3 XACML Flow & Architectural Components

The functional purpose of the main components is:

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 15 of 43

• The Policy Administration Point (PAP) is the repository for the policies and provides

the policies to the Policy Decision Point (PDP);

• The Policy Enforcement Point (PEP) is the interface of the whole environment to the

outside world. It receives the access requests and evaluates them with the help of

the other actors and permits or denies the access to the resource;

• Policy Decision Point (PDP) is the main decision point for the access requests. It

collects all the necessary information from other actors and calculates a decision;

• Policy Information Point (PIP) is the point where the necessary attributes for the

policy evaluation are retrieved from several external or internal actors. The attributes

can be retrieved from the resource to be accessed, environment (e.g. time), subjects,

and so forth.

As already mentioned, XACML uses XSD notation in order to model the three basic artefacts
which are required i.e. the policy, the request and the response. Thus, as depicted on Figure
4 three types of XMLs are required by an XACML engine in order to judge upon a decision
i.e. the Policy.xml which serializes an actual policy, the Request.xml which serializes an
authorization request and the Response.xml that serializes the output of the engine.

Figure 4 Usage of XML Artefacts

Part of the XSD schema of the policy is depicted on Figure 5. As it is depicted, one policy
contains some informative elements (description, issuer etc.) and some elements that relate
to the definition of variables and their usage in policy expressions.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 16 of 43

Figure 5 Sample XSD of Policy

In an analogous way, Figure 6 depicts part of the XSD specification of the request and
Figure 7 part of the XSD specification of the response.

Figure 6 Sample XSD of Request

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 17 of 43

Figure 7 Sample XSD of Response

Delving into the details of the elements is outside the scope of this document. The reader
may consult the specification for more details.

3.2 NGAC in a Nutshell

Next Generation Access Control [7] is a fundamental reworking of traditional access control
into a form that suits the needs of the modern distributed interconnected systems. NGAC
diverges from traditional approaches to access control in defining a generic architecture that
is separate from any particular policy or type of policy. NGAC is not an extension of, or
adaption of, any existing access control mechanism, but instead is a redefinition of access
control in terms of a fundamental and reusable set of data abstractions and functions. NGAC
provides a unifying framework capable without extension of supporting not only current many
access control approaches, but also novel types of policy that have been conceived but
never implemented due to the lack of a suitable enforcement mechanism.
The set of NGAC standards specifies the architecture, functions, operations, and interfaces
necessary to ensure interoperability between conforming NGAC implementations. It contains
an abstract functional description of architecture to be implemented and also gathers the
entities comprising the architecture on the basis of their function. Conforming
implementations may employ any design technique that does not violate interoperability.
NGAC’s access control data is comprised of basic elements, containers, and configurable
relations. NGAC uses the terms user, operation, and object with similar meanings. In
addition to these, NGAC includes processes, administrative operations, and policy
classes[10].
NGAC does not express policies through rules as XACML based ABAC, but instead used
the following relation types:

• assignments (define membership in containers),

• associations (to derive privileges),

• prohibitions (to derive privilege exceptions),

• obligations (to dynamically alter access state).

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 18 of 43

NGAC specifies the assignment of element x to element y through a tuple (x, y), or using
the notation x → y . The assignment relation always implies containment (x is contained in
y). The set of entities used in assignments include users, user attributes, object attributes
(which include all objects), and policy classes.
In NGAC, to carry out an operation, one or more access rights are required. Two types of
access rights apply, non-administrative and administrative, and the access rights are
acquired through associations.
An association is a triple, denoted by ua---ars---at, where ua is a user attribute, ars is a set of
access rights, and at is an attribute, where at may comprise either a user attribute or an
object attribute. The meaning of the association ua---ars---at is that the users contained in
ua can execute the access rights in ars on the policy elements referenced by at[10].
Figure 8 illustrates assignment and association relations depicted as graphs with two policy
classes—Project Access, and File Management. User attributes are on the left side of the
graphs, and object attributes are on the right. The arrows represent assignment or
containment relations, while the dashed lines denote associations.

Figure 8 Two Example Assignment and Association Graphs (source:[10])

The associations and assignments in NGAC indirectly specify the privileges in the form (u,
ar, e). In simple words, this means that user u is permitted (or has a capability) to execute
the access right ar on element e, where e can represent a user, user attribute, or object
attribute.

NGAC specification also provides an algorithm that can determine privileges with respect to
one or more policy classes and associations. It is important to highlight again that in NGAC
the capabilities to perform administrative operations on policy elements and relations are
also defined in terms of associations.

