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Glossary 
 

𝑐𝑡 A ciphertext on message 𝑚 

𝑚 A plaintext message 

𝒫 Access policy 

(𝐴, 𝜌(𝑥)) (LSSS) Access matrix 𝐴 and function 𝜌(𝑥) describing an access policy 

𝒫 

𝐴 𝑙 (rows) × 𝑛 (columns) matrix 

𝜌(𝑥) Function 𝜌(𝑥) maps a row 𝑥 in 𝐴 to its corresponding attribute 𝛼 

𝑣 Vector 𝑣 = (𝑠, 𝑣2, … , 𝑣𝑛) is used in LSSS schemes to mask a secret 𝑠  

λ𝑥 𝐴𝑥 ∗ 𝑣, part of a linear secret sharing scheme 

ω𝑥 Weight used in LSSS scheme ∑ ω𝑥𝑥∈𝐴 ∗ 𝐴𝑥 = (1,0, … ,0) 

𝑥 A row in an access matrix 𝐴, corresponding with an attribute α 

α An attribute 

𝔾𝑝 Algebraic group of order 𝑝 

∈𝐺 𝔾 Generator of group 𝔾  

∈𝑅 𝔾 Chosen uniformly at random from group 𝔾 

𝐶𝐴 Central Authority 

𝐴𝐴𝑘  The kth Attribute Authority (𝑘 in total, 𝑘 ≤ 1) 

𝑆𝐼 System Initializer 

𝐶𝑆𝑃 Cloud Service Provider 

𝑢𝑖 Data owner 

𝑢𝑗 A user which is allowed to decrypt a file 

𝑢μ A revoked user 

𝑆α Global attribute universe 

𝑆α𝑘
 The attribute set managed by Attribute Authority 𝐴𝐴𝑘  

𝑆α𝑘,𝑗 The attribute set managed by Attribute Authority 𝐴𝐴𝑘 , which user 
Attribute Authority 𝑢𝑗 is entitled to 

𝑆𝑈 The set of all users in the system 

𝑆𝐴 The set of all Attribute Authorities in the system 

𝐸𝑘𝑒𝑦 An encryption, using key 𝑘𝑒𝑦. Usually denotes asymmetric encryption in 
this report 

ℋ Hash function 

𝑢𝑖𝑑𝑗 A global user identity of user 𝑢𝑗 

𝑎𝑖𝑑𝑘 A global Attribute Authority identity of 𝐴𝐴𝑘 

AES Advanced Encryption Standard 

ABE Attribute-Based Encryption 

KP-ABE Key-Policy Attribute-Based Encryption 

CP-ABE Ciphertext-Policy Attribute-Based Encryption 
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IBE Identity-Based Encryption 

TCP/IP Internet protocol suite 

SSE Symmetric Searchable Encryption 

LSSS Linear Secret Sharing Schemes 

FE Functional Encryption 

SSE  Symmetric Searchable Encryption 

IND-
CPA 

Indistinguishable Against Chosen Plaintext Attacks 

IND-
CCA 

Indistinguishable Against Chosen Ciphertext Attacks 

RD-ABE Revocable and Decentralized Attribute-Based Encryption 

Table 3: Glossary 
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1 Introduction 

The main goal of ASCLEPIOS is to design and develop an e-health framework that will allow 
patients to store and share their medical records in a secure and privacy-preserving way. The 
ASCLEPIOS project is meant to “boost the effectiveness of the Security Union“, meaning that 
in the end the ASCLEPIOS framework should be deployable throughout the European Union. 

An ever-changing population within the European Union introduces difficulties in sharing 
(encrypted) medical records. When using more traditional encryption schemes, such as AES, 
either the same key would have to be given to every user which should be able to decrypt (a 
set of) medical records or a unique ciphertext would have to be created for every (authorized) 
user. This either means that a lot of medical practitioners have the same key to decrypt 
someone’s medical records, introducing the security risk of a key being lost or given to 
someone who should not be able to decrypt those medical records, or the sharing domain 
would become much less efficient as creating a unique ciphertext for every (authorized) unique 
user of the system per data record means a large additional amount of costly computations, 
communications and storage. Also, as new medical practitioners are added to the EU work 
force every day this means that the framework should either send the key to all new users in 
the system or a new ciphertext and key have to be created for each encrypted document for 
every new authorized user. Both situations are not ideal. 

