

 ASCLEPIOS is supported by the H2020 Programme under contract no. 826093

Advanced Secure Cloud Encrypted Platform
for Internationally Orchestrated Solutions in

Healthcare

Project Acronym: ASCLEPIOS

Project Contract Number: 826093

Programme: Health, demographic change and wellbeing

Call: Trusted digital solutions and Cybersecurity in Health and Care

to protect privacy/data/infrastructures

Call Identifier: H2020-SC1-FA-DTS-2018-2020

Focus Area: Boosting the effectiveness of the Security Union

Topic: Toolkit for assessing and reducing cyber risks in hospitals and care
centres

Topic Identifier: H2020-SC1-U-TDS-02-2018

Funding Scheme: Research and Innovation Action

Start date of project: 01/12/2018 Duration: 36 months

Deliverable:
D3.2 ASCLEPIOS Models Editor and Interpretation

Mechanism

Due date of deliverable: 31/3/2020 Actual submission date: 07/04/2020

WPL: ICCS

Dissemination Level: Public

Version: Final

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 2 of 79

Table of Contents

Table of Contents .. 2

Status, Change History and Glossary ... 7

Executive Summary .. 9

1 Introduction ... 10

I.1. Objectives ... 10

I.2. Relationship to ASCLEPIOS Deliverables ... 10

I.3. Organization ... 11

2 Overall Approach and Architecture ... 12

I.1. Conceptual Architecture .. 12

I.2. Techical Architecture .. 14

I.3. Implementation ... 16

3 Context–Aware Security Model (CASM) Editor ... 18

I.1. Usage Scenarios .. 18

I.2. Walkthrough.. 19

Login to AMPLE ... 19
Initialize CASM .. 21
CASM Editor .. 21
Create new attribute ... 22
Edit an existing attribute ... 24
Delete an attribute .. 25

I.3. CASM Editor REST API .. 25

I.4. CASM Serialization ... 33

4 Attribute-Based Access Control (ABAC) Policies Editor 34

I.1. Usage Scenarios .. 34

I.2. Walkthrough.. 35

ABAC Policies Editor ... 36
Create new ABAC Policy ... 37
Edit an existing ABAC Policy.. 38
Delete an ABAC Policy .. 39
Create new ABAC Policy Rule ... 40
Edit an existing ABAC Policy Rule ... 43
Delete an ABAC Policy Rule .. 43
Import/Export an ABAC Policy ... 44
Interpret and Submit an ABAC Policy ... 45

I.3. ABAC Policies Editor REST API ... 45

I.4. ABAC Policies Serialization .. 55

I.5. ABAC Policies Interpretation ... 56

5 Attribute-Based Encryption Policies Editor .. 57

I.1. Usage Scenarios .. 57

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 3 of 79

I.2. Walkthrough.. 58

ABE Policies Editor .. 58
Create new ABE Policy .. 59
Edit an existing ABE Policy .. 62
Delete an ABE Policy ... 63
Import/Export an ABE Policy .. 63
Interpret and Submit an ABE Policy ... 64

I.3. ABE Policies Editor REST API .. 64

I.4. ABE Policies Serialization ... 68

I.5. ABE Policies Interpretation ... 68

6 Conclusions .. 69

7 References ... 70

Appendix I - Asclepios Editor Technical Security Assessment (by Secura) 71

I.1. Assumptions ... 71

Inputs ... 71
Outputs .. 71

I.2. Assumption analysis – potential threats .. 72

Inputs ... 72
Outputs .. 72

I.3. Investigation.. 73

I.3.1. Transport Layer Security (TLS) .. 73
I.3.2. Cross-Site scripting .. 74
I.3.3. Input sanitization .. 75
I.3.4. HTTP Verb Tampering ... 76
I.3.5. File upload ... 76
I.3.6. File Export ... 78

I.4. Summary of Findings .. 79

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 4 of 79

List of Figures and Tables

Figures

Figure 1: Relation of D3.2 with other WP3 and WP2 deliverables 11

Figure 2 – AMPLE conceptual architecture ... 13

Figure 3 – AMPLE technical architecture .. 14

Figure 4 – Sample excerpt of the default CASM .. 18

Figure 5 – CASM management use case .. 19

Figure 6 – CASM Import/Export use case ... 19

Figure 7 – AMPLE login page ... 19

Figure 8 – AMPLE welcome page ... 20

Figure 9 – AMPLE menu ... 20

Figure 10 – Confirm CASM initialization .. 21

Figure 11 – CASM Editor page ... 22

Figure 12 – Creation of a new attribute using context menu .. 22

Figure 13 – New attribute form .. 23

Figure 14 – Filling in new attribute details ... 23

Figure 15 – Submit new attribute details ... 23

Figure 16 – New attribute in CASM ... 23

Figure 17 – Edit an existing attribute ... 24

Figure 18 – Change an attribute’s details .. 24

Figure 19 – Changed attribute in CASM .. 24

Figure 20 – Deleting an attribute using context menu.. 25

Figure 21 – Confirm attribute deletion ... 25

Figure 22 – ABAC Policies management use case ... 35

Figure 23 – ABAC Policy Rules management use case .. 35

Figure 24 – ABAC Policies Import/Export, and submission to Policies Enforcement use case
 ... 35

Figure 25 – ABAC Policies Editor page ... 36

Figure 26 – Creation of a new rule using context menu ... 36

Figure 27 – New ABAC Policy form ... 37

Figure 28 – Filling in new ABAC Policy details .. 37

Figure 29 – New ABAC Policy ... 38

Figure 30 – Edit an existing ABAC Policy .. 38

Figure 31 – Change an ABAC Policy’s details ... 38

Figure 32 – Changed ABAC Policy in the list .. 39

Figure 33 – Deleting an ABAC Policy using context menu .. 39

Figure 34 – Confirm ABAC Policy deletion .. 40

Figure 35 – New ABAC Policy Rule form .. 40

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 5 of 79

Figure 36 – Filling in new ABAC Policy Rule details .. 40

Figure 37 – New ABAC Policy Rule in the list.. 41

Figure 38 – ABAC Policy Rule condition expression editor.. 41

Figure 39 – Rule condition editing with expression builder .. 42

Figure 40 – Edit an existing ABAC Policy Rule.. 43

Figure 41 – Change an ABAC Policy Rule’s details .. 43

Figure 42 – Deleting an ABAC Policy Rule using context menu .. 44

Figure 43 – Confirm ABAC Policy Rule deletion .. 44

Figure 44 – Import/Export ABAC Policy editor buttons .. 44

Figure 45 – Import page .. 45

Figure 46 – ABE Policies management use case .. 58

Figure 47 – ABE Policies Import/Export, and submission to ABE Service use case 58

Figure 48 – ABE Policies Editor page ... 59

Figure 49 – New ABE Policy form ... 59

Figure 50 – Filling in new ABE Policy details ... 60

Figure 51 – New ABE Policy ... 60

Figure 52 – ABE Policy expression editor ... 60

Figure 53 – ABE Policy expression editing with expression builder 61

Figure 54 – Edit an existing ABE Policy .. 62

Figure 55 – Change an ABE Policy’s details ... 62

Figure 56 – Changed ABE Policy in the list ... 62

Figure 57 – Deleting an ABE Policy using context menu ... 63

Figure 58 – Confirm ABE Policy deletion... 63

Figure 59 – Import/Export ABE Policy editor buttons ... 63

Figure 60 – Import page .. 64

Tables

Table 1: Status Change History .. 7

Table 2: Deliverable Change History ... 7

Table 3: Glossary .. 8

Table 4 – REST API of CASM Editor .. 26

Table 5 – Sample attribute export ... 33

Table 6 – REST API of ABAC Policies Editor – Policies part ... 46

Table 7 – REST API of ABAC Policies Editor – Rules part .. 51

Table 8 – REST API of ABAC Policy-to-XACML interpreter .. 54

Table 9 – Sample ABAC Policy export in RDF/TTL format .. 55

Table 10 – Sample ABAC Policy as XACML ... 56

Table 11 – REST API of ABE Policies Editor .. 65

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 6 of 79

Table 12 – REST API of ABE Policy-to-ABE Service format interpreter 67

Table 13 – Sample ABE Policy export in RDF/TTL format .. 68

Table 14 – Sample ABE Policy in ABE Service text format ... 68

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 7 of 79

Status, Change History and Glossary

Status: Name: Date: Signature:

Draft: Yiannis Verginadis 24/3/2020

Reviewed: Krefting Dagmar 6/4/2020

Approved: Tamas Kiss 7/4/2020

Table 1: Status Change History

Version Date Pages Author(s) Modification

v1.0 26/1/2020 14

Yiannis Verginadis,
Dimitris Apostolou,
Ioannis Patiniotakis,
Gregoris Mentzas,
Jenny Psarra

Initial draft (with Overview
Diagrams of Context
Element, Details of context
elements (tables))

v1.1 26/2/2020 40

Yiannis Verginadis,
Dimitris Apostolou,
Ioannis Patiniotakis,
Gregoris Mentzas,
Jenny Psarra

ABAC Policy Editor section
added

v1.2 15/03/2020 65

Yiannis Verginadis,
Dimitris Apostolou,
Ioannis Patiniotakis,
Gregoris Mentzas,
Jenny Psarra

ABE Policy Editor section
added

v2.0 24/03/2020 68

Yiannis Verginadis,
Dimitris Apostolou,
Ioannis Patiniotakis,
Gregoris Mentzas,
Jenny Psarra

Pre-final version without
security audit report

v2.1 24/03/2020 65

Yiannis Verginadis,
Dimitris Apostolou,
Ioannis Patiniotakis,
Gregoris Mentzas,
Jenny Psarra,
Panayiotis Charalambous,
Christiaan Hillen

Pre-final version with
Secura’s security audit report

Final 07/04/2020 74

Yiannis Verginadis,
Dimitris Apostolou,
Ioannis Patiniotakis,
Gregoris Mentzas,
Jenny Psarra,
Panayiotis Charalambous,
Christiaan Hillen

Final version

Table 2: Deliverable Change History

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 8 of 79

ABAC Attribute Based Access Control

ΑΒΕ Attribute Based Encryption

AMPLE ASCLEPIOS Models and PoLicies Editors

AJAX Asynchronous JavaScript and XML

CASM Context-Aware Security Model

CSS Cascading Style Sheets (CSS)

DOM Document Object Model

EHR Electronic Health Record

JAR Java archive file

JPA Java Persistence API

JSON JavaScript Object Notation

JSP Java Server Pages

RDF Resource Definition Framework

REST Representational state transfer

SPARQL SPARQL Protocol and RDF Query Language

TTL Turtle syntax

UML Unified Modelling Language

URI Unified Resource Identifier

XACML eXtensible Access Control Markup Language

Table 3: Glossary

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 9 of 79

Executive Summary

Despite the recent adoption growth of cloud computing and the value of hosting sensitive
information systems in virtualised resources, a lot of users seem to be reluctant to store their
personal data in the cloud or adopt sensitive systems hosted in the cloud. This is even more
evident when the systems in question refer to the healthcare domain. Our goal is to enhance
the access control mechanisms that can be used in the healthcare domain and raise the
security awareness. In this way, the users’ trust will be extended and their unwillingness to
use cloud-based applications for their health data will be hopefully diminished. In this work,
we report on the development of all the appropriate mechanisms for updating the
ASCLEPIOS context-aware security model and devising the necessary context-aware
access policies. These access control policies will be enforced as part of two different
authorisation paradigms that will be employed in ASCLEPIOS in sequence for achieving
even higher levels of security controls. These paradigms are the Attribute-based Access
Control (ABAC) and the Attribute-based Encryption (ABE). This deliverable also reports on
the editing functionalities for creating context-aware access policies (ABAC and ABE) and
the interpretation capabilities for exporting these policies in the appropriate format to enable
the access enforcement mechanisms.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 10 of 79