3.3 Comparative analysis

As already mentioned, the scope of the deliverable is not to elaborate on the differences that
the two most prominent reference implementations have. This elaboration is complicated
and requires deep understanding of the foundational principles of both approaches. Out of

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 19 of 43

the two approaches we have selected XACML mainly because of its architectural clarity and
tool support.
However, for the sake of justifying our decision we will provide a high-level overview of a
detailed comparison. It could be argued that XACML is similar to NGAC as they both provide
flexible, mechanism-independent representations of policy rules that may vary in
granularity, and they employ attributes in computing decisions. However, XACML and
NGAC differ in the way they formulate policies and treat of attributes, the way the
requests are represented and the way that decisions are made. The following list
summarizes the similarities and differences with respect to a) separation of authorization
functionality from the proprietary operating environment; b) attribute and policy management
and c) operational efficiency.

3.3.1 Separation of Authorization Functionality from Proprietary Operating
Environment

Both on XACML and NGAC separation of access control from the proprietary operating
environments is used. However, this is done to different degrees. An XACML deployment
may consist of multiple operating environments, each hosting one or more applications
and implementing its own method of authentication. For this reason, a common authorization
infrastructure shall be used, and an XACML-enabled application uses an operating
environment PEP; requests are issued from, and decisions are returned to, an operating
environment-specific PEP.

In contrast, NGAC includes a PEP with an API that supports a set of generic, operating
environment-agnostic operations (read, write, create, and delete policy elements and
relations). An NGAC deployment can include a PEP that recognizes operating environment-
specific operations, as the generic operations may not meet the requirements of every
application.

3.3.2 Attribute and Policy Management
Although XACML and NGAC have the ability to combine policies, their motivations are
different. XACML’s motivation is to resolve conflicts. That is, policies and rules may have
different Effects (Permit or Deny), which must be resolved during evaluation by selectively
applying one of several combining algorithms. NGAC’s motivation is to ensure the
adherence of combinations of multiple policies when computing a decision (e.g. DAC
and RBAC)[10].
Furthermore, both XACML and NGAC offer a delegation mechanism in support of
decentralized administration of access policies and both allow an authority delegation. .

3.3.3 Operational Efficiency and Policy Combination
While XACML and NGAC are similar in that they selectively identify and evaluate policies
and conditions that pertain to a request, they differ significantly in their approach. An XACML
request is a collection of attribute name-value pairs for the subject (user), action, resource,
and environment that must be translated to an XACML canonical form for PDP consumption.
XACML identifies applicable policies and rules within policies by matching attributes to
Targets. The entire process involves collecting attributes and matching Target conditions
through all policies and all rules in applicable policies, issuing administrative requests (for
determining a chain of trust for applicable untrusted access policies). If the attributes are not
sufficient for the evaluation of an applicable policy or rule, the PDP may search for additional
attributes. The access process involves searching at least two data stores (PIP and PDP)..

In NGAC, for responding to an access request, the decision is computed using access
control data stored in one database, thus making NGAC more efficient. NGAC identifies
relevant policies and attributes directly through assignment relations. Like XACML, NGAC
combines policies.
Finally, NGAC and XACML follow a different approach when combining multiple policies.
XACML computes and then combines multiple local decisions for creating the final decision,

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 20 of 43

while NGAC takes multiple policies into consideration when determining the existence of an
appropriate privilege. If such a privilege does exist and no exceptions (prohibitions) exist, the
request is granted, otherwise it is denied.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 21 of 43

4 ABAC Tool Suites

4.1 Balana

Balana1 was the first open-source reference implementation of the XACML protocol, and is a
widely adopted solution. It supports the entire lifecycle of authorisation processing. It is
tightly integrated into the WSO2 Identity Server [11]. Balana, as XACML engine of the
WSO2 Identity Server has two major components, the Policy Administration Point (PAP) and
Policy Decision Point (PDP). Figure 9 presented the component architecture of the PDP that
is our main interest.

Figure 9 Balana PDP

More details on the components of in the PDP architecture are presented below.
Entitlement Admin Service provides an API that is used to expose all PDP configurations,
such as:

• Invalidating caches

• Refreshing policy, attribute, resource finder modules

• Retrieving PDP configurations

• Testing the PDP
Entitlement Service provides XACML authorization API that supports the following three
communication methods with PEP.