A promising new technique to encrypt data without having to know the users beforehand is 
called ABE (ABE, Section 4). ABE encrypts a file using a so-called access policy which 
specifies the attributes a user should be entitled to before being able to decrypt a file. This 
also has the advantage that encryption can be done by the data owner who decides for itself 
which attributes together should allow for decryption of its data. A more detailed description of 
ABE schemes is given in Section 4. 

ABE was first introduced in 2004 by Sahai and Waters[1], but more and more ABE schemes 
have been proposed ever since. This report will research the state-of-the-art by looking at 
(relatively) new ABE schemes, their efficiency (the order of the amount of computations and 
communications) and advantages and disadvantages of three schemes. In Sections 5, 6 and 
7 we compare different ABE scheme in order to decide which one is best suited for the needs 
of ASCLEPIOS.  

In Section 8, we present a brief presentation of ciphertext delegation while in Section 9, we 
design a protocol based on ABE and Symmetric Searchable Encryption (SSE) according to 
the reference architecture that was proposed in D1.2 and the SSE scheme from D2.1.  The 
experimental evaluation of the proposed protocol is presented in Section 10. 

In Section 11, we describe how some functionalities of our protocol could be integrated in 
constrained devices, followed by some empirical results in Section 12. Finally, Section 13 
concludes the document.  

 



 D2.2 Attribute-Based Encryption 
 

Work Package 2   Page 12 of 77 
 

2 Attribute-Based Encryption  

2.1 Introduction 
 

ABE is a concept introduced in 2004 by Sahai and Waters[1]. Based on IBE, it allows a user 

to encrypt data so that it can only be decrypted by users with certain attributes. 

Definition 1 (Attribute) Characteristic of an object or entity. In Attribute-Based Encryption it 
is a characteristic that can be used to define who should be able to decrypt a ciphertext and 
who should not. 

 

For example, assume someone wants to encrypt a file so that it can only be read by someone 
else who is a manager or is an employee in the administrative department with access to the 
financials of the specific company. This is useful as this means that there is no need to 
generate public/private key pair for every user the file needs to be send to and someone 
completely removes the need for a key distribution between users. Next to that ABE also has 
the advantage that the data owner does not necessarily need to know all users which should 
be able to decrypt a ciphertext at the time of encryption, instead, if a user obtains the right 
attributes later on in the system’s lifetime it is also able to decrypt the ciphertext. 

It works as follows: A user 𝑢𝑖 wants to encrypt a message 𝑚 so that it can only be read by 
managers or read by employees in the administrative department that have access to the 

company’s finances. The so-called policy 𝒫 that will be used to encrypt the file is therefore: 

𝑖𝑠𝑀𝑎𝑛𝑎𝑔𝑒𝑟() OR (𝑖𝑛𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡() AND ℎ𝑎𝑠𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐴𝑐𝑐𝑒𝑠𝑠()). 

 

Definition 2 (Policy) Union or intersection (‘OR’/ ‘AND’) of different attributes indicating 
which attributes together should allow for decryption. Policies can be expressed as a 
boolean formula, as seen in the example, but can also just as easily be expressed in a 
(binary) tree, where (internal) nodes define either a union or an intersection between its 
children. 

 

ABE allows a data owner 𝑢𝑖 to encrypt a message 𝑚 into encrypted message  
𝑐𝑡. User 𝑢𝑖 should now be able to share 𝑐𝑡 with anyone, as ABE only allows authorized users 

to recover the original message 𝑚 by decrypting 𝑐𝑡. Therefore, if encrypted using ABE, 𝑐𝑡 can 
be sent to the users who should receive it, but it can just as easily be hosted somewhere online 

using a 𝐶𝑆𝑃. 

