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Executive Summary 
This deliverable, titled “GDPR-compliant and Privacy-Preserving Analytics for Healthcare 
Providers”, constitutes a report on the activities performed in the context of Task T2.3, titled 
“GDPR-compliant and Functional Encryption-enabled Prescriptive Analytics for Healthcare 
Providers” and T2.4, titled “Cybersecurity, Encryption and Access Analytics for CSP 
operation to Healthcare Providers”.  
In the scope of T2.3 activities, a detailed state of the art analysis of the functional encryption 
(FE) cryptographic paradigm is first performed to examine how its capability of allowing the 
application of a function over encrypted data, revealing only the result of the performed 
function on the ciphertexts, could be of value for healthcare providers. In this context, the 
theoretical foundations of functional encryption are explored, its sub-categories are identified 
and specific approaches for each sub-category are studied and presented. Focus is given on 
the Inner Product FE schemes, which were identified as the most promising in the 
ASCLEPIOS context. Applications based on functional encryption are examined and 
technical limitations are identified and presented. The ASCLEPIOS functional encryption 
analytics services that allow healthcare providers to perform statistical computations over 
encrypted data are then designed and implemented. Both the symmetric and asymmetric 
key settings are leveraged in the implemented services which offer single input and multi 
input functional encryption functions. A symmetric multi-input functional encryption scheme 
is developed as part of T2.3 activities and is documented in detail. Sequence diagrams are 
created to showcase the supported workflows and foreseen user interactions. The role of the 
functional encryption services within the ASCLEPIOS framework and the ways they can be 
combined with the framework’s search functionality (implemented through searchable 
encryption) to offer a more complete user experience are also explored. Furthermore, GDPR 
considerations regarding the provided services for functional encryption-enabled analytics on 
healthcare data are discussed. 
In the scope of T2.4 activities, a landscape analysis of the cyber threats that healthcare 
organisations need to face in order to safeguard their assets is performed and extracted 
insights are presented. Relevant cybersecurity approaches, both methodological and 
technical, are also explored. The need for targeted solutions offering insights into data 
handling processes, including access, encryption and decryption patterns, for healthcare 
providers is identified and a state of the art review of data analysis and visualisation methods 
that can be used to implement such solutions is presented. The ASCLEPIOS Cybersecurity, 
Encryption and Access Analytics for Healthcare Providers (CEAA) component is designed 
and implemented to help healthcare providers gain a deeper understanding on their system 
regarding these processes through various defined metrics, detect abnormal behaviour and 
leverage the extracted knowledge to build threat preventive mechanisms. CEAA is 
implemented using powerful open source technologies and offers the following functionalities 
(a) ingests and contextualises log data from data access and processing services used by 
the healthcare provider, (b) performs fast queries and computations over the collected data, 
(c) detects and highlights potential anomalies in the collected data, (d) provides meaningful 
insights to the security analyst in an intuitive way and (e) enables the security analyst to 
adapt the data and analysis representation to the current needs. Finally, the application of 
CEAA to provide insights about security, access and encryption patterns that can be 
extracted within the ASCLEPIOS framework, i.e. for a healthcare provider that utilises the 
ASCLEPIOS services, is explored and showcased.  
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1 Introduction 

1.1 Scope of the deliverable 

The purpose of the present deliverable spans across two axes which correspond to the two 
tasks whose activities it reports on, namely Task T2.3, titled “GDPR-compliant and 
Functional Encryption-enabled Prescriptive Analytics for Healthcare Providers” and T2.4, 
titled “Cybersecurity, Encryption and Access Analytics for CSP operation to Healthcare 
Providers”.  

 

Figure 1: Methodological work for T2.3 and T2.4 activities 

Towards the first axis, the scope of the deliverable is to provide data analytics functionalities 
to healthcare providers, focusing on performing computations over encrypted data, i.e. 
leveraging the functional encryption (FE) cryptographic paradigm. To this end, the initial 
purpose of the deliverable is to investigate the true potential and the limitations of functional 
encryption and the extent to which it can support real-world analytics processes fro 
healthcare providers, ranging from simple mathematical computations to statistics and to 
more advanced analytics algorithms, including machine learning methods. The second 
objective in this direction is to use the insights gained from the state of the art review to 
explore how ASCLEPIOS can leverage functional encryption to provide data analytics 
services that address concrete needs of healthcare providers, to identify which functionalities 
would be of added value in this context and what are the GDPR compliance perspectives to 
consider. The final purpose related to the T2.3 activities, which is reported in this document, 
is to design, implement and deliver a set of functional encryption-enabled services to be 
used by healthcare providers.  
Towards the second axis, which is related to the T2.4 activities, the purpose of the 
deliverable is twofold. The first purpose is to define metrics to be monitored and analytics 
processes to be applied in order to (a) closely follow data access activities, including 
encryption and decryption, (b) measure security incidents, (c) identify emerging threats and 
trends, (d) sort out patterns of abnormal and unsecure behavior and finally (e) help 
healthcare providers gain a better understanding of their system which will help them build 
the necessary preventive mechanisms around it from a cybersecurity perspective. In order to 
define these metrics, the deliverable first presents insights extracted from a landscape 
review on cybersecurity perspectives in the healthcare domain, including important cyber-
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threats against which healthcare organisations need to safeguard their infrastructures, 
applicable frameworks and tools, as well as data analytics and visualisation methods that 
can contribute in fleshing out more targeted solutions for the analysis of data access 
patterns in healthcare organisations. The second purpose is to deliver to healthcare 
providers these analytics and metrics in a packaged solution that will offer insights into 
current and past status of their systems regarding security, encryption and access, and will 
thus contribute in securing their infrastructures 

1.2 Structure 

The remainder of the present deliverable is structured as follows: 

• Section 2 provides an in-depth analysis of the functional encryption paradigm as part 
of T2.3 activities. The section presents the sub-categories of functional encryption 
and numerous proposed approaches in the domain and provides insights into 
functional encryption applications, advantages, and limitations. 

• Section 3 presents in the context of T2.3 activities the ASCLEPIOS functional 
encryption analytics services which leverage symmetric and asymmetric functional 
encryption schemes and offer both single- and multi-input data analytics 
functionalities for healthcare providers. 

• Section 4 presents, in the context of T2.4, a landscape review of cybersecurity 
threats, challenges and solutions in healthcare and provides a state of the art 
analysis of data analytics and visualisation methods that can be used to develop 
targeted solutions towards helping healthcare providers understand data access, 
encryption and decryption patterns in their infrastructures. 

• Section 5 presents, in the context of T2.4, the Cybersecurity, Encryption and Access 
Analytics (CEAA) component which is responsible for monitoring data access 
patterns in order to provide meaningful and actionable insights to healthcare 
providers to help them increase their cybersecurity level. 

• Section 6 summarises the content of the deliverable and draws relevant conclusions. 
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2 Functional Encryption Landscape 

The first step towards developing the ASCLEPIOS services that will offer healthcare 
providers data analytics functionalities applicable over encrypted data is to understand the 
mechanisms that can be used to enable such solutions. Towards this goal, the project 
focuses on the application of Functional Encryption (FE). Functional Encryption is a 
cryptographic paradigm allowing fine-grained access control over data [1] and revealing only 
partial information, going beyond the ‘all-or-nothing’ approach of traditional public key 
encryption systems [2]. More specifically, in functional encryption a key generation 
mechanism – the authority - creates decryption keys of restricted capabilities, allowing the 
user to learn the result of a function over encrypted data without learning anything else about 
the data [3]. 
The present section provides a thorough review of FE schemes and applications to provide 
insights regarding the ways in which FE can be used to provide valuable services to 
healthcare providers. 

2.1 Introduction 

The formal definition of a Functional Encryption scheme for a functionality F defined over 
(K,X) as a deterministic Turing Machine, is defined as a tuple of four algorithms, namely 
(FE.Setup, FE.Keygen, FE.Enc, FE.Dec) [3]. This tuple is encountered throughout the 
relevant literature, with variations in the properties and implementation of the four algorithms 
to support different classes of functions (ex. quadratic functions) or guarantee additional 
security properties such as ‘function-hiding’. Nonetheless, the core structure of the functional 
encryption scheme remains the same, and is the following:   

• FE.Setup. A probabilistic algorithm that takes as input a security parameter 𝜆 and 
outputs a master public/secret key pair (PP,msk), 

• FE.Keygen. A probabilistic algorithm that takes as input the master secret key msk 
and a key 𝑘 and outputs a secret key 𝑠𝑘𝑘 for 𝑘, 

• FE.Enc. A probabilistic algorithm that takes as input the public key PP and a 
message 𝑚 and outputs a ciphertext 𝑐, 

• FE.Dec. A probabilistic algorithm that takes as input 𝑠𝑘𝑘, for some 𝑘, and a ciphertext 

𝑐 and outputs a part of the ciphertext in plaintext. 
 
These four algorithms can be formally expressed as: 

• (PP,msk)  FE.Setup(1λ) 

• 𝑠𝑘𝑘  FE.Keygen(msk, k) 

• c  FE.Enc(PP, m) 

• y  FE.Dec (𝑠𝑘𝑘, c), we require that y = F(k,m) with probability 1. 
The security of functional encryption relies heavily on the classical security notion of 
indistinguishability, which requires that it is impossible for an adversary with access to the 
secret keys corresponding to functions F1…Fn  to detect which of the input messages m0, m1 
has been used in a computation, provided that Fi(x0)=Fi(x1) for all i [4]. Indistinguishability 
ensures collusion resistance, meaning that a group of users with different keys skF can only 
learn from the encrypted messages only the union of information they would already get 
individually and nothing more about the messages [1]. However, it has been proved that this 
security definition is weak and in cases, inadequate. The stronger notion of simulation-based 
security of functional encryption has been proposed. Although it has been proved that the 
use of simulation-based definitions leads to impossibility results [5], other adaptive 
indistinguishability-based schemes were found to imply simulation-based security in 
restricted environments [6].  
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2.2 Subclasses of Functional Encryption 

Over the last few years, functional encryption has attracted the attention of the scientific 
community. With the shift of mentality to outsourcing data storage on external cloud 
infrastructures, the need has emerged for privacy preserving computations and fine-grained 
access control. Functional encryption offers an attractive alternative to traditional public key 
encryption techniques that lack the expressiveness to address either of these issues [7], as 
the decryption keys provide full visibility of the encrypted data to the users who own the key. 
There exist other cryptographical approaches that secure computations over data, without 
imposing an important compromise on the data analysis potential and functionalities. The 
most known techniques are Homomorphic Encryption (HE) and Fully Homomorphic 
Encryption (FHE), which allow computations over encrypted data. However, as the 
computed results are in their turn also encrypted and remain confidential to the server, these 
approaches are not of great use for the users who need access to open results. This trait of 
Homomorphic/Fully Homomorphic Encryption imposes also restrictions with regards to 
practical issues, such as the training of machine learning models with encrypted data [8]. In 
contrast to HE/FHE, functional encryption outputs the results “in the clear”, thus allowing the 
interested party to learn the computation information she wants, while the owner of the data 
can control what is allowed to be leaked from her data and to whom [9].  
A wide variety of approaches towards the design and implementation of efficient and secure 
functional encryption schemes is available in the literature. A first categorisation can be 
made based on whether the cryptographic primitives and notions used are based on purely 
cryptographic-based functional encryption schemes, or whether specially designed hardware 
infrastructure for hardware-based functional encryption instantiation is utilised. It should be 
noted that the implementation of a purely cryptographic encryption scheme does not 
preclude usage of hardware assistance, e.g. to generate keys, but it denotes that the core 
mechanism is based on manipulating encrypted data and not on leveraging hardware 
properties of trusted execution environments. 
Cryptographic approaches can be further analysed based on the class of functionalities 
supported by the proposed schemes. These can be grouped under the following categories: 
Predicate Encryption (where the supported functionality is the provision of fine-grained 
access with the use of predicates), Inner Product Encryption (functional encryption schemes 
for the computation of inner products), Functional Encryption for Element-wise Operations 
(supporting basic arithmetic operations such as addition and subtraction), Quadratic 
Functional Encryption (for the computation of quadratic polynomials), General Polynomial 
Functions (aiming to construct schemes for any polynomial-time function), and Functional 
Encryption for Randomised Functionalities (using randomness for the computation of 
results). 
Several techniques have been employed for the realisation of functional encryption. 
Indicative examples include among others the use of cryptographic pairings [9][10][11], 
indistinguishability obfuscation (iO) [12][13][14], lattices [15] or even the introduction of 
additional players in the standard functional encryption scheme [16]. The security of the 
proposed schemes has been based on related security assumptions, such as the Decisional 
Diffie-Hellman assumption (DDH) for pairing-based implementations, the Learning with 
errors assumption (LWE) for lattice-based schemes and the Decisional Composite 
Residuosity assumption (DCRA) that is behind Paillier cryptosystems.  
 

2.2.1 Purely Cryptographic Functional Encryption 
This section refers to functional encryption implementations that are based on cryptographic 
notions. Purely cryptographic approaches constitute the main body of existing research 
around functional encryption. A multitude of different schemes have been constructed, 
aiming to provide an improved solution in terms of performance, supported functionalities 
and security. 
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2.2.1.1 Predicate Encryption 

Predicate encryption is a public key encryption paradigm where secret keys correspond to 
predicates P (i.e. boolean functions) and can be used to decrypt a ciphertext associated with 
an attribute ind, provided that the predicate value for this attribute is true (P(ind)=1) [17]. 
Predicate encryption enables the sender of the message to define specific policies and 
determine who will be able to decrypt the data, thus allowing for fine-grained access control. 
The Predicate Encryption scheme for a class of predicates P over a set of attributes Σ is 
formally described as a tuple of four algorithms, namely (Setup, Keygen, Enc, Dec) [17]: 

• Setup. Takes as input a security parameter 𝜆 and outputs a master public/secret key 
pair (PP,msk), 

• Keygen. Takes as input the master secret key msk and a (description of a predicate) 
p ∈ P and outputs a secret key 𝑠𝑘f corresponding to f, 

• Enc. Takes as input the public key PP, an attribute ind ∈ Σ and a message m and 

outputs a ciphertext c, this can be written as c EncPP(ind,m) 

• Dec. Takes as input 𝑠𝑘f and a ciphertext c and outputs either a message m or the 
distinguished symbol Ʇ 

We require that for all λ, all (PP,msk) generated by Setup(1λ), all f ∈ F, any key skf and all ind 
∈ Σ:  

• If p(ind) = 1 then Dec (skf, c) = m 

• If p(ind) = 0 then Dec (skf, c) = Ʇ 
This general notation for predicate encryption has been used as the base for the 
construction of systems offering advanced access control functionalities. Following are some 
of the most interesting variations and extensions of the standard predicate encryption notion. 

2.2.1.1.1 Identity Based Encryption (IBE) 

In IBE a unique, publicly available string with information about the user (i.e. identity) is used 
as the public encryption key. This string is also used by the trusted authority for the 
generation of the secret decryption key [18]. This means that both the ciphertext and the 
private key are associated with strings corresponding to identities, and the decryption key 
can reveal the message m only if the two strings are equal. Any string could serve as an 
identity, as for example an email address, an IP address, a location and more.  
IBE can be viewed as functional encryption for the class of equality tests. The standard IBE 
notion ensures only payload hiding, although anonymous IBE can provide also the stronger 
notion of attribute hiding [19]. The message m is encrypted to the ‘identity’ string, which now 
serves as the index (cEncPP(identity,m)). The user with identity id who wants to decrypt 
ciphertext c, obtains a secret key skfid from the trusted authority. The predicate P(ind,m) is 
true if and only if ind=id, and in this case the user can learn the message m. Otherwise the 
predicate p is false and the user learns nothing about messages encrypted for other 
identities [20]. A drawback of the standard IBE is that the policy index is returned in plaintext 
as part of the empty functionality. Anonymous IBE tries to overcome this leak of possibly 
sensitive information, as the string of the index remains hidden and the user can only infer 
whether she has a key corresponding to the ciphertext without learning anything about the 
used identity string. The only difference of anonymous IBE from standard IBE is that the 
function is defined as f(ε,(ind,m))=len(m) revealing only the length of m. 
 

2.2.1.1.2 Attribute Based Encryption (ABE) 

ABE is another public-index predicate encryption notion that allows the definition of complex 
access policies [3]. The encryptor can specify a policy φ that consists of a specific 
combination of attributes and determine which data recipients will be able to decrypt the 
message, based on their attributes. These policies are formulated as Boolean formulas. The 
user has an attribute vector u: {0,1}*, which places 1 in the position of every attribute that is 
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true for the user, and in all other attribute places it remains a 0. From this point there are two 
approaches in ABE:  
In Ciphertext-Policy ABE, also described in detail in [11][21][22] the policy φ is used as index 
in the functional encryption scheme (c EncPP(φ,m)). The user who wants to decrypt the 
ciphertext, obtains a secret key skf from the authority, based on her attribute vector u. The 
predicate function f returns the message m to the user if and only if the access policy is 
satisfied (pu(φ,m) = m if (φ(u) = 1). Otherwise the user learns nothing about the data.  In [11] 
a combination of Ciphertext-Policy ABE and Functional Encryption has been implemented to 
provide a system for analysis of medical data. In this case the user runs analytics over the 
ciphertext resulting from the ABE encryption. This model achieves payload privacy; however, 
user privacy depends on the selection of available keywords for the function definition. 
In Key-Policy ABE [23], the roles of the policy and the user attributes vector are reversed. 
This means that the vector u is placed in the ciphertext (cEncPP(u,m)) and policy φ is part 
of the secret key skf. The predicate function p(u,m) will return the message m if the policy φ 
is true for u. 
Both approaches have been proved safe in the weak selective security model. 

2.2.1.1.3 Predicate-only Encryption and Multi-client Predicate-only Encryption 

Predicate-only encryption is a variation of standard predicate encryption scheme, where the 
ciphertexts contain only the index attribute and the message m is omitted. In this case the 
result of the decryption is only the output of predicate p for the index [24].  
[10] propose a predicate-only encryption scheme for testing the equality of two encrypted 
vectors from multiple clients. Multi-client functional encryption has been formally defined in 
[14] as a functional encryption scheme that would allow the computation of f(x1,x2,…,xn) from 
n ciphertexts of underlying inputs x1, x2, … , xn. In their work, they view multi-input functional 
encryption as a way of performing multiparty computation, where the input ciphertexts are 
computed by the n different parties [10] focuses on a restricted functionality of predicates – 
namely conjunctive equality tests -, instead of trying to implement arbitrary functionalities, to 
achieve better efficiency. Their scheme is using pairings and achieves both attribute and 
predicate privacy. 

2.2.1.2 Inner Product Functional Encryption 

Extensive work has been conducted towards the construction of functional encryption 
schemes for the inner product functionality. In an inner product encryption scheme, secret 
keys skx are associated with vector x ∈ Z and ciphertexts are associated with vector y ∈ Z. 
Given a secret key skx for x and ciphertext cty for y, the decryption outputs only the 
computation of <x,y>, or in other words the inner product of the associated vectors x and y, 
without revealing any other information [25]. Although the inner products are less general 
than other functions (e.g. general circuits), they offer the required expressiveness to be used 
in various practical scenarios.  
The extensive literature around inner product functional encryption can be considered 
promising for applying such schemes in practical scenarios that are of interest to 
ASCLEPIOS, therefore some schemes will be studied in more detail. 
In their paper, Abdalla et al [1] gave the first construction of an IPE scheme, based on the 
Decisional Diffie-Hellman assumption. It exploits the homomorphic property of the ElGamal 
scheme. 

Lemma. If ε( ) is the ElGamal encryption, we have   

ε(m1) · ε(m2) = (gr1,m1 · hr1)(gr2,m2 · hr2) 

   = (gr1 + r2,(m1 · m2)h r1 + r2) 

   = ε(m1 · m2) 
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If we choose mi = gxi, it follows that ∏i | ε(gxi)yi = ε(gx,y). As such we can retrieve the inner 

product by computing the discrete logarithm. We cannot use this directly however, as 
decrypting the results requires knowledge of the secret key that can be used to obtain the 
plain texts as well. Instead, we use a different public key hi := gsi  for every coefficient in the 
cyphertext while reusing the same encryption randomness gr. This conserves the 
homomorphic property and the notion of a shared secret from ElGamal. 
This limits our practical message space by the time complexity of the discrete logarithm, as 
shown in Table 4:  
 

Table 4: Parameter size and operation time complexity analysis for [1] 

Parameter Size  Operation Time complexity 

mpk  group elements  Setup() O( ) 

msk  group elements Encrypt() O( ) 

Ct  + 1 group 
elements 

KeyDer() O( ) 

Sk  group elements Decrypt() O(  + 2 √M) 

 
 
The same paper also gives a way to construct a similar inner-product scheme for any PKE 
with certain properties, such as LWE (Learning with errors). The latter allows for a 
construction without the need to compute the discrete logarithm. 
 