• SOAP-based Web service

• Apache Thrift binary protocol[12]

• WS-XACML
Balana PDP is the core of the engine of Balana
Balana Test PDP is a duplication of Balana PDP can be only used for testing policies.

1 https://github.com/wso2/balana

https://github.com/wso2/balana

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 22 of 43

Carbon Policy Finder is a module that finds policies from different policy stores to evaluate
an XACML request. Figure 10 presents a high-level diagram of the usage of the carbon
policy filter for the collection of the policies to be evaluated.

Figure 10 Carbon Policy Filter

Policy finder modules implementing the CarbonPolicyFinderModule interface should be
registered and plugged with the Carbon policy finder. WSO2 Identity Server provides by
default a Carbon registry-based policy finder module that can retrieve policies from a registry
collection. Carbon policy finder finds XACML requests and creates the creates an effective
policy. When an update in the policy store happens, Carbon policy finder can be re-initialized
automatically by the module, or it can be re-initialized using the API of the Entitlement Admin
Service.

Carbon Attribute Finder is a module that is responsible for finding missing attributes for a
given XACML request, using the underlying PIP attribute finders. Figure 11 provides a high-
level diagram for both the Carbon attribute finder and resource finders.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 23 of 43

Figure 11 Carbon Attribute Finder

A PIP attribute finder module should implement the PIPAttributeFinder interface, and register
it using the entitlement properties configuration file to the Carbon attribute finder. WSO2
Identity Server by default communicates with the underlying user store of the Identity Server
that is built with ApacheDS[13].
On runtime, Carbon attribute finder checks for the attribute Id and hands it over to the proper
module to handle, while caching mechanism (provided by Carbon attribute finder) is used for
caching the findings when possible.

Carbon Resource Finder is used to retrieve children or descendant resources of a given
root level resource value, used to fulfil requirements for a multiple decision profile. Similarly
to the PIP attribute finder module, it has to implement the PIPAttributeFinder interface.

In general, we consider Balana a highly extensive open source solution, suitable for
the needs of ASCLEPIOS.

4.2 PaaSword

PaaSword[14] is an XACML implementation that emphasizes in the semantic evaluation of
attributes when compared to Balana, as in Balana attributes are exactly matched irrelevant if
they belong to a taxonomy. When compared to Balana PaaSword offers three
differentiation features; namely:

• Feature-1: The ability to harmonize the attribute creation process through the

usage of the extensible Context Model. In traditional XACML the creation of

attribute values and subject and resource assignments to those attributes is typically

performed in disperse venues without any notion of coordination or governance.

This is an inherent drawback of the XACML standard. The PaaSword engine

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 24 of 43

alleviates this drawback through the usage of the developed and extensible Context

Model.

• Feature-2: The ability to decouple the level of granularity of attributes that are

used to define policies with the attributes that characterize ‘subjects’, ‘objects’

and the ‘environment’: The existing mechanism for evaluating the access or deny

decision for a given request relies on the expression evaluation of the ‘exact’

attributes that are defined in the provided policies. Exact evaluation means that the

relationship between the attributes per se is ignored, i.e. if a policy is defined using a

location instance (e.g. FloorA) then an environmental variable that refers to a room

that is encapsulated in the specific floor (e.g. RoomA) would never be matched. This

mismatch is also alleviated by the PaaSword engine.

• Feature-3: The ability to provide design-time conflict resolution for provided

policies: Since XACML is ‘distributed’ by its nature, the provided policies may be

conflicting. The standard is accompanied by a conflict resolution strategy; however,

given that policies are expressed ontologically, the framework offers design-time

guarantees regarding conflict resolution.

The PaaSword ecosystem does not have the industry adoption of Balana; yet it has more
advanced and intuitive interface for managing the rules.

Unfortunately, the disadvantage of PaaSword is the overhead in terms of time for evaluating
the XACML policies. The semantic evaluation of policies requires the ontological inferencing
of rules. This inferencing has a “severe” performance penalty and as such PaaSword
cannot be used in mission-critical applications.

4.3 AuthzForce

AuthzForce[15] project provides an ABAC framework compliant with the OASIS XACML
v3.0, that mostly consists of an authorization policy engine and a RESTful authorization
server. It was primarily developed to provide advanced access control for Web Services or
APIs, but is generic enough to address all kinds of access control use cases. AuthzForce is
highly modular and as such, can be used in diverse application scenarios.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 25 of 43

Figure 12 AuthZForce core components

AuthzForce can be used in two ways depending on the needs:

• Through a Java API: AuthZForce provides an XACML Policy Decision Point (PDP)
engine provided as Java library. Applications can be instantiated and used with the
embedded XACML PDP, that is using the API provided by AuthzForce Core.