1 Introduction

WP3 focuses on defining and evaluating contextual information (e.g., the identity of a user,
its role, patterns of access, connection type etc.) and attributes that characterise sensitivity
levels of data. This information is considered in ASCLEPIOS before granting any data
access request. Based on such information the contextual model was developed in D3.1 [1]
and building on it a number of enforcement rules can be created as the most elementary
structural elements of policies. Indicatively, attributes that are organized in a hierarchical
structure may include concepts related to: i) the device from which there is an access
attempt, ii) the actor that tries to access the data (e.g. location, IP, role in the healthcare use
case, etc.) and iii) historic data that reveal patterns of access (e.g. frequency, usual dates or
hours of access, usual duration of access, previously accessed data, etc.). Such concepts
along with a number of properties that interrelate them, serve as background knowledge for
the ASCLEPIOS access control policies. These access control policies are then enforced as
part of two different authorisations paradigms that are employed in ASCLEPIOS in sequence
for achieving even higher levels of security controls. These paradigms are the Attribute-
based Access Control (ABAC) and the Attribute-based Encryption (ABE).
This deliverable reports on the development of all the appropriate mechanisms for updating
the contextual model and devising the context-aware access policies, i.e., editing
functionalities for creating context-aware access policies (ABAC and ABE) and the
interpretation mechanism that will export these policies in the appropriate format for enabling
the access enforcement mechanisms. The purpose of this document is two-fold. First is
describes in a fine-grained way each related mechanism’s purpose, value and overall
contribution to the ASCLEPIOS framework, and second it reveals and comments on the
details of the mechanisms’ implementation.

I.1. Objectives

The primary objectives of this deliverable are to:
1. Provide the necessary editor for improving and extending the ASCLEPIOS context-

aware security model;
2. Develop the appropriate editing functionalities for allowing DevOps of cloud-based

eHealth systems to declaratively create the minimum amount of rule-set that needs
to be enforced for security purposes and organise it across ABAC and ABE policies;

3. Dynamically interpret these annotations into formats that enable the ABAC and ABE
authorisation mechanisms.

Following these objectives, the policies access, decision and enforcement components will
be developed in terms of WP3.

I.2. Relationship to ASCLEPIOS Deliverables

This deliverable documents the editors for extending the ASCLEPIOS context-aware
security model and defining context-aware access control policies. It utilises the modelling
primitives defined and described in D3.1 [1] which constitutes the background knowledge for
establishing authorization control over accessing EHR, based on ABAC and ABE paradigms.
Moreover, this deliverable described the interpretation mechanism which will feed into the
context-aware ABAC enforcement mechanism (to be reported in D3.3) and the ABE service
(reported in D2.2 [2]).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 11 of 79

Figure 1: Relation of D3.2 with other WP3 and WP2 deliverables

The model presented herein will constitute the necessary background knowledge layer for
enabling the ABAC and ABE paradigms in ASCLEPIOS. Specifically, policies will be
determined through a number of attributes that reveal valuable security-related details of the
entity that is requesting access to sensitive data, the data itself and its ambient environment.
Hence, the model will serve the development of the Data Access Policies Interpretation and
Enforcement mechanism (WP3) as well as the ABE service (WP2).

I.3. Organization

Chapter 1 is this introduction that describes the development of the editors and the
interpretation mechanism. Chapter 2 outlines the overall conceptual and physical
architecture of the editor and the interpretation mechanism as well as the technologies and
tools used for their implementation. Chapter 3 describes the Context-Aware Security Model
editor, chapter 4 the ABAC policies editor and chapter 5 the ABE editor. Finally, the
information presented in this document is summarized in the final chapter (chapter 6).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 12 of 79

2 Overall Approach and Architecture

In the present chapter the ASCLEPIOS Models and PoLicies Editors, or AMPLE for
simplicity, are introduced and detailed.

The purpose of AMPLE is to provide all necessary design-time tools for creating, maintaining
and verifying access control policies of ASCLEPIOS platform. Since ASCLEPIOS considers
two approaches for access control, namely Attribute-Based Access Control (ABAC) and
Attribute-Based Encryption (ABE), AMPLE provides two editors for developing the
corresponding ABAC and ABE policies. It will furthermore provide a Policy Validation
module, where policy developers can define rules for checking policy correctness,
completeness or for security awareness, but this editor will be part of D3.3 and is not
covered by this deliverable.
AMPLE moreover provides a configurable, common vocabulary for application-related
attributes, which can be further tailored to each application’s needs. This is crucial since both
access control methods (ABAC and ABE) rely on the use of attributes. Therefore, it is
important to use attributes in a semantically coherent manner. This common vocabulary is
called Context-Aware Security Model (CASM) and is stored in AMPLE’s internal repository. It
furthermore offers an editor for displaying and modifying CASM. More information on CASM
can be found in deliverable D3.1 [1].
In user experience terms, AMPLE aspires to offer a unified environment of graphical tools for
creating, maintaining and validating ASCLEPIOS access control policies. Specifically, it has
been implemented as a web-application, hence allowing its easy usage. To this end various
modern Web 2.0 technologies have been used.

I.1. Conceptual Architecture

In this section the conceptual architecture of AMPLE is presented. AMPLE is a unified
environment encompassing several tools; three editors, Models Store (repository), Policies
interpreter and a Policies Validation module. Figure 2 provides a visual representation of the
conceptual architecture where the main tools are also depicted. Note that the Policies
Validation is mentioned to give the full picture. It will be described in a subsequent
deliverable D3.3.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 13 of 79

Figure 2 – AMPLE conceptual architecture

Following, the main components of the architecture are described.

• Context-Aware Security Model Editor. Provides the means for creating and
maintaining the Context-Aware Security Model (CASM). CASM paves the path for
defining ABAC and ABE policies by using a common vocabulary. CASM Editor offers
both a web-based, graphical interface for representing and modifying CASM, as well
as the necessary model implementations. CASM is stored in Models Store, thus is
made available to other AMPLE tools. More information on CASM can be found in
deliverable D3.1 [1].

• Attribute-Based Access Control Policies Editor. Provides a graphical interface for
defining and modifying Attributed-Based Access Control (ABAC) policies. ABAC
policies are stored in Models Store, thus are made available to other AMPLE tools.

• Attribute-Based Encryption Policies Editor. Provides graphical interface for
defining and modifying Attributed-Based Encryption (ABE) policies. ABE policies are
stored in Models Store, thus are made available to other AMPLE tools. Through the
ABE Policies Editor interface the selected ABE policies are provided as input to the
ABE Service (D2.2 [2]).

• Policies Validation. Provides the means to check ABAC and ABE policies against a
given set of rules. These rules might check the conformity, validity, correctness or
completeness of policies. This tool offers a graphical interface for defining the rules
as well as applying them to selected policies. Policies Validation module will be
developed and reported as part of the upcoming deliverable D3.3.

• Models Store. It is a repository for persisting all kinds of models handled in AMPLE;
i.e. Context-Aware Security Model, ABAC policies, ABE policies and Policy Validation
rules. It internally uses a Resource Description Framework (RDF1) triple store for
storing the models as well as a layer for serializing model objects (i.e. core elements
of the model) to RDF and vice versa.

• Policies Interpreter. This tool translates ABAC policies captured as RDF graphs in
Models Store into proper eXtensible Access Control Markup Language (XACML)
documents that can be used by any XACML-capable access control engine

1 https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 14 of 79

(following the ABAC paradigm), or in the appropriate format that expects the ABE
service of ASCLEPIOS (D2.2 [2]).

I.2. Techical Architecture

AMPLE implementation realized the conceptual architecture presented before, with regard to
the provided functionality and overall approach. the actual (technical) structure, components
and interconnections of AMPLE parts are explained in physical architecture, presented next.

In technical terms, AMPLE is a web-based application, encompassing both a server-side
part as well as a client-side part that offers the graphical user interface (as depicted in Figure

3).

Figure 3 Figure 3 also depicts the two ASCLEPIOS Policy Enforcement Mechanisms that
are supplied with the policies created with AMPLE, as well as the possibility for third-party
Representational State Transfer (REST) clients to interact with AMPLE in order to reuse or
modify AMPLE models (i.e. CASM, ABAC and ABE policies and Policy Validation rules).
Next, we provide additional details for each of components of the AMPLE physical
architecture.

Figure 3 – AMPLE technical architecture

AMPLE Server

AMPLE Server is the core component of the AMPLE physical architecture. It interacts with
the AMPLE client, the Policy Enforcement Mechanism or third-party REST clients. It
internally comprises of the following parts.

• Web Forms controllers are responsible for the interaction with the AMPLE client
forms, specifically for providing the requested information and collecting the
submitted models. Web Forms controllers rely on REST API controllers both for
retrieving the requested information and for saving the submitted models. Essentially,
they act as a translation layer between REST API and AMPLE client forms, by

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 15 of 79

turning AMPLE client requests into proper REST API requests and vice versa.
There are four Web Form controllers:

o CASM Web Form controller, which is responsible for the CASM related
interactions with AMPLE client.

o ABAC Policies Web Form controller, which is responsible for the ABAC
Policies related interactions with AMPLE client, and also for triggering the
interpretation of ABAC policies to XACML and sending them to Policies
Enforcement Mechanism.

o ABE Policies Web Form controller, which is responsible for the ABE
Policies related interactions with AMPLE client.

o Policies Validation Web Form controller, which is responsible for the
Policies Validation related interactions with AMPLE client as well as for
initiating the policy validation process.

• REST API controllers accept REST requests for retrieving model related information
(or whole models) and also for storing models, using a specific JavaScript Object
Notation (JSON) format. REST API controllers are used by Web Forms controllers
(which act as REST clients) but third-party REST clients can also interact with REST
API controllers, as long as they are capable to handle the JSON format used and as
long as the AMPLE server is configured to accept REST API requests from external
clients.
There are four REST API controllers:

o CASM REST API controller, which is responsible for storing and retrieving
CASM-related concepts like attributes and attribute properties.

o ABAC Policies REST API controller, which is responsible for storing and
retrieving ABAC Policies and ABAC Policy Rules used to build ABAC
Policies.

o ABE Policies REST API controller, which is responsible for storing and
retrieving ABE Policies.

o Policies Validation REST API controller, which is responsible for storing
and retrieving Policies Validation rules.

• Models Management is responsible for storing and retrieving CASM attributes,
ABAC policies and rules, ABE policies and Policies Validation rules. Its internal
persistence mechanism is based on an RDF triple store, thus all information is stored
and retrieved as RDF triples forming RDF graphs. For this reason, the Models
Management component also encompasses a layer that serializes model objects into
RDF graphs (representing an object) and vice versa.
The Models Management component comprises of three subcomponents:

o RDF Triple store, which is responsible for persisting and retrieving RDF
graphs describing model objects.

o SPARQL server, which is responsible for accepting and carrying out queries
for retrieving and modifying the persisted RDF graphs in RDF triple store. The
query language used is SPARQL2.

o RDF Persistence, which is responsible for converting model objects into
SPARQL queries that are submitted to SPARQL server and persist the state
of the model objects into RDF triple store. Reversely, RDF Persistence can
build SPARQL queries for retrieving the persisted state of a model object from
RDF Triple store and convert the retrieved RDF triples into the corresponding
model object, which can subsequently be used in REST API controllers or
other AMPLE server components.