In [4] the authors build their inner product functional encryption scheme based on the plain 
Decisional Diffie Hellman assumption. Their scheme is proven secure in the selective 
security model, against unbounded - but polynomially related to the security parameter - 
secret key queries. The authors note that regardless the implementation, there are inherent 
security weaknesses in the inner product functionality, that cannot be overcome with any 
security construction. For example, an adversary that possesses the secret keys Skyi for yi 
that form the basis for the finite field Z, is able to uncover the secret vector x. 
Preservation of function privacy, which entails that both the keys and the ciphertexts remain 

private, is a desired property for many applications. Bishop et.al [26] additionally consider the 

function-hiding property, where the secret key for (·, ) does not reveal . They build a 

function-hiding private key functional encryption scheme for inner product functionality, with 

asymmetric bilinear maps, based only on the Symmetric External Diffie-Hellman (SXDH) 

assumption to achieve unbounded indistinguishability-based security. They leverage the 

private key setting in order to prove function-hiding; a feature impossible in other public key 

schemes. They employ the idea for computing the inner product by placing two vectors in 

the exponents of opposite side of a bilinear group and computing the dot product via pairing, 

as proposed in [17]. In contrast to the initial scheme however, they introduce additional 

group elements in order to output the actual inner product result and not just a zero/non-zero 

value. 

From the parameter size analysis (Table 5), we can see that while the size of the secret key 

grows exponentially, its generation mostly consists of sampling random integers. As such we 

can avoid storing and transferring the key itself and instead use a shared secret that is fed 

into a deterministic key derivation function.  
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Table 5: Parameter size analysis 

Parameter Size 

msk 4l2 log  

Ct (2l+6) log p 

Sk (2l+6) log p 

 
Regarding time complexity of the individual functional encryption steps, we see in Table 6 
that the setup, encryption and decryption grow quadratically in the vector length. However, 
we point out that this is because of rather mundane operations (multiplication and 
pseudorandom sampling) that can be efficiently computed in parallel. In most practical 
applications, we expect the decryption operation to be the bottleneck.  
 
 

Table 6: Operation time complexity analysis 

Operation Time complexity 

Setup() O( 2) 

sEncrypt() O( 2) 

KeyDer() O( 2) 

Decrypt() O(  + 2M/2) 

 

According to [25], the above presented security model is based on unrealistic admissibility 
constraint on the adversary’s queries. [27][28][29] are three subsequent works that improved 
the original SXDH-based scheme of [26] in terms of parameter size.   
The construction of [25] performs better than all these three schemes, by using n-
dimensional vectors with just n+1 group elements, thus reducing even more the parameter 
sizes. They provide a construction that is slightly more efficient: instead of generating dual 
orthonormal vectors, they simply sample invertible matrices and publish its determinant:  
 

B ∈ GLn(Zq),B* := det(B)(B-1)T 

While this only provides a slight improvement compared to the previous construction, it has a 
proof-of-concept implementation that allows us to test its performance. Additionally, they 
prove the security of their scheme on the stronger simulation-based notion in the generic 
group model. 
In order to limit the information leakage which is inherent to the inner product functionality, 
the authors of [16] introduce an additional player in the traditional functional encryption 
scheme, that will add another security safeguard before revealing the computation result to 
the client. The addition is a helper responsible to apply restriction policies to the number of 
queries a user is eligible to make. It is required for the helper to be oblivious, as it is 
assumed to be untrusted and should not learn anything on the actual plaintext or the 
queries. The authors also apply another restriction to information provided to the user: 
instead of providing openly the result through a decryption step, their construction only 
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returns whether the inner product result is within a set of values the user has provided 
previously and this is actually the output of the decryption test step.  
The authors of [30] study the feasibility of inner product functional encryption schemes 
achieving “in-between” indistinguishability and simulation-based security, in the sense of 
providing guarantees for a restricted but wider than indistinguishability-based class of attack 
scenarios that are known to be feasible. They propose a setting where the encryption key is 
not publicly known and at the same time it is not identical with the master secret key for the 
generation of the user secret keys. Their construction is a private-key, function-hiding inner 
product functional encryption scheme for n length attributes and predicates, based on prime 
order bilinear groups. They prove this scheme to be to be fully simulation secure in the 
generic group model under the Decision Linear (DLIN) assumption. The authors claim that 
their security framework provides a strong tool with real-world potential, as their hybrid 
public/symmetric key setting allows for user roles with distinct permission rights regarding 
key generation for other users and creation of encrypted content. 
Another desired attribute for the application of functional encryption in real-life scenarios is 
the support of computations over encrypted data coming from different and unrelated 
sources. Multi-input Functional Encryption (MIFE), as explained before, tries to address 
this issue.  [1] identifies the weak points of previous approaches, namely the reliance on 
unstable assumptions of some schemes for general functionalities. Secondly, it points out 
the inefficiency of the discrete-log-based solution in terms of supported messages size and 
decryption computation requirements of the pairing-based solution presented in [31]. 
Furthermore, it proposes a secret-key MIFE scheme for the inner product functionality based 
on [31], but this time without the use of bilinear maps. Their scheme is basically a 
transformation of any single-input inner product FE scheme to multi-input, dropping the 
bilinear groups requirement thus allowing for efficient calculations even on super-polynomial 
size messages. Their construction can be instantiated from any known single input FE 
scheme and can use various assumptions (e.g. plain DDH, composite residuosity, and LWE) 
to obtain MIFE. To showcase the validity of their generic construction they instantiate it with 
three different inner product FE schemes from the literature [15], which are based on the 
MDDH assumption, the LWE assumption and the Paillier cryptosystem respectively. They 
also provide a MIFE scheme with the function-hiding property, using a double-layered 
encryption approach as in [32]. Unlike their general construction, in this case they rely on 
pairing groups in order to ensure function-hiding.  
An interesting cryptographic tool for enhanced FE inner product functionality is featured in 
[33]. The authors develop a solution that combines CCA2 or randomisable RCCA secure 
public-key encryption with garbled circuits and build a scheme that achieves fine-grained 
access control, by requesting a fresh key for every function or ciphertext evaluation request 
as an extra security layer. Controlled FE (C-FE) has advantages over FE, overcoming the 
simulation impossibility results of traditional FE when no limitation to the number of requests 
applies while using well-known cryptographic assumptions, and allowing the construction of 
efficient schemes for arbitrary functions. The authors constructed an efficient scheme, 
secure against malicious clients and honest-but-curious authorities in the non-function hiding 
security model. To evaluate their solution, they implemented what they named as “Superfast 
Inner-Product Construction” in Java, using the JCDE RSA-OAEP implementation, and 
demonstrated its efficiency in the decryption stage. 

2.2.1.3 Functional Encryption for Element-wise Operations 

[8] proposes a framework to support the training of a neural network over encrypted data 
using an underlying combination of their functional encryption construction for basic 
arithmetic operations and inner-product functional encryption for secure matrix computations 
as designed in [4]. Functional encryption was chosen over HE, in order to overcome the 
limitations of the latter in enabling evaluation of labelling during the back-propagation time, 
due to the confidentiality of computed results. 
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Their construction for element-wise operations with functional encryption is derived from 
ElGamal encryption [34] .Regarding security, this scheme can resist an unauthorised access 
without the function key, but cannot prevent the direct inference of encrypted message m  
from the function result of these basic operations and their own y from the output of f(xΔy), 
where x is the message, and Δ is one of the supported functions (+,-,*,/). To address this 
issue, they propose a preprocessing step, such as random mapping, to avoid direct 
inference for label. After describing the functional encryption schemes for secure 
computations, they showcase how their framework CryptoNN can be used for the training of 
a classic convolutional neural network for multiple classification (LeNet-5) with encrypted 
data. They implement their prototype using the Charm library, a crypto toolkit in Python, and 
Numpy for the implementation of the neural network. As the functional encryption schemes 
they utilise do not support floating point number operations, they made a trade-off in 
precision for time efficiency. Their model performed similarly to the original model in terms of 
accuracy, while it required longer training time due to the cryptographic computations.  
 

2.2.1.4 Functional Encryption for Quadratic Polynomials 

In [35] the authors go one step further than previous approaches that went up to linear 
functionalities. They build two functional encryption schemes that allow the calculation of 
quadratic functions over linear-size ciphertexts, using bilinear maps over integers. Their first 
constructed scheme is actually a family of public-key functional encryption schemes 
supporting the bilinear map functionality, built using a private-key, single ciphertext functional 
encryption scheme as a building block. This scheme is proven selectively secure under 
standard assumptions (MDDH and 3-pddh). Their second public-key functional encryption 
scheme is a relatively simpler and more efficient construction, proven secure in the generic 
group model for indistinguishability-based security.[9] introduce their own functional 
encryption scheme for quadratic functions and use it to train an image classification model 
with encrypted images. They highlight a common practical issue among functional 
encryption schemes; the need for discrete logarithm computations, and tackle it by 
constraining the model weighs to get smaller outputs, while employing the Baby-Step Giant-
Step Algorithm which transfers the main volume of computations in the preprocessing time. 
This functional encryption scheme relies also on bilinear groups and is proven secure in the 
generic group model. They implement their functional encryption scheme with the Pairing-
based cryptography library of the Charm framework, and train a polynomial network 
classifier in TensorFlow. Performance comparison with the two quadratic functional 
encryption schemes in [35] show that this model is slightly more efficient. Another 
implementation of the quadratic scheme by [9] was realised in the context of Fentec1, an EU 
project developing functional encryption technologies. Their paper [36] reports on their 
implementation and proposed use cases. Additionally, the two implementations (in C and Go 
languages) are available through a Github repository2. 
A recent scheme for quadratic functional encryption, used to build privacy preserving neural 
networks with application in image classification problems can be found in [37]. The 
proposed scheme is based on bilinear pairings and proven secure under the 
indistinguishability security notion, against adaptive adversaries in the generic group model, 
as in [35]. However, it outperforms the previously presented quadratic functional encryption 
schemes, in terms of overall complexity and ciphertext and decryption key size. Another 
point of distinction from the previous constructions is the introduction of counter-measures to 
collateral learning (i.e. the phenomenon of learning unexpected features from leaked 
information). This is accomplished with a two-fold strategy: first the limitation of the number 
of the outputs only to the necessary. Secondly, with the use of an adversarial training 
procedure in the first layers of the neural network, which enables the neural network to adapt 
against collateral training. The generalisation of the model against diverse adversaries is a 

                                                 
1 http://fentec.eu/ 
2 https://github.com/fentec-project/neural-network-on-encrypted-data 
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challenge and although the used model was proved sufficient against a wide range of neural 
networks, the study was still not exhaustive.  
 

2.2.1.5 Functional Encryption for General Polynomials 

Research has been conducted on the capability of applying functional encryption in the 
computation of arbitrary polynomial-time functions. Impossibility results have shown 
fundamental limitations on the realisation of simulation-based security for functional 
encryption supporting arbitrary functions [3][5]. Furthermore, as per [38] the construction of 
functional encryption schemes for arbitrary functions with unbounded collusion resistance is 
still an open issue, so they rely on homomorphic encryption and tamperproof hardware 
tokens to overcome these impossibility results. However, according to [33] this solution 
suffers from the vulnerabilities of such hardware to reveal information, while at the same 
time these deterministic oracles are not based on concrete primitives [39]. The employment 
of garbled circuits for secure computations in the context of functional encryption is another 
alternative. An IND-CPA secure construction is provided in [40], where the authors introduce 
the notion of ‘Worry free Encryption’ (a scheme closely related to functional encryption and 
conditional disclosure of secrets) and implement it with the help of Yao’s garbled circuits. 
Their implementation however shows some disadvantages due to efficiency issues of 
reusable garbled circuits that limited them to computing only single functions [41] in addition 
to the encryption of each garbled wire with a different key, which grows significantly the 
ciphertext size, rendering this approach inefficient for many practical applications [33]. In [42] 
the authors tried to address the garbled circuit reusability issue and proposed a scheme for 
the evaluation of multiple functions based on the work by [40]. This attempt showed that 
even for a limited number of functions, the computations would require hundreds of years. 
The work by [33] investigated the construction of controlled functional encryption schemes 
for the computation of inner-product and arbitrary polynomial-time functions. As ‘Controlled 
Functional Encryption’ (C-FE) they define a cryptographic tool, that similar to Functional 
Encryption, allows the user to learn only the result of a function over encrypted data, with the 
difference that the authority generates one-time keys. As a consequence, a new key request 
must be submitted by the user each time she wants to make a computation over a new 
ciphertext, in this controlled setting. Their general function implementation also adopts Yao’s 
garbled circuits [43] for the secure computations. The definition of C-FE includes two 
additional algorithms in comparison to the standard 4-algrorithm Functional Encryption 
definition, namely: ‘KeyReq’ algorithm, where a new request is submitted to the authority for 
the issue of a new key, and the ‘Extract’ algorithm for the extraction of the policy parameter 
of the ciphertext in order to decide whether the user’s request is eligible.  
The authors proceeded with the description of two schemes under this definition; an 
extremely efficient scheme for inner-product functionality (more details in Section 2.2.1.2) 
and a general construction for arbitrary polynomial-time function families. Their solution for 
the evaluation of a general function f over the encryption of data x with policy λ consists of 
the following steps: The authority generates a public-key encryption key pair (PP, msk). 
Using the master public key, the owner encrypts the data pair (x, λ) and creates two 
ciphertexts (α, σ). In order for the requestor to compute f(x), he must first acquire a key from 
the authority, by sending a key request with parameters the function f and the policy 
ciphertext σ. After recovering λ from the decryption of σ, the authority can decide whether to 
honour the request. If the decision is positive, the authority generates the decryption key, by 
computing a function F’ with two-party secure computation. F’ takes as input the encrypted 
message α from the user side, the function f and the msk from the authority side, and 
outputs the F(Decryption(α), f). The user can use this output to obtain the value of f(x). To 
encounter malicious attacks, the authors propose the use of a CCA2 secure public-key 
encryption scheme, or the use of Rerandomisable RCCA to additionally achieve pattern 
hiding. In order to overcome computation efficiency issues, they ensure that any secure 
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computations with garbled circuits happen only for f and not f’, which involves decryption 
operations and would make the model extremely inefficient. 
[12][44] approach the challenge of general polynomial computations with functional 
encryption from the point of constructing a scheme supporting all polynomial-size circuits. 
They employ the notion of indistinguishability obfuscation suggested by [45]. An 
indistinguishability Obfuscator iO for a class of circuits C guarantees that given two 
equivalent circuits C1 and C2 from the class, the two distribution of obfuscations iO(C1) and 
iO(C2) should be computationally indistinguishable. [12] propose a candidate 
indistinguishability obfuscator iO for all polynomial-size log-depth circuits (NC1), using a 
simplified variant of multilinear maps (i.e. Multilinear Jigsaw Puzzles). Afterwards they 
combine their iO for NC1 with injective one-way functions, public-key encryption and zero 
knowledge proofs, to obtain functional encryption for all circuits with indistinguishability 
security. 

2.2.1.6 Functional Encryption for Randomised Functionalities 

Going beyond functional encryption for all deterministic polynomial-time functions, research 
has considered the case of secure randomised functionalities calculation with functional 
encryption. Randomised functionalities not only set a challenge in the field of cryptography, 
but are also of great significance in real-life scenarios.  In randomised functional encryption 
the requestor can only learn about the result of a randomised function over the encrypted 
data with private randomness, without inferring any more information about the data. The 
correctness criterion of a randomised functional encryption scheme requires the 
computational indistinguishability of the distribution of results f(x) from the distribution of the 
randomised function directly computed over the encrypted data x on fresh randomness [46].  
A problem in the context of functional encryption, is imposed by randomness, and more 
specifically by the need to remain non-inferable to the participating parties and especially 
dishonest encryptors who could tamper with the random coins. To overcome such problems, 
in [44] the authors construct a randomised functional encryption scheme with simulation-
based security. In their construction they use various cryptographic primitives, namely 
indistinguishability obfuscation [45], puncturable pseudorandom functions, non-interactive 
witness indistinguishable proof systems. Simulation-based security however could not be 
realised for unbounded messages. Thus, they provide additional indistinguishability-based 
definitions and prove selective security for unbounded number of messages.  
[46] introduces a randomised functional encryption scheme based on indistinguishability 
security. As the main interest of this paper is to explore the feasibility of constructing fully 
homomorphic encryption schemes from sufficiently strong randomised functional encryption, 
they focus on constructing schemes that imply FHE, instead of exploring the wide range of 
random functionalities that could be supported by functional encryption. They build a generic 
randomised functional encryption scheme for any n-ary randomised function RFn, from an 
entropically secure FE supporting a specific functionality Fn of the same arity.  

2.2.2 Hardware-enabled Functional Encryption 
Advances in secure processor technologies have opened new paths for the implementation 
of privacy-preserving data analytics and computation frameworks. Processor extensions, 
such as Intel SGX3 and ARM TrustZone4, offer hardware and software-enabled security 
guards to enable the creation of secure execution environments (i.e. ‘enclaves’), that provide 
a trusted memory area and use hardware based encryption to enable private and secure 
execution of code [47]. The enclaves offer three main functionalities, Isolation (seclusion of 
data and code inside the enclave memory area, while processes external to the enclave are 
not able to read or tamper them), Sealing (data from the enclave to be transferred and/or 
stored externally, is encrypted with a hardware-resident key and can later be retrieved by the 
enclave for the continuation of computations) and Attestation (a special key attests that the 

                                                 
3 https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html 
4 https://developer.arm.com/ip-products/security-ip/trustzone 

https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
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specific data, code, metadata and computed outputs are secluded in the enclave) [48]. TEEs 
however have certain drawbacks that impose limitations on the range of possible 
applications. An SGX CPU has 128 MB processor reserved memory available, causing 
performance issues [49]. Additionally, the SGX is susceptible to side-channel attacks, 
creating the requirement for programs intended for enclave execution, to be data-oblivious 
[48]. 
Various papers have proposed secure systems with the use of trusted execution 
environments. [50] designed a system to enable the distributed computation of MapReduce 
in cloud infrastructures, while ensuring with the integration of SGX enclaves the 
confidentiality of code and data. Another example is [51], a framework for deep neural 
networks that leverages TEEs for non-linear operations which are hard to secure, while 
outsourcing linear operations to faster co-located untrusted processors. 
The idea of using trusted execution environments and more specifically SGX, for the 
emulation of a functional encryption setting has been suggested in the literature. In [48] the 
system comprises a single trusted authority and an arbitrary number of dynamically added 
decryption nodes, both powered by SGX. The standard functional encryption 4-algorithm 
scheme is now enabled by the functionalities of the enclaves. The trusted authority 
generates the master public and secret key. It provides the secret key to the decryption 
enclave(s) after performing remote attestation. Any encryption takes place using the 
generated public key.   When a client application wants to perform a function over encrypted 
data, it requests a signature from the trusted authority, that will authorise the requested 
function. Afterwards the client sends the encrypted data, the function and the signature to 
the decryption enclave, which in turn checks the signature and provided it is valid, proceeds 
with the decryption of the data (using the master secret key), runs the requested function 
and returns only the result to the client. When this step is complete, all invalid signatures are 
aborted from the enclave. The IRON system was evaluated with three functional encryption 
constructions: Identity based encryption from pairings, order revealing encryption and 3 input 
DNF. To achieve side-channel attack resilience, they propose oblivious implementations of 
the functions requested by the client applications, which are the only, apart from decryption 
operations, that interact with the plaintext data.  

2.3 Applications of Functional Encryption 

Some of the most interesting use cases illustrating the practical value of the various 
proposed functional encryption implementations are presented in this section. The authors 
provide guidelines on the transition from simple functional encryption enabled calculations, 
such as inner products, matrix calculations, quadratic polynomials etc., to real-life scenarios.  
The possible applications span over a wide area, from privacy-preserving handling of 
biometric data for biometric-based authentication systems, to the facilitation of software 
obfuscation for critical operations, and more.  
As the main focus of ASCLEPIOS is the implementation of privacy-preserving analytics on 
medical data with the assistance of functional encryption, a separate subsection is dedicated 
to health-related applications. 