• Through a Web API: AuthZForce provides a multi-tenant HTTP/REST API to PDPs
and PAPs (Policy Administration Points). This API, API is provided by AuthzForce
Server, can be used by web clients for managing policies, request authorization
decisions, etc..

Although AuthzForce does not have the peripheral utilities of Balana (i.e. some
administration interfaces) it is functionally equivalent with Balana.

4.4 Keycloak

Before we discuss about Keycloak[16] we have to clarify one thing; Keycloak is not an
ABAC implementation. In fact, it is not even an authorization server at all. Yet is,
probably the most powerful authentication proxy for micro-services and legacy systems.
As such, it abstracts the functionality of identity extraction and identity verification for
different systems and for different protocols. In parallel, it is able to map users and roles from
existing legacy systems in what it calls authentication realms.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 26 of 43

Figure 13 Keycloak Realm Administration

Through configured realms, Keycloak is able to centralize the login-process of various
systems through the implementation of many protocols such as oAuth2.0[17] and
OpenIDConnect[18] (a.k.a. OIDC). The OpenIDConnect signalling is presented in Figure 14.

Figure 14 OIDC Signalling

According to the flow diagram, a user is attempting to connect to a service (e.g. health-care
service X) which supports OIDC. The health care service is redirecting the user to an OIDC
provider that is configured to authenticate users based on a health-care-service-id and a
user-role mapping. The combination of the health-care-service-id and the user-role-
mapping is addressed as a realm.
The OIDC server is “challenging” the user to authenticate based on various methods
(username/password, X509 certificate etc.). Upon successful login a distinct set of claims
are serialized as a token back to the user in order to use it in his/her interaction with the
health-care-service. These claims contain electronically signed attributes that can be
used by the ABAC authorization engine.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 27 of 43

As a result, the OIDC signalling (and Keycloak in general) is extremely crucial for
ASCLEPIOS ABAC even if it is not an ABAC engine per se. It acts as an enabler of verifier
attributes.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 28 of 43

5 ASCLEPIOS Authorization mechanism

5.1 The synergy of ABAC and ABE

Before we delve into the details of the ASCLEPIOS authorization mechanism, we must
clarify the boundaries between ABAC and ABE. ABE is a cryptographic primitive that
allows multiple users to encrypt and decrypt files based on their attributes and encryption
policies. A crucial question that is raised is the following: Is ABE an Access Control
Mechanism per se?
The answer is “leaning to yes” but with severe limitations; so many limitations that
someone could claim even no. On the one hand, ABE has some inherent authorization
properties since it allows the definition of (encrypted) policies that mandate whether or not
a user-key can decrypt a cypher or not.

As depicted on Figure 15, an ABE scheme initiated upon a proper initialization phase (step-
1) according to which a public file and a master-key-generator are produced.

Figure 15 ABE Flow

Upon initiation, many users can ask the ABE server (that holds in a protected zone the
master key) to issue a private key based on a set of attributes that are verifiable (e.g.
firstname: x1, organization:org1) (steps 2-3).
Each party can encrypt a document using the ABE-Server’s public key and a set of
attributes; the attributes should match in order to decrypt a file. A policy can be {firstname:y1
or organization:org1}. The policy is encrypted along with the rest of the raw file. Two
independent users can attempt to decrypt the file based on their key without having proper
knowledge whether their keys can perform decryption or not

Yet, these policies are “hardcoded” during the encryption process and cannot be altered
upon generation. Moreover, a predicted behaviour of policy enforcement cannot be achieved
since a user cannot know a-priori whether or not his key is able to access a protected
resource. Above all, ABE scheme supports only one action i.e. decrypt. A fully fledged
ACM has to support any type of action on protected resources.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 29 of 43

5.1.1 Sample Flows - Authorization based on ABAC and ABE Policies
In the context of ASCLEPIOS, we propose the combined use of ABAC and ABE policies
for authorization. We consider a two-step process where ABAC policy is first applied on
access attempts to resources (either data or functionality) and subsequently if an ABAC
permit is granted, ABE policy is applied in order to recover the resource symmetric
decryption key, as depicted in Figure 16. Naturally, ABE is applicable only for symmetric
keys persisted in an encrypted form. Dynamically generated data or software functionality
(e.g. offered through APIs) cannot be protected with ABE.