• Policies Interpreter is responsible for: i) retrieving the specified ABAC policies and
translating them into XACML documents, which are then submitted to the ABAC
Policies Enforcement Mechanism and ii) retrieving the specified ABE policies and

2 https://www.w3.org/TR/sparql11-query/

https://www.w3.org/TR/sparql11-query/

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 16 of 79

translating them into an appropriate text format (described in section 5.5) , which are
then submitted to the ABE service (D2.2 [2]).

AMPLE Client

It is the client-side part of AMPLE. It consists of a set of dynamic web pages that provide the
graphical user interface of each AMPLE tool, as well as some common graphical elements
like the menu. The web pages are dynamically generated at server-side, using Java Server
Pages (JSP), and then are rendered in the user’s browser. In response to user actions, web
pages can contact the corresponding Web Forms controllers in order to send or retrieve the
needed model information.

Policy Enforcement Mechanism

Policy Enforcement Mechanism is a core component of the overall ASCLEPIOS architecture.
It is responsible for enforcing the ABAC access control policies, created with AMPLE (and
possibly other tools too). More information on Policy Enforcement Mechanism will be
provided in deliverable D3.3.

ABE Service

The Attribute-Based Encryption (ABE) Service is a core component of the ASCLEPIOS
architecture. It is responsible for protecting resources by encrypting them using ABE Policies
created with AMPLE, as well as allowing access to them based on user attributes and the
ABE Policy used.

Third-party REST API clients

AMPLE provides a REST API for retrieving and manipulating various models (CASM, ABAC
and ABE policies, and policy validation rules). If configured accordingly, it can accept REST
calls from external (third-party) tools both for retrieving and for submitting models stored in
Models Store. Third-party clients must be REST-capable and aware of the message formats,
endpoints and REST verbs used. Furthermore, if they need to process the model information
(received through REST API) they will also need to be aware of the model semantics used in
AMPLE and ASCLEPIOS.

I.3. Implementation

AMPLE server has been implemented using the Java™ programming language, version 8. It

has been developed as a Spring-boot web application, for easier dependency management
and customization of component properties. It is built and bundled, using the well-known
Maven system, into a single fat JAR, containing all necessary dependencies. It is also
bundled (during its build) as a Docker container. From a design perspective it follows the
Model-View-Controller paradigm.

AMPLE server also encompasses an instance of Apache Jena Fuseki3 SPARQL server,
backed by Apache Jena TDB4 as its RDF Triple store5. These form the foundation of AMPLE
Models Store. Moreover, a custom library for converting programming objects representing
models (or model parts) into SPARQL queries has been developed. This library provides a
Java Persistence API (JPA)-like approach of storing, modifying and retrieving model objects
to/from RDF Triple store via Fuseki SPARQL server.

3 https://jena.apache.org/documentation/fuseki2/index.html
4 https://jena.apache.org/documentation/tdb/index.html
5 https://jena.apache.org/

https://jena.apache.org/documentation/fuseki2/index.html
https://jena.apache.org/documentation/tdb/index.html
https://jena.apache.org/

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 17 of 79

AMPLE Client uses Web 2.0 technologies like Document Object Model (DOM),
Asynchronous JavaScript and XML (AJAX), JavaScript, Cascading Style Sheets (CSS), and
JSON. It also makes use of the well-known jQuery6 library as well as several plugins, and
Bootstrap CSS framework7, for creating its graphical user interface.

AMPLE source code is available at GitLab.com : https://gitlab.com/asclepios/ample-editor

In the following chapters the three AMPLE editors will be further detailed.

6 https://jquery.com/
7 https://getbootstrap.com/

https://gitlab.com/asclepios/ample-editor
https://jquery.com/
https://getbootstrap.com/

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 18 of 79

3 Context–Aware Security Model (CASM) Editor

In this chapter the Context–Aware Security Model (CASM) Editor is presented and detailed.
However, it would be beneficial to recap what CASM is and how it is structured, before
getting into the editor’s details.

As it has been previously noted, CASM provides a configurable, common vocabulary of
attributes, which ensures the semantically coherent usage of them in other tools. CASM is a
hierarchical (tree-like) taxonomy of attributes (referred as Concepts), attribute properties,
and attribute instance values (or just instances) when they are known beforehand. An
attribute is titled with a name, and uniquely identified by a Universal Resource Identifier
(URI). It furthermore has an (optional) description which describes its exact semantics. An
attribute can have sub-attributes, which are specializations of the parent attribute’s meaning.
It can also have attribute instances, when they are a priori known, as well as properties that
can relate attribute (as a concept) to other attributes or common data types (like numbers,
date/time, literals, and Booleans). Figure 4 gives a sample snapshot of CASM.

Figure 4 – Sample excerpt of the default CASM

In the following sections the CASM editor is presented in detail.

I.1. Usage Scenarios

The main goal of CASM Editor is to manage the CASM elements and structure. This goal
can be broken down to a series of specific capabilities that must be offered to the user for
creating, updating, deleting and retrieving the CASM attributes, values and properties, as
well as for importing and exporting CASM to a file. A full list of CASM Editor capabilities (and
related usage scenarios) is given next.
The term Elements in the following list and diagrams is a collective reference to attributes,
properties and instance values.

• Display CASM hierarchy (tree)

• Retrieve an Element’s details

• Create a new Element in CASM

• Modify or Delete an existing Element in CASM

• Initialize AMPLE with default CASM (shipped with AMPLE)

• Import CASM from a file into AMPLE

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 19 of 79

• Export CASM from AMPLE to a file

The CASM retrieval and editing capabilities are depicted in Figure 5 whereas the
import/export capabilities are depicted in Figure 6.

Figure 5 – CASM management use case

Figure 6 – CASM Import/Export use case

I.2. Walkthrough

In this section the graphical user interface of the CASM Editor is briefly presented along with
a short walkthrough of its operation. The editor can be accessed through the AMPLE web
page, therefore an overview of common AMPLE pages is given first.

Login to AMPLE
AMPLE can be accessed using a modern web browser and typing its web address, i.e. the
server where AMPLE has been installed. Typically, it is something like:

https://<SERVER>:9090/

The user will land to the AMPLE Login page where valid user credentials must be entered in
order to be authenticated (see Figure 7).

Figure 7 – AMPLE login page

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 20 of 79

On successful authentication the user is directed to AMPLE Welcome page (see Figure 8).
Welcome page offers a number of buttons that will launch the corresponding operations or
tools of AMPLE. The same functionality can also be accessed from the sliding menu that

appears when clicking on sign on the upper left part of the page. Figure 9 depicts
AMPLE menu along with short explanation of each button’s operation.

Figure 8 – AMPLE welcome page

Home: Returns to the Welcome page

Context-Aware Security Model: Opens the CASM Editor

ABAC Policy Management: Opens the ABAC Policy Editor

ABE Policy Management: Opens the ABE Policy Editor

Import Models: Opens the Import page

Export Models: Starts downloading Model Store contents

Initialize Models: Initializes Models Store with CASM
shipped with AMPLE

Logout: Disconnects user from AMPLE

Figure 9 – AMPLE menu

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 21 of 79

Initialize CASM
The first time (after installation) that AMPLE is launched, Models Store will be empty. The
user has three options with regard to CASM initialization:

1. Create a new CASM from scratch
2. Import CASM from a file exported by another AMPLE instance
3. Initialize Models Store using the CASM shipped with AMPLE

It is expected that the third option will be used when defining a new application within the
ASCLEPIOS framework and therefore needing to configure CASM to its specific needs. The
second option can be used either when a new application shares the same concepts and
attributes with another (pre-existing) one, or when migrating or replicating AMPLE to other
servers. In the latter case an export is required from the original AMPLE instance, which can
subsequently used to initialize new AMPLE instances.

In order to initialize Models Store using the shipped CASM, the user needs to press the
button named “Initialize Models” and confirm the operation when asked (Figure 10).

Figure 10 – Confirm CASM initialization

Therefore, the user can use the default CASM model by clicking on the “Initialize Models”
option, or she can import a custom CASM model (e.g. from another application). In the latter
case she must use the Import page to import custom CASM.

Note: “Initialize Models” must be used with caution because it replaces any

previous contents of Models Store.

CASM Editor
CASM Editor opens by pressing the button named “Context-Aware Security Model” in the
Welcome screen or the respective button in menu. Figure 11 gives an overview of CASM
Editor.

The page is vertically divided in two notable regions. The left-hand part of the page contains
a rendering of CASM in a tree-like fashion. The user can click on the arrow heads on the left
side of each element in order to expand it and view its child elements (if any). Clicking on an
element loads its details into the details form in the right-hand side of the page. Right clicking
on an element in the CASM tree will open the context menu which offers actions related to
the selected element (Figure 12).

The details form (in the right-hand side of the page) encompasses fields that are common to
all element types. Fields specific to particular element types are displayed only when an
element of the corresponding type is selected. Under the details form, a row of buttons
exists. These buttons can be used to save any changes made in details form, create new
child elements or delete the currently displayed element in details form. Buttons get dimmed
when the corresponding operation is not available in a particular case (e.g. when editing a
property, creating child elements is not active).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 22 of 79

Figure 11 – CASM Editor page

Figure 12 – Creation of a new attribute using context menu

Create new attribute
The user can create a new attribute (or other element) by first selecting the parent attribute
in the CASM tree on the left, and then clicking on the corresponding option, either in the
context menu (see Figure 12) or the buttons under the details form (see Figure 11).
Creating a new child element will clear details form, and prefill Id, Parent and URI fields with
automatically created values (Figure 13). A user has the opportunity to modify these values
before saving them (Figure 14). When ready the user can click on Save button (colored
green) to submit information to the server for saving (Figure 15).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 23 of 79

Figure 13 – New attribute form

Figure 14 – Filling in new attribute details

Figure 15 – Submit new attribute details

After saving changes, the CASM tree on the left-hand side of the page will refresh in order to
reflect the changes (i.e. including the new attribute). If the parent attribute is not expanded,
the user can click on its arrow head to expand its child elements (Figure 16).

Figure 16 – New attribute in CASM

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 24 of 79

Edit an existing attribute
Selecting an element in the CASM tree on the left, will load its details in the details form on
the right (see Figure 17). The user has the opportunity to modify the information in the form
(except Id). In case of attributes the name and description fields are the most commonly
updated fields (see Figure 18).

Figure 17 – Edit an existing attribute

Figure 18 – Change an attribute’s details

After saving changes, the CASM tree on the left-hand side of the page will refresh in order to
reflect any changes (e.g. displaying the new attribute name) (see Figure 19).

Figure 19 – Changed attribute in CASM

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 25 of 79

Delete an attribute
Selecting an element in the CASM tree on the left, will load its details in the details form on
the right. The user has the option to delete that particular element and its child elements.
This can be achieved by pressing the Delete button residing under details form or using the
corresponding option of the context menu, accessible with right-click (see Figure 20). In both
cases the user will need to confirm operation before deletion is carried out (see Figure 21).