2.3.1 General applications 
Fine-grained access control and sharing based on policies is an obvious use of 
attribute-based and identity-based encryption schemes [2][20][52], that can be applied in a 
multitude of domains (e.g. healthcare, insurance, government institutions, universities and 
more). In this use case, a predicate expresses an access policy and authorisation is granted 
if the requestor’s key satisfies the predicate function.  
Searching over ciphertexts to retrieve only data that satisfy a condition, is another 
application of functional encryption. [14] describe as an example that a user could retrieve all 
items that are less than a specific value by executing a binary comparison function with this 
specific value as threshold. With their flexible scheme, such searches could be realised for 
any query and even for data from different users as sources. The inner product functionality 
is considered as a potential enabler for a multitude of practical applications. [25] approaches 
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the problem of retrieving similar documents as a nearest-neighbour search utilising the 
inner product functionality. More specifically, they use the inner product to compute the 
Euclidean distance between vectors corresponding to documents, in order to allow users 
find similar documents. In this setting, an authorised user acquires a master secret key from 
the authority. The user must project the document query to the vector space and afterwards 
encrypt this vector using the secret key. The authentication server computes the Euclidian 
distance between the query vector and the stored vectors corresponding to the available 
documents, and returns the set of documents with the smallest distance. 
[4] showcases how inner products can be used in descriptive statistics. The weighted 
mean is a tool to describe the features of an information collection. In their work they present 
how a simple inner product DDH-based functional encryption scheme can be designed to 
compute the final course grades from individual tests with different weights. The function-
hiding inner product functionality of [25] is also envisaged as the basis for biometric 
authentication. In this case, the inner product provides an efficient way to compute the 
Hamming distances of secret vectors. In their biometric authentication setup, the biometric 
scanners encrypt the user’s biometric using the master secret key, provided by the 
authentication server. Subsequently, the scanners send the encrypted biometric to the 
authentication server, which in turn computes the Hamming distance between the secret 
vector of the biometric and the (also secret) user’s stored credential. If the Hamming 
distance is adequately small, indicating satisfying similarity, the authentication succeeds.  
Spam filtering has been mentioned as a task for encrypted operations in [20]. The authors 
of [37] proposed a use case scenario for advanced automated email filtering operations, 
in a recent work where they examine with more details how their quadratic functional 
encryption scheme could be used for such operations. They propose functional encryption 
enabled classification for this task, using public labels for non-sensitive information (e.g. 
the ‘spam’ label) and private labels for flags revealing personal information (ex. the hobbies 
of the recipient). The email recipient has a master public key which can be used by the 
sender to encrypt the email. The email server can perform classification over the encrypted 
email using the secret key and label the incoming email as spam or not. Furthermore, the 
server can infer if the mail falls under some of the other categories and decide whether to 
generate an ‘urgency’ alert or not. An adversary however is not able to infer anything about 
the private categories, only by learning the public outcomes of the mail filtering. In their 
experimentation, they use image recognition as an analogy to the envisioned use case and 
utilise the MNIST dataset5 to create a synthetic dataset, where the digit serves as the public 
classification feature and the font as the private feature.  
[10] build their special purpose multi-client predicate-only functional encryption construction 
for equality checks, with the domain of critical infrastructure monitoring in mind. They are 
based on the fact that certain combinations of events should generate an alert and express 
this statement as predicates that take status messages from the individual operators and 
become true when the problematic combination appears. Their use cases involve firstly the 
detection of large scale cyberattacks through the sudden failure of multiple systems from 
different critical infrastructure (CI) operators, and secondly the prediction of demand shifts 
among CI operators due to disruptions, in order to take proactive supply measures. Both 
cases are facilitated by the sharing of the CI operators’ status messages with a central 
authority. These messages are centrally collected and are encrypted due to their sensitive 
nature, as they could also include information such as the ‘cybersecurity level’ among 
others. The central authority can then evaluate the predicate function over these ciphertexts 
and if it becomes true, it raises an alert.  As they would expect the monitoring authority 
possibly to be a third party, a requirement for this application is to ensure plaintext and 
predicate privacy. 
Restricted-use software is another field, which has been explored by [12] as an application 
for their indistinguishability obfuscation functional encryption construction for general circuits. 
On certain cases, the developers may want to make available only partial functionality of 

                                                 
5 http://yann.lecun.com/exdb/mnist/ 



 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 27 of 86 

their software rather than the full version. This can happen for demonstration or pricing 
reasons. The authors propose that indistinguishability obfuscation can facilitate such 
functionality by enabling the release of one software version restricted up to interface level 
and one that is obfuscated. They go on with more use cases, such as the release of 
obfuscated security patches for strategic purposes (not reveal vulnerabilities to attackers) 
and the protection of intellectual property rights by obfuscating new algorithms to prevent 
reverse-engineering. 
A real-life scenario incorporating randomised functions, is illustrated in [44]. In their example, 
a bank transactions auditing procedure requires the generation of a random sample of 
database entries. This use case has two main requirements: firstly, the auditor must be 
sure that she will catch improper transactions with reasonable probability and secondly that 
a malicious auditor would not have access to ‘too much’ information, meaning that the 
auditor only has access to the random sample and not to arbitrary information about a client. 
[44] construct a functional encryption scheme supporting arbitrary randomised polynomial-
size circuits for such applications. 
[7] focuses on some crypto-oriented applications of functional encryption. These include the 
construction of a protocol for verifiable computation from the transformation of an ABE for 
general circuits, which enables a computationally weak client to hand over a complex 
computation to an untrusted server and be assured that the returning result cannot be 
incorrect. They also derive a scalable signature scheme from IBE, which can bridge the 
gap between securing large datasets without compromising performance. Lastly, they 
mention the use of functional encryption schemes for the construction of fully homomorphic 
encryption, a theme that has been featured extensively in [46]. 
 

2.3.2 Health-related applications 
Functional encryption is a promising concept for a domain such as healthcare, where the 
vast majority of data are by definition personal and sensitive, thus imposing great limitations 
on related scientific research, personalisation and improvement of healthcare services.  
Following are some of the possible applications, as presented in literature. 
Personalisation of medicine using the patient’s genome, is a revolutionary concept. [33] 
provide a flow based on functional encryption for the execution of a disease susceptibility 
tests. The digitised genome is encrypted by a genotyping agency with the Controlled 
functional encryption public key issued by the authority. The ciphertext is then publicly 
available and can be used by a medical unit for the conduction of the disease susceptibility 
test, using the one-time function key (also issued by the authority) for this test. Measuring 
similarity between genomes enabling better treatment based on the past reactions of other 
patients with similar symptoms and genetic build-up, has also been studied in the context of 
functional encryption. Various application-specific schemes have been proposed, however 
[33] claim that in contrast to the other approaches, their C-FE scheme addresses this 
challenge in an efficient and highly scalable way – important feature for use in large 
populations. [36] demonstrate functional encryption for disease predictions over 
encrypted data and more specifically, they evaluate the risk of cardiovascular diseases.  
They utilise various multivariate algorithms that have been developed based on the 
Framingham heart study [53]. To implement this functionality they use the inner product 
functional encryption scheme on Pailler cryptosystem of [15], on a typical functional 
encryption infrastructure comprising of a central authority for key generation, an analysis 
component that performs functions on the encrypted data, and a client that encrypts her data 
with the public encryption key and sends the ciphertext to the analysis component. 
Encrypted healthcare data processing for diagnostic purposes is mentioned by [8] as a 
typical use case for machine learning over encrypted data. They address the challenge of 
training a model over encrypted data with their CryptoNN framework which is built on 
functional encryption for basic element operations and secure matrix computations.  Medical 
monitoring through statistical computations on medical data coming from sensors and the 
patient’s profile is investigated in [54], where a methodology for multiparty statistics with the 
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use of multi-input functional encryption is presented, with the adoption of a tree topology to 
improve efficiency. Enhanced security and privacy in IoT healthcare infrastructures is 
another field of potential application for functional encryption. FE finds a two-fold application 
in the framework proposed in [11]: ciphertext policy ABE imposes enhanced access control 
to centralised data, while the integration of traditional FE allows the execution of secure 
analytics on encrypted data. Finally, in [55], a list of potential scenarios for private 
computations on medical data has been compiled from existing work in literature. Indicatively 
these scenarios include: The support of privacy-preserving Electronic Health Record 
system, where the patient is in control of her data and can define who has access even to 
selected areas of the record.  Medical research can benefit from the availability of 
encrypted medical data upon which machine learning can be performed in a secure way. 
Verifiability of outsourced computations is another issue; especially now as healthcare 
providers choose more and more often cloud solutions. 

2.4 Functional Encryption Considerations 

2.4.1 Considerations on Indistinguishability and Simulation Security 
A recurring consideration expressed in the literature concerns the weaknesses of the 
standard security notion of functional encryption, namely the indistinguishability-based 
security. Although indistinguishability ensures in theory that the messages are secure even 
for unbounded number of collusions, [3] and [56] showed that indistinguishability is weak, as 
trivially insecure schemes can be proved IND-secure. Given the inadequacy of this notion, 
extensive work has been conducted in numerous papers towards constructing schemes that 
are secure under the stronger notion of simulation security. The impossibility results for 
simulation security in all settings involving a simulated adversary with access only to the 
results of the functionality provided by the FE scheme [3] led to the formation of schemes 
that attempt to “bootstrap” IND-secure FE to SIM-security, compromising with weaker 
simulation security – but still enhancing it in comparison to indistinguishability security. Some 
indicative cases are those of sim-security in the generic group model [25][30], selective 
security for bounded number of messages [44], non-function hiding security models in a 
setting of malicious clients and honest-but-curious authorities [33]. 
 

2.4.2 Information Leakage due to Provided Functionality 
The considerations discussed in this section do not rely on weaknesses in the 
implementation, but are an inevitable consequence of the functionality provided through the 
functional encryption scheme. By definition, functional encryption reveals information about 
the plaintext to those with the right keys. This becomes a fundamental problem when the 
knowledge of multiple function outputs, gives more information than the union of the 
individuals, as for example in the case of inner products where one can combine multiple 
inner products to learn more about the underlying data. 

2.4.2.1 Matrix inversion 

If an attacker can obtain at least n different functional keys for the same dataset, it 
constructs a matrix of the associated inner products. Multiplying the inverted matrix with the 
associated coefficients yields the entire dataset: 
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Where i, , j is the -th coefficient of vector . It is required that the coefficient matrix is 
invertible, but this will almost always be the case when the vectors yj are chosen 
independently from each other. 

2.4.2.2 Singular vectors 

Intuitively, the inner product with a (nearly) singular vector (e.g. where all but one of the 
components is negligible) leaks one of the components of the other vector: For vector v that 
is (nearly) singular in vi, we get v,u = viui +. To prevent the deduction of individual values 
from the data, we must ensure that no keys are issued for (nearly) singular vectors. 
 
It must be noted that multiple vectors can be combined to yield a new, different vector. Given 

( , ), ( , ), one can obviously compute , a  + b ) = a( , ) + b( , ) for any a, b. 
Therefore, it must also be ensured that no linear combination of 

vectors . is (nearly) singular. 
 

This quickly becomes a problem when we add or remove values from the dataset, as this 

results in vectors that differ only in one (or a few) dimensions. Let ( (vvi,uui), where  
is the concatenation of the vectors in their dimensions. We then can easily 

retrieve  
 
The most obvious mitigation is to limit the functional keys that a party has. An oblivious 
helper that is required for each operation can help with this, such as with the Oblivious 
Helper. 

2.4.2.3 Mean and variance 

Suppose we have a sample of n values, of which the sample mean µ and variance σ2. Even 
without knowing anything about the underlying distribution, we can give an upper and lower 
bound on the sample maximum and minimum, respectively. 
 
For a given σ2, µ, n, we will find (without loss of generality) the maximum possible sample 
value b. This (multi)set is of the form X = {a, ..., a, b}, where 
 

 

 

 

 

Solving for b gives  
Lemma. In a set of n values with mean µ and variance σ2, all values are in the range 

 [µ − , µ + . 

This knowledge can then be used in re-identification attacks. 
 

2.4.2.4 Application-specific attacks 

The weaknesses described are far from theoretical. In the absence of a stronger security 
definition, it becomes easy to imagine a scenario where the security requirements are 
violated. For example, Ligier et al. [57] demonstrates how Principal Component Analysis and 
other machine learning techniques can be used to get information on the input of a linear 
classifier (or any other single-input IPE scheme) when it has a training set that is similar to 
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the input. This approach yields highly accurate predictions on the input data when an 
attacker obtains sufficient functional keys. 
 

2.4.3 Performance Issues 
The trade-off between the supported functionalities and performance issues is also 
discussed. Some approaches attempt to construct general-purpose FE schemes [12], while 
others step on the inefficiency of these schemes in terms of key and ciphertext sizes, as well 
as computation time, which make them impractical for real-life applications and focus their 
efforts in supporting limited functionalities, such as the inner-product functionality [25].  
 

2.4.4 Hardware-enabled approaches 
Regarding hardware-enabled functional encryption, two points shall be taken into 
consideration. The first concerns the susceptibility of SGX to side-channel attacks [48], be it 
either physical attacks by an adversary with physical CPU access, or software attacks on the 
host of the CPU, as for example through compromised OS. Several software attacks have 
exploited the privileged interfaces to undermine the system’s security as in [58][59].  
Secondly, the memory size limitations of SGX [48] (only 128MB of memory area are 
available to enclaves, and from those the applications can use approximately 90MB)  impose 
on their turn limitations to the complexity of supported functionalities and to the size of 
datasets that could be imported to the enclave to be used for the computations.  Such 
limitations can be overcome with an appropriate system design, however as this may entail 
the exchange of data from the secured space with the memory of the system outside the 
enclaves, further encryption and security requirements may occur. 
As all security solutions are only designed to protect against only a subset of potential 
attacks, the focus of security design requirements shall not be on making a system 
impossible to bypass, but rather on making the success of an attack as “costly” - in terms of 
time and money - as possible for the attacker6. 
 

                                                 
6 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s01s02.html (last 

accessed 13/05/2020) 

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s01s02.html
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3 ASCLEPIOS Functional Encryption System 

Section 2 presented a comprehensive state of the art review of functional encryption 
schemes and applications and provided insights into the advantages and the limitations of 
this cryptographic paradigm. ASCLEPIOS aspires to leverage functional encryption to offer 
healthcare providers inherently secure ways to perform analytics over sensitive data without 
disclosing more information than required and whilst keeping the underlying data encrypted.  
It should be noted that although IBE, ABE and Predicate Encryption were briefly discussed, 
the ASCLEPIOS FE analytics focus on schemes that can provide computations over the 
underlying data. For such operations, inner product schemes, as explained, are the most 
promising since they go beyond access control and can also be used to implement specific 
computation functions, as opposed to other proposed generic constructions. The landscape 
analysis demonstrates a hype in inner product functional encryption work in the academic 
field, still in many cases the perspective is more theoretical, and limitations enforced on 
practical applications are not considered relevant. Specific applications have been recently 
proposed, some of them exploring also more advanced analytics functionalities, including 
neural networks.  Yet, the underlying assumptions may not be appropriate for usage in real-
world scenarios in the healthcare domain, e.g. very small neural networks are considered 
due to FE limitations in computing the relevant functions. Some more promising applications 
are emerging, but the current maturity level of FE schemes and protocols is limiting their 
generalisation capacity.  
The ASCLEPIOS FE-enabled analytics solution, as part of the project’s framework, aims to 
provide services that leverage functional encryption across a wide range of commonly used 
functions on healthcare data. The focus is therefore in providing mechanisms that will allow 
healthcare providers to perform common computations over available data to support real-
world needs, e.g. computations over the medical examinations of a specific patient over time 
and computation of aggregate information regarding patients that share a condition or some 
characteristics. Therefore, FE is leveraged to perform statistical computations adaptable to 
the data and operations of healthcare providers.  
In this respect, ASCLEPIOS follows a dual approach to provide flexibility and allow 
healthcare providers to adopt the solution that best addresses their needs, e.g. based on 
time performance, security aspects and technical complexity etc. The first approach is based 
on a multi-input symmetric functional encryption scheme and the second is based on the 
asymmetric key setting. For the latter, ASCLEPIOS adopts state of the art schemes 
identified during the literature review, whereas the symmetric scheme is developed in the 
context of the project and is described in detail in Section 3.1.  
It should be noted that both approaches are based on purely cryptographic FE techniques, 
i.e. the encryption is performed in the software level and is not hardware assisted (as some 
of the examples presented in Section 2.2.2 based on Intel SGX). However, the ASCLEPIOS 
framework foresees leveraging Trusted Execution Environments to further safeguard 
sensitive operations. TEEs are secure, integrity-protected environments, with processing 
memory and storage capabilities, isolated from an untrusted, Rich Execution Environment 
that compromises the OS and installed applications. More Information on using TEE’s for 
cloud-based environments can be found in [63][64][65]. In this context, the ASCLEPIOS FE 
analytics services use a TEE for the key generation processes, as will be described. 

3.1 Symmetric MIFE Scheme 

This section presents the work performed to design a multi-client MIFE in the symmetric key 
setting, which was used as a basis for building some of the ASCLEPIOS statistical 
computation functions. The work is heavily influenced by the symmetric key MIFE scheme 
for inner products proposed in [1]. Based on this work, we constructed a symmetric key 

MIFE scheme for the  norm of an arbitrary vector space and showed that our construction 
can also support the multi-client model while preserving exactly the same security properties 
as the MIFE for inner-product in [1]. 
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3.1.1 Preliminaries 

Notation: If  is a set, we use  if  is chosen uniformly at random from . The 

cardinality of  is denoted by . Vectors are denoted in bold as . The set of 

users is . A probabilistic polynomial time (PPT) adversary ADV is a 

randomised algorithm for which there exists a polynomial  such that for all input , the 

running time of ADV  is bounded by .  
 

Definition 1 (Negligible Function).  A function  is called negligible if and only if 
 

 . 
 

Definition 2. (Inner Product).  The inner product (or dot product) of is a function  
defined by: 

 
 

Definition 2. ( ).  The  norm  of is a function  defined by: 
 

 
 

From definition 1 and 2 it follows directly that if  and , 

then .  

 
We now define MIFE in the symmetric key setting. Note that while this definition suits the 
single-client model, it is inadequate for a multi-client setup.  
 
Definition 3. (Multi-Input Functional Encryption in the Symmetric Key Setting).  Let 

 be a family of -ary functions where each . A multi-input functional 

encryption scheme for  consists of the following algorithms: 
 

• Setup : Takes as Input a security parameter  and outputs a secret key 

. 

• Enc Takes as input K, an index  and a message  and outputs a 

ciphertext . 

• KeyGen : Takes as input K and outputs a functional decryption key . 

• Dec  Takes as input a decryption key  for a function  and  

ciphertexts and outputs a value .  
For the needs of our work, we borrow the one-adaptive (one-AD) and one-selective (one-
SEL) security definitions form [1] that were first formalised in [66]. Informally, in the one-AD-
IND security game, the adversary ADV receives the encryption key of the MIFE scheme and 
then adaptively queries the corresponding oracle for functional decryption keys of her 

choice. Furthermore, ADV outputs two messages  and  to the encryption oracle who 
flips a random coin and outputs an encryption of . If the functional keys are 

associated the functions that do not distinguish between the messages (i.e. ) 

then ADV should not be able to distinguish between the encryption of  and . In the case 
of the one-SEL-IND security, the game is identical to the one-AD-IND case, with the only 

difference being that ADV needs to decide on the  and  messages before seeing the 
encryption key. The “one” in both security games determines that the encryption oracle can 

only be queries once for each slot  (i.e. the adversary is not allowed to issue multiple 

queries to the encryption oracle for the same ).   
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Definition 4. (one-AD-IND secure MIFE). For every MIFE scheme for , every PPT 

adversary ADV, and every security parameter  we define the following experiment for 

: 
 
 Ofdsfscx 
 
 
 
 

Where  is an oracle that on input  flips a random coin  and outputs 

. Moreover, ADV is restricted to only make queries to the KeyGen 

oracle satisfying . A MIFE scheme is said to be one-AD-IND 

secure if for all PPT adversaries ADV, their advantage is negligible in  where the advantage 
is defined as: 

 
 

Definition 5. (one-SEL-IND secure MIFE). For every MIFE scheme for , every PPT 

adversary ADV, and every security parameter  we define the following experiment for 

: 
 
 
 Ofdsfscx 
 
 
 
 
 
 
ADV is restricted to only make queries to the KeyGen oracle satisfying 

. A MIFE scheme is said to be one-AD-IND secure if for all PPT 

adversaries ADV, their advantage is negligible in  where the advantage is defined as: 
 

 

3.1.2 Multi-Input Functional Encryption for the  Norm 
In this section, we first present a MIFE scheme for the  norm in the single-client model and 
then we transform our initial construction to the multi-client model. In particular, , we show 
how the one-AD- IND-secure MIFE scheme for inner-products from [1], can be transformed 

to  a one-AD-IND-secure MIFE scheme for the  norm ( ), while preserving exactly 

the same security properties. Then, we show how we can transform our construction from 
the single-client model to the multi-client one. For purposes of completeness, we briefly 
recall the one-AD-IND-secure MIFE scheme for inner-products in Figure 1. The security of 

both MIFE schemes (inner products and  norm), is derived from the fact that they behave 
as the functional encryption equivalent of the one-time-pad. Note that, just like in the case of 

the one-time-pad, to achieve perfect secrecy, we require that  , where  is the 

encryption key and , the message to be encrypted. 