The following BPMN diagram depicts the aforementioned authorization process.

Figure 16 – Generic Authorization process (BPMN view)

Below we provide detailed BPMN diagrams for the complete flow of write action using ABAC
and ABE, as it could be used in the scope of ASCLEPIOS.

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

Figure 17 – Complete Write Flow

In Figure 18 we present the BPMN diagram for the complete flow of read actions in the
scope of ASCLEPIOS using ABAC and ABE.

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

Figure 18 – Complete Read Flow

5.2 Components & Interfaces of ASCLEPIOS Authorization Engine
ASCLEPIOS Authorization engine consists of multiple components as depicted on Figure
19.

Figure 19 Components & Steps for the Authorization process

Initially, a user is performing a request in order to access a specific encrypted resource.
Before the evaluation of whether or not the user is allowed to access the resource the
request per se will be intercepted by an authentication filter that is bound to the application.It
goes without saying that authentication is always preceding authorization. The role of the
authentication proxy is not only to extract the identity (many times called principal-id) but to
fetch a set of claims (i.e. attributes) that are verifiably associated with the user per se.
These attributes are electronically signed by the OIDC server. Upon identity extraction, the
signed claims along the initial request are intercepted by the PEP element. The
implementation of the PEP element is also bound to the code base of the application. The
PEP will forward the request and the extracted attributes to the PDP, which is the actual
inference engine.
The inference engine, is probably the most complex, in terms of business logic component,
since it undertakes the task of identifies which policies are relevant for this request, which
attributes are relevant for these policies and finally evaluates the policy expressions based
on the values of these policies.
During the evaluation of the expression, some rules may advise towards allowing and some
others towards denying the requests. The PDP will consult its conflict resolution policy in
order to generate the final verdict. Upon allowance, the application will open the enclave
where the user-ABE-key is stored. This key is used in order to “attempt” to open the
resource. We refer to the term “attempt” because the attributes that have been used for the
encryption policy of the resource may indicate that this user although s/he can access the
resource s/he cannot decipher it.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 34 of 43

In Figure 19 we also highlight the steps of the authorization process. The steps are
presented here:

1. User is attempting to access a protected and encrypted resource of ΕHR system-
X.

2. Intercept (and temporarily block) an attempt to access a protected resource. Since
the access attempt is an HTTP request the interceptor is evaluating the OIDC signed
claims that may exist in the request (in the form of JWTs).

3. If signed claims do not exist the Interceptor is sending the HTTP-request to the OIDC
server with a callback-url that corresponds to the users’ initial request
(https://systemX/access/resourceY).

4. The user is successfully authenticated (with a single factor or multiple factor
schemes) and is landing to the interceptor of system-X

5. The interceptor is triggering an ABAC PEP signalling. As such a collection of
attributes pertaining to the requestor, the data owner, the resource being
accessed, the attempted action as well as other environmental attributes is
performed. Requestor’s attributes are extracted from the signed claims of OIDC
server and sent to PDP for evaluation.

6. The ABAC PDP is performing the evaluation of the access attempt against
ABAC policy (or policies).

a. If evaluation yields Deny then the access attempt is permanently blocked
and an error is returned to the user.

b. If evaluation yields Permit then
i. If the protected resource is a service or functionality, then the access

attempt is allowed to proceed, and the authorization process
completes.

ii. If the protected resource is a persisted (and encrypted) dataset
then the authorization process continues to ABE.

7. Use of the ABE policy of the resource, along with the user’s secret key (which is
associated to specific attribute values), in order to recover the resource ABE
decryption key.

8. ABE decryption key is used to decipher the encrypted symmetric key that decrypts
the dataset.

a. If decryption fails, then an error is returned to the user, and access attempt is
essentially blocked.

b. If symmetric key decryption succeeds, the user can continue with dataset
decryption.

9. The symmetric key is used to decipher the protected dataset.

5.3 Policy Authoring Environment

As the ASCLEPIOS Models and PoLicies Editors (AMPLE) in it whole has been presented in
D3.2[2], the way to create policies that are enforced by the ASCLEPIOS Authorization
mechanism has been covered in extend. In general, a user can use the AMPLE Policy Editor
to create a new ABAC Policy, as depicted in Figure 20.

https://systemx/access/resourceY

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 35 of 43

Figure 20 –ABAC Policy creation

And as depicted in Figure 21 user shall used the AMPLE editor to also create the ABAC
Policy Rule.