Figure 20 – Deleting an attribute using context menu

Figure 21 – Confirm attribute deletion

I.3. CASM Editor REST API

Apart from a graphical user interface, CASM Editor encompasses a REST API controller for
providing its functionality through REST calls. The relevant endpoints, operations and
message formats are detailed in the following table.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 26 of 79

Table 4 – REST API of CASM Editor

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 27 of 79

REST endpoint and Verb Request

Response

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 28 of 79

getTopLevelAttributes
GET /opt/attributes/

Description: Returns an array with all top-level attributes
of CASM. The full descriptions of attributes are contained
in the array, as shown in the example at the Response
column.

n/a

application/json

<SchemaObject> array

[

 {

 "id": "string",

 "name": "string",

 "type": "string",

 "uri": "string",

 "description": "string",

 "createTimestamp":

 "2020-03-05T07:13:43.573Z",

 "lastUpdateTimestamp":

 "2020-03-05T07:13:43.573Z",

 "propertyIsA": "string",

 "propertyIsA_display": "string",

 "propertyType": "string",

 "propertyValue": "string",

 "range": "string",

 "rangeUri": "string",

 "range_display": "string"

 }

]

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 29 of 79

getAllAttributes
GET /opt/attributes/all

Description: Returns an array containing the full
descriptions of all attributes, properties and instances in
CASM.

n/a

application/json

<SchemaObject> array

For an example see at getTopLevelAttributes

getAttribute
GET /opt/attributes/{attr_id}
attr_id : String

Description: Returns the description of the attribute or
element, specified by attr_id parameter, which
matches to the id property of the attribute.

n/a application/json

SchemaObject

{

 "id": "string",

 "name": "string",

 "type": "string",

 "uri": "string",

 "description": "string",

 "createTimestamp":

 "2020-03-05T07:17:27.295Z",

 "lastUpdateTimestamp":

 "2020-03-05T07:17:27.295Z",

 "propertyIsA": "string",

 "propertyIsA_display": "string",

 "propertyType": "string",

 "propertyValue": "string",

 "range": "string",

 "rangeUri": "string",

 "range_display": "string"

}

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 30 of 79

getAttributeSubattributes
GET /opt/attributes/{attr_id}/subattributes
attr_id : String

Description: Returns an array with all child elements of the
attribute specified by attr_id parameter, which

matches to the id property of the attribute.

n/a application/json

<SchemaObject> array

See at getTopLevelAttributes

findAttributesByName
GET /opt/attributes/search/by-name/{term}
term : String

Description: Returns an array with all attributes whose
names contain the term specified by term parameter.

Search is case insensitive.

n/a application/json

<SchemaObject> array

See at getTopLevelAttributes

findPropertiesByAttribute
GET /opt/attributes/search/properties/by-

attribute/{attr_id}
attr_id : String

Description: Returns an array containing all properties
belonging (as child elements) to the attribute specified by
attr_id parameter, which matches to the id property

of the attribute.

n/a application/json

<SchemaObject> array

See at getTopLevelAttributes

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 31 of 79

createAttribute
PUT /opt/attributes/

Description: Creates a new attribute or property or
instance in CASM. It requires the full definition of the new
element in the Request body. It returns a plain text
message with the result of the operation.

application/json

SchemaObject

{

 "id": "string",

 "name": "string",

 "type": "string",

 "uri": "string",

 "description": "string",

 "createTimestamp":

 "2020-03-

05T07:17:27.295Z",

 "lastUpdateTimestamp":

 "2020-03-

05T07:17:27.295Z",

 "propertyIsA": "string",

 "propertyIsA_display":

"string",

 "propertyType": "string",

 "propertyValue": "string",

 "range": "string",

 "rangeUri": "string",

 "range_display": "string"

}

text/plain

string

updateAttribute
POST /opt/attributes/{attr_id}
attr_id : String

Description: Replaces the definition of an existing
element, specified by attr_id parameter, with a new

definition. It requires the full (new) definition in the
Request body. It returns a plain text message with the
result of the operation.

application/json

SchemaObject

See at createAttribute

text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 32 of 79

deleteAttribute
DELETE /opt/attributes/{attr_id}
attr_id : String

Description: Deletes an existing element, specified by
attr_id parameter. If it is an attribute it must not have

any child elements, otherwise the operation fails.

n/a text/plain

string

deleteAttributeAndSubattributes
DELETE /opt/attributes/{attr_id}/all
attr_id : String

Description: Deletes an existing element, specified by
attr_id parameter, and all its child elements from

CASM.

n/a text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 33 of 79

I.4. CASM Serialization

CASM Editor stores CASM changes in Models Store as RDF triples. The following listing
provides a sample excerpt from a CASM export in RDF/TTL format.

Table 5 – Sample attribute export

Definition of class: EHR
<http://www.asclepios.eu/casm/ASCLEPIOS-OBJECT#1371e7a1-def9-4d84-a65e-↙

2d3060f4d97d>
 a <http://www.asclepios.eu/casm#ASCLEPIOS-OBJECT> ;
 <http://purl.org/dc/elements/1.1/type> "CONCEPT" ;
 <http://purl.org/dc/terms/URI>
 "ascm:1371e7a1-def9-4d84-a65e-2d3060f4d97d" ;
 <http://purl.org/dc/terms/created>
 "2019-12-18T19:40:55.933Z"^^<http://www.w3.org/2001/ ↙

XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/description>
 "This class represents the patient’s Electronic Health

Records (EHR). EHR represents a digital collection of medical information

about a person. It includes information about a patient???s health history,

such as diagnoses, medicines received, tests, allergies, immunizations, and

treatment plans." ;
 <http://purl.org/dc/terms/identifier>
 "1371e7a1-def9-4d84-a65e-2d3060f4d97d" ;
 <http://purl.org/dc/terms/modified>
 "2019-12-18T19:40:55.933Z"^^<http://www.w3.org/2001/ ↙

XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/title> "EHR" ;
 <http://www.asclepios.eu/casm/types#class>
 "eu.asclepios.ample.model.SchemaObject" ;
 <http://www.w3.org/2004/02/skos/core#broader>
 <http://www.asclepios.eu/casm/ASCLEPIOS-OBJECT# ↙

aa205d7c-dba9-45d2-955a-d0ed0167de74> .

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 34 of 79

4 Attribute-Based Access Control (ABAC) Policies Editor

In this chapter the Attribute-Based Access Control (ABAC) Policies Editor is presented and
detailed.

ABAC Policies are sets of rules used for making access control decisions, i.e. permitting or
denying access to certain protected resources. They are evaluated (or applied) every time
an access is attempted to a protected resource to yield a decision. When that happens, one,
some or all policy rules are evaluated. Each policy rule, when applicable, makes a partial
access control decision. The rule outcomes are then combined to yield the policy’s decision,
therefore an ABAC Policy must always specify a combining method (algorithm) for
aggregating rules’ partial decisions into the policy decision. It is worth noting that several
ABAC Policies can be in effect at the same time for the same protected resources.
An ABAC Policy Rules definition must specify the rule outcome (i.e. partial access control
decision) yielded, when the rule is evaluated. Rules typically include a controlling condition.
When this condition holds, the rule is applicable at that particular policy
application/evaluation otherwise the rule is ignored. The rule condition is a boolean
expression of attribute values (like those defined in CASM) and constant values. When it
evaluates to true the corresponding rule outcome is returned as a partial decision, which can
subsequently be used (possibly in conjunction with other partial decisions) to render the
policy decision.
In technical terms, in the context of ASCLEPIOS project, ABAC Policies and Rules are
uniquely identified with an Id property, titled with a Name, and they can optionally have a
Description. They can also be referenced using a Universal Resource Identifier (URI).
ABAC Policies in particular must have a combining algorithm and include one or more rules.
ABAC Policy rules must specify an outcome (Permit or Deny) and typically a condition
controlling when they are applicable. If no rule condition is specified, the rule is always
applicable. Rule conditions include CASM elements (attributes, properties, attribute
instances) in their expressions.

In the following sections the ABAC Policies editor is presented in detail.

I.1. Usage Scenarios

The main goal of ABAC Policies Editor is to create and manage the ABAC Policies of
ASCLEPIOS platform. This goal can be broken down to a series of specific capabilities that
must be offered to the user for creating, updating, deleting and retrieving the ABAC policies
along with their rules, as well as for importing and exporting them to files. A full list of ABAC
Policies Editor capabilities (and related usage scenarios) is given next.

• List existing ABAC Policies and their rules

• Retrieve an ABAC Policy’s details

• Create a new ABAC Policy

• Modify or Delete an existing ABAC Policy

• Retrieve an ABAC Policy Rule’s details

• Create a new ABAC Policy Rule

• Modify or Delete an existing ABAC Policy Rule

• Import an ABAC Policy from a file

• Export an ABAC Policy to a file

• Interpret an ABAC Policy to XACML

• Submit an ABAC Policy to Policies Enforcement Mechanism

The ABAC Policies retrieval and editing use cases are depicted in Figure 22, ABAC Policy
Rules retrieval and editing use cases are depicted in Figure 23 whereas the import/export,

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 35 of 79

interpretation and submission to Policies Enforcement Mechanism use cases are depicted in
Figure 24.

Figure 22 – ABAC Policies management use case

Figure 23 – ABAC Policy Rules management use case

Figure 24 – ABAC Policies Import/Export, and submission to Policies Enforcement use case

I.2. Walkthrough

In this section the graphical user interface of the ABAC Policies Editor is briefly presented
along with a short walkthrough of its operation. The editor can be accessed through AMPLE
web page.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 36 of 79

ABAC Policies Editor
ABAC Policies Editor opens by pressing the button named “ABAC Policies” in the Welcome
screen or the respective button in menu. Figure 25 gives an overview of the ABAC Policies
Editor.
The page is vertically divided in two notable regions. The left-hand part of the page contains
a list of all existing ABAC Policies. The user can click on the arrow heads on the left side of
each ABAC Policy in order to expand it and view its Policy Rules (if any). Clicking on an
ABAC Policy or Policy Rule loads its details into the details form in the right-hand side of the
page. Right clicking on an item in the list will open the context menu which offers actions
related to the selected item (Figure 26).
The details form (in the right-hand side of the page) encompasses fields that are common
both to ABAC Policies and Rules. Fields specific to a particular type are displayed only when
an item of the corresponding type is selected. Under the details form a row of buttons exists.
These buttons can be used to save any changes made in details form, create new ABAC
Policies or Policy Rules or delete the currently displayed item in details form. Buttons get
dimmed when the corresponding operation is not available in a particular case (e.g. when
editing a Rule, creating a child Rule is not active).

Figure 25 – ABAC Policies Editor page

Figure 26 – Creation of a new rule using context menu

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 37 of 79

Create new ABAC Policy
The user can create a new ABAC Policy by clicking on the “Create Policy” button under the
details form (see Figure 27). This action will clear details form, and prefill Id, Type and URI
fields with new values. The user has the opportunity to modify their values before saving
them (Figure 28). When ready user can click on Save button (colored green) to submit
information to the server for saving.

Figure 27 – New ABAC Policy form

Figure 28 – Filling in new ABAC Policy details

After saving changes, the ABAC Policies list on the left-hand side of the page will refresh in
order to reflect the changes, i.e. including the new ABAC Policy (Figure 29).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 38 of 79

Figure 29 – New ABAC Policy

Edit an existing ABAC Policy
Selecting an ABAC Policy in the list on the left will load its information in the details form on
the right (see Figure 30). User has the option to modify the information in the form (except Id
and Type) (see Figure 31).