In general, in ABE schemes there is no need for  𝑢𝑖 to stay online during the decryption phase, 
which can be quite useful in certain use cases. Such a use case might, for example, be that a 
medical practitioner in another EU country, can still retrieve medical records if someone is 
unconscious after an accident in that country. This is permitted by the General Data Protection 
Regulation, namely in Art. 6 as it states that processing of “personal data“ is allowed if it is 
necessary for the vital interests of the data subject or any other natural person1. Someone who 

is entitled these two attributes (𝑖𝑠𝐷𝑜𝑐𝑡𝑜𝑟(), 𝑖𝑠𝐿𝑖𝑓𝑒𝑇ℎ𝑟𝑒𝑎𝑡𝑒𝑛𝑖𝑛𝑔()) is able to retrieve the secret 

key which it can use to decrypt 𝑐𝑡 to obtain message 𝑚. ABE does not specify, when encrypting 
a message, which users should be able to decrypt the ciphertext and instead specifies which 
attributes a user should have before being able to decrypt a ciphertext. This means that data 

                                                
1 Art. 6(1)(d) GDPR 
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can also be decrypted by users that will become entitled to those attributes after the original 
message was encrypted. 

ABE was mentioned for the first time in [1], although more formal definitions were given by 
Goyal et al.[2] KP-ABE and Bethencourt et al.[3] CP-ABE. This report believes CP-ABE is best 
suited for use in the ASCLEPIOS project and thus will focus on CP-ABE in describing the sub 
algorithms of a standard ABE scheme. The reason why CP-ABE is believed to be better 
equipped to be used in the ASCLEPIOS project is given in Section 5.2.1.1. Basically, every 
CP-ABE scheme at least exists of four algorithms (which are similar to the algorithms used in 
Fuzzy Identity-Based Encryption[1]), namely .Setup(), .Encryption(), .Key Generation() 
and .Decryption(). The following descriptions of the different sub algorithms were inspired by 
the descriptions in the paper by Bethencourt et al.[3] and some notations are changed for the 
sake of consistency throughout this report: 

.Setup() - This algorithm takes no input other than the implicit security parameter. It outputs 

the public parameters 𝑃𝑃 and a master key 𝑀𝐾. 

.Encryption() - This algorithm takes as input the public parameters 𝑃𝑃, a message 𝑚 and an 
access policy 𝒫 over the universe of attributes. A ciphertext 𝑐𝑡 is generated from 𝑚 and the 

access policy 𝒫 is embedded into 𝑐𝑡. 

.Key Generation() - This algorithm takes as input the master key 𝑀𝐾 and a set of attributes 

𝑆α. It outputs a private key 𝑆𝐾. 

.Decrypt() - This algorithm takes as input 𝑃𝑃, 𝑐𝑡 and 𝑆𝐾. If 𝑆α satisfies access policy 𝒫 the 

algorithm is able to decrypt 𝑐𝑡 and returns message 𝑚. 

This document will analyse multiple ABE schemes to make a comparison between them in 
terms of efficiency and advantages & disadvantages (including security) on the methods used 
in [4] and [5]. This means that the complexity of these schemes will be split out in terms of 
computational complexity and communication complexity (in the so-called big O notation). This 
report will not create a new scheme, it will only analyse schemes based on the characteristics 
of that scheme as mentioned in the paper proposing that scheme or subsequent schemes that 
try to improve said scheme. 

It is important to note that while this report tries to standardize the description of the different 
schemes and if possible describe them according to the four algorithms described above, this 
is not always possible as different authors use different structures, but more importantly use 
different notations within their schemes. Notations might differ among schemes. This report 
tries to explain the schemes as uniformly as possible but does not deviate too much from the 
notations used by the authors of all the specific schemes as that would remove any logical 
connection between the description in this report and the original paper. 

 

2.2 Efficiency Analysis 
 

The efficiency of different schemes is denoted as the computational complexity and 
communication complexity of the specific protocol steps of different schemes. The 
complexities are expressed per entity in the scheme, in order to be able to make a comparison 
between the complexity per entity per protocol step and not only between the complexities 
(computational and communication) per protocol step. 