Figure 21 –ABAC Policy rule creation

For createing the rule properly and allow ABAC engine to validate the rule, the
corresponding set of attributes, instances, properties, have to be added. While this has been
also coverd in D3.2, in the following of this section we cover again the procedure for
definition of attributes and creation of an ABAC and ABE policy, but this time elaborated with
the policy validation process.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 36 of 43

5.3.1 Policy Validation
Policy validation is the process of checking a given ABAC or ABE policy to verify it meets
certain requirements imposed by legislation or by corporate guidelines, in order to reach a
minimum level of quality (see D3.2 [2]). It can be performed when developing a policy or
before putting it into effect.
Policy validation checks the given policy against one or more sets of rules. Each rule (also
termed as Guideline) examines a certain feature of the given policy, for instance checks
whether a policy includes an expression of the IP address of the request. For more
advanced checks several rules must be used in conjunction. Such rules are grouped into
sets.
In more detail, each rule comprises a validation condition and an outcome that is returned if
the condition is met. Conditions check for the existence (or non-existence) of specified
attributes, attribute properties or whole expressions (including attribute, property, operator
and value). Outcomes can be Error messages, which block policy from being put into effect,
Warnings, which issue messages but allow policy being put into effect, and Informational
messages (which again don’t block policy from being put into effect). Moreover, a policy type
filter can also be applied for narrowing rule applicability to ABAC or ABE policies only. The
rule template is:

[OUTCOME] when [POLICY TYPE] [contains / does not contain] [Attribute / Property / Expression]:
“Specification of ATTRIBUTE / PROPERTY / EXPRESSION”

Few indicative examples are:

• [Error] when [ABE Policy] [does not contain] [Expression] : “NetworkLocation.hasZone =

‘Zone1’ ”

• [Warn] when [Any] [contains] [Property] : “NetworkLocation.hasPort”

• [Info] when [ABE Policy] [contains] [Attribute] : “NetworkLocation”

5.3.1.1 Types of Validation

In accordance to deliverable D3.1[1], two types of policy validations are considered. The first
is called Policy Inspection and its purpose is to spot policy deficiencies and deter their usage
by issuing errors. The latter is called Security Awareness and its purpose is to identify lacks
in policy checks that might result in security issues. Security awareness checks should follow
the CAPEC classification of security threats and should issue warning (i.e. not blocking
policy to be put into effect).
In technical terms both policy validation types are implemented by a similar approach of rule-
based policy checking. In AMPLE editor’s user interface, the two validation types are
distinguished by using different diacritic icons, terms and different set hierarchies, but apart
from that the validation process follows the same steps.

5.3.1.2 Policy Validation set / rule creation

Policy validation sets and rules are defined using the AMPLE editor presented in deliverable
D3.2. The policy validation editor can be loaded either by clicking on “Policy Validation
management” button in AMPLE welcome page or the corresponding menu item.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 37 of 43

Figure 22 AMPLE welcome page

A screenshot of the policy validation editor is given next.

Figure 23 Policy validation editor

In order to create a new validation set, the user must select either POLICY-INSPECTION or
SECURITY-AWARENESS node in the left-hand side tree. Subsequently, user needs to click
the “Create Validation Set” button, fill in the validation set data (name, description, URI) and
click “Save Changes” button. After successful persistence of the data, the page will reload
and an item for the new validation set will be available in the left-hand side tree.
In order to create a new validation rule, the user must select the parent validation set node in
the left-hand side tree. Subsequently, she needs to click the “Create Validation Rule” button,
fill in the validation rule data (name, description, URI) as well as the data of the rule condition
(i.e. rule output, policy type filter, contains/not contains flag, expression type etc.) Eventually,
she must click “Save Changes” button. After successful saving, the page will reload and an
item for the new validation rule will be available in the left-hand side tree, under the parent
validation set node.
Selecting a node in the left-hand side tree will load its details into the details form in the main
area of the page. The user can modify this information and store them by clicking on “Save
Changes” button. Selecting “Delete Node” the user can delete the selected rule or set.
Moreover, it is possible to disable (and re-enable) certain validation rules or sets. This is

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 38 of 43

controlled by “Enabled” switch button at the last line of the set/rule details form (at the main
area of the Policy validation editor page).

5.3.1.3 Use of Policy Validation sets / rules

The policy validation sets and rules are used to check policies in two ways:

• When the user clicks on “Apply Policy” button, in ABAC or ABE policy editor. In this

case the policy is checked against all applicable policy validation rules. If any errors,

warnings or informational messages are issued during validation, a dialog will pop up

listing all of them. If no messages are issued then ABAC or ABE policy will be sent to

Policy Enforcement mechanism in order to put it into effect.