Figure 30 – Edit an existing ABAC Policy

Figure 31 – Change an ABAC Policy’s details

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 39 of 79

After saving changes, the list on the left-hand side of the page will refresh in order to reflect
any changes (e.g. displaying the new ABAC Policy name) (see Figure 32).

Figure 32 – Changed ABAC Policy in the list

Delete an ABAC Policy
Selecting an ABAC Policy in the list on the left will load its details in the details form on the
right. User has the option to delete that particular ABAC Policy and its rules. This can be
achieved by pressing the Delete button residing under details form or using the
corresponding option of the context menu, accessible with right-click (see Figure 33). In both
cases the user will need to confirm operation before deletion is carried out (see Figure 34).

Figure 33 – Deleting an ABAC Policy using context menu

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 40 of 79

Figure 34 – Confirm ABAC Policy deletion

Create new ABAC Policy Rule
User can create a new ABAC Policy Rule by clicking on the “Create Rule” button under the
details form. This action will clear details form, and prefill Id, Policy and URI fields with new
values (see Figure 35). User has the opportunity to modify their values before saving them
(Figure 36). When ready user can click on Save button (colored green) to submit information
to the server for saving.

Figure 35 – New ABAC Policy Rule form

Figure 36 – Filling in new ABAC Policy Rule details

After saving changes, the ABAC Policies list on the left-hand side of the page will refresh in
order to reflect the changes, i.e. including the new ABAC Policy (Figure 37).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 41 of 79

Figure 37 – New ABAC Policy Rule in the list

An integral part of an ABAC Policy Rule is its Condition, which is a boolean expression of
attributes, instances, properties, as they have been specified in CASM. The condition
controls whether a rule can be applied, when evaluating an ABAC Policy in order to grant or
deny access to a resource. When condition evaluates to true the specified rule outcome (in
details form) is returned, otherwise the rule is ignored.
The graphical expression builder, which resides at the right of the details form, can be used
in order to create the rule condition (Figure 38). The expression builder provides dynamic
lists (in the form of combo boxes) for the easier search and selection of CASM elements
required for building the condition.
Rule condition is saved along with the details form information, when the Save button is
pressed.

Figure 38 – ABAC Policy Rule condition expression editor

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 42 of 79

Initially the rule condition is empty. Pressing the Add Simple Expr. button (on the right hand
side) a new expression is started containing a simple expression clause. More clauses can
be added in the following lines by pressing the same button. Each line contains the definition
of a simple expression clause of the form: <Attribute> <Property> <Value>

For example: NetworkLocation hasSubnet "10.10.0.0"

Clauses are combined using the boolean operator indicated by the selected button on the to
top left corner of the expression editor (AND, OR). Subexpressions can be added by
pressing the Add Composite Expr. button. Sub-expressions have their own boolean operator
and simple clauses. The following screenshots give an impression of expression editor
(Figure 39).

Empty rule conditions (default) Pressing “Add Simple Expr.” a new condition is added

Using selection box an attribute can be selected Properties selection box appears

Using second selection box
an attribute’s property can be selected

Property value input appears

Pressing “Add Composite Expr.”
a new sub-expression is added

Example condition
with sub-expression

Figure 39 – Rule condition editing with expression builder

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 43 of 79

Edit an existing ABAC Policy Rule
Selecting an ABAC Policy Rule in the list on the left will load its information in the details
form on the right (see Figure 40). User has the option to modify the information in the form
(except Id and Type) (see Figure 41). Rule condition can also be updated.

Figure 40 – Edit an existing ABAC Policy Rule

Figure 41 – Change an ABAC Policy Rule’s details

After saving changes, the list on the left-hand side of the page will refresh in order to reflect
any changes (e.g. displaying the new ABAC Policy Rule name).

Delete an ABAC Policy Rule
Selecting an ABAC Policy Rule in the list on the left will load its details in the details form on
the right. User has the opportunity to delete that particular ABAC Policy Rule, including its
rule condition. This can be achieved by pressing the Delete button residing under details
form or using the corresponding option of the context menu, accessible with right-click (see
Figure 42). In both cases the user will need to confirm operation before deletion is carried
out (see Figure 43).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 44 of 79

Figure 42 – Deleting an ABAC Policy Rule using context menu

Figure 43 – Confirm ABAC Policy Rule deletion

Import/Export an ABAC Policy
It is possible to import and export ABAC policies as RDF/TTL files for backup or migration
purposes (Figure 44).

Figure 44 – Import/Export ABAC Policy editor buttons

In order to import an ABAC Policy into AMPLE, one can either use the Import Policies button
in ABAC Policies Editor or the Import Models menu item in AMPLE menu. In both cases the
same Import page loads (Figure 45) where the user can drag and drop the TTL policy file.
Caution must be exercised to not replace pre-existing contents; i.e. Append import mode
must be selected.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 45 of 79

Figure 45 – Import page

In order to export a (single) ABAC Policy the user can click on Export Policy button in ABAC
Policies editor. A TTL file containing the selected policy will be downloaded.

A second option is to export the selected ABAC Policy as an XACML file, which can be used
in any XACML-capable application. The user needs to click on Export as XACML button in
ABAC Policies editor, and an XACML file with the policy will be downloaded. It must be
noted that XACML files cannot be imported back to AMPLE.

Interpret and Submit an ABAC Policy
ABAC Policies editor provide the capability to convert the selected policy into XACML and
send it to ASCLEPIOS ABAC policy enforcement mechanism in order to put it into effect
immediately. This can be achieved by pressing the Apply Policy button, next to Import/Export
buttons (Figure 44).

I.3. ABAC Policies Editor REST API

Apart from a graphical user interface, ABAC Policies Editor provides a REST API in order to
enable external clients to use its functionality through REST calls. The relevant endpoints,
operations and message formats are detailed in the following Table 6, Table 7 and Table 8.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 46 of 79

Table 6 – REST API of ABAC Policies Editor – Policies part

REST endpoint and Verb Request Response

getTopLevelPolicies
GET /opt/abac-policies/

Description: Returns an array with all ABAC policies.
Their full descriptions are contained in the array, as
shown in the example at the Response column.

n/a application/json

<AbacPolicy> array

[
 {
 "id": "string",
 "name": "string",
 "uri": "string",
 "type": "ABAC-POLICY",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:51:38.089",
 "lastUpdateTimestamp":
 "2020-03-09T07:51:38.089",
 "policyCombiningAlgorithm":
 "string"
 }
]

getAllPolicies
GET /opt/abac-policies/all

Description: Same as getTopLevelPolicies.

n/a application/json

<AbacPolicy> array

For an example see at getTopLevelPolicies

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 47 of 79

REST endpoint and Verb Request Response

getPolicy
GET /opt/abac-policies/{policy_id}

policy_id: String

Description: Returns the description of the ABAC policy,
specified by policy_id parameter, which matches to

the id property of the policy.

n/a

application/json

AbacPolicy

{

 "id": "string",

 "name": "string",

 "uri": "string",

 "type": "ABAC-POLICY",

 "description": "string",

 "createTimestamp":

 "2020-03-09T07:51:38.089",

 "lastUpdateTimestamp":

 "2020-03-09T07:51:38.089",

 "policyCombiningAlgorithm":

 "string"

}

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 48 of 79

REST endpoint and Verb Request Response

createPolicy
PUT /opt/abac-policies/

Description: Creates a new ABAC policy with no rules. It
requires the full definition of the new policy in the
Request body. It returns a plain text message with the
result of the operation.

application/json

AbacPolicy

{

 "id": "string",

 "name": "string",

 "uri": "string",

 "type": "ABAC-POLICY",

 "description": "string",

 "createTimestamp":

 "2020-03-09T07:51:38.089",

 "lastUpdateTimestamp":

 "2020-03-09T07:51:38.089",

 "policyCombiningAlgorithm":

 "string"

}

text/plain

string

updatePolicy
POST /opt/abac-policies/{policy_id}

policy_id: String

Description: Replaces the definition of an existing ABAC
policy, specified by policy_id parameter, with a new

definition. It requires the full (new) definition in the
Request body. It returns a plain text message with the
result of the operation.

application/json

AbacPolicy

See at createPolicy

text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 49 of 79

REST endpoint and Verb Request Response

deletePolicy
DELETE /opt/abac-policies/{policy_id}

policy_id: String

Description: Deletes an existing ABAC policy, specified by
policy_id parameter. Policy must not have any rules,

otherwise the operation fails.

n/a text/plain

string

deletePolicyAndRules
DELETE /opt/abac-policies/{policy_id}/all

policy_id: String

Description: Deletes an existing ABAC policy, specified by
policy_id parameter, and all its rules.

n/a text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 50 of 79

REST endpoint and Verb Request Response

getPolicyRules
GET /opt/abac-policies/{policy_id}/rules
policy_id: String

Description: Returns an array with all ABAC policy rules
of the policy specified by policy_id parameter, which

matches to the id property of the attribute.

n/a application/json

<AbacRule> array

[
 {
 "id": "string",
 "name": "string",
 "uri": "string",
 "type": "ABAC-RULE",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:52:27.331",
 "lastUpdateTimestamp":
 "2020-03-09T07:52:27.331",
 "rulePolicy": {
 "id": "string",
 "uri": "string",
 "type": "ABAC-POLICY",
 "name": "string",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:52:32.455",
 "lastUpdateTimestamp":
 "2020-03-09T07:52:32.455",
 "policyCombiningAlgorithm":
 "string"
 },
 "ruleOutcome": "string",
 "ruleExpression": {}
 }
]

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 51 of 79

Table 7 – REST API of ABAC Policies Editor – Rules part

REST endpoint and Verb Request Response

getRule
GET /opt/abac-policies/rule/{rule_id}

rule_id: String

Description: Returns the description of the ABAC policy
rule, specified by rule_id parameter, which matches

to the id property of the rule.

n/a application/json

<AbacRule> array

{
 "id": "string",
 "name": "string",
 "uri": "string",
 "type": "ABAC-RULE",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:52:27.331",
 "lastUpdateTimestamp":
 "2020-03-09T07:52:27.331",
 "rulePolicy": {
 "id": "string",
 "uri": "string",
 "type": "ABAC-POLICY",
 "name": "string",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:52:32.455",
 "lastUpdateTimestamp":
 "2020-03-09T07:52:32.455",
 "policyCombiningAlgorithm":
 "string"
 },
 "ruleOutcome": "string",
 "ruleExpression": {}
}

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 52 of 79

createRule
PUT /opt/abac-policies/rule/

Description: Creates a new ABAC policy rule. It requires
the full definition of the new rule in the Request body. It
returns a plain text message with the result of the
operation.

application/json

AbacRule

{
 "id": "string",
 "name": "string",
 "uri": "string",
 "type": "ABAC-RULE",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:52:27.331",
 "lastUpdateTimestamp":
 "2020-03-09T07:52:27.331",
 "rulePolicy": {
 "id": "string",
 "uri": "string",
 "type": "ABAC-POLICY",
 "name": "string",
 "description": "string",
 "createTimestamp":
 "2020-03-09T07:52:32.455",
 "lastUpdateTimestamp":
 "2020-03-09T07:52:32.455",
 "policyCombiningAlgorithm":
 "string"
 },
 "ruleOutcome": "string",
 "ruleExpression": {}
}

text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 53 of 79

updateRule
POST /opt/abac-policies/rule/{rule_id}

rule_id: String

Description: Replaces the definition of an existing rule,
specified by rule_id parameter, with a new definition.