By computational complexity we mean the cost of the (mathematical) operations that are 
calculated in each steps of the scheme(s). Only the most costly computation of a protocol step 
is regarded, meaning that the computational complexity of each protocol step is expressed in 
the number of bilinear pairings (Section 4.4.1) or exponentiations. As bilinear pairings are 
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much more expensive to compute than exponentiations the bilinear pairings will determine the 
computational complexity of a protocol step if present, otherwise the computational complexity 
of a protocol is expressed in exponentiations. The complexity is expressed in growth rates, so 
for example, if a protocol step needs two bilinear pairings, independent of the amount of users, 
attributes and attribute authorities, etc., the complexity is constant and therefore expressed as 
𝑂(1). If the computational complexity grows linearly with the amount of users it would be 𝑂(𝑢) 

(where 𝑢 denotes the amount of users). 

The communication complexity focuses on the number of messages that need to be 
exchanged between different entities within the scheme per protocol step. This step will be 

measured in 𝑚 to indicate the number of messages each entity sends. The analysis will not 
consider splitting messages into several messages due to underlying network protocols used, 
such as TCP/IP. 

 

2.3 Advantages & Disadvantages 
 

The comparison section of a scheme lists the advantages and the disadvantages of the 
different schemes. The decision was made to include security into Section Advantages & 
Disadvantages as in general security and usability are intertwined. A more secure system 
usually has limitations regarding its usability as more expensive operations are used to protect 
against more capable adversaries or because the system design heavily depends on the 
security level the system tries to achieve. 

This report takes the security notions described in the papers for granted, unless stated 
otherwise, and therefore will not further describe the security games in the different schemes. 
This decision was made as it would not be constructive to just cite the security game as the 
scheme in question and end up with the same conclusion the authors of the paper already 
came to. 

Advantages & disadvantages of are based on the system model described in Section 5. This 
section on a high-level scheme describes the intended hybrid combination between an ABE 
and a SSE schemes. Next to that Section 5. also incorporates a subsection regarding 
requirements that were set out based on the system model. This subsection will also be used 
while describing advantages and the disadvantages of the different schemes. 

 

2.4 Important notions 

 

This section describes a few (mathematical) components/notations used in more recent ABE 
schemes. These notations/components are explained in a more general and high-level 
approach to allow the concept to be grasped by the reader. 
 

2.4.1  Bilinear pairings 

 

A map or pairing 𝑒 from two source groups 𝔾1 and 𝔾2 to a target group 𝔾𝑇, all three of them 

multiplicative and of size λ, is called bi-linear if for all a, b ∈ ℤN, 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2 it holds that 

𝑒(𝑔1
𝑎 , 𝑔2

𝑏) = 𝑒(𝑔1 , 𝑔2)𝑎𝑏. An efficient algorithm to calculate a specific kind of bilinear pairings 

(Weil Pairings) is described in [6] and [7]. 
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The bilinear pairings used in protocols described in this report is of one of two forms. DAC-
MACS (Section 7) makes use of Type-I pairings, meaning that there is only a single source 
group (𝔾). The bilinear pairings 𝑒 is therefore of the form 𝑒(𝑔, 𝑔), where 𝑔 ∈  𝔾  is a generator 

of group 𝔾, meaning that any number in 𝔾 can be expressed as 𝑔𝑎. For any a, b ∈ ℤN, 

𝑒(𝑔𝑎 , 𝑔𝑏) = 𝑒(𝑔, 𝑔)𝑎𝑏 as explained above. The mapping is explained as 𝑒: 𝔾 × 𝔾 → 𝔾𝑇. So-

called Type-II pairings and Type-III pairings both have two different source groups, usually 
denoted as 𝔾 and ℍ and therefore the mapping is expressed as 𝑒: 𝔾 × ℍ → 𝔾𝑇 (Equation 1). 

The difference between Type-II and Type-III pairings is that in the first case there exists an 
efficiently computable homomorphism between the two source groups and in the latter case 
there does not exists such an homomorphism which is efficiently computable. Agrawal and 
Chase[1] use Type-III pairings in their FAME scheme, as explained in Section 6. 