: 

; 

; 

Output  
 
 
Ffda 
 

: 

; 

; 

; 

Output  
 
 
Ffda 
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Figure 2: one-AD-IND secure MIFE for Inner Products 

 

In the scheme of , y fixing  to be  we compute , for . By doing 

do, we manage to transform the original inner products MIFE to a new construct that 

successfully computes the  norm. Our construction is illustrated in Figure 3.  
 

 

Figure 3: one-AD-IND secure MIFE for the  norm 

 

Theorem 1. The MIFE scheme for the  norm (described in Figure 2) is one-AD-IND 
secure. That is, for all PPT adversaries ADV: 
 

 
 
Proof. The proof consists of two parts. Fist we construct a selective distinguisher B whose 
advantage for the one-SEL-IND experiment is an upper bound for the advantage of any 
adaptive distinguisher ADV. Then, using the fact that the  behaves like the one-time-

pad, we prove that the advantage of B is zero. 
 
For the first part of the proof we will use a complexity argument. In particular, let B be an 
adversary that guesses the challenge  and then simulates the one-AD-IND experiment of 

ADV . If B successfully guesses ADV’s challenge, then she can simulate ADV’s view. 

Otherwise it outputs . Hence, ADV’s advantage maximises when B guesses correctly the 

challenge. If the input space is , then B can guess successfully with probability . 
Hence: 
 

  

 

It can be seen that if the input space  is very large. The advantage of ADV tends to zero 

independently of the value of  (i.e. ). 

However, we still show that no matter the cardinality of , . To do so, we 

will prove that . This will directly imply that since 
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. In Figure 3 we present a hybrid game that is identical to 

the one-SEL-IND security game. This is derived form the fact that if , then  and  

 are identical distributions. Finally, it is easy to see that only information leaking 

about  is , which is independent of  according to the definition of the security 
game and the restrictions of the adversary.  

 

Figure 4: Hybrid Games for the proof of Theorem 1 

 

3.1.3 From Single-Client to Multi-Client MIFE 
 
We are now ready to describe how we can transform our single-user  to the multi-

user MIFE for the  norm ( ). The idea is the following. Each user generates a 

symmetric key  which uses it to encrypt a plaintext  as . All the 

generated symmetric keys form a vector , where  is the number of 

users. The functional decryption key  is then  and decryption works as follows: 

 

 
 

A third party decryptor who would get access to the FK should only learn  and not each 

individual . . In addition to that, the users should never reveal their symmetric keys. To 
achieve this, we assume the existence of a trusted authority that will allow users to perform 

an MPC in order to jointly compute a masked version of FK without revealing each distinct . 

Before we proceed to the actual description of our construction (Figure 5) we present a high-
level overview of our system model that consists of a trusted authority (TA) and an evaluator 
(EV) that evaluates the value of a function f on a set of given ciphertexts 
 
Trusted Authority (TA): TA is running in an enclave and is responsible for generating and 
distributing a unique random number si to each user ui. The users will use the received 
random values to mask their symmetric keys. By doing so, and considering the fact that TA 
is running in an enclave and thus it is trusted, they will be able to jointly compute a masked 
version of the functional decryption key FK which will be used by the evaluator to calculate 
FK . 
 
 

Evaluator (EV): EV is responsible for collecting all users’ ciphertexts , generating 
the functional decryption key FK based on the masked value that will receive from the users, 

and finally, calculate  without getting any valuable information about the 

individual values  
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Figure 5: Multi Input MIFE for the  norm 

 
Correctness: The correctness of the  scheme presented in Figure 4 follows 

directly since: 

 

 

 
 

Theorem 2. The Multi-User Multi-Input Functional Encryption scheme for the  norm 
(described in Figure 5) is one-AD-IND-secure. That is, for all PPT adversaries ADV:  
 

 
 
Proof. The proof is omitted since it is a direct result from Theorem 1. This can be seen by 
the fact that the Encryption and KeyGen Oracles are identical tot he ones described in 
Figure 3. The only difference is that in the case of , the Setup algorithm is 

executed by multiple users instead of one, since each user generates a distinct unique key. 
Without loss of generality we can assume that this is exaclty the same procedure since in 

the case of , one user sample  random numbers from  resulting to a vector 

, and in the case of ,  users sample one random number from  

resultin gto a vector . However, the distributions  and  are identical 
and thus we conclude that we can use exaclty the same Hybrid game as the one in Figure 4.  
 

3.2 FE Services Implementation & Workflows 

As explained, the scope of the ASCLEPIOS FE Analytics is to provide a set of services that 
can be used by healthcare providers to perform statistical computations over numeric data. 
The two provided approaches, i.e. the symmetric and asymmetric encryption, have inherent 
differences which are reflected in the way the services of the two types are used and will be 
shown in the sequence diagrams provided in subsequent sections. However, the main 
entities that are involved in the application of the FE services are the same, as follows: 
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• Trusted Authority: The Trusted Authority runs inside a Trusted Execution 
Environment and is responsible the generation and retrieval of the keys.  

• Evaluator: The evaluator is responsible for calculating the function result using the 
ciphertext(s) and the functional encryption key. 

• API Server: The API server is responsible for handling the HTTP requests through 
which the analytics services are invoked. It is also responsible for handling requests 
for the encryption of the data when these are invoked by the users a priory, i.e. when 
users initiate the encryption of their data to make them available to functional 
encryption services. 

• User: The Users are the stakeholders that provide the data. Depending on the nature 
of the data, where they reside and who performs their encryption (and upload), the 
user may be a healthcare organisation, a physician, a patient or any other 
ASCLEPIOS user. The authorisation and authentication processes are handled on 
the framework level and therefore these aspects are not considered here. 

• Analyst: The analyst is, similar to the User entity, an authorised and authenticated 
ASCLEPIOS user. In the FE Analytics workflow, the Analyst is the one invoking a 
particular service, i.e. the one that needs to obtain a computation on the data 
provided by the users. 

 

3.2.1 Symmetric MIFE services 
These services are based on the scheme presented in Section 3.1 and allow the Analyst to 
compute some statistics over the data coming from multiple users, including sum, average 
and weighted average (where the weights can be considered part of the applied function). 
Figure 6 shows an indicative workflow of an FE service that computes the sum of two values 
provided by two different users.  
The workflow is initiated by the Analyst who invokes the service that applies the sum 
function of the symmetric MIFE service for two users, each of which provides a specific 
value. However, this is only an abstraction to facilitate the presentation of the workflow. As 
described in D2.1, data from healthcare providers are in JSON format and therefore there 
are numerous and diverse values potentially available in the computations, especially when 
considering that a user as explained may be a healthcare provider. The invoked function 
therefore handles the required data selection process, e.g. a different function will be called 
to compute the number of days that patients with a certain condition were hospitalised as a 
whole (wherein each input in the FE scheme corresponds to a patient and the value 
represents number of days) vs to compute the amount of antibiotics prescribed to a patient 
within a year (wherein each input corresponds to a patient’s visit to a physician and the value 
represents the number of prescribed antibiotics in this visit).  
The encryption, decryption and key generation functionalities are implemented in C++. 
Flask7, a lightweight WSGI web application framework, is used to implement the RESTful 
API. The TEE used for the Trusted Authority is Intel SGX. 

                                                 
7 https://flask.palletsprojects.com/en/1.1.x/ 
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Figure 6: Symmetric MIFE example 

 

3.2.2 Asymmetric IPFE services 
The asymmetric inner product FE services are based on schemes found during the literature 
review, specifically the ones provided in [4] and [15]. The implementation of the key 
generation, encryption and decryption algorithms is based on the open source CiFEr library8. 

                                                 
8 https://github.com/fentec-project/CiFEr 
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As in the case of the symmetric MIFE services, C++ and Flask are used to implement the 
functionalities provided by these services as well. The TEE used for the Trusted Authority is 
again Intel SGX. 
Services in this category also provide basic statistical computations, the main differences in 
scope being that they target cases where all required input data come from the same user 
(i.e. data provider) and data can be diverse, e.g. an indicative (simplistic) usage could be to 
compute the probability of a heart attack by combining the age, weight and cholesterol levels 
of the patient based on a linear regression formula (the formula is considered part of the 
function). Two slightly different workflows are foreseen for these services. 
The first one is similar to the one for the symmetric example and is initiated by an Analyst 
invoking a function to get the results of a statistical computation (denoted as func1), as 
shown in Figure 7. Assuming func1 refers to the heart attack risk calculation example 
mentioned above, vector Y that is shown in the diagram corresponds to the regression 
factors for each of the input variables that are provided through vector X.  
 

 

Figure 7: Asymmetric IPFE example 

 
The presented example in Figure 7 assumes that the Trusted Authority generates the master 
public and master secret keys as part of the workflow. However, if the specific User has 
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previously acquired a master public key for this scheme, then the same key can be used 
again to encrypt the new message (vector X).  
Furthermore, it is possible that the encryption and decryption processes are, to an extent, 
detached, in the sense that it is possible for a User to choose to make their data available for 
statistical computations through FE services, prior to an Analyst requesting to use them in a 
computation. In this case, the evaluator, which runs on the cloud, retrieves the encrypted 
data every time they are needed for a computation. This process is shown in Figure 8. 
 

 

Figure 8: Asymmetric IPFE – Encrypt Only 

 
The data are then available in the cloud in an encrypted form and can be used whenever the 
FE service is invoked, i.e. by any Analyst and for any function implemented using this 
scheme. The process is shown in Figure 9.  

 

Figure 9: Asymmetric IPFE – Invoke Function Only 
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3.3 FE Analytics Usage in ASLEPIOS  

Section 3.2 described the functionalities of the FE Analytics services, the schemes that are 
used in the background and the workflows that are supported. As shown also in the provided 
sequence diagrams, the services can be invoked through a simple RESTful API, which 
provides endpoints for the various supported schemes and functions.  
In the case of the asymmetric MIFE scheme, depicted in Figure 6, invoking a function 
through the API will handle in the background all required interactions and processes in 
order to acquire the values from all users and return the result to the requestor (Analyst). In 
the case of the symmetric IPFE functions, there are two different ways of invoking the 
services: The first works similar to the symmetric one and exposes endpoints that when 
invoked will handle all processes and interactions, including the communication with the user 
to acquire the encrypted data (Figure 7).  The second way assumes encryption of the data 
happens before the service being invoked by an Analyst and therefore endpoints are 
exposed for requesting to encrypt data and for requesting to apply a function on data that 
are expected to be already available (although this can be easily combined with the first 
approach in order to get the data that are already available and also request those that are 
not), as shown in Figure 8and Figure 9. 
In order to provide a more complete solution, the FE Analytics are expected to be used also 
combined with other ASCLEPIOS tools and services, therefore during design and 
implementation potential workflows in this context were also considered. As an example, 
although in the stand alone version the service invocation specifies on which users the 
computation should be applied, FE Analytics can be combined with the SSE scheme to 
enable the computation of statistics not on explicitly provided users, but on users and data 
assets that match the selected search criteria. Thus, the SSE service can feed the FE 
services with the data on which the computation should be applied, either directly or 
indirectly by providing the index in the database so as to retrieve them. Furthermore, the 
encryption process could be unified from a user perspective (in the background the data will 
be encrypted separately for each service), so that the user could select which data should be 
uploaded and for which service through the same process. Combining the ASCLEPIOS SSE 
with FE services will also enable pipelined computations applied on data that meet user-
defined criteria, e.g. assuming a function F1 that instantiates the ASCLEPIOS FE service for 
the evaluation of a regression formula that computes a patient’s risk for a certain condition 
based on specific attributes (fields) from the patient’s EHR and a function F2 that 
corresponds to an FE service that computes the average, it will be possible for an Analyst to 
define a query that calculates the “average risk score to develop condition C for patients that 
meet characteristics A and B”, where characteristics could be for example age threasholds.  
 

3.4 GDPR-considerations  

The present section examines GDPR compliance perspectives of the ASCLEPIOS functional 
encryption services. In order to provide a legal analysis in this direction, the scope of 
analytics operations that should be considered needs to be first defined. It should be noted 
that although the implemented services provide statistical computations, the analysis is 
extended to reflect on machine learning models as well for completeness, since the 
implemented inner product functionality could be adapted to implement regression functions. 
Within the context of ASCLEPIOS, statistical functions and machine learning methods are 
applied specifically to encrypted data and leveraging isolated environments. Therefore, only 
encrypted data and operations to retrieve these statistics or train machine learning models 
are considered. How the resulting statistics or models are later used, such as to make 
predictions for specific patients using auxiliary data, is considered to be outside of the scope. 
The second aspect that is investigated is the extent to which the data that are used in the 
analytics operations should be classified as personal data. It seems clear that the underlying 
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healthcare data that are used in the analytics are indeed personal data under the definition 
of the GDPR, because the relate to identifiable natural persons. Whether that is also the 
case for the data in its processed (encrypted) form and the resulting statistics and models is 
harder to answer and depends on specific circumstances. The question of whether a natural 
person can be reasonably identified (in)directly through these data needs to be answered to 
provide some insights in this respect. 
Recital 26 of the GDPR goes into detail on how this question should be answered: "To 
determine whether a natural person is identifiable, account should be taken of all the means 
reasonably likely to be used, such as singling out, either by the controller or by another 
person to identify the natural person directly or indirectly. To ascertain whether means are 
reasonably likely to be used to identify the natural person, account should be taken of all 
objective factors, such as the costs of and the amount of time required for identification, 
taking into consideration the available technology at the time of the processing and 
technological developments." This first sentence is more or less unchanged compared to the 
Privacy Directive (Directive 95/46/EC). In Breyer v. Germany (ECLI:EU:C:2016:779), the 
CJEU ruled that information should be classified as personal data even when data from third 
parties is required to identify data subjects. Specifically, it deemed the assistance of a 
competent authority in identifying data subjects a reasonable means, unless this is 
prohibited by law or requires a disproportionate effort. From this we can conclude that the 
healthcare data in its encrypted form likely still qualifies as personal data when a third party 
possesses the means to decrypt or otherwise identify natural persons from this data. With 
respect to the resulting statistics and models, it is probably necessary to apply the 
mentioned reasonability test based on a case-by-case basis. [60] argues that models may 
be subject to model inversion and member inference attacks, which leak information about 
the training data of a model. In these cases, models might indeed be personal data. More 
generally, [61] point out that it is necessary to consider not only the information alone, but 
also its environment. Indeed, the availability of (linkable) auxiliary data, the governance of 
the data (who has access and under what conditions) and possible motivations for re-
identification are all factors in whether re-identification is reasonable. 
The third aspect that is examined refers to whether the exercise of data subject rights should 
be facilitated and if so, in what way. In the absence of specific exceptions, such as under a) 
or b) below, the general answer is affirmative. How exactly these should be met differs by 
each right, which we will discuss separately.  

a) Does the exception of article 11(2) apply? The data subject rights do not apply when 
the controller is not in a position to identify the data subject. However, data subjects 
may still provide additional information to enable their identification, in which case the 
controller is still obliged to act on the request.  

b) Do the optional derogations in article 89(2) and (3) apply? European Union and 
Member State law may give derogations from some of the data subject rights for data 
that are processed for scientific or historical research purposes or statistical purposes 
or archiving purposes in the public interest, when those rights are contrary to those 
purposes. There does not exist a universal answer, because it depends on the 
specific jurisdiction of the processing. 

i. Does the processing by ASCLEPIOS fall under the purposes mentioned in 
article 89? It is likely that some of the processing qualifies as being done for 
scientific research purposes. Recital 159 states: "For the purposes of this 
Regulation, the processing of personal data for scientific research purposes 
should be interpreted in a broad manner including for example technological 
development and demonstration, fundamental research, applied research and 
privately funded research. [...] Scientific research purposes should also 
include studies conducted in the public interest in the area of public health." 
However, this depends on the specific case; When the processing is done 
outside of an academic context, for example in the treatment of a specific 
patient, this article likely does not apply.  
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c) How should the controller act on erasure requests? We note that the right to obtain 
erasure ("right to be forgotten") is by no means absolute. We will discuss a number of 
grounds on which such request could reasonably be rejected within our application. If 
erasure is warranted, this may take a significant effort depending on the technical 
details. According to [60], when a machine learning model itself qualifies as personal 
data as previously discussed, either the model must be retrained on the amended 
data (which often carries a great computational cost) or the model must be amended 
after training (something that is still being explored and currently cannot be done on 
existing systems).  

i. Does the subject have a valid grounds to demand erasure, as in 17(1)? This 
is highly case-specific and depends on lawfulness and legitimate grounds for 
the processing. We point out that in practice, processing is often based on 
consent (article 6(1)) even when this would not be the only applicable legal 
ground. In those cases, the controller is not obliged to erase the personal 
data when another legal ground exists.  

ii. Does the controller have a valid overriding exception as in 17(3)? Paragraph 
3 provides that the right to erasure does not apply when processing is 
necessary for the purposes mentioned in article 89. As we mentioned in b-i), 
some processing within the ASCLEPIOS framework may indeed qualify as 
being done for those purposes. It remains to show that processing of the 
given personal data is in fact *necessary* for those purposes. It can be 
argued that in some cases the erasure of data does not disproportionately 
affect those purposes, especially when the amount of data to be erased is 
insignificant compared to the full data set and there are no strong 
requirements on the completeness of the data. However, this is merely an 
interpretation.  

d) How should rectification be performed? The accuracy of personal data is one of the 
main pillars of the right to data protection. Article 16 specifies that data subjects have 
the absolute right to obtain rectification of inaccurate personal data. While intuitively 
one would say that personal health information is fact-based and therefore does not 
contain inaccuracies, this is not always true. Indeed, there are various reasons why 
data that are entered into the system might be wrong or changes due to new 
developments. This is supported by [62], who analysed health record amendment 
requests in the United States. It goes without saying that the accuracy of the data is 
often essential for the purposes for which they are processed. Rectification is 
therefore in the controller’s best interests, even in the absence of a specific legal 
obligation. Rectification may take significant effort, similar to erasure in (c). In cases 
where the personal data are incomplete, it may be sufficient to add a supplementary 
statement.  

e) How should restriction on processing be performed? See the considerations under c) 
and d) 

The final aspect that needs to be examined is whether the analytics operations implement 
appropriate security measures, as described in art. 25 and art. 32. This is a highly complex 
question that can only be answered after a full assessment of the environment/ 
implementation and cannot be therefore examined in the scope of the functional encryption 
mechanisms presented in this deliverable. We point out that the ASCLEPIOS project 
contributes technical measures to ensure that only authorised people have access to 
personal data and that analytics users only learn the result of their analytics operation and 
nothing else. Therefore, it indeed implements certain data-protection principles. That is not 
to say that the ASCLEPIOS framework by itself presents an appropriate level of security, as 
this would require an assessment of the risk associated with the specific processing 
compared to the feasibility of additional measures. In addition, we point out that some 
fundamental principles, such as data minimisation at time of collection and retention period, 
are outside of the scope of ASCLEPIOS as they are heavily dependent on the application.  
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4 Cybersecurity Landscape in Healthcare 

The second axis defining the work presented in the current deliverable, as explained in 
Section 1.1, is related to Task T2.4 activities, and evolves around identifying a set of 
analytics used by healthcare providers in their methods and efforts to secure their 
infrastructures and the data and information owned or exchanged, particularly in the context 
of leveraging CSP operations. The need for a comprehensive cybersecurity strategy 
spanning from detection and mitigation to prevention of security threats becomes even more 
evident when considering the great number of assets at stake and the risks from a data 
breach of patient information or the interruption of normal operations.  
The present section provides background information regarding the threats against which 
healthcare providers need to secure their infrastructures and the challenges they need to 
address in this effort. Furthermore, methodological frameworks and technical solutions that 
help towards this direction are briefly presented, highlighting the particular needs and 
complexities that arise in the detection of abnormal behaviours which could indicate 
malicious activities but also benign yet inappropriate usage that exposes the system to cyber 
threats. Finally, data analytics and visualisation methods that can be employed to provide 
actionable insights in the identification and mitigation of suspicious (data) access behaviours 
are presented.  