If at least an error message is issued, the policy cannot be put into effect. If there are

only warnings or informational messages (no errors) the user has the possibility to

review the messages and click the “Continue” button in order to send policy to the

Policy Enforcement mechanism, or click “Close” button and correct the policy.

Figure 24 Policy validation results

• When the user clicks on “Validate Policies” button, in Policy validation editor. In this

case all ABAC and ABE policies are checked against the selected rule or set. When

validation completes a dialog will pop and list validation results sorted by validation

set and rule. This can be changed to sort messages by ABAC or ABE policy and then

by validation set and rules. This variation of policy validation is provided for checking

the validation rules while creating them. For this reason, the results dialog does not

provide the possibility to put a policy into effect.

5.3.1.4 Policy Validation Example

In this section, a complete policy validation example is provided to highlight the use of policy
validation with regards to ABAC and ABE policies. Let us suppose that a hospital’s policies
require that accessing patients’ records can only be allowed from the internal network
(Intranet). Moreover, the Attack Pattern 216 of CAPEC classification, dictates that
communications must be encrypted to mitigate Communication Channel Manipulation
attacks (only one CAPEC pattern will be considered in this example).

• An error is issued when authorization policies defined for protecting EHR records

don’t investigate whether the connection origin comes from the internal network.

• CAPEC-216: Communication Channel Manipulation2. The corresponding audit issues

a warning when communication encryption is not considered in authorization policies.

2 CAPEC-216 attack pattern: https://capec.mitre.org/data/definitions/216.html

https://capec.mitre.org/data/definitions/216.html

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 39 of 43

We assume the necessary means for collecting the needed data (communication origin and
encryption) are available to the Policy enforcement mechanism through the proper
interceptors.

5.3.1.4.1 Sample policy validation rules

The first validation requirement could be implemented in Policy validation editor, as a Policy
Inspection check with the following rule:

[Error] when [Any] [does not contain] [Expression]: “NetworkLocation.hasZone = ‘intranet’ ”

In the policy validation editor the corresponding validation rule is defined as presented in
Figure 25.

Figure 25 Policy inspection rule: Check network location zone

CAPEC-216 attack pattern mitigation section specifies the following: “Encrypt all sensitive
communications using properly-configured cryptography. Design the communication system
such that it associates proper authentication/authorization with each channel/message.”
These specifications could be implemented with the next Security Awareness rules:

[Warning] when [Any] [does not contain] [Expression]: “SecurityProtocol.
useSecurityProtocol = ‘TLS v1.3’ ”

and

[Warning] when [Any] [does not contain] [Expression]:
“AuthenticationMethod.useAuthenticationMethod ≠ ‘Anonymous access’ ”

In policy validation editor the corresponding validation rules are defined as presented in
Figure 26 and Figure 27.

Figure 26 Security awareness rule: Check the use of modern HTTPS (TLS v3)

Figure 27 Security awareness rule: Check the use of an Authentication method

5.3.1.4.2 Sample authorization policies

Next, let us assume the following two ABAC and ABE policies to be used. The ABAC policy
investigates whether an access request is attempted during working days and hours.
Obviously, errors and warnings must be reported during validation, since neither
communication origin nor security protocol nor authentication is checked.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 40 of 43

Figure 28 ABAC policy for checking whether an incoming request detected during working
days and hours

The ABAC policy comprises the following (ABAC) rules. The two rules evaluated first deny
access, if it is not working day or working hour. The last one permits access unconditionally.
The combining algorithm of the policy is First Applicable, meaning that the first rule that
matches will provide the policy result.

Figure 29 ABAC rule for checking whether it is not a working day

Figure 30 ABAC rule for checking whether it is not a working hour

Figure 31 ABAC rule that permits access if none of the previous rules match

The ABE policy (used to protect certain resources) requires that only Pathologists can
access the resource. Again warnings must be issued.