It requires the full (new) definition in the Request body.
It returns a plain text message with the result of the
operation.

application/json

AbacRule

See at createRule

text/plain

string

deleteRule
DELETE /opt/abac-policies/rule/{rule_id}

rule_id: String

Description: Deletes an existing rule, specified by the
rule_id parameter.

n/a text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 54 of 79

Table 8 – REST API of ABAC Policy-to-XACML interpreter

REST endpoint and Verb Request Response

abacPolicyToXacml
GET /opt/interpreter/abac-policy-to-

xacml/{policy_id}

policy_id: String

Description: Converts and returns the policy, specified by
policy_id parameter, into XACML format.

n/a text/xacml+xml

string

<?xml version="1.0" encoding="UTF-8"?>
<xacml3:Policy
 xmlns:xacml3="urn:oasis:names:tc:
 xacml:3.0:core:schema:wd-17"
 PolicyId="string"
 RuleCombiningAlgId="string"
 Version="1.0">

 <xacml3:Description><![CDATA[
 Policy Name: string
 Description: string
]]></xacml3:Description>
 <!-- Rule Name: string
 Description: string
 -->
 <xacml3:Rule Effect="string"
 RuleId="string">
 </xacml3:Rule>

</xacml3:Policy>

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 55 of 79

I.4. ABAC Policies Serialization

ABAC Policies Editor stores ABAC Policy changes in Models Store as RDF triples. The
following listing provides a sample ABAC Policy export in RDF/TTL format. The policy
includes two rules with no condition.

Table 9 – Sample ABAC Policy export in RDF/TTL format

Definition of ABAC policy: Second abac policy
<http://www.asclepios.eu/abac/ASCLEPIOS-ABAC-POLICY#144e8e20-2068-4cc2-ae77-

efe8acf06015>
 a
 <http://www.asclepios.eu/abac#ASCLEPIOS-ABAC-POLICY> ;
 <http://purl.org/dc/elements/1.1/type>
 "ABAC-POLICY" ;
 <http://purl.org/dc/terms/URI>
 "asclepios:144e8e20-2068-4cc2-ae77-efe8acf06015" ;
 <http://purl.org/dc/terms/description>
 "Second abac policy" ;
 <http://purl.org/dc/terms/identifier>
 "144e8e20-2068-4cc2-ae77-efe8acf06015" ;
 <http://purl.org/dc/terms/modified>
 "2020-03-09T09:52:32.455+02:00" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/title>
 "ABAC Policy #2" ;
 <http://www.asclepios.eu/abac/ABAC-POLICY#combining-algorithm>
 "urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable";
 <http://www.asclepios.eu/casm/types#class>
 "eu.asclepios.ample.model.abac.AbacPolicy" .

Definition of ABAC rule: Rule 2-a
<http://www.asclepios.eu/abac/ASCLEPIOS-ABAC-RULE#8e05782c-e559-420b-b428-

a7851f804c91>
 a
 <http://www.asclepios.eu/abac#ASCLEPIOS-ABAC-RULE> ;
 <http://purl.org/dc/elements/1.1/type>
 "ABAC-RULE" ;
 <http://purl.org/dc/terms/URI>
 "asclepios:8e05782c-e559-420b-b428-a7851f804c91" ;
 <http://purl.org/dc/terms/created>
 "2020-03-09T09:52:27.331+02:00" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/identifier>
 "8e05782c-e559-420b-b428-a7851f804c91" ;
 <http://purl.org/dc/terms/modified>
 "2020-03-09T09:52:27.331+02:00" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/title>
 "Rule 2-a" ;
 <http://www.asclepios.eu/abac/ABAC-RULE#outcome>
 "PERMIT" ;
 <http://www.asclepios.eu/casm/types#class>
 "eu.asclepios.ample.model.abac.AbacRule" ;
 <http://www.paasword.eu/ABAC-RULE#policy>
 <http://www.asclepios.eu/abac/ASCLEPIOS-ABAC-POLICY#144e8e20-2068- ↙

4cc2-ae77-efe8acf06015> .

Definition of ABAC rule: Rule 2-b
<http://www.asclepios.eu/abac/ASCLEPIOS-ABAC-RULE#ae12b9be-c569-4599-a0fd-

cfbf224788ce>
 a
 <http://www.asclepios.eu/abac#ASCLEPIOS-ABAC-RULE> ;

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 56 of 79

 <http://purl.org/dc/elements/1.1/type>
 "ABAC-RULE" ;
 <http://purl.org/dc/terms/URI>
 "asclepios:ae12b9be-c569-4599-a0fd-cfbf224788ce" ;
 <http://purl.org/dc/terms/created>
 "2020-03-09T09:52:57.022+02:00" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/identifier>
 "ae12b9be-c569-4599-a0fd-cfbf224788ce" ;
 <http://purl.org/dc/terms/modified>
 "2020-03-09T09:52:57.022+02:00" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/title>
 "Rule 2-b" ;
 <http://www.asclepios.eu/abac/ABAC-RULE#outcome>
 "DENY" ;
 <http://www.asclepios.eu/casm/types#class>
 "eu.asclepios.ample.model.abac.AbacRule" ;
 <http://www.paasword.eu/ABAC-RULE#policy>
 <http://www.asclepios.eu/abac/ASCLEPIOS-ABAC-POLICY#144e8e20-2068- ↙

4cc2-ae77-efe8acf06015> .

I.5. ABAC Policies Interpretation

ABAC Policies Editor invokes the ABAC Policy-to-XACML Interpreter component of AMPLE
in order to convert the selected ABAC Policy into XACML, which can either be downloaded
as a file or submitted to the ABAC Policies Enforcement Mechanism for applying it. The
following listing provides a sample ABAC Policy export as XACML.

Table 10 – Sample ABAC Policy as XACML

<?xml version="1.0" encoding="UTF-8"?>

<xacml3:Policy xmlns:xacml3="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
 PolicyId="144e8e20-2068-4cc2-ae77-efe8acf06015"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining- ↙

algorithm:first-applicable"
 Version="1.0">

 <xacml3:Description><![CDATA[
 Policy Name: ABAC Policy #2
 Description: Second abac policy
]]></xacml3:Description>

 <!-- Rule Name: Rule 1-a
 Description:
 -->
 <xacml3:Rule Effect="PERMIT" RuleId="8e05782c-e559-420b-b428-a7851f804c91">
 </xacml3:Rule>

 <!-- Rule Name: Rule 1-b
 Description:
 -->
 <xacml3:Rule Effect="DENY" RuleId="ae12b9be-c569-4599-a0fd-cfbf224788ce">
 </xacml3:Rule>

</xacml3:Policy>

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 57 of 79

5 Attribute-Based Encryption Policies Editor

In this chapter the Attribute-Based Encryption Policies Editor is presented and detailed.

ABE Policies resemble to Boolean expressions of (a subset of) CASM attributes, used for
creating key pairs for encrypting/decrypting protected resources, according to the ΑΒΕ
method described in deliverable D1.2 [3]. The key pair is generated based on specific
attribute values and the decryption key is provided to the eligible users (i.e. those who must
be granted access to the protected resources). ABE policies are evaluated (or applied), at
resource encryption time as well as every time an access is attempted to a protected
resource. When that happens, the whole policy expression is evaluated.

An ABE Policy expression can either be a composite or a simple Boolean expression. A
composite expression comprises of sub-expressions, combined using a Boolean operator
(AND/OR). A simple expression is typically a comparison expression between an attribute
(acting as a value placeholder) and a constant value. Additionally, the k-of-N operator is also
supported (evaluates to true when at least k sub-expressions evaluate to true).

In the context of AMPLE, ABE Policies are uniquely identif ied with an Id property, titled with
a Name, and they can optionally have a Description. They can also be referenced using a
Universal Resource Identifier (URI).

In the following sections the ABE Policies editor is presented in detail.

I.1. Usage Scenarios

The main goal of ABE Policies Editor is to create and manage the ABE Policies of
ASCLEPIOS platform. This goal can be broken down to a series of specific capabilities that
must be offered to the user for creating, updating, deleting and retrieving the ABE policies,
as well as for importing and exporting them to files. A full list of ABE Policies Editor
capabilities (and related usage scenarios) is given next.

• List existing ABE Policies

• Retrieve an ABE Policy’s details

• Create a new ABE Policy

• Modify or Delete an existing ABE Policy

• Import an ABE Policy from a file

• Export an ABE Policy to a file

• Submit an ABE Policy to ABE Service for use (i.e. apply ABE policy)

The ABE Policies retrieval and editing capabilities are depicted in Figure 46, whereas the
import/export, interpretation and submission to ABE Service capabilities are depicted in
Figure 47.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 58 of 79

Figure 46 – ABE Policies management use case

Figure 47 – ABE Policies Import/Export, and submission to ABE Service use case

I.2. Walkthrough

In this section the graphical user interface of the ABE Policies Editor is briefly presented
along with a short walkthrough of its operation. The editor can be accessed through the
AMPLE web page.

ABE Policies Editor
ABE Policies Editor opens by pressing the button named “ABE Policies” in the Welcome
screen or the respective button in menu. Figure 48 gives an overview of the ABE Policies
Editor.
The page is vertically divided in two notable regions. The left-hand part of the page contains
a list of all existing ABE Policies. Clicking on an ABE Policy loads its details into the details
form in the right-hand side of the page. Right clicking on an item in the list will open the
context menu which offers actions related to the selected item.
The details form (in the right-hand side of the page) encompasses fields pertaining to ABE
Policies definition. Under the details form a row of buttons exists. These buttons can be used
to save any changes made in details form, create new ABE Policies or delete the currently
displayed item in details form. Buttons get dimmed when the corresponding operation is not
available in a particular case (e.g. when creating a policy, all buttons but Save are dimmed).

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 59 of 79

Figure 48 – ABE Policies Editor page

Create new ABE Policy
A user can create a new ABE Policy by clicking on the “Create Policy” button under the
details form (see Figure 49). This action will clear details form, and prefill Id, Type and URI
fields with automatically created values values. The user has the opportunity to modify these
values before saving them (Figure 50). When ready, the user can click on Save button
(colored green) to submit information to the server for storing.

Figure 49 – New ABE Policy form

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 60 of 79

Figure 50 – Filling in new ABE Policy details

After saving changes, the ABE Policies list on the left-hand side of the page will refresh in
order to reflect the changes, i.e. including the new ABE Policy (Figure 51).

Figure 51 – New ABE Policy

An integral part of an ABE Policy is its Expression, which is a boolean expression of
attributes and constant values, as they have been specified in CASM. The expression
controls the generation of the resource encryption/decryption keys.

Figure 52 – ABE Policy expression editor

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 61 of 79

The graphical expression editor, which resides under the details form, can be used to create
the policy expression (Figure 52). The expression editor provides dynamic lists (as combo
boxes) for easier search and selection of the required CASM attributes. Expression is saved
along with the details form data, when the Save button is pressed.

Initially the expression is empty. Pressing the Add Simple Expr. button (on the right hand
side) a new expression is started containing a simple clause. More clauses can be added in
the following lines by pressing the same button. Each line contains the definition of a simple
expression clause of the form: <Attribute> <Operator> <Value>

For example: SeurityProtocolCertificate = "TLS"

Clauses are combined using the boolean operator indicated by the selected button on the to
top left corner of the expression builder (AND/OR). Subexpressions can be added by
pressing the Add Composite Expr. button. Subexpressions have their own boolean operator
and simple clauses. The following screenshots give an impression of expression builder
(Figure 53).