4.1 Cyber Threats in Healthcare 

A cybersecurity threat is any circumstance or event with the potential to adversely impact an 
asset through unauthorised access, destruction, disclosure, modification of data and/or 
denial of service9. ENISA reports present the vast cyberthreat landscape, which includes 
Malware, Web Based Attacks, Web Application Attacks, Phishing, Denial of Service, Spam, 
Botnets, Data Breaches, Insider Threats, Physical manipulation/ damage/ theft /loss, 
Information leakage, Identity Theft, Cryptojacking, Ransomware and Cyber Espionage [67]. 
The 2018 report highlighted healthcare as the leading sector in the number of incidents 
(27%), demonstrating incidents of vast information leakage, such as the accidental exposure 
of 3,5 million records due to a misconfiguration of the Amazon Simple Storage Server cloud 
server, which was reported by the 211 LA County. 
A cybersecurity incident exposes the healthcare organisation to various serious risks, such 
as the loss or corruption of organisation information and patient data and health records, the 
breach of personal information, the disruption of healthcare services, the access and control 
of medical infrastructure by malicious actors, damage of the organisation’s reputation and 
financial costs [68]. The detrimental impact of such incidents combined with the fundamental 
vulnerabilities healthcare organisations present due to the nature of the domain -requiring 
the provision of services under emergency situations-, the inadequate preparedness of 
infrastructure, and the lack of security awareness, make them a preferable target for 
malicious actors. However, cybersecurity threats in the healthcare are not always a result of 
malicious actions, but also emerge from human-errors, system and third-party failures, 
extending the scope of security measures and practices that shall be considered by the 
security departments of the organisations. According to [69] and [70] the five most common 
cybersecurity threats affecting healthcare organisations are the following: 
 

• E-mail Phishing Attack: Phishing is a social engineering technique, using appropriately 
crafted messages to lure the recipients into opening a malicious attachment, click on an 
unsafe URL or hand over their credentials. E-mail phishing exploits emails as the 
medium for the execution of the attack. Attackers take advantage of leaked and hacked 
personal data to compose convincing, targeted messages and increase the success of 
their campaigns. One of the most notable e-mail phishing attacks targeting healthcare in 

                                                 
9 Definition by ENISA: https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-

inventory/glossary (last access 18/05/2020) 

https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
https://www.enisa.europa.eu/topics/threat-risk-management/risk-management/current-risk/risk-management-inventory/glossary
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2019, was conducted against Montpellier university medical centre10, where an infected 
email opened by an employee infected more than 600 computers, but was suspended 
from spreading to all of its 6.000 machines by the internal network infrastructure of the 
hospital.  

• Ransomware Attack: In a ransomware attack, the attacker gains ownership of the files 
and/or devices and deprives the legitimate owner of access, demanding a ransom to 
restore back ownership. This type of attack is usually conducted with the use of 
malicious software (malware) that encrypts the data of the affected system, and the real 
owner can only get hold of the decryption key by paying the ransom usually in a 
cryptocurrency.  Phishing emails are used as a conduit for the installation of the 
malware at the targeted system, and take advantage of software vulnerabilities, such as 
unpatched software. The WannaCry11 cyberattack against UK’s National Health Service 
in 2017 is one of the most eminent ransomware attacks, exploiting a Windows 
vulnerability to infect 200.000 computers and led to the cancellation of approximately 
20.000 appointments, costing the NHS almost £92m for the restoration, cleanup and 
upgrade of its IT systems. 

• Loss or theft of equipment or data: An everyday phenomenon, such as the loss or theft 
of paperwork or of a device with unencrypted data, can lead to data breaches and 
malicious actors getting hold of sensitive data.  Additionally, the loss of equipment could 
impose disruption of operations until it is restored, while the recovery of lost data is not 
always feasible if an appropriate backup policy were not applied until the time of loss.  

• Insider Threat: The accidental or intentional abuse of access to the organisation’s 
assets by current or former employees, partners or contractors is a viable security threat 
for all organisations. Three are the most common types of insider threats: a malicious 
insider who intentionally discloses information for personal benefit or to inflict harm, a 
negligent insider who exposes data by mistake or by not following the security policies 
and instructions and the compromised insider who acts unintentionally as a medium for 
an attacker. An example of a data breach due to human error is the case of 
Independence Blue Cross12 in 2018, where an employee accidentally posted publicly a 
file containing personal and medical information of almost 17.000 patients. The accident 
went undetected for two months, giving the opportunity to unauthorised users to view its 
contents. 

• Attacks against connected medical devices: The hijacking of IT-based medical 
equipment can lead to leakage of sensitive patient’s data but even to imposing a direct 
threat for the patient’s life through the manipulation of the compromised device’s 
operation (e.g. power off, continuous reboot etc.). A recent vulnerability discovered in 
two models of hospital anaesthesia machines manufactured by General Electric, and 
exposed by CyberMDX13 is potentially life-threatening for patients, as an attacker could 
gain remote control and tamper with settings such as the concentration of oxygen, 
silence device alarms and modify logs. 

 
Other cyber threats faced by healthcare organisations, and more specifically smart hospitals, 
are included in the wider threat taxonomy by ENISA [71] which enlists additional malicious 
actions, such as the Denial of Service attacks (ex. the Boston Children Hospital attack14 in 
2019), system failures (for example the unavailability of data due to overload), supply chain 
failures due to unavailability of a cloud service or network provider and natural phenomena 
(Figure 10). 
 

                                                 
10 https://www.stormshield.com/news/top-5-cyberattacks-against-the-health-care-industry/ 
11 https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/ 
12 https://www.fiercehealthcare.com/payer/independence-blue-cross-data-breach-cybersecurity-privacy 
13 https://www.zdnet.com/article/vulnerabilities-found-in-ge-anesthesia-machines/ 
14 https://thethreatreport.com/story-behind-the-ddos-attack-vs-boston-children-hospital/ 

https://www.stormshield.com/news/top-5-cyberattacks-against-the-health-care-industry/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://www.fiercehealthcare.com/payer/independence-blue-cross-data-breach-cybersecurity-privacy
https://www.zdnet.com/article/vulnerabilities-found-in-ge-anesthesia-machines/
https://thethreatreport.com/story-behind-the-ddos-attack-vs-boston-children-hospital/
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Figure 10: Threat taxonomy for smart hospitals by ENISA [71] 

 
Particular attention should be given to a special type of attacks that have emerged during the 
last years; the new age attacks [72]. These attacks differentiate from traditional attacks in the 
attitude of the attackers after they gain the desired control: whereas in traditional attacks the 
attackers would reveal their accomplishment in order to claim a short-term reward (like 
ransom), in new-age attacks the intention is to remain undetected for as long as possible 
and gather data. Usual targets of this kind of attacks are IT systems and organisations of 
high complexity with critical data; thus, hospitals are among the most critical infrastructures 
to be affected by a new age attack. 
Following is a classification of the new threats as suggested in [72]: 

• Advanced Persistent Threats (APT): Advanced persistent threats are performed in 
multiple stages (reconnaissance, foothold establishment, lateral movement, 
exfiltration/impediment, post-exfiltration/post-impediment [73]). They are sophisticated 
attacks, focusing at gaining access to the system and remaining undetected for a long 
period in order to steal high-value data. 

• Polymorphic threats: Polymorphic threats, notably called the enemy of signature-based 
cyber defence systems, are attacks such as worms, Trojans and virus, that constantly 
change attributes (e.g. filename, compression), making their detection extremely difficult.  

• Zero-day threats: These threats exploit previously publicly unknown vulnerabilities of 
software and systems. These vulnerabilities are not always unknown to the vendors, yet 
they are not disseminated prior to patching them, for security purposes. Zero-day attacks 
can remain undetected for a long period and the exploited system vulnerabilities can be 
a challenge to fix. 

• Composite threats: This type of attacks combines two attack approaches. On the one 
hand are the syntactic attacks that exploit technical software/hardware vulnerabilities, 
while the semantic attacks utilise social vulnerabilities. The composite attacks come as a 
combination of these two. 

 



 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 47 of 86 

 
The Healthcare Information and Management Systems Society [74] has composed a list with 
the initial points of compromise of the most significant security incidents identified by 166 
qualified information security leaders from a number of healthcare organisations that 
participated in their Cybersecurity Survey for 2019. The respondents identified the e-mail as 
the most common point of compromise with 59%, with human error in the second place with 
25%. This result showcases the efficiency of email phishing campaigns, which makes them 
an extremely popular means for inexpensive and efficient cyberattacks.  A second 
observation is the key role of the human factor, which is underlined as an important point of 
compromise, either by being the victim of a phishing attack or by openly exposing 
information by mistake or on purpose. Other identified entry-points for attackers are the 
compromised vendors, consultants, clients or other parties (Figure 11). 
 

 

 Figure 11: Initial Points of Compromise for Security Incidents [74] 

 

4.2 Cybersecurity Frameworks and Tools 

Practices and guidelines have been published by standardisation bodies and cybersecurity 
organisations providing a framework for organisations to organise an effective cybersecurity 
plan. An interesting point is that specific guides have been delineated, targeting the 
healthcare domain and the protection of patients, due to the challenging nature of the 
domain as well as the criticality of the data and assets at stake. These practices attempt to 
cover all aspects of an organisation’s operation and infrastructure. However, their multitude 
and their dependence from the adoption by the involved human actors, make it difficult for 
them to be fully applied in practice.  
The National Institute of Standards and Technology (NIST) has constructed a five-function 
cybersecurity structure to cover the whole cybersecurity lifecycle (Identify, Protect, Detect, 
Respond, Recover) describing the intended outcome of activities as a group of cybersecurity 
outcomes (i.e. “Categories”) which are closely knit to particular activities [71]. Examples of 
categories are the “Data Security” and “Protective Technology” of the “Protect” function, 
“Anomalies and Events”, “Security Continuous Monitoring” and “Detection Processes” for the 



 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 48 of 86 

“Detect” function and more. The complete NIST Cybersecurity Framework is available in 
Figure 12. This framework is applicable generally to organisations relying on technology, 
whether focusing on information technology, industrial control systems, cyber-physical 
systems, or connected devices and IoT. 
From the enlisted categories it can be generally deduced that some of them are business-
oriented, addressing the assessment of risks and targets, timely planning, responsibility 
identification and policy-making (ex. “Business Environment”, “Risk Management Strategy”, 
“Detection Processes”, “Response Planning”, “Awareness and Training” etc. ), while others 
are associated with the application of privacy-preserving technologies, the adoption of 
software-enabled cybersecurity solutions and the construction of secure infrastructures (ex. 
“Identity Management, Authentication and Access Control”, “Data Security”, “Protective 
technology” etc.). 

 

Figure 12: NIST Cybersecurity Framework [75] 

 
Based on the five identified prevailing cybersecurity threats (e-mail phishing attack, 
ransomware attack, loss/theft of equipment or data, accidental or intentional data loss, 
attacks against connected medical devices/ medjacking), the 405(d) Task Group singled out 
the following ten most effective mitigation practices, which are in the core of the holistic 
framework for cybersecurity in the health industry published in 2015 by NIST[69]: 

1. Email Protection Systems 
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2. Endpoint Protection Systems 
3. Access Management 
4. Data Protection and Loss Prevention 
5. Asset Management 
6. Network Management 
7. Vulnerability Management 
8. Incident Response 
9. Medical Device Security 
10. Cybersecurity Policies 

 
Each practice outlines a series of steps to protect against the potential cyber threats 
affecting the particular system (for example, the “Email Protection Systems” practice 
provides steps to protect against ransomware, phishing and data leakage). Each of the ten 
main practices has been further broken into various sub-practices corresponding to the five 
main cybersecurity functions, and tailored to the needs and resources of the organisation 
based on its size (small healthcare organisations [77], medium and large healthcare 
organisations [78]). As the framework contains in total 88 practices, their implementation is 
an extremely demanding task, thus NIST has also prescribed a simple model to help 
cybersecurity experts of any healthcare organisation with the enumeration and prioritisation 
of practices. The model comprises the following steps: 
 

• Step 1: Enumerate and Prioritise Threats 

• Step 2: Review Practices Tailored to Mitigate Threats 

• Step 3: Determine Gaps Compared to practices 

• Step 4: Identify Improvement Opportunity and Implement 

• Step 5: Repeat for Next Threats 
 
In the context of the current analysis, special attention is placed on cybersecurity categories 
and practices involving the employment of privacy-preserving technologies and software-
enabled protection technologies, and how these can be realised in the cybersecurity 
programs of organisations, as these are the ones more relevant to the ASCLEPIOS scope. 
The EU-funded Coordination and Support Action project focusing on privacy-preserving big 
data technologies, e-Sides15 , has conducted research on the effectiveness of mechanisms 
used to deploy privacy-preserving technologies [79].  They have identified tree main 
directions, encompassing the individual classes of technologies, as follows:   
 

• Technologies that Change Data: Anonymisation, sanitisation and encryption are 
the three classes under the “Technologies that Change Data” category. In 
anonymisation, the personally identifiable information of a dataset is encrypted or 
totally removed, while sanitisation involves the encryption or removal of sensitive 
information. Anonymisation could be considered as a type of sanitisation. Some 
indicative popular methods of anonymisation and sanitisation are k-anonymity, l-
diversity and differential privacy. In encryption, the data are encoded and only eligible 
users can acquire total or partial access to them, with the use of a decryption key.  
Apart from traditional cryptographic primitives, such as Public-key cryptography, 
Symmetric-key cryptography and digital signatures, new schemes and primitives 
providing functionalities for extended or refined applications have emerged and are 
subject of extensive research, such as attribute-based encryption, functional 
encryption and homomorphic encryption. Multi-party computation is another 
cryptographic field combining distributed processing with encryption to enable secure 
computations. 

                                                 
15 https://e-sides.eu/e-sides-project 

https://e-sides.eu/e-sides-project


 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 50 of 86 

• Technologies for Handling Data: Access control is the restriction of users and 
applications from data and resources if certain conditions are not met. Attribute-
based access control is a technique going beyond simple access control, by allowing 
the use of certain attributes for the decision on granting or denying access, such as 
the user role, time, IP and more. Policy enforcement applies a set of defined rules for 
the allowed handling of data. Accountability is the principle that guarantees the 
enforcement of data protection policies and is implemented through auditing and 
monitoring processes.  

• Technologies Empowering the User: Transparency is the core data protection 
principle of explicitly informing the data subject regarding the way her data is 
collected and processed, while data provenance is related to being able to track the 
lineage of information. Both pose a challenge, especially in the era of big data and 
black-box machine learning, where the user can only see the results of computations 
over data from heterogeneous sources. Access and portability technologies enable 
users view their stored data and move them between service providers without losing 
any information. Candidate technology enablers for these purposes are consent 
mechanisms, privacy preferences and personal stores of data.  

 
The integration of protective software in organisations is another measure proposed by 
cybersecurity frameworks.  Some of the most widely used information security technologies 
are IDSs/IPSs, UTMs, SIEMs and LMSs. These are briefly presented below: 
 

• Intrusion Detection System / Intrusion Prevention System (IDS / IPS):  These 
systems monitor network traffic and application activity to detect unusual patterns 
and potentially malevolent behaviours and create alarms whenever such an activity is 
detected. The differentiating point between IDSs and IPSs is that the former are 
passive, in the sense of being limited to alerting upon identification of unusual traffic, 
while the latter have a more active role, integrating preventive mechanisms that 
prevent or block the further dispersion of the suspicious data and flows. They can be 
installed at crucial network points to inspect traffic on the network (network-based 
systems) or on a single device to monitor port and applications activity (host-based 
systems). IDS and IPS are mainly signature-based systems, meaning that they rely 
largely on signatures from known attacks to detect similar patterns, and may be 
ineffective against new threats for which the related signatures are not available.   

• Unified Threat Management (UTM): These are single protection units in the form of a 
device or platform that integrates various mechanisms such as antivirus, IDS/IPS and 
firewalls. The concentration of threat management in a single point can be efficient in 
terms of monitoring and training, however it comes with the disadvantage of creating 
a single point of failure. Additionally, the incorporated security solutions may not fit 
the needs of the individual network components.  

• Security Information and Event Management (SIEM): SIEMs are systems collecting 
information and identified events from various sources such as IDS/IPS, firewalls, 
antivirus and combining them with network log data, to generate insightful 
correlations concerning the whole system. They are mainly rule-based, however 
some modern SIEMS can establish a normal activity baseline from gathered data, 
and use this for anomaly detection. The deployment and configuration of a SIEM is a 
very demanding task, requiring the exhaustive analysis of the organisation’s 
infrastructure and engineering specifications, the allocation of adequate hardware 
resources, as well as the customisation of provided dashboards and visualised 
analytics to fit the organisation’s needs. Additionally, a SIEM creates the requirement 
for dedicated staff that will monitor and review the emerging alert data, making it a 
non-viable solution for smaller organisations with limited resources.   

• Log Management System (LMS). These are software systems that aggregate and 
store logs from multiple network endpoints and systems into a single point. LMSs 
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allow the administrators to view and correlate log data from disparate systems. They 
have not been designed solely with cybersecurity in mind, as they are also a useful 
tool for IT management, DevOps & operations and auditing. In comparison to SIEMs, 
they provide a more lightweight, easy to deploy solution for proactive log monitoring. 
New age LMSs, such as XpoLog16  provide, among others, features for AI-enabled 
error detection – a task closely related to identification of malicious activity through 
anomaly detection or pattern identification -, real time alerts, smart log analysis and 
more.  

 

4.3 Current Status and Challenges 

The previous section presented methodological and technical approaches that can help 
healthcare providers towards putting in place a preventive and proactive strategy to secure 
their infrastructures and the data and information owned or exchanged. Yet, outlining an 
effective and realistic cybersecurity strategy with the aid of the appropriate software can be a 
challenge, even with the best practices and guidelines available.   
Even when targeted tools are used, administrators struggle with the overwhelming volume 
and diversity of information that needs to be monitored in order to identify which incidents 
need to be reviewed and with what priority [76]. Research and development activities to 
enhance the functionalities of cybersecurity software are constantly in motion to keep up with 
the evolving threat landscape and the accelerating needs of the current connected world, a 
reality affecting also healthcare providers.   
In a policy-definition level, a cybersecurity expert shall consider the gap between “knowing 
what to do” and actually “doing what needs to be done”.  As highlighted in [74] it is common 
for outlined security policies to not reflect needs and limitations deriving from day-to-day 
organisation operations, thus resulting in employees perceiving these policies as a barrier to 
actual work and finally ignoring them.  
Some truly significant barriers every organisation faces in the remediation and mitigation of 
cybersecurity incidents, are enlisted in [74] and include among others the inherent difficulty 
of addressing the vast number of emerging and new threats, the lack of personnel with the 
appropriate background in cybersecurity, the inadequacy of financing for cybersecurity, the 
management and monitoring of endpoints in infrastructures with numerous interfacing 
devices, the complexity of network infrastructure and more. An interesting observation from 
the same survey is the confidence of security experts against these barriers. This can be 
interpreted in two ways: either as grounded confidence reflecting the strong understanding 
and knowledge of the respondents, or as over-confidence that could lead to superficial 
handling and underestimation of threats.  
The human factor is adding perplexity towards achieving a satisfactory degree of 
cybersecurity in the healthcare domain due to lack of awareness. In [80] it is highlighted as a 
significant hindrance towards fighting two of the most prevailing threats in the domain - 
phishing and theft of data/equipment. The reason for that lays on multiple factors:  the lack of 
technical knowledge among personnel in the healthcare, the stressful working environment, 
working in shifts and the communication gap between IT and clinicians can be blamed for 
the increased vulnerability towards these two threat types. Surprisingly, in [74] a high 
number of respondents (18%) reported that their healthcare organisations did not conduct 
phishing tests. This is a highly concerning result, given that the e-mail is the prevailing 
means of communication and data exchange, and is widely exploited by malicious actors for 
social engineering attacks, thus leaving the healthcare organisations exposed to attacks. 
Usage of privacy-preserving technologies brings new challenges, both in terms of theoretical 
considerations and technology limitations, as pointed out in a comprehensive study be the e-
Sides project [79]. Indicatively, they mention the trade-off between privacy and usefulness of 
data in anonymisation approaches, as well as the irreversibility of anonymisation over data. 

                                                 
16 https://www.xplg.com/ 

https://www.xplg.com/


 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 52 of 86 

Particularly in the anonymisation of medical data, there are additional technical difficulties to 
be considered, caused by the data format (e.g. free text, indirect descriptions). Techniques 
such as encryption can protect the actual message of a data flow, but may leave the flow 
metadata exposed, such as the size of data packets and network protocol [76]. Another 
factor that should be considered, is the computational cost added by encryption, both for the 
actual codification of data but also for the inspection of encrypted traffic. Finally, the authors 
of [79] state that some of the presented privacy-preserving technologies, namely policy 
enforcement, accountability and transparency and user control technologies have not yet 
reached the required maturity to be widely adopted and integrated in other systems, and are 
still subject of research, while noting that  the individual techniques are inadequate on their 
own and shall be combined in holistic solutions to provide the desired privacy. 