RD-ABE (Section 8) makes use of a so-called composite order group 𝔾, where 𝔾 is of order 

𝑁 = 𝑝1 ∗ 𝑝2 ∗ 𝑝3. 𝑝1, 𝑝2 and 𝑝3 are distinct (large) primes and so subgroups 𝔾𝑝1
, 𝔾𝑝2

 and 𝔾𝑝3
 

of 𝔾 of order 𝑝1, 𝑝2 and 𝑝3 respectively can be found. 𝔾𝑝1
 functions as the source group of 

bilinear pairings in RD-ABE as generator 𝑔1 of group 𝔾𝑝1
 is used in this scheme. 

 

2.4.2  Access policies 
 

Access policies in ABE are usually expressed as Boolean formulas, for example 𝒫 = (𝛼1 OR 

𝛼2 AND α3), where α𝑖 denotes a specific attribute. The example formula describes an access 
policy (𝒫) where a user should be able to decrypt data, encrypted with policy 𝒫, if it is entitled 

to α1 or if it is entitled to α2 and α3. Any Boolean formula can be transformed into a binary 

Boolean formula in an easy manner. For example, 𝒫 can be transformed into 𝒫 = (𝛼1 OR (𝛼2 
AND α3)) (if binary operators are assumed right associative). 𝒫 can now be expressed as a 

graph (shown inFigure 1). A more tangible example might be where 𝛼1 denotes someone 

being in the management of a company (𝑖𝑠𝑀𝑎𝑛𝑎𝑔𝑒𝑟()) and α2 and α3 denote someone being 

in the administrative department (𝑖𝑛𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡()) and being responsible for 
the financial state of the company (ℎ𝑎𝑠𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐴𝑐𝑐𝑒𝑠𝑠()). Invoices to the company can now 
be encrypted using these attributes and only managers or employees responsible for the 
finances of the company can decrypt them. If the attributes of a user or a subset of them 
together adhere to the policy, meaning that the Boolean formula evaluates to true, the 
combination of those attributes is called accepting’. 
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One important notion monotonicity is assumed when talking about access policies. The 
notion is explained below. 

Definition 3 (Monotonicity) If a (non-empty) subset of any set of attributes is ‘accepting’, 

then the larger is set is “accepting“ is as well. Assume a collection 𝔸 containing all 
authorized (“accepting“) sets. 𝔸 is monotone if  ∀𝔹, ℂ: if  𝔹 ∈ 𝔸 and 𝔹 ∈ ℂ, then ℂ ∈ 𝔸. This 
corresponds with the logical definition that if a user has the right attributes to decrypt a 
ciphertext and obtains more attributes then it still can decrypt data [2]. 

2.4.3  Linear Secret Sharing Scheme 
 

Current ABE schemes make use of a LSSS to reconstruct a secret based on a certain amount 
of shares a user holds. In general such a scheme is used to allow users to combine their 
shares to retrieve a secret. In recently introduced ABE schemes however, the shares 
correspond to attributes and therefore allow a user to combine them to reconstruct the secret. 
First a definition of LSSS is given, cited from [9]: 

Definition 4 (LSSS) A secret sharing scheme over a set of parties 𝒫 is called linear (over 

ℤp) if 

• The shares for each party form a vector over  ℤp 

• There exists a matrix 𝐴 called the share-generating matrix. The matrix has 𝑙 rows and 

𝑛 columns. The 𝑥th row of A is labeled by a party ρ(x), where ρ is a function from the 
rows in 𝐴 to 𝒫. If there exists column vector 𝑣 = (𝑠, 𝑣2, … . , 𝑣𝑛), where s ∈ ℤp is the secret 

to be shared and v2, … , vn ∈ ℤp  are chosen, then A ∗ v is the vector λ of  shares of the 

secret s. The share λ𝑥 = 𝐴𝑥 ∗ 𝑣 belongs to party ρ(x). 

 

 

Figure 1: Boolean representation of an 
example access policy 
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Definition 5 (Linear reconstruction property) Assume an LSSS defining access policy  𝒫 

described in access matrix  𝐴. The vector is (1,0, … ,0) the span of rows of  𝐴 and there exist 

constants {ω𝑥 ∈ ℤp}𝑥∈𝐴, such that, for any valid shares  {λ𝑥}𝑥∈𝐴 of a secret 𝑠, then: 

∑ ωxx∈A λx = s. 