Figure 32 ABE policy requiring that only a Pathologist can access protected resource

5.3.1.4.3 Policy validation results

Before being put into effect, the authorization policies are checked against the validation
rules presented before. The validation results for each policy are presented in the following
figures.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 41 of 43

Figure 33 Policy validation sets and rules

Figure 34 Policy validation results for ABAC policy

Figure 35 Policy validation results for ABE policy (sorted by validation rule)

Once the policy is considered valid, then it is translated through the Policy-to-XACML
Interpreter component of AMPLE and sent to the the Policy Decision Point (PDP) of ABAC
Enforcement Mechanism in order to be enforced.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 42 of 43

6 Conclusions

The goal of the deliverable was to the present the ASCLEPIOS Context-Aware Authorization
Engine. An exhaustive analysis of the concept of authorization was presented. The
theoretical principles of generalized “Access Control Mechanisms” were presented along
with the similarities and differences of the most prominent proposals. Each proposal is a
best-fit for a specific set of use-cases. For example, MAC and DAC are ideal for operating
system security aspects (system calls, etc.). ACLs are ideal for perimeter-networking use-
cases where all rules are fixed.
However, it could be argued that ACLEPIOS use-cases lean towards the ABAC schemes.
The reason for that is that ABAC allows the dynamic formulation of policies based on
arbitrary attributes of the Subject, Object and the Environment. Moreover, these policies can
be authored in a distributed fashion. Above all, ABAC allows the complete separation of
policy formulation with policy enforcement. There is a penalty that has to be paid for these
merits. The penalty has to do with efficiency and complexity-of-applicability.
There are several standards that attempt to implement an ABAC scheme. Among the most
notable ones we selected XACML because of two reasons a) industrial-adoption and b)open
source community that supports these standards.
An ABAC engine is a cornerstone of ASCLEPIOS Context-Aware Authorization Engine; yet it
is not the only component. ASCLEPIOS Context-Aware Authorization Engine is using a
combination of ABAC with Attribute-Based-Encryption in order to augment the authorization
functionality in a distributed cloud environment. These two schemes are complemented by
an identity management scheme that is used to abstract the extraction of authentication info.
Hence the Context-Aware Authorization Engine is efficiently combining OpenIDConnect
signalling for Identity Extraction (user authentication), ABAC Policy Enforcement for
accessing allowing/disallowing access to an ABE Server that issues attribute-based
encryption/decryption keys.
The authorization flow is analytically described for the two main use-cases, which are the
encryption of a resource and the decryption of the resource. One of the most significant
issues that relate to the developed mechanisms is how to lower the barrier of an adopter.
The most difficult/error-prone aspect of the context-aware engine relates to the definition of
attributes and policies. As such, a dedicated authoring environment has been
implemented that aims to lower this barrier for adopters.
.

 D3.3 Context-aware ABAC Enforcement Mechanism

Work Package 3 Page 43 of 43

7 References

1. Y., Verginadis et al., 2019. D3.1 ASCLEPIOS Security and Policies Model.
ASCLEPIOS Deliverable

2. Y., Verginadis et al., 2020. D3.2 ASCLEPIOS Models Editor and Interpretation
Mechanism. ASCLEPIOS Deliverable

3. R., G., Roessink et al., 2020. D2.2 Attribute-Based Encryption, Dynamic Credentials
and Ciphertext Delegation and Integration in Medical Devices. ASCLEPIOS
Deliverable

4. A., Michalas et al., 2019. D1.2 ASCLEPIOS Reference Architecture, Security and E-
health Use Cases, and Acceptance Criteria. ASCLEPIOS Deliverable

5. NIST, 2014, Guide to Attribute Based Access Control (ABAC) Definition and
Considerations, https://doi.org/10.6028/NIST.SP.800-162

6. eXtensible Access Control Markup Language (XACML) Version 3.0,
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

7. NGAC standard (ANSI499), https://webstore.ansi.org/standards/incits/incits4992018
8. OASIS XACML Technical Committee, https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml
9. W3C XML Schema Definition Language (XSD),

https://www.w3.org/TR/xmlschema11-1/
10. A Comparison of Attribute Based Access Control

(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-178.pdf)
11. WSO2 Identity Server, https://wso2.com/identity-and-access-management/
12. Apache Thrift, https://thrift.apache.org/
13. ApacheDS, https://directory.apache.org/apacheds/
14. PaaSword, https://paasword.io/
15. AuthzForce, https://authzforce.ow2.org/
16. KeyCloak, https://keycloak.org
17. OAuth 2.0, https://oauth.net/2/
18. OpenIDConnect, https://openid.net/connect/

https://doi.org/10.6028/NIST.SP.800-162
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://webstore.ansi.org/standards/incits/incits4992018
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.w3.org/TR/xmlschema11-1/
https://wso2.com/identity-and-access-management/
https://authzforce.ow2.org/