4.4 Data Analytics for Cyber Threat Detection 

It becomes evident that the cybersecurity landscape in healthcare is changing; new 
technologies are leveraged to help healthcare organisations raise defences against cyber 
threats, yet new challenges emerge in this process. Apart from the policy-level 
considerations discussed in the previous sections, technical capabilities and limitations 
should not be overlooked. The tools presented in Section 4.2 are in principle domain 
agnostic and need to be properly adapted to the specific needs of a healthcare 
infrastructure, more so in the aforementioned evolving landscape. The current section 
presents data analytics algorithms and methods for the detection of threats and abnormal/ 
malicious behaviour that can be valuable in assisting healthcare providers safeguard their 
assets. 
Generally, the detection of cyber threats and attacks is a task that can be approached from 
two points of view [81][82][83]. 
The first approach aims at detecting suspicious activities based on previously known attacks 
[81]. It is called misuse detection and is often used interchangeably with the term 
‘signature-based detection’. The reason is that misuse detection relies heavily on attack 
profiles (i.e. signatures) that are created for future reference, whenever a new attack is 
identified in a system. These signatures can be either generated internally or come from 
external sources and other organisations. Misuse detection can be implemented through 
knowledge-based or ML-based techniques.  In one of the most popular knowledge-based 
methods, the system uses a set of user- and predefined rules to perform signature matching 
between the packets under inspection and the signatures in the catalogue, and decides on 
allowing or dropping the inspected packet. Finite state machines and expert systems can 
also be employed for knowledge-based detection, using state transitions and pattern 
matching respectively. ML-based misuse detection is enabled by supervised machine 
learning techniques, mainly classification and regression, where data from known attacks 
are used for model training. Some indicative algorithms for misuse detection found in 
literature are: Back Propagation Artificial Neural Networks (BP-ANN), Decision Trees (DT), 
Support Vector Machines (SVM). The advantage of misuse-based systems is that when it 
comes to known attacks, they are very accurate and demonstrate a low rate of false-
positives. However, they are incapable of identifying new attacks, while their dependence 
from signature catalogues creates the demanding requirement for regular knowledge base 
updates and maintenance. Another limitation is set by the fact that due to fear of exposing 
system vulnerabilities or other organisation-significant information, organisations that have 
been under a new attack may not report instantly if at all. Some of the most widespread 
commercial IDSs and SIEMs are mainly rule-based systems. 
The second attack detection approach lays on the assumption that a malicious actor 
demonstrates different behaviour from a normal user [MH16], and tries to identify deviations 
from a normal activity baseline. This is called anomaly-based detection and relies mainly 
on behavioural patterns that have been identified as normal. This approach can be 
implemented with three main techniques: statistical-based, knowledge-based and ml-based 
[84],[85] and [86]. In statistical-based anomaly detection a reference profile under normal 
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conditions is created. This profile is used for the assessment of the deviation of the real 
captured traffic from normality, and the result of the comparison is reflected in an anomaly 
score. When this anomaly score surpasses the defined threshold, an alert is created. 
Univariate, multivariate and time-series are mentioned for the modelling purposes in 
detection systems. In knowledge-based anomaly detection, previous states of the system 
are used for behavioural modelling or the extraction of rules that will be employed for the 
classification of packets. This technique requires a great amount of information and human 
effort to function properly. The third technique towards anomaly detection takes advantage 
of the analogy between unsupervised learning that does not require previous knowledge and 
detecting unknown attacks for which we have no evidence. However, some authors have 
proposed the mixture of supervised and unsupervised algorithms in order to increase the 
accuracy of their models. Some indicative machine learning (ML) algorithms that have been 
mentioned for anomaly detection are: Decision Trees, Random Forests, k-NN, Support 
Vector Machines, SOM Neural Networks, k-means clustering, Isolation Forests etc. 
Anomaly-based systems perform with high accuracy in detecting unknown attacks in 
systems demonstrating static behavioural patterns [84], but do not achieve the same results 
in other cases.    

Table 7: A taxonomy of the most common algorithmic families used for anomaly detection. 

 Supervised Unsupervised Semi-Supervised 

Statistics  ARMA, VARMA, 
ARIMA, CUSUM, 
Exp. Smoothing, 
MCD, EDM, etc. 

 

Knowledge-
based/ 
Computational 
models 

Rule-based 
expert systems 

 FSA, Markov, HMM 

Machine Learning Decision Trees, 
Random Forest, 
SVM, ANN, 
Bayesian 
Networks  

k-means, SOM, 
EM, LOF, k-NN, 
Isolation Forests 

One-class SVM 

Deep Learning RNN, LSTM, 
GAN, GRU 

 RNN, LSTM, GAN, GRU 

 
A common taxonomy of the analytics methods that cope with anomaly or misuse detection in 
a time series contain three broad categories: supervised, unsupervised and semi-
supervised.  

4.4.1 Supervised Methods 
Supervised learning techniques assume the availability of a dataset where each input 
pattern has been labelled either as "normal" or "abnormal". This dataset is used to train a 
classifier, which is then able to determine the right class for any unseen data instance.  
Unfortunately, supervised-based techniques, suffer from two major drawbacks when it 
comes to anomaly detection. First, they rely heavily on experts’ domain knowledge regarding 
the characteristics of an anomaly, which should be provided in the form of labels in the 
dataset. This is extremely difficult to happen when the data available are vast, and it gets 
even harder to keep this dataset up-to-date. Second, the anomalous instances are usually 
far fewer than the normal ones in the training data and this imbalance raises several issues 
[87].  
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In the context of the ASCLEPIOS needs for anomaly detection over data access patterns, 
employing supervised learning techniques is not considered a feasible option, therefore such 
methods are not extensively discussed. The most common algorithms of this category are: 
Support Vector Machines, Decision Trees, Random Forest, Artificial Neural Networks, Rule-
based classifiers, and Bayesian networks [88]. Apparently, for this type of techniques the 
distinction between anomaly and misuse detection makes little sense.  

4.4.2 Unsupervised Methods 
Unsupervised learning techniques are capable of detecting outliers in an unlabelled dataset 
under the assumption that the majority of the instances are normal. So, they are looking for 
instances that seem to fit least to the remainder of the dataset. As such, they are mostly 
suitable for anomaly detection tasks. Most of these algorithms employ statistics to detect 
divergence in mean or clustering techniques based on similarity measures.  
On the field of statistics, anomaly detection in time-series analysis is based on regression 
models like those of the family of moving average, such as the autoregressive moving 
average (ARMA), the autoregressive integrated moving average (ARIMA), the vector 
autoregression (VARMA), the Seasonal ARIMA (SARIMA) and others. Additional statistical 
methods include the CUmulative SUM Statistics (CUSUM), the exponential  smoothing, the 
Minimum Covariance Determinant (MCD), the Gibbs Test, the Extreme Studentised 
Deviate(ECD), etc.[89][90][91] 
A more recent approach is the E-Divisive with Medians algorithm (EDM) [92], also known as 
Twitter’s Breakout detection method since it is applied on the Twitter social network to 
monitor user experience. This approach estimates the statistical significance of a breakout 
through a permutation test and returns a list of breakout points. 
On the other hand, clustering approaches group similar data instances based on some 
similarity measure. Most common approaches rely on distance as a measure, such as the k-
means, the k-Medoids or the Expectation-Minimisation(EM) Clustering algorithm. There are 
also a number of popular density-based or neighbour-based clustering methods, like k-NN,  
Local Outlier Factor(LOF) and Isolation Forest [93]. 

4.4.3 Semi-supervised Methods 
Semi-supervised techniques are considered to be the most efficient approach when it comes 
to anomaly or misuse detection in the big data era.  They construct a model representing 
normal behaviour from a given normal training set, and then test the likelihood of a test 
instance to have been generated by the learnt model. If the probability of having been 
generated by the given model is very low, then the sequence is marked as anomalous.  
This category includes computational models like the Finite State Automata(FSA), Markov 
models and Hidden Markov Models (HMMs) [94][95], as well as Machine Learning binary 
classifiers like the One-Class SVM. 
In more recent studies, deep learning solutions such as the Generative Adversarial 
Networks (GANs), Long ShortTerm Memory (LSTM) and Gated (GRU) recurrent networks 
have emerged as possible competitors in this category. 
The use of autoencoders and GANs is demonstrated in the work of Akcay et al.[96] which is 
based on an adversarial training architecture in the computer vision domain. A simple LSTM 
approach is proposed in [97] for anomaly detection in ECG time signals, whereas GRUs can 
address the problem of missing values in time series analysis according to Che et al [98]. 
 
This family of techniques is also the best candidate to deal with multivariate time series. 
There are some cases, where the goal to detect one entity’s anomalies goes through the 
evaluation of multiple time-dependent variables and the examination of how one affects the 
other. In practice, this is a very challenging and demanding task since the underlying 
correlation between the variables can be very complex and difficult to capture. Nevertheless, 
it is more intuitive, effective and efficient to detect anomalies at the entity-level rather than 
the metric-level (i.e. per each single variable). 



 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 55 of 86 

In this direction, several publications have shown the potential of semi-supervised deep 
learning methods before to address this challenging task with state-of-the-art performance 
[99]. 
To name a few, Malhotra et al. [100][101] proposed a stacked LSTM approach trained on 
normal data where the resulting prediction errors are modelled as a multivariate Gaussian 
distribution. This distribution is then employed to assess the likelihood of anomalous 
behaviour. When multiple input sequences are present, then the joint distribution of the 
prediction errors is used. Su et al. [102] builds on top of GRU RNNs by utilising key 
techniques such as stochastic variable connection and planar normalising flow to reconstruct 
input data by representations, and use the reconstruction probabilities to determine 
anomalies. 
On a side-note, several key players in data analytics, like Twitter, Yahoo or Facebook have 
developed their own techniques and frameworks for time-series analysis and anomaly 
detection. For instance, Yahoo has introduced an open-source framework, called EGADS, 
that consists of three main components: a time-series modelling module, an anomaly 
detection module and an alerting service [103]. Its architecture promises scalable, accurate 
and automated anomaly detection. From an algorithmic point of view, it combines several 
algorithms from statistics and machine learning in various levels in order to reach a 
satisfactory performance. Facebook’s data science team, on the other hand, developed also 
an open-source solution for time-series forecasting called Prophet17. Prophet, due to its 
simplicity, has found many supporters in research community who utilise it for outlier 
detection purposes with very promising results [104]. Twitter’s Breakout detection method 
has been already described in 4.4.2  

4.4.4 Ensemble learning Methods 
A recent trend in machine learning is the application of various algorithms, each with its own 
strengths and weaknesses, onto the same problem, thus constructing a set of models 
instead of one best model. These models, then, decide with some combinatorial approach 
(e.g. majority voting) what the best outcome will be. Apparently, the algorithms provide 
diverse predictions and this is exactly what is exploited by this method, which is called 
Ensemble learning. 
According to [105], single model algorithms may suffer from three different drawbacks:  

• statistical problem - appears when the space of hypothesis is too large for the 
amount of available training data. This results in several algorithms with similar 
accuracy, followed by the risk of choosing one that will not predict future data points 
well;  

• computational problem - many of the known algorithms are not guaranteed to find the 
global optimum; 

• representation problem - results from the hypothesis space not containing any model 
that is a good approximation of the true distribution. 

 
These issues may also appear in anomaly or misuse detection in time series and can be 
addressed by ensemble learning approaches. Examples of this methodology include 
supervised and semi-supervised methods from both statistics and machine learning families 
[106][107][108][109]. 

4.5 Data Visualisation for Cyber Threat Detection 

Collection and analysis of data coming from network logs, cybersecurity tools such as 
IDS/IPS, firewalls and antiviruses, can assist an organisation in gaining knowledge over 
regular traffic and activities, understanding user behaviours and timely identifying any 
suspicious actions. The experts are able to monitor data flows, alerts triggered in 
cybersecurity systems and other types of data, and by following intellectual processes based 
on their expertise and experience, convey patterns and signals of abuse.  

                                                 
17 https://github.com/facebook/prophet 
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However, the vast volume and dynamicallity of available data make it extremely demanding 
and time-consuming for a single person or a group to effectively monitor incoming data and 
single out any attack indication. It could be stated that employing data analytics methods like 
the ones described in the previous section can facilitate this process, yet the complexity of 
the underlying problem prohibits automation through data analytics methods. The output of 
such systems still needs in most cases to be reviewed and handled by the administrator, 
which makes it even more important to reduce the number of false positives generated by 
the employed methods. 
[110]focuses on the challenging task of monitoring large-scale networks to detect suspicious 
behaviours and patterns and note that it is hard for experts to keep up. The authors propose 
the utilisation of visualisation techniques to assist administrators in the identification of 
interesting events as well as to limit the attributes -and consequently the amount of data- 
they need to review only to the actually meaningful. Among others, they study the 
effectiveness and appropriateness of various visualisation views (e.g. area charts, Gantt 
charts, Treemaps, network graphs) in the setting of network management and anomaly 
detection. [76] also highlight the value of visualisations in cyber threat monitoring systems, 
for increased awareness and modelling purposes in critical infrastructures, zooming into 
healthcare organisations. They claim that the lack of situational awareness on the side of 
cybersecurity experts within healthcare organisations is a weak spot in cyber-attack 
prevention and design a system that allows the operator to manipulate visualisations and 
configure the parameters in order to get a better view of the organisation’s infrastructure, 
connected devices and more. 
Some attack types, like APTs, are based on slowly gaining access to systems and remaining 
unattended for big periods of time, rather than conducting sudden invasions that would 
cause disruptions easy to be captured by the human eye. With the help of visual analytics, 
cybersecurity experts and administrators can use this increasing availability of information to 
their advantage. They can generate graphical representations that provide an intuitive view 
of network communication data and finally make sense out of this information storm. 
Visualisation in cybersecurity finds two main uses: firstly, efficient monitoring - either of the 
high-level network structure through aggregated data or real-time monitoring through 
streaming data-, and secondly, visualised anomaly detection as deviation from usual user 
behaviour. 
In [111] the authors conducted an extensive survey on methods and systems of 
visualisation-enabled anomaly detection in four domains where it has significant value: 
transactions – fraud detection -, travelling – irregular travelling direction, hotspots, patterns 
detection-, social interactions – criminals, fraudsters detection- and network communications 
- cybersecurity. They noted that user behaviours can derive from direct or indirect user 
actions, as is the case of cyber-attacks conducted by network nodes but orchestrated by a 
malevolent user. Afterwards they provided an interesting categorisation of anomalous 
behaviours into egocentric and collaborative, inspired by point and collective anomalies 
respectively [89]. Typical egocentric anomalous behaviours in cybersecurity include hijacking 
network traces, a port scan, and unusually high traffic volume on a machine. As collective 
behaviours, we can see any attack involving more than one information exchange between 
machines, such as botnets and periodic attacks.  
Glyph visualisations are distinguished as the prevailing type for egocentric anomalous 
behaviours, sequence visualisations as the most appropriate for the collaborative anomalies, 
while graphs are designated for both types of anomalies [111]. Sequence visualisations can 
be used to explore network flows and alarms evolution in time and identify periodic patterns 
and abnormal trends. Regarding graph representations, matrices have been used in 
egocentric anomalous behaviour detection, where outliers can be indicated with a different 
node colour [112].An interactive decision tree in [113] allows the analyst to deduce 
unlabelled anomalies from areas with sparse training data which include high-density 
clusters. Collective communications have been visualised as node-link diagrams in [114] 
[].Other examples of collective anomalous behaviours detection graphs include bundle 
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diagrams of port activity for scanning attack detection, ring-based representations of alerts 
for identification of critical attacks [115] []. 
 
Some visualisations offer interaction features facilitating better tracking and monitoring of 
network communications, while allowing the analyst to explore data at the preferred 
granularity level, or group events in a handy way to easily come back to them later. In [116] 
[] the user can store, view together and easily correlate flagged events. Exploration of visual 
elements in different levels of granularity is also a favourable asset for a visualisation tool. 
This includes zooming on the graphic area [115] [], clicking on nodes to extend the graph 
and study the effects of other nodes on the suspicious one, aggregate IPs according to 
variables such as prefix and country [117] – a useful functionality for big and complicated 
organisations and networks. Selection of visualised information through available filters [112] 
for various network traffic parameters (e.g. IP address, ports, protocols, display type) can 
also assist the analyst. Finally, the ability to export visualisations can also be considered as 
a helpful interaction.  

4.6 Privacy Considerations 

Logs are a veritable source of information for cybersecurity systems. They are used for the 
timely identification of security incidents, policy violations and malevolent activities, but also 
for auditing and forensic analysis [118]. Certain decisions shall be made regarding the 
information of data that should be logged, both for practical reasons regarding storage 
resources and management, but also for safeguarding the privacy of involved persons. Logs 
are likely to include user IDs, IPs, location and other information that constitute personally 
identifiable information; thus, they shall be handled accordingly. Unfortunately, the complete 
removal or anonymisation of these data would render logs useless for monitoring and 
forensics. The General Data Protection Regulation (GDPR) can provide guidelines for 
privacy-aware handling of log data and proposes taking certain precautions, in order to 
ensure transparency and security18. Some good practices towards this direction are the 
following: 

• The development and application of policies regarding the duration for which these data 
shall remain at the disposal of the organisation: The cybersecurity department shall have 
a clear understanding of the information contained in the logs, and in cooperation with 
other departments assess the period of time this information is truly valuable for 
cybersecurity purposes. Additionally, appropriate practices shall be designed and 
activated for the disposal of these data after the defined period. 

• Encryption of data and access policies enforcement: Encrypting log data that will be 
persisted, is one of the most popular ways for ensuring security. The employment of 
access policies that will grant access only to eligible personnel adds a second layer of 
security against any abusive activity. 

                                                 
18 https://logdna.com/best-practices-for-gdpr-logging/ 
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5 ASCLEPIOS Cybersecurity, Encryption and Access 
Analytics for Healthcare Providers 

5.1 Motivation and Scope 

The previous section provided a landscape review of current cybersecurity challenges in 
healthcare and presented frameworks, methods and tools that can guide and assist 
healthcare providers in their efforts to secure their infrastructures and the data and 
information owned or exchanged. Some of the discussed aspects concern well known cyber 
threats and attacks which are handled, either in a defensive or in a proactive way, by 
available cybersecurity tools. Their characterisation as well-known does not imply that they 
are always easy to detect, but merely that established workflows are foreseen on how to 
approach them. As highlighted, an effective and holistic cybersecurity strategy further entails 
detection of abnormal patterns across the voluminous and heterogeneous data generated 
daily by an organisation’s systems in order to timely identify and handle malicious, or 
otherwise insecure behaviours. 
ASCLEPIOS implements advanced data access control mechanisms and leverages 
powerful cryptographic schemes and trusted hardware capabilities to enhance the security 
level of healthcare services and enable healthcare providers take advantage of cloud 
computing. The ASCLEPIOS framework can be used to instantiate innovative and inherently 
secure workflows for sharing data and insights over data. Details over the inner workings of 
involved tools and services are provided in the corresponding technical deliverables.  
In the context of Task T2.4 it is important to explain that ASCLEPIOS brings into the 
everyday operations of healthcare providers a set of services and user interactions that out 
of the box cybersecurity solutions cannot fully address, since there are no established 
baselines and rulesets to provide insights about whether operation is smooth or anomalies 
are experienced in terms of user and system behaviour and interactions. ASCLEPIOS 
services by design enhance the cybersecurity level of the organisation and allow healthcare 
providers to leverage CSP capabilities. In this context, it is believed that developing targeted 
analysis processes to complement these new services with monitoring mechanisms will 
significantly facilitate their adoption by the healthcare providers and will offer valuable 
insights about the way data access operations take place through them and allow healthcare 
providers to timely detect and handle abnormal behaviours.  
This section presents the ASCLEPIOS Cybersecurity, Encryption and Access Analytics for 
Healthcare Providers (CEAA) component which is responsible for delivering insights about 
encryption and decryption activities, data access patterns, normal and abnormal behaviours, 
cyber threats and security incidents. It should be stressed that the focus of the CEAA 
component is not on implementing a general-purpose intrusion detection system, as many 
such commercial solutions are available. Instead, CEAA focuses on providing targeted 
insights regarding data access patterns that emerge from the usage of CSP operations by 
healthcare providers who leverage new data encryption, decryption and fine-grained access 
control mechanisms, as the ones offered by the ASCLEPIOS framework. Insights targeted to 
such operations and pattern identification shall help healthcare providers that utilise the 
ASCLEPIOS framework gain a deeper understanding of their system and the way data 
access services are used and ultimately build threat preventive mechanisms around their 
infrastructure and data.  

5.2 Design Methodology 

5.2.1 Definition of Target Usage 
The envisioned usage of CEEA within the ASCLEPIOS framework spans across the 
following three cross-cutting high-level axes: 
 
Axis I: System Monitoring 
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CEAA will help healthcare providers understand the way their data handling processes are 
structured, how they operate and how they are utilised. Towards this goal, CEEA will provide 
information regarding the data interactions performed daily and the usual data search, 
access and processing needs, how these differ among stakeholders and among different 
organisation departments, how they evolve over time etc.  
This will primarily address the user’s need to have an overall view of the system. Through 
this monitoring, CEAA will provide to the user metrics that capture the overall system status 
and show whether the underlying services are used as expected, but will also highlight 
cases that should be investigated more closely and guide the user to inspect possible 
deviations from normal operations – not necessarily linked to malicious actions. 
 