 

An example of this would be the following (in Section 4.4.4) it is explained how to generate an 
LSSS matrix from a (binary) access structure/policy): 

𝐴 = (

1 1 0
0 −1 1
0 0 −1
0 −1 0

), corresponding to access policy 𝒫 = (α1 AND (α4 OR (α2 AND α3))) 

 

The rows correspond to attributes α1, α2, α3, α4 respectively. Attributes sets {α1, α2 , α3} and 

{α1, α4} are “accepting“, as the span of α1, α2 and α3 and the span of α1 and α4 are both (1,0,0). 

A numerical example: Secret 𝑠 is chosen as 5 and 𝑣2 and 𝑣3 are chosen uniformly at random 

from ℤ8 as 2 and 3 respectively, therefore vector 𝑣 = (5,2,3). The resulting vector is: 

𝐴 ∗ 𝑣 = (

1 1 0
0 −1 1
0 0 −1
0 −1 0

) ∗ (
5
2
3

) = (

1 ∗ 5 + 1 ∗ 2 + 0 ∗ 3 𝑚𝑜𝑑 8
0 ∗ 5 − 1 ∗ 2 + 1 ∗ 3 𝑚𝑜𝑑 8
0 ∗ 5 + 0 ∗ 2 − 1 ∗ 3 𝑚𝑜𝑑 8
0 ∗ 5 − 1 ∗ 2 + 0 ∗ 3 𝑚𝑜𝑑 8

) = (

7 𝑚𝑜𝑑 8
1 𝑚𝑜𝑑 8

−3 𝑚𝑜𝑑 8
−2 𝑚𝑜𝑑 8

) = (

7
1
5
6

) 

 
The vector λ = (7,1,5,6) corresponds with the shares that can be used by parties that hold 
them to reconstruct the secret. Only ‘accepting’ sets of attributes, meaning that the span of the 

vectors in 𝐴 that correspond to these attributes is of the form (10, … ,0), are able to reconstruct 
the secret. The dot product of the span (1,0,0) and the vector 𝑣 = (5,2,3) (containing the secret 

𝑠 = 5) is: 1 ∗ 5 + 0 ∗ 2 + 0 ∗ 3 = 5 and thus any ‘accepting’ set of attributes is able to 

reconstruct the secret 𝑠. 

To reconstruct the secret based on the shares the shares the system calculates constants 
(weights) {ω𝑥}𝑥∈𝐴. These weights can be found in polynomial time with respect to the size of 

the share-generating matrix 𝐴[9]. 𝑠 can be calculated using the following equation: 𝑠 =
∑ ω𝑥λ𝑥𝑥∈𝐴 . 

It should be noted that schemes using an LSSS scheme to define attribute shares might be 
vulnerable to collusions, meaning if a user has the attribute share for 

𝑖𝑛𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑣𝑒𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡() and another user has the share for ℎ𝑎𝑠𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝐴𝑐𝑐𝑒𝑠𝑠(), 
while both do not have the other shares, it is possible that the users could just combine their 
shares to get unauthorized access to a document. ABE schemes should have a mechanism 
to prevent against such collusions. 

 

2.4.4 Converting Boolean formulas to LSSS 
 

The following is cited from [9]: 

This section describes a general algorithm for converting a boolean formula into an equivalent 
LSSS matrix. The Boolean formula is considered as an access tree, where interior nodes are 

AND and OR operations and the leaf nodes correspond to attributes and vector (1,0, … ,0) is 
used as the sharing vector for the LSSS matrix. First, the root node of the tree is labeled as a 
vector (1) (a vector of length 1). Then the algorithm goes down through the tree and labels 
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each node with a vector determined by the vector assigned to its parent node. A global counter 

variable 𝑐 is maintained, initialized at 1. 

If the parent node is an OR operation labeled by the vector 𝑣, then its children are also labeled 

by 𝑣 (and the value of 𝑐 stays the same). If the parent node is an AND operation labeled by 

the vector 𝑣, 0’s are padded at the end of 𝑣, if necessary, to make it of length 𝑐. Then one of 
its children is labeled with the vector 𝑣|1 (where | denotes concatenation) and the other one 

with the vector (0, . . . ,0)| − 1, where (0, . . . ,0) denotes the zero vector of length 𝑐. Note that 

these two vectors sum to 𝑣|0.  is then incremented by 1. Once the entire tree is labeled, the 
vectors labeling the leaf nodes form the rows of the LSSS matrix. If these vectors have different 
lengths, the shorter ones are padded with 0’s at the end to arrive at vectors of the same length. 