Empty expression (default)

Pressing “Add Simple Expr.”
a new simple expression is added

Using selection box an attribute can be selected Properties selection box appears

Using second selection box
an attribute’s property can be selected

Property value input appears

Pressing “Add Composite Expr.”
a sub-expression is added

Example expression
with sub-expression

Figure 53 – ABE Policy expression editing with expression builder

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 62 of 79

Edit an existing ABE Policy
Selecting an ABE Policy in the list on the left will load its information in the details form on
the right (see Figure 54). The user has the opportunity to modify the information in the form
(except Id and Type) (see Figure 55).

Figure 54 – Edit an existing ABE Policy

Figure 55 – Change an ABE Policy’s details

After saving changes, the list on the left-hand side of the page will refresh in order to reflect
any changes (e.g. displaying the new ABE Policy name) (see Figure 56).

Figure 56 – Changed ABE Policy in the list

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 63 of 79

Delete an ABE Policy
Selecting an ABE Policy in the list on the left will load its details in the details form on the
right. User has the opportunity to delete that particular ABE Policy. This can be achieved by
pressing the Delete button residing under details form or using the corresponding option of
the context menu, accessible with right-click (see Figure 57). In both cases the user will
need to confirm operation before deletion is carried out (see Figure 58).

Figure 57 – Deleting an ABE Policy using context menu

Figure 58 – Confirm ABE Policy deletion

Import/Export an ABE Policy
It is possible to import and export ABE policies as RDF/TTL files for backup or migration
purposes (Figure 59).

Figure 59 – Import/Export ABE Policy editor buttons

In order to import an ABE Policy into AMPLE, one can either use the Import Policies button
in ABE Policies Editor or the Import Models menu item in AMPLE menu. In both cases the
same Import page loads (Figure 60), where the user can drag and drop the TTL policy file.
Caution must be exercised to not replace pre-existing contents; i.e. Append import mode
must be selected.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 64 of 79

Figure 60 – Import page

In order to export a (single) ABE Policy the user can click on Export Policy button in ABE
Policies editor. A TTL file containing the selected policy will be downloaded.

A second option is to export the selected ABE Policy in the format used by the ABE Service.
The user needs to click on Export as Text button in ABE Policies editor, and a text file with
the policy in the appropriate format, will be downloaded. It must be noted that text files
cannot be imported back to AMPLE.

Interpret and Submit an ABE Policy
ABE Policies editor provide the capability to convert the selected policy into the ABE Service
format and send it to ABE Service in order to put it into effect immediately. This can be
achieved by pressing the Apply Policy button, next to Import/Export buttons (Figure 59).

I.3. ABE Policies Editor REST API

Apart from a graphical user interface, ABE Policies Editor provides a REST API in order to
enable external clients to use its functionality through REST calls. The relevant endpoints,
operations and message formats are detailed in the following Table 11 and Table 12.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 65 of 79

Table 11 – REST API of ABE Policies Editor

REST endpoint and Verb Request Response

getTopLevelPolicies
GET /opt/abe-policies/

Description: Returns an array with all ABE policies. Their
full descriptions are contained in the array, as shown in
the example at the Response column.

n/a application/json

<AbePolicy> array

[
 {
 "id": "string",
 "name": "string",
 "uri": "string",
 "type": "ABE-POLICY",
 "description": "string",
 "createTimestamp":
 "2020-03-16T20:39:27.176",
 "lastUpdateTimestamp":
 "2020-03-16T20:39:27.176",
 }
]

getAllPolicies
GET /opt/abe-policies/all

Description: Same as getTopLevelPolicies.

n/a application/json

<AbePolicy> array

For an example see at getTopLevelPolicies

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 66 of 79

REST endpoint and Verb Request Response

getPolicy
GET /opt/abe-policies/{policy_id}

policy_id: String

Description: Returns the description of the ABE policy,
specified by policy_id parameter, which matches to

the id property of the policy.

n/a application/json

AbePolicy

{

 "id": "string",

 "name": "string",

 "uri": "string",

 "type": "ABE-POLICY",

 "description": "string",

 "createTimestamp":

 "2020-03-16T20:39:27.176",

 "lastUpdateTimestamp":

 "2020-03-16T20:39:27.176",

 "policyCombiningAlgorithm":

 "string"

}

createPolicy
PUT /opt/abe-policies/

Description: Creates a new ABE policy. It requires the full
definition of the new ABE policy in the Request body. It
returns a plain text message with the result of the
operation.

application/json

AbePolicy

{

 "id": "string",

 "name": "string",

 "uri": "string",

 "type": "ABE-POLICY",

 "description": "string",

 "createTimestamp":

 "2020-03-16T20:39:27.176",

 "lastUpdateTimestamp":

 "2020-03-16T20:39:27.176",

 "policyCombiningAlgorithm":

 "string"

}

text/plain

string

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3
 Page 67 of 79

REST endpoint and Verb Request Response

updatePolicy
POST /opt/abe-policies/{policy_id}

policy_id: String

Description: Replaces the definition of an existing ABE
policy, specified by policy_id parameter, with a new

definition. It requires the full (new) policy definition in
the Request body. It returns a plain text message with
the result of the operation.

application/json

AbePolicy

See at createPolicy

text/plain

string

deletePolicy
DELETE /opt/abe-policies/{policy_id}

policy_id: String

Description: Deletes an existing ABE policy, specified by
policy_id parameter.

n/a text/plain

string

Table 12 – REST API of ABE Policy-to-ABE Service format interpreter

REST endpoint and Verb Request Response

abePolicyToText
GET /opt/interpreter/abe-policy-to-

text/{policy_id}

policy_id: String

Description: Converts the ABE policy, which is specified
by policy_id parameter, into text format and sends it

to the ABE Service.

n/a text/plain

string

(SecurityProtocolCertificate='TLS'

and (NetworkLocation_hasSubnet =

'10.10.1.0/24' or

PhysicalLocation_address = 'Building-

1'))

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 68 of 79 Page 68 of 68

I.4. ABE Policies Serialization

ABE Policies Editor stores changes in Models Store as RDF triples. The following listing
provides a sample ABE Policy export in RDF/TTL format.

Table 13 – Sample ABE Policy export in RDF/TTL format

Definition of ABE policy: ABE policy #1
<http://www.asclepios.eu/abe/ASCLEPIOS-ABE-POLICY#73bb15cd-ad75-4465-a09c-

9af8a66abd81>
 a
 <http://www.asclepios.eu/abe#ASCLEPIOS-ABE-POLICY> ;
 <http://purl.org/dc/elements/1.1/type>
 "ABE-POLICY" ;
 <http://purl.org/dc/terms/URI>
 "asclepios:73bb15cd-ad75-4465-a09c-9af8a66abd81" ;
 <http://purl.org/dc/terms/description>
 "First abe policy" ;
 <http://purl.org/dc/terms/identifier>
 "73bb15cd-ad75-4465-a09c-9af8a66abd81" ;
 <http://purl.org/dc/terms/created>
 "2020-03-16T20:39:27.176" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/modified>
 "2020-03-16T20:39:27.176" ↙

^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/title>
 "ABE Policy #1" ;
 <http://www.asclepios.eu/casm/types#class>
 "eu.asclepios.ample.model.abe.AbePolicy" .

I.5. ABE Policies Interpretation

ABE Policies Editor invokes the ABE Policy-to-Text Interpreter component of AMPLE in
order to convert the selected ABE Policy into a text format usable by ABE Service, which
can either be downloaded as a file or submitted to ABE Service for applying it. The following
listing provides a sample ABE Policy export in text format.

Table 14 – Sample ABE Policy in ABE Service text format

(SecurityProtocolCertificate = 'TLS' and
 (NetworkLocation_hasSubnet = '10.10.1.0/24' or
 PhysicalLocation_address = 'Building-1')
)

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 69 of 79 Page 69 of 68

6 Conclusions

To conclude, in this deliverable we reported on the development of all the appropriate editing
mechanisms for updating the ASCLEPIOS context-aware security model and devising the
necessary context-aware access policies. The first part of the editing functionalities refers to
the ability to update or improve, according to the adopter’s needs, the security context-aware
model which is used as a common vocabulary for devising ASCLEPIOS access control
policies. These access control policies will be enforced as part of two different authorisation
paradigms that will be employed in sequence for achieving even higher levels of security
controls. Therefore, separate editing functionalities are provided for creating ABAC and ABE
policies that are enforced through the Asclepios Policy Enforcement mechanism and the
ABE service.
During the next period these editors will continue to be improved with respect to user
inteface enhancements or any other bug fixes on issues discovered during the integration
work. Furthermore, a Policy Validator mechanism will be implemented and integrated in
these editors, where policy developers will be able to define rules for checking policy
correctness, completeness or for security awareness. Last, the findings during the security
assessment process that have been provided in Appendix I - Asclepios Editor Technical
Security Assessment , by Secura, will be considered for adding supplementary security
enhancements in these editors.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 70 of 79 Page 70 of 68

7 References

1. Y., Verginadis et al., 2019. D3.1 ASCLEPIOS Security and Policies Model.
ASCLEPIOS Deliverable

2. R., G., Roessink et al., 2020. D2.2 Attribute-Based Encryption, Dynamic Credentials
and Ciphertext Delegation and Integration in Medical Devices. ASCLEPIOS
Deliverable

3. A., Michalas et al., 2019. D1.2 ASCLEPIOS Reference Architecture, Security and E-
health Use Cases, and Acceptance Criteria. ASCLEPIOS Deliverable

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 71 of 79 Page 71 of 68

Appendix I - Asclepios Editor Technical Security
Assessment (by Secura)

I.1. Assumptions

Inputs
 1 Database

No assumptions need to be made for this component.

 2 Imported TTL file

• The editor will only accept TTL files and will validate the content before

uploading.

• The uploaded file will not be directly accessible after it has been uploaded.

• Users of this function will be trusted and the files uploaded are considered to be

valid.

 3 Changes using model editor

• Changes done on attributes follow a predefined template structure (type and

format) and checks will be done before any change is applied.

• Only authorized users are able to make changes to attributes in the model editor.

Outputs
 1 Structured representation of attributes

• If a person satisfies an attribute, they satisfy all sub-classes of that attribute.

 2 Definition of attributes

• Data that is represented on screen will be properly filtered and sanitized to

prevent the inclusion of malicious content.

 3 Exported TTL file

No assumptions need to be made for this component.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 72 of 79 Page 72 of 68

I.2. Assumption analysis – potential threats

Inputs
 1 Database

No potential threats were derived from the analysis of the Database component.

 2 Imported TTL file

• A user that uploads a TTL file to be used in the editor can have executable

content in the file. If the necessary checks are not performed, the file can cause

harm to the rest of the editor users as arbitrary (and potentially harmful) code can

be run on their machines.

• If a user uploads a TTL file and can use a URL to send that file to someone else,

the recipient can be exposed to malicious content in the file, if such content is

placed there by an attacker.

 3 Changes using model editor

• A user can make changes to the editor that were not considered by the

developers, such changes may result in undefined behaviors, enlarging the

attack surface of the model editor.

Outputs
 1 Structured representation of attributes

• A user can create a new attribute that is a top-level attribute, enabling them to

satisfy all policies and therefore decrypt all data.