Axis II: Behavioural Analysis and Incident Detection and Investigation 
CEAA will help healthcare providers identify abnormal usage behaviour, either malicious or 
otherwise insecure, by providing targeted information, metrics and analysis results. As 
explained in previous sections, this is not a straightforward task and it becomes apparent 
even in the attempt to define what constitutes abnormal and/or insecure behaviour.  
As a first note, dependence on the underlying organisation’s interactions and infrastructure 
should be considered. It may be the case that cross-department data searches are unusual 
and therefore indicative of a data breach attempt or could be part of the normal workflow. 
Successive failed attempts to retrieve a certain data asset could indicate a brute force attack 
to acquire information but could also be caused by users who forget their credentials. At the 
same time, a malicious attempt to acquire data may have different impact on the 
organisation depending on the one hand on the specific data asset and on the other hand on 
the way it is protected, e.g. acquiring a ciphertext that cannot be further used may not be 
considered by the administrator equally important as gaining access to unencrypted 
(plaintext)  information. 
CEAA will provide the means both to easily locate abnormal behaviours and to further 
explore their root cause. Abnormal behaviour in this respect could be of two distinct types: 

1. The behaviour of a malicious actor attempting an attack against the system, e.g. 
aiming to compromise the availability of resources or to extract private information 

2. The behaviour of a benign user who is having difficulties in using the services in an 
appropriate way or is, knowingly or not, interacting with a system in an 
unconventional way which could make it (or the underlying data) vulnerable to 
attacks 

 
Axis III: Enhancement of the provided services 
The ASCLEPIOS services form an innovative framework for data safeguarding and secure 
exchange of data and knowledge that leverages cloud computing. As such, during the 
experimentation with the framework, valuable insights will emerge regarding the efficiency of 
the underlying services and their technical limitations. Having relevant metrics, e.g. time 
needed to perform an operation on encrypted data, mostly used data workflows, number of 
registered users and key generation requests etc. shall be very useful towards improving the 
system design and thus the user experience. These insights are mostly related to scalability 
issues and performance and will help identify bottlenecks and other issues in the data 
processing pipelines. Relevant metrics will be also be valuable from the CSP perspective, as 
they could indicate the need to scale up/down or migrate the deployed services, thus helping 
in resource planning. 

5.2.2 Identification of Input Sources and Data 
Having set the scope of CEAA, the next step is to examine the information that is/ will be 
available to achieve the defined goals in the ASCLEPIOS context. CEAA will provide insights 
pertaining to the way the ASCLEPIOS data handling services are used and will therefore act 
as a custom log analytics tool for the information coming from other components of the 
ASCLEPIOS architecture documented in [21]. This includes the following high-level services: 
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• Searching for and retrieving data through the application of the Symmetric 
Searchable Encryption (SSE) scheme (described in D2.1 [119]) 

• Searching for and retrieving data through the application of combined SSE and 
Attribute-Based Encryption (ABE) schemes (described in D2.2 [120]). This can 
actually be considered as an enhancement over the search functionality which 
utilises only the SSE scheme. 

• Applying functions on encrypted data without revealing the original information 
through the application of the Functional Encryption (FE) schemes (described in 
Section 3 of the current deliverable) 

• Applying multi party computations based on the privacy preserving analytics 
mechanisms (the exact mechanisms of which will be reported in D2.4) 

• Combining ABAC Attribute Based Access Control (ABAC) and ABE to provide two 
different layers of authorisation control, i.e. the ABAC layer to permit or deny access 
and/or editing rights to (encrypted) EHRs; and the ABE layer which handles the way 
sensitive data should be decrypted (described in D3.1 [121] and refined in the 
subsequent WP3 deliverables, i.e. D3.2 [122] and D3.3 [123]) 

CEAA hence needs to monitor all interactions between the different architecture layers and 
components but also within layers in certain cases, e.g. when search (through searchable 
encryption) is used in order to identify the inputs that need to be fed to an analytics function 
(offered through functional encryption). Although the above services are mostly seen from a 
consumption perspective, they also entail the encryption operations that are required in 
order for the information to be made available for direct retrieval, search and function 
application. Hence, CEAA should be able to receive and process all logs generated by the 
aforementioned services and all foreseen interacting entities. The challenges stemming from 
this requirement in the current context, i.e. the evolving ASCLEPIOS framework, the privacy 
and security considerations, and the lack of established logging processes, will be further 
discussed in Section 5.3. 

5.2.3 Definition of Metrics 
Having identified the log data sources, i.e. the broad data content that will be made 
available, and the high-level goals that CEAA should achieve, the next step towards 
designing the CEAA solution is to outline the insights that should be provided. Towards this 
goal, a set of metrics that the security analyst, i.e. the CEAA user, would use to assess the 
system status along the three axes described in Section 5.2.1, were drafted. It should be 
stressed that even though certain characteristics of the ASCLEPIOS services affecting the 
information that is available to CEAA are known, it was decided that the metrics formulation 
process should not be limited to them in order to provide more generalisable insights. The 
metrics were compiled to help flesh out the way the three core CEAA targets can be 
accomplished and therefore it was preferred to initially approach the underlying analysis 
problem in a more holistic and extensible way, even if the implementation will always need to 
follow the design decisions of the framework as a whole. 
Even though as explained the CEAA goals are grouped under three axes, the axes are 
cross-cutting hence most of the identified metrics are relevant across all of them and the 
difference lies in the way the information is interpreted or visualised and combined with other 
data to address a different need.  
As a last note before providing these metrics that served as initial design guidelines, it is 
considered logical that the user would want to define the timeframe of the provided metrics 
and analytics in a flexible way, e.g. the current month, last month, last week, from [specific 
datetime] to [specific datetime], etc. Therefore, most of the metrics refer to a specific 
selected timeframe.  
 
ASCLEPIOS agnostic metrics 
This set of metrics is relevant in any cybersecurity system and thus also to CEAA  

1. Number of requests the system received in the corresponding timeframe 
2. Requestors' OS distribution 
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3. Distribution of HTTP response codes 
4. Distribution of requesting agents (browsers/applications) 
5. Requests’ distribution per day of week 
6. Requests’ distribution per hour of the day 
7. Number of requests made within the organisation’s normal working hours 
8. Distribution of requestors’ origin country(based on IP) 
9. Distribution of used protocols 
10. Expected incoming and outgoing traffic  
11. Number of encountered (unique) IPs 
12. Mostly used ports (ports distribution) 
13. Most used system services (traffic distribution across services) 
14. Expected sequences of requests (distribution of request sequences) 
15. Number of (un)authenticated requests made to the system 
16. Average number of unique users interacting with the system daily 
17. Number of unique applications interacting with the system services 
18. Number and distribution of successful/failed requests 

For some of the above metrics, derivative information is also considered, but not listed here 
exhaustively. As an example, it is possible to extract from metric 11 referring to number of 
unique IPs, the most commonly encountered IPs or the IPs that have made more than X 
requests in a given timeframe and this can lead to the definition of new metrics. 
Furthermore, it should be highlighted that some of the aforementioned metrics are the result 
of an analysis (e.g. expected traffic), going beyond descriptive statistics. Additionally, 
depending on the actual usage of the CEAA component, some metrics may be “translated” 
to more appropriate ones for the target user. As an example, the distribution of ports in the 
requests is interesting for the security analyst and also from the CSP perspective, but a chart 
presenting this information from a more business-oriented perspective (e.g. distribution of 
requests per ASCLEPIOS services that run in known ports and requests targeting non-
exposed ports/services) could be more intuitive in some cases.  
 
ASCLEPIOS specific metrics 
This set of metrics targets functionalities provided by the ASCLEPIOS framework. 
In order to avoid repetition, the 18 metrics defined above are also relevant here but referring 
either to a specific service (e.g. Number of requests made to the SSE service) or to the 
comparison among services (e.g. Number of requests each of the available ASCLEPIOS 
services receives / Distribution of requests between the SSE and FE services). It should be 
stressed though that even if the metric in these cases is almost the same, the extracted 
insights may differ significantly due to the inherent services’ differences but also due to the 
underlying workflow, e.g. a failed ABAC request would correspond to a situation different 
than a failed ABE request (which would happen after a successful ABAC request).  
There are also metrics that are service specific and were not included in the previous ones, 
as follows: 

1. Number of "break-glass" requests (i.e. requests made with a special attribute denoting 
that there is a situation critical for a human life and therefore should be accepted) 

2. Number of requests making use of attributes that the organisation has flagged as special 
(and thus need to be monitored more closely) 

3. Distribution of the category of the policies that were violated in failed ABAC requests 
4. Distribution of requests to the functional encryption service across the provided functions 
5. Distribution of requests to the searchable encryption service across the provided search 

alternatives (e.g. range queries vs keyword queries vs complex queries) 
6. Volume of the data that were encrypted 
7. Volume of the data that were encrypted per service 
8. Volume of the data that were retrieved 
9. Distribution of ASCLEPIOS applications through which requests are made 
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10. Role distribution among the users performing requests (e.g. physician, nurse, 
researcher, …) 

11. Distribution of other selected attributes (regarding the requestor, the context or the 
requested asset) among the performed requests 

12. Distribution of departments from which requests originated 
13. Number of requests that are cross-department (i.e. data encrypted by a specific 

department of the healthcare organisation are requested by another department) 
14. Number of requests originated from entities external to the organisation 
15. Distribution of search requests along the various data assets 
16. Average execution time of a search/retrieval/function application request 
17. Percentage of FE requests that came as a follow-up to an SSE request 
18. Granularity distribution of the data that were the target of the request (e.g. aggregate 

data vs a specific EHR) 
19. Increase in failed requests per service for a given timeframe 
20. Average/maximum number of successive failed requests to a specific service 
21. Number of requests performed from the same IP in a given timeframe 
22. Maximum number of successive failed requests preceding a successful request 
23. Average number of requests to a specific function of the functional encryption service 

performed daily 
24. Average number of requests to a specific function of the functional encryption service 

from the same requestor performed daily 

 
All defined metrics can be further refined based on contextual information not included in the 
initial definition, i.e. specific filters can be added to the above metrics leading to a different 
measurement that could be used to examine different aspects. As an example, examining 
whether the discussed requests were performed on a weekend would essentially lead to 42 
(18 + 24) additional metrics. Obviously, an exhaustive list of metrics cannot be compiled and 
even if it were possible, it would be inefficient for the user to keep track of so many metrics 
at the same time.  
The reason for generating these metrics was to brainstorm and provide some more concrete 
insights on the information that needs to be extracted from the services’ logs (since many of 
the above metrics are essentially different computations performed on the same underlying 
data) and the way it should be processed in order to be valuable for the user. 
 

5.2.4 Requirements and Considerations 
Compiling an initial set of metrics that the CEAA should monitor helped identify the type of 
information that should be monitored and the interactions between the ASCLEPIOS tools 
that can provide useful insights regarding the security level of the system. 
As explained, the process of defining the initial metrics was deliberately not guided by the 
status of the underlying services. The goal was to collect an initial set of requirements 
regarding the information that the CEAA user would want in order to have a better 
understanding of the data access patterns, including encryption and decryption activities but 
also general information about the network usage, which would allow the smooth integration 
of ASCLEPIOS functionalities into the healthcare organisation’s operations. 
Having completed this process, requirements were extracted regarding the data that need to 
be collected, the data processing methods foreseen and then examine whether any 
technical, security or privacy issues arise. This analysis highlighted certain aspects that need 
to be considered before proceeding with the concrete CEAA design and implementation: 

1. The underlying services are subject to change: It should be stressed that the 
ASCLEPIOS services have a strong research orientation and the exact way in which 
they will be combined and adapted to perform specific functions within real-world use 
cases in the healthcare domain will be further explored as the project progresses, 
naturally causing them to evolve. This entails potential implementation changes 
which could also affect the CEAA functionalities either directly (e.g. a change in the 
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way information is logged) or indirectly (e.g. through extending the integration of two 
services in order to enable an additional workflow, thus creating the need to add new 
metrics)  

2. The information that is logged and the way it is processed may pose security and 
privacy risks: As briefly discussed in Section 4.6, logs may reveal information that is 
either sensitive or can be used to expose system vulnerabilities or help reverse 
engineer some of its processes. Especially within the ASCLEPIOS context, it is 
important to ensure that an appropriate balance is found between the two types of 
security, i.e. to ensure that it is both possible to put in place monitoring and threat 
detection mechanisms and also to do so in a way that does not impose further 
vulnerabilities from a privacy or security perspective. Each ASCLEPIOS service-
identified metric pair was therefore examined to understand the risk in exposing the 
corresponding information in contrast with the security risk that could go unnoticed if 
it were not available.  

3. There are technical limitations regarding the information that can be logged and 
provided by the underlying tools: Apart from security and privacy concerns stemming 
from revealing (through logging) information regarding the inner workings of some 
services, there are also technical limitations that may hinder the extraction of such 
information altogether. As an example, it may be the case that the way the policy 
evaluation process is implemented, no granular information can be provided 
regarding the reasons a request was denied. Since the ASCLEPIOS services are 
designed primarily to ensure privacy and security in data access and exchange, it 
may be inherently not possible to provide all information required by the security 
analyst for monitoring purposes.  

4. Prior knowledge of some information specific to each healthcare organisation is 
required: Detection of abnormal behaviour entails having a common ground of what 
constitutes normal behaviour, and this is inherently dependent on contextual and 
operational information of the underlying organisation. Indicatively, assessing 
whether receiving requests over patients data during non-working hours of the 
organisation is normal requires at least the following being known: (a) which are the 
working hours and (b) whether for the specific organisation such behaviour is 
expected (e.g. due to research work conducted by interns which is not restricted to 
specific time intervals) and whether this is something permanent or temporary. 
Contextualisation of information, which is organisation-specific, is also helpful in 
terms of presentation and visualisation, as it helps create a more intuitive interface 
for the security analyst. 

The above considerations can serve as high-level requirements about the CEAA 
architecture: flexibility is required in terms of adding or slightly altering the input data, 
therefore the data ingestion mechanism should be extensible and also the core data 
processing methods should be performed on an appropriately normalised dataset and not 
hard-coded to work with specific predefined data sources (some basic formatting 
requirements should however be foreseen and agreed among ASCLEPIOS services). 
Different logging levels should also be foreseen, as especially during the initial 
experimentation with the ASCLEPIOS services, more concrete insights about the underlying 
information that could be revealed will be extracted, thus providing guidelines towards this 
aspect. Furthermore, adapting the provided functionalities to the organisation’s context 
should be supported in a way that does not require significant changes in terms of analytics 
and visualisation mechanisms, i.e. through a straightforward configuration process. As a final 
note, although CEAA primarily aims to provide insights stemming from the ASCLEPIOS 
services, it could also be leveraged to monitor additional data handling services in this 
context (i.e. flexible data access over encrypted data), therefore providing flexibility in the 
implementation was also examined from this perspective. 
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5.3 CEAA Design 

5.3.1 Architecture 
Based on the defined scope of CEAA, and as also explained in the landscape analysis 
presented in Section 4, the main functionalities of the tool, which can be directly mapped to 
design requirements, are: 

• To ingest and contextualise log data from numerous and possibly diverse sources  

• To perform fast queries and computations over the collected data 

• To detect, locate and highlight potential anomalies in the collected data 

• To provide meaningful insights to the security analyst in an intuitive way 

• To enable the security analyst to adapt data and analysis representation to the 
current needs 

Further leveraging the insights that were extracted during the design methodology steps 
described in Section 5.2, i.e. (a) the definition of the input sources, (b) the outlined data 
processing required based on the defined metrics and (c) the extracted requirements 
regarding configuration flexibility, the CEAA architecture was designed, as depicted in Figure 
13.  
 

 

Figure 13: CEAA Architecture 

CEAA comprises five main components, as follows: 

• A module that constantly monitors the logs from the ASCLEPIOS services and ships 
them to the main CEAA engine for processing. Depending on the deployment details 
of the services and the location of the logs, i.e. whether all logs will be centrally 
placed in the same system path, one or more instances of the log monitor may be 
required. For each of the logs, a configuration is provided so that the corresponding 
monitoring module will know how to process the logs before forwarding them to the 
subsequent pipeline steps. This module uses Filebeat19 to deliver its functionalities. 

• A stream processing module based on Kafka20 that offers scalability and flexibility in 
the pipelined operations. This module is optional, in the sense that during the initial 
deployment of the services the expected traffic may not require such mechanisms, in 
which case the logs are directly sent to the indexing and analysis modules.  

• The analysis engine is responsible for the unsupervised anomaly detection methods 
performed on the collected logs. The engine applies a python implementation21 of the 
open source Twitter breakout detection algorithm22, which was presented in Section 
4.4.2, on the requests’ timeseries and sends the results to the indexing and query 
engine. 

• The indexing and query engine, powered by Elasticsearch23, which facilitates the 
contextualisation and integration of the collected information and enables fast 
searches and data aggregations to be performed on the data 

                                                 
19 https://www.elastic.co/beats/filebeat 
20 https://kafka.apache.org/ 
21 https://github.com/mysl/BreakoutDetection 
22https://github.com/twitter/BreakoutDetection  
23 https://www.elastic.co/elasticsearch/ 
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• The user interface, which is responsible for the presentation of the collected 
information but also of the generated knowledge over the underlying data in an 
intuitive way. The user interface is an interactive dashboard implemented using 
Kibana24. 

CEAA leverages established open source tools and technologies to create a scalable and 
flexible data pipeline, from logs, to analysis, to indexing and querying and finally to 
interactive visualisations. This pipeline is the backbone of the CEAA workflow which will be 
presented in the next section. 

5.3.2 Functionalities and Workflow 
The CEAA workflow, enabled by the previously described architecture, spans across four 
steps, as shown in Figure 14. The workflow examines the actual usage of CEAA and does 
not refer to installation and deployment of the tool. For the depicted workflow to run, some 
configuration aspects on an administrative level (i.e. based on the complete ASCLEPIOS 
framework) should have been resolved. These are not considered part of the CEAA 
configuration, but since its functionalities are affected by them, they are described here for 
completeness: 

• The log level of the monitored services should be defined. As previously explained, 
this depends on the available options of the corresponding tools, which in turn 
depends on technical limitations and on security and privacy concerns. These are 
examined both per service and will also be examined for the framework as a whole in 
the corresponding deliverables 

• The specific functions and functionalities offered by the monitored services and used 
by the specific healthcare organisation should be defined, indicatively including the 
FE functions and search functionalities that are available. 

• The configuration required to parse the log files coming from each of the services 
should be available. This is actually part of the CEAA implementation, but it is 
created on the ASCLEPIOS-level and not per user or organisation, as it only 
depends on the version of the service/tool being used, i.e. each time one of the 
monitored ASCLEPIOS components changes its functionalities in a way that affects 
the logging process, the CEAA configuration for this tool should be updated to reflect 
this change. These configurations mainly refer to the way the log monitoring module 
(depicted in  the architecture in Figure 13) will ship the logs to the other modules for 
processing. 

After the deployment of CEAA and its initial configuration across the aforementioned three 
aspects, the normal operation of the tool starts, spanning across four conceptual steps, two 
of which entail explicit user actions and interactions with the tool, whereas the other two 
involve background tool processes, as depicted in  
Figure 14. Each step is further detailed below. 

                                                 
24 https://www.elastic.co/kibana 
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Figure 14: CEAA High-Level Workflow 

 
1. User configuration: This step corresponds mainly to the initial configuration 

required to adapt the CEAA functionalities to the organisation’s needs and also to 
ensure the processes in the next steps run smoothly and efficiently for the security 
analyst. As previously explained, certain contextual information depends on the 
specifics of each healthcare organisation and providing it significantly helps both in 
presenting the underlying information in a more meaningful way and in improving the 
anomaly detection functionalities. This initial setup includes: 

• The normal working hours of the organisation (conditional definition, e.g. per 
department or for specific time periods, is also possible) 

• The staff roles, e.g. physicians, nurses, etc. (if such attributes are considered) 

• The IP ranges of the organisation, which can also be provided per 
department, if available 

• The IP ranges of any collaborating organisations 

• Special policies that should be monitored, e.g. it may be the case that a 
“brake glass” policy is implemented in cases when data access is granted 
because the corresponding request was flagged as critical for saving a 
human life.  

• Depending on the selected logging level, additional information about the 
policy categories may also be provided 

Some of the aforementioned aspects may change over time and therefore 
configuration may be needed again to ensure that the way the information is 
presented remains up to date and well suited to the organisation’s and user’s needs. 