Transforming example α1 AND (𝛂𝟒 OR (𝛂𝟐 AND 𝛂𝟑)) into the Boolean formula Figure 2(a) 
and then assigning the right vectors to the nodes Figure 2(b) would give: 

 

Figure 2: LSSS matrix example 

 

Access structure = (

1 1 0
0 −1 1
0 0 −1
0 −1 0

)  

 

The generated access matrix is shown above. The combinations that evaluate to true in the 

graph/formula are {α1 , α2, α3} and {α1 , α4}. This can be seen in the matrix as α1, α2 and α3 

together add up to (1,0,0), which is the wanted sharing vector. The same holds true for 
attributes α1 and α4 when summated. Non-accepting attribute set {α1, α2} gives the vector 
(1,0,1) and therefore does not allow for decryption. 
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3 System model 

 

3.1 High level overview 

 
As the ASCLEPIOS project is still in a relatively early phase, meaning that system 
requirements/a system model have not been finalized this reports briefly defines a model of 
(part of) the system to ensure certain assumptions could be made while writing this report. 
Keep in mind while reading this chapter that this chapter will in no way defines the final system 
model/the requirements of the ASCLEPIOS project. 

The final deliverable of ASCLEPIOS will include three Proof of Concepts (POCs) which all 
simulate a system that (in part) combines both SSE and ABE. The POCs are meant to show 
that it is possible to securely and efficiently share medical data, while also allowing the user to 
search among encrypted data, using SSE, so that only data that adheres to the search query 
has to be decrypted. Next to that, using ABE would allow the users to define a "profile" of the 
users that should be able to decrypt data, while not having the need to specify that specific 
users are able to decrypt medical data. This would be useful, for example, in a situation where 
someone gets hurt and is unconscious during a holiday in another EU country. It is assumed 
no one wants, for example, a medical practitioner in another country to be able to decrypt their 
medical data at any moment in time, but in life-threatening situations it would be quite useful 
to have a system in place that allows the medical practitioner to see which medication 
someone use on a daily basis as to be able to give that someone the best of care. 

So, the ASCLEPIOS POCs in their core functionality (use case) should allow a user to upload 
data, encrypt it using a hybrid ABE/SSE scheme, and a medical practitioner should be able to 
decrypt the data, if it is entitled to the right attributes. Next to that, the ASCLEPIOS project, as 
one of its requirements, should be deployable on devices with low(er) computational 
capabilities so that medical data can be uploaded continuously and securely to the cloud. An 
example for such a device with a low computational capability would be a pacemaker that 
encrypts and uploads a data entry containing the state of its user’s heart every amount of time, 
or when something out of the ordinary is taking place. Authorized practitioners should be able 
to decrypt this data when someone is rushed to the hospital with symptoms of a stroke. 

This means, that the pacemaker in the example should be able to encrypt and upload a data 
entry every once in a while. As most of the data will be encrypted using the same policy, so 
that the same users are able to decrypt them, it seems logical to use much faster symmetric 
encryption. In general ABE schemes all use asymmetric encryption and are therefore far less 
efficient, but some have chosen to use a symmetric key for decrypting data items and while 
using an ABE scheme to decrypt the symmetric encryption key, thereby making the overall 
system much more efficient. Using a hybrid symmetric/asymmetric encryption scheme is not 
only much more efficient, but also allows its users to include other functionalities. One such 
example would be to include a Searchable Encryption (SE) scheme within the symmetric 
encryption as most SE use symmetric encryption to allow for search. 

This means, that this report assumes a symmetric key is put on a device with low 
computational capabilities at the initialization of the system. This key is used by the device to 
encrypt new data entries symmetrically and upload them to a cloud service. The symmetric 
key is, after it has been added to the device, also uploaded using an ABE scheme, so that only 
authorized users are able to decrypt the symmetric