 2 Definition of attributes

• A user can make changes to the policy editor such that when those changes are

reflected to other users, arbitrary code can run putting their systems at risk.

 3 Exported TTL file

No potential threats were derived from the TTL file export function.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 73 of 79 Page 73 of 68

I.3. Investigation

In order to investigate the model editor, the Web Application Security Testing methodology
by OWASP was used. The process involved an active analysis of the Model Editor for
weaknesses, technical flaws, or vulnerabilities. Due to the fact that there are no user-control
related functionalities implemented in the editor and also the real environment that it will be
deployed is not yet clear, it was decided that some of the sections from the testing
methodology should be left out as they did not fit the purpose of this investigation.

The goal of the investigation was to assess possible vulnerabilities related to the individual
components of the Model Editor. Specifically, in the scope of the assessment are the model
editor model management component and the import models component. These items were
individually assessed from a security point of view, as well as the interaction between them.

I.3.1. Transport Layer Security (TLS)
Communication with the application takes place entirely over a connection encrypted using
TLS (HTTPS).
We observe that HTTP Strict Transport Security (HSTS) is used to enforce the use of TLS
encryption. The Strict-Transport-Security header is present among the HTTPS headers
returned by the server:

Client Request (HTTPS):
GET / HTTP/1.1
Host: localhost:9090
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Connection: close
Referer: https://localhost:9090/login
Cookie: JSESSIONID=2161EA394CD2E3B5316AA65231734AAF
Upgrade-Insecure-Requests: 1

Server Response:
HTTP/1.1 200
Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Set-Cookie: JSESSIONID=56F94911EADA610B950E4EC4F9F81D80; Path=/; Secure; HttpOnly
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Frame-Options: DENY
Content-Type: text/html;charset=UTF-8
Content-Language: en-US
Content-Length: 3149

The use of HSTS is important even if no HTTP service is active. An attacker who is able to
perform a man-in-the-middle attack can replace https links of the application that are sent
over an encrypted connection with http links, and then intercept the unencrypted traffic and
forward it to the server in encrypted form.

Client request (HTTP):
GET / HTTP/1.1
Host: localhost:9090
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Connection: close
Upgrade-Insecure-Requests: 1

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 74 of 79 Page 74 of 68

Server response:
Bad Request
This combination of host and port requires TLS.

The editor does not offer an HTTP service therefore all requests to that endpoint are
rejected.

I.3.2. Cross-Site scripting
When data which is under control of a user is included in an (X)HTML document which is
opened by the browser, it is important that characters with a special meaning (dependent on
the location in the document) are escaped. If this escaping is not or incorrectly performed,
this may have the consequence that an attacker is able to manipulate the structure of the
(X)HTML document.
It may be possible to introduce JavaScript code, which is executed by the browser in the
context of the vulnerable applications. This might lead attacker-introduced JavaScript to be
executed in another user's browser.
Such vulnerabilities are known as Cross-Site Scripting (XSS). We distinguish two forms of
XSS: stored and reflected.
With stored Cross-Site Scripting, the attacker can introduce JavaScript code. The code is
stored in the application and is executed when a victim visits a page which includes the
JavaScript code.
With reflected Cross-Site Scripting, the JavaScript code is only executed as a reaction to an
action in the application through which the JavaScript code is entered. To abuse this, a
victim must first (inadvertently) visit a URL which has been prepared by the attacker.

Testing for stored Cross-Site Scripting
Throughout the entire application, we have found no possibilities for stored Cross-Site
Scripting. While information from user input is included in pages in various places,
characters with a special meaning within (X)HTML are always properly escaped.

Testing for reflected Cross-site Scripting
The Schema Management form (https://localhost:9090/forms/admin/schema-mgnt.jsp) was
tested for cross-site scripting vulnerabilities. The testing was done by placing a generic XSS
testing string in the form’s fields.

POST/gui/admin/save-attribute HTTP/1.1
Host: localhost:9090
[...]

{"id":"62c588be-8302-1222-4cba-51c8625a9811","uri":"asclepios:62c588be-8302-1222-4cba-
51c8625a9811","name":<script>alert(1)</script> ...}

The form was properly sanitized since the script did not execute. As can be seen in the
output below, the page showed an error message and then aborted the change. It should be
noted that it was not possible to get attacker-controlled content into the pop-up.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 75 of 79 Page 75 of 68

I.3.3. Input sanitization
The most common web application security weakness is the failure to properly validate input
coming from the client or from the environment before using it. This weakness leads to many
major vulnerabilities in web applications.

When testing the model editor, undefined behaviour was caused when a field was changed
to the double quote character (“).

If this following change was applied, then the editor was unable to load any attributes.
 POST /gui/admin/save-attribute HTTP/1.1
 Host: localhost:9090

 {"id":"1f74c52f-2e89-4b01-9b7d-0d405724d673","uri":"asclepios:1f74c52f-2e89-4b01-9b7d-
0d405724d673","type":"CONCEPT","name":"\"", [redacted]

It can be seen from the application output that the double quote character was not properly
escaped and was causing this behaviour.
2020-03-23 11:22:28.557 DEBUG 5313 --- e.a.ample.gui.AttributesController : --------------
getTopLevelAttributes: OUTPUT: [{ "id":"92b92c88-16a5-4f72-a927-000405e27d1c", "text":""",
"children":true, "icon":"/images/concept.png", "type":"CONCEPT" }]

There were attempts to exploit this behaviour by using strings that are normally used to
identify possible XSS and SPARQL injection locations, without success.

Finding 1
/forms/admin/schema-mgnt.jsp

Finding:
Input data is not properly sanitized.

Confirmation & Substantiation:

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 76 of 79 Page 76 of 68

Changing a field to a double quote character (“) is accepted and causes the application to
have undefined behaviour. After applying this change, the editor is unable to load the
attribute that contains the changed field and also all subsequent attributes.

Recommendation:
Validate all input which originates from the user, including fields which are not normally
visible in the user interface.

I.3.4. HTTP Verb Tampering
The HTTP specification includes request methods other than the standard GET and POST
requests. A standard compliant web server may respond to these alternative methods in
ways not anticipated by developers. Although the common description is ‘verb’ tampering,
the HTTP 1.1 standard refers to these request types as different HTTP ‘methods.’
In order to test, we modified requests sent by the editor and examined its behaviour. Header
methods OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, CONNECT, FOO were
tested for each endpoint.

By default, endpoints were called with a GET request. Methods ‘OPTIONS’ and ‘HEAD’ were
accepted server-wide. The endpoints that concerned the Model editor form and
import/export functions required a POST request.

Requests made using the known methods (DELETE, PUT, CONNECT, TRACE) were
correctly rejected and returned HTTP/1.1 405 Not Allowed. Using the non-existing ‘FOO’
method, the server returned HTTP 500 Internal Server error. This behaviour is intended.

I.3.5. File upload
The editor offers the functionality of uploading a user provided file to be imported to the
editor. When applications offer file uploads, it is important to enforce restrictions to the file
extension and also the content. For instance, if HTML or TXT files are allowed, XSS payload
can be injected in the file uploaded.
In the case of the model editor, it was observed that only TTL extension files were permitted.
After some testing, it was determined that the content of the files is not being checked before
being uploaded to the server and applied to the editor.

First, the behaviour of the editor was examined to see if there was a check on the file
extension that was being uploaded. The server rejects the file as can be seen in the output
below.

The rest of the tests concerned files with the TTL file extension. A TTL file could be uploaded
to the server with the following content:
 <http://www.asclepios.eu/metadata-schema/ASCLEPIOS-OBJECT#c1e7ea6d-c892-42f1-a146-8c7497fd4bb6>
 a <http://www.asclepios.eu/metadata-schema#ASCLEPIOS-OBJECT> ;
 <http://purl.org/dc/elements/1.1/type>

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 77 of 79 Page 77 of 68

 "CONCEPT" ;
 <http://purl.org/dc/terms/URI> "asclepios:c1e7ea6d-c892-42f1-a146-8c7497fd4bb6" ;
 <http://purl.org/dc/terms/created>
 "1900-01-01T00:00:00Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;
 <http://purl.org/dc/terms/creator>
 "" ;
 <http://purl.org/dc/terms/description>
 "Velocity" ;
 <http://purl.org/dc/terms/identifier>
 "c1e7ea6d-c892-42f1-a146-8c7497fd4bb6" ;
 <http://purl.org/dc/terms/modified>
 "1900-01-01T00:00:00Z"^^<http://www.w3.org/2001/XMLSchema#dateTime> ;

As the closing dot is missing, this file is not correct, and the editor has issues processing this
file.

It can be seen that the editor can no longer load the attribute tree on the left and is unusable.

Finding 2
/forms/admin/import.jsp

Finding:
User provided file is not checked before upload and is added to the editor.

Confirmation & Substantiation:
Even though there is a check for the file extension to be ‘TTL’, the contents of the file are not
checked. If the structure of the TTL file is not as expected, it is still uploaded to the editor.
When the editor tries to display the contents, this causes it to have undefined behaviour.
See Listing 2 in page 3 which shows the state of the editor after a corrupt file is uploaded.
Listing 3 shows an example of a file that can be uploaded which can cause the editor to
have undefined behaviour. Note that only a final ‘.’ (dot) is missing from the file.
Recommendation:
Validate the file extension and content of user provided files.

Note: From a technical point of view we consider this to be a relevant finding for the
functionality and security of the editor. At the same time, after confirming with the Institute of
Communication & Computer Systems (ICCS) - the developers of the editor – it is assumed
that the operators of the editor are trustworthy individuals, therefore mitigating this risk. Due

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 78 of 79 Page 78 of 68

to this assumption, the impact of this finding can be skipped in the overall security of the
editor. For traceability purposes, this finding is kept in the report.

I.3.6. File Export
The editor offers the download of the complete ruleset / model as one single file with the TTL
extension. Usually when such functionality is offered, the request to download can be
manipulated into retrieving files different than the ones intended by the application.
In the case of the editor, as there are no parameters being passed to the server, no
manipulation is possible to include local system files or other sources.
Therefore, we do not identify any security vulnerabilities in this function.

 D3.2 ASCLEPIOS Models Editor and Interpretation Mechanism

Work Package 3 Page 79 of 79 Page 79 of 68

I.4. Summary of Findings

Finding 1
/forms/admin/schema-mgnt.jsp

Finding:
Input data is not properly sanitized.

Confirmation & Substantiation:
Changing a field to a double quote character (“) is accepted and causes the application to
have undefined behaviour. After applying this change, the editor is unable to load the
attribute that contains the changed field and also all subsequent attributes.

Recommendation:
Validate all input which originates from the user, including fields which are not normally
visible in the user interface.

Finding 2
/forms/admin/import.jsp

Finding:
User provided file is not checked before upload and is added to the editor.

Confirmation & Substantiation:
Even though there is a check for the file extension to be ‘TTL’, the contents of the file are not
checked. If the structure of the TTL file is not as expected, it is still uploaded to the editor.
When the editor tries to display the contents, this causes it to have undefined behaviour.
See Listing 2 in page 3 which shows the state of the editor after a corrupt file is uploaded.
Listing 3 shows an example of a file that can be uploaded which can cause the editor to
have undefined behaviour. Note that only a final ‘.’ (dot) is missing from the file.
Recommendation:
Validate file extension and content of user provided files.

Note: With respect to Finding 2, please refer to section I.3.5 for details on why this finding is
mitigated by the assumption of trusted application administrators.