2. Data ingestion and contextualisation: This step includes all processes from the 
collection of the input data until their indexing. Logs are first collected from all 
monitored ASCLEPIOS services which may be available as a single source or not, 
depending on whether all services store their logs collectively in a central location or 
if they are kept separately. It should be noted that the collection refers to an almost 
real time streaming process.  
When new log entries are received, they are parsed to extract the required structured 
information and are transformed into the common underlying schema defined by 
CEAA. Data ingestion pipelines are used to define contextualisation rules for the 
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extracted information, including enriching IPs with GeoIP information, such as 
country codes and coordinates. The configuration provided in the first step (e.g. 
regarding working hours) is used to annotate certain fields with additional contextual 
information. This process is performed in the background leveraging the Kibana 
“scripted fields” functionality, i.e. the ability to contextualise some fields and use them 
to enhance the provided visualisations without actually creating and storing additional 
fields. The same process is used to enrich some date fields with common 
information, e.g. extract the day of the week. The contextualisation process is very 
flexible, allowing for new contextual fields to be easily added based on the 
organisation’s needs even for previously ingested data without requiring re-indexing. 
After the data transformation is completed, the collected data are indexed and 
available for queries.  

3. Anomaly Detection: In this step the Twitter breakout detection algorithm is applied 
on the requests’ timeseries, as these are extracted from the logs. The algorithm is 
actually a function based on the EDM (E-Divisive with Medians) algorithm and 
detects changes in the distribution of a given timeseries based on robust statistical 
metrics. The provided method is fast and non-parametric and can detect efficiently 
multiple breakouts in the given timeseries. The algorithm provides as output specific 
points (instances) of the timeseries, which are stored as annotations, i.e. special 
fields, in the normalised log information. 
Section 4.4 provided insights into numerous anomaly detection methods, both 
supervised and unsupervised, as well as some semi-supervised approaches. Due to 
the fact that CEAA processes data from the ASCLEPIOS services there is an 
inherent difficulty in creating a realistic baseline of what constitutes a normal 
behaviour. This would require having some prior knowledge about the exact way in 
which the services will be deployed, integrated and used in the everyday operations 
of a healthcare organisation. Therefore, supervised and semi-supervised techniques 
are not considered, although the CEAA architecture and implemented mechanisms 
could be easily extended to include algorithms in this direction. In terms of 
unsupervised techniques, the selected algorithm, i.e. Twitter breakout detection, 
provides a scalable and robust way in detecting deviations from the normal 
behaviour, which is dynamically defined based on the incoming traffic. It should be 
noted that due to the fact that CEAA also handles relations among timeseries and 
sequences of events which depend not only on the individual ASCLEPIOS services 
but also on their interactions (i.e. on the framework’s behaviour as a whole), anomaly 
detection cannot be fully automated. The next step in the CEAA workflow explains 
how visual means are also used in this direction to guide the security analyst in 
identifying and further inspecting abnormal behaviour. 

4. Visualisation & Exploration: The final step in this workflow is the one that involves 
most user interaction with the system, i.e. the visual exploration of the collected data 
and the intuitive presentation of the extracted insights. CEAA provides an interactive 
dashboard through which the user can monitor the system behaviour based on 
various metrics and visualisations, and also filter the presented information in a 
flexible way to further examine particular instances or groups of instances. The 
dashboard can be used across all three axes described in section 5.2.1, i.e.  (a) for 
general system monitoring, (b) for behavioural analysis and incident detection and 
investigation and (c) to deduce potential improvement points for the deployment of 
the underlying ASCLEPIOS services. The type of information provided to the user as 
well as the way it is presented and the way the user can interact with it and adapt it is 
shown in more detail in the next section. 

5.4 CEAA Interface and Usage 

The present section provides information about the CEAA functionalities in a more graphical 
way by showing an indicative instantiation of the tool’s interface.  As highlighted in Section 
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4.5, an interactive interface offering intuitive visualisations can significantly assist security 
administrators in the identification of interesting events, guide them towards reviewing only 
meaningful and important in the given context information, thus reducing the time to detect 
and react to abnormal incidents. 
In order to showcase the CEAA interface and since the ASCLEPIOS services it monitors are 
not yet integrated and deployed, the example is based on appropriately created synthetic 
data. Synthetic data generation and usage was part also of the CEAA design and 
experimentation processes, as real data from the deployed tools are not yet available. 
In order to create the synthetic datasets, the following process was followed: 

1. Open source timeseries datasets from Kaggle25 (provided for anomaly detection 
algorithm development) were used to create some core data, i.e. the timestamps of 
requests in realistic patterns. 

2. Different log profiles of the ASCLEPIOS tools were created based on discussions 
among consortium members regarding security and privacy concerns and technical 
limitations, as previously explained. Different log levels were discussed and are 
supported by CEAA, which is expected to also provide valuable insights regarding 
the most appropriate configuration in the normal operation of the tools/ services, i.e. 
when used by healthcare organisations. In the example shown in this section, the 
following assumptions are made in the generation of the particular synthetic dataset: 

a. The staff role of the requestor is available in the logs. The following three 
roles have been assumed for this sample dataset: physician, nurse, intern. 
The role “other” appears when none of the previous three is true. 

b. When requests are performed within the organisation, the source and target 
departments are logged. For the source department this may be either 
explicitly logged or deduced by the IP (the latter was the case for this 
example). For the destination department, since the data assets are uploaded 
in the cloud, this information is retrieved from the assets’ metadata, if 
available, i.e. each uploaded asset is linked to the department from which it 
originated. This could be generalised (e.g. to multiple collaborating care 
service providers) or completely removed if all assets are considered to be 
provided by the organisation as a whole. Three departments were assumed in 
this dataset. 

c. A “break-glass” policy is implemented, allowing unrestricted access to the 
requested data under the notion that a human life is in danger. Usage of this 
policy is logged. 

d. When requests fail due to policy violation, the high-level category of the policy 
that caused the failure is logged. This is one of the most challenging aspects 
in the log levels, as revealing policies may help a malicious user reverse-
engineer the system or leak personal information, whereas revealing nothing 
may obstruct detection and understanding of abnormal behaviour. It should 
be noted that technical limitations related to enforcing strong security in the 
data access mechanisms, as previously explained, may not allow such 
information to be made available. 

e. The monitored actions include data upload (i.e. encryption and upload, 
denoted as “insert”), data update and delete, data retrieval, search over data 
and applying a function on selected data. Three different functions are 
assumed available (f1, f2, f3) and two distinct search types, one based on a 
keyword and the other based on a provided range for numeric data. 

f. There is a distinction in the requests made to obtain aggregate information 
and the ones made to retrieve individual EHR data. The distinction may be 
based on concrete logged information per request or on the nature of the 
service that was invoked (e.g. functional encryption services are by definition 

                                                 
25 https://www.kaggle.com/  

https://www.kaggle.com/
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targeting aggregate information, whereas search through searchable 
encryption will retrieve the actual EHR or parts of it). 

3. A profile is created for the data distribution across the required variables, i.e. the 
percentage of requests that will be granted/ denied, the distribution of requests 
across the available actions and sub-actions, the role and department distribution 
etc.  

CEAA is configurable in the sense that (a) contextual information can be provided to 
enhance and extend the provided visualisations and (b) the data are modelled in such a way 
that some actions related to changes in the underlying tools do not require reconfiguration of 
the CEAA dashboard, e.g. new functions that are added in the functional encryption service 
will automatically appear in the CEAA dashboard when logged. Although parameterisation 
and configuration of the interface when it is first used is foreseen, CEAA is provides some 
basic common charts when first deployed. The example shown in this section presents these 
charts according to the defined log level that was previously described.  
Before presenting the CEAA interface, it should be stressed that since the showcase is 
based on synthetic data, the visualisations depict the CEAA functionalities and not identified 
patterns in real world healthcare organisations. As an example, the distributions of the 
dataset variables were defined during the synthetic dataset generation process, therefore no 
comments are provided on the depicted patterns and frequencies. Furthermore, the values 
that appear are indicative, i.e. a healthcare organisation may have more than three 
departments as assumed here and more roles than the three selected here for presentation 
reasons (the ASCLEPIOS model defines many potential roles that can be used in this 
context). Finally, some more technical information, e.g. regarding the ports where the 
services run, was not included in the dataset as it would offer little value for the 
experimentation purposes that these synthetic data serve.  
Figure 15and Figure 16 depict the overall CEAA dashboard. More details will be provided in 
the subsequent figures that “zoom into” specific charts and metrics. 
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Figure 15: CEAA Dashboard I 
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Figure 16: CEAA Dashboard II 

The upper part of the dashboard, depicted in Figure 17 has the following information: 

• Dropdown filters that can be used to adjust the information that is shown based on 
some preselected options (e.g. role of the requestor, invoked ASCLEPIOS service, 
etc). The ASCLEPIOS services are presented as actions to be more intuitive for the 
end user, e.g. the service that corresponds to SSE is shown as search. For 
completeness, Figure 18 shows some of the filters with selected values. It should be 
noted that these filters are meant to provide some quick commonly used filtering 
options, but all charts can be also used as filters, i.e. by clicking on either on the 
visualisation or its legend, all information on the dashboard is appropriately updated. 



 
D2.3 GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers 

Work Package 2  Page 72 of 86 

• Some core metrics that provide quick insights into the current system status (in the 
time interval selected through the date picker on the upper right), as follows: 

o The number of “Break Glass” requests so that the security administrator can 
instantly check if usage of this special (due to elevated rights) policy is 
abnormal 

o The total number of requests and of failed requests and the number of 
retrieved assets (this could alternatively be changed to show the volume of 
the retrieved assets) 

o The number of cross department requests and the number of unique 
requestors based on the source IP of the request 

o Some more detailed statistics regarding failed requests throughout the 
selected time period and within the last 10 minutes. Specifically, the 
dashboard monitors the maximum number of successive failed requests to 
the system’s services, the maximum number of successive failed requests 
performed by the same IP (requestor) and the maximum number of 
successive failed requests performed on the same asset. 

The aforementioned charts correspond to various metrics defined in Section 5.2.3. The 
number of “break glass” requests and the number of cross-department requests were 
explitily provided in the list of the ASCLEPIOS specific metrics. The number of total and 
failed requests appears in the first and last ASCLEPIOS agnostic metrics (“Number of 
requests the system received in the corresponding timeframe” and “Number and distribution 
of successful/failed requests” respectively), but using the provided filters, the presented 
value can also express ASCLEPIOS specific metrics (e.g. failed requests per service). The 
last set of metrics shown in Figure 17 was not included in the originally defined metrics, but 
as explained the provided list was not (and cannot be) exhaustive. Instead, CEAA is 
designed to allow flexible metric computations configurable by the user.  
Regarding the target usage axes presented in Section 5.2.1, these high level metrics can be 
used across all three. Indicatively, the number of requests is a general metric that depending 
on the value could also indicate normal or abnormal behaviour, which in turn may imply 
malicious activity (threat) or increased benign usage and potential need for more resources. 
Similarly the number of failed requests on its own may not be very informative, but combined 
with other shown information can be used to draw valuable conclusions.  
As a general note, there is no one to one mapping between the information presented in the 
CEAA interface and the defined metrics and usage axes, as the interaction capabilities of the 
dashboard allow more flexibility in this respect. 
 

 

Figure 17: Dashboard Filters & Core Metrics 
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Figure 18: Dashboard Filters Completed 

 
After these high-level statistics, numerous visualisations are provided to the user. The first 
row of charts shows basic security metrics, i.e. not specific to ASCLEPIOS: requests 
distribution throughout the day, the most commonly returned HTTP status codes and the 
most common tags found in the logs, if CEAA is configured to monitor all logs generated by 
the services (i.e. not only information about the performed requests).  
 
Then some insights regarding the requests’ distribution between working and non-working 
hours is provided, as shown in Figure 19. The distribution is shown in multi-level pie-charts 
and is examined also per service (on the left) and then also in respect to the requestor’s role 
as staff member (depicted on the right). 
 
 
 

 

Figure 19: Requests distribution based on invoked services and requestor’s role between 
working and non-working hours of the organisation 

 
Then, as shown in Figure 20, the distribution of the requests over time across the monitored 
services is provided, where two different incident types are identified and annotated . The 
first one, shown in red colour, highlights the cases where the “Break Glass” policy was used. 
The second, shown in light blue, highlights abnormal behaviour in the underlying time series, 
as identified by the anomaly detection algorithm. Hovering over the annotations provides 
more information about the detected incident. 
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Figure 20: Annotated requests distribution over time 

 
Two charts showing which functions and which search types are used depending on the day 
of the week are provided. Figure 15shows both charts, one for the functions applied through 
functional encryption and one for the two supported search types. Figure 21 zooms into the 
first one. The reason for showing this information is that certain functions may be more 
common some days of the week, depending on the way the organisations’ operations are 
organised and scheduled, therefore deviations may be spotted in this way. If this is not the 
case and uniform distribution is expected, the chart could be used also in a weekly basis to 
check whether this is indeed the case or it can also be removed/ altered to be better 
adjusted to the user’s monitoring needs. 

 

Figure 21: Functions usage across days of the week 

  
The next row of charts shows the way requests are distributed among departments, but 
monitoring the daily change in the performed requests. This allows the user to have a basic 
understanding of the normal situation (which may be very different across departments) and 
easily spot deviations in the behaviour of the requests of a specific department or changes 
reflected in all departments, indicating a busy day or a potentially abnormal behaviour that 
should be checked. Figure 22 shows one of the two charts in this row, specifically the one 
referring to the requests originating from a department (as opposed to the second one that 
shows requests to access data that are provided by the departments). 
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Figure 22: Daily change in number of requests performed per department 

 
Then, a heatmap is provided to highlight the busiest days of the week in relation to the 
invoked service. A distinction is made based on whether it is an internal to the organisation 
request or request performed by an external entity, i.e. not from an IP known to belong to the 
organisation. In the example shown in Figure 23, internal requests are significantly more 
than the external ones, hence the second heatmap appears empty. Applying a filter to keep 
only external requests would allow the user to easily inspect these as well. A map is also 
provided (shown in Figure 16) which can be used both to monitor the distribution of requests 
across continents and specific countries.  

 

Figure 23: Service heatmap over days of week for internal and external requests 

 
The next two charts, depicted in Figure 24 provide some insights into the distribution of failed 
requests, first over time in comparison to the total requests and based on the daily change 
and then (through the depicted pie chart) regarding the policy level that caused the request 
to fail, i.e. whether it was based on the requestor attributes, the asset attributes or the given 
context. . It should be noted that these insights depend also on the way this information will 
be logged, e.g. assuming that both the requestor and the contextual attributes violated the 
defined policy, it may be the case that both types are logged or only one of them (i.e. the one 
that was first evaluated and failed). The CEAA user will be aware of the underlying 
configuration in order to understand what is shown and how it can be leveraged. 
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Figure 24: Failed requests distribution and policy insights 

 
The next chart provides insights regarding the granularity level of the retrieved/ used assets, 
i.e. whether the performed requests refer to data aggregations or specific fine-grained 
information, i.e. parts of or complete electronic health records. This is shown in Figure 25, 
along with some annotations on the timeline. These annotations are created based on the 
initial user configuration if there are any specific cases, denoted by a combination of 
conditions-filters, that should be identified and reviewed. The pink annotations in the chart 
mark these cases for the user to easily spot them. It should be noted that more than one 
annotation types can be configured and also that it is possible to deliver this functionality 
across the dashboard as a whole, if preferable, i.e. by creating a custom filter to limit the 
information only to these cases when needed. 

 

Figure 25: Annotated data granularity distribution of requests over time 

 
The last of the preconfigured default CEAA charts, depicted in Figure 26 shows the requests 
distribution across the various services. This is similar to the information shown in Figure 20, 
but here the focus is not only on how these evolve over time but also to highlight their 
relevant frequency in a more clear way. It is also possible to add annotations for specific 
cases based on provided rules or for detected anomalies. 
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Figure 26: Service distribution (percentages) 

 
As a final note, CEAA can also offer a detailed table of requests along with selected 
information per request to allow the user to investigate specific incidents and even perform 
free text search over the logs, if such fine grained information is made available to the user. 
The default CEAA dashboard provides several configuration and extension options, but only 
regarding aggregate data. 
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6 Conclusions  

The purpose of the present deliverable was to report on the activities performed in the 
context of tasks T2.3 “GDPR-compliant and Functional Encryption-enabled Prescriptive 
Analytics for Healthcare Providers” and T2.4 “Cybersecurity, Encryption and Access 
Analytics for CSP operation to Healthcare Providers” and present their main outcomes.  
In the scope of T2.3, the deliverable first provided an extensive state of the art review of the 
functional encryption (FE) cryptographic paradigm and presented insights from numerous 
academic papers in the field spanning across the following functional encryption subclasses: 
(a)predicate encryption, (b) inner product FE, (c) FE for element-wise operations, (d) FE for 
quadratic polynomials, (e) FE for general polynomials and (g)FE for randomised 
functionalities. Inner product FE emerged from the performed analysis as the most promising 
for helping FE transcend its theoretical boundaries to be used in the implementation of 
specific mathematical functions and was therefore studied in more detail. Applications of 
functional encryption were also explored, particularly in the healthcare domain. The 
deliverable also provided considerations on the applicability of the proposed schemes in 
respect to the adopted security notions, potential information leakage due to the provided 
functionality and performance issues. Apart from purely cryptographic approaches, 
hardware-enabled FE was also discussed. Overall, the potential as well as the current 
limitations of the functional encryption paradigm were documented. 
The deliverable then presented the ASCLEPIOS functional encryption analytics solution that 
was designed and implemented to enable healthcare providers to perform statistical 
computations over encrypted data. The provided services leverage inner product FE 
schemes to offer directly usable mechanisms, available through RESTful services, for 
healthcare providers to apply commonly used statistics functions on their data. The 
ASCLEPIOS dual approach that offers flexibility to healthcare providers in selecting the most 
appropriate solutions for their needs was described. The first of the two FE service 
categories that were implemented is based on a symmetric multi-input functional encryption 
scheme, which supports multi-client settings and can be used to perform computations over 
data from different healthcare providers. This scheme was developed within the 
ASCLEPIOS context and was documented in detail. The second category of FE services 
implements two different schemes from the relevant literature based on the asymmetric key 
setting. Both schemes leverage TEEs and particularly Intel SGX for the implementation of 
the trusted authority which is responsible for the key generation process. For both 
approaches, sequence diagrams were provided to show how they can be used and which 
are the involved entities in the FE analytics workflow. Furthermore, potential combination 
with the SSE scheme in order to provide flexibility in defining the input to the FE statistical 
computations and a generally smoother user experience was briefly discussed. Finally, an 
analysis was performed and presented regarding GDPR compliance considerations that are 
applicable in the context of the FE-enabled analytics services. 
In the scope of T2.4, the deliverable first presented a comprehensive analysis of the 
cybersecurity landscape in the healthcare domain and identified core cyber threats, such as 
e-mail phishing, ransomware, insider threats, hijacking of IT-medical equipment, DoS attacks 
and new age threats. The analysis showed that cyber threats in healthcare do not stem only 
from malicious actions, but also from human-error and third-party failures. In this context the 
deliverable presented both methodological frameworks and technical solutions that can help 
healthcare providers towards putting in place an effective preventive and proactive 
cybersecurity strategy. The detection of abnormal patterns across the voluminous and 
heterogeneous data generated daily by a healthcare organisation’s systems was shown to 
be a challenge that needs to be addressed to allow timely identification and handling of 
malicious, or otherwise insecure behaviours. In this direction, the deliverable examined 
numerous data analytics and visualisation techniques that can be used to implement more 
targeted solutions for the detection of such patterns by the security analysts/ administrators 
of healthcare organisations.  
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Last but not least, the deliverable presented the ASCLEPIOS Cybersecurity, Encryption and 
Access Analytics (CEAA) component, which is responsible for delivering insights about 
encryption and decryption activities, data access patterns, normal and abnormal behaviours, 
cyber threats and security incidents to healthcare providers in the scope of the ASCLEPIOS 
framework. In this direction, the deliverable first defined the scope of the tool, which was 
organised across three axes: (a) general cybersecurity level system monitoring, (b) 
behavioural analysis and incident detection and investigation and (c) extraction of insights 
regarding scalability and performance aspects of the monitored services. The deliverable 
presented the metrics that were identified as important to be computed and monitored in this 
context and provided insights into the extracted requirements and considerations for the 
CEAA design. The architecture of the tool, which is based on popular and mature open 
source technologies, was presented and the core data processing workflow was described. 
Specifically, the deliverable presented how CEAA collects and ingests logs from the 
ASCLEPIOS services and the way these logs are processed, normalised, contextualised, 
analysed, indexed and presented to offer meaningful insights for the operations and systems 
of healthcare providers regarding data access patterns. The significant role of the tool’s 
interactive visualisations in assisting security administrators in the identification and 
exploration of interesting/ abnormal and potentially threatening events, was finally presented 
through an indicative showcase of the tool’s interface. 
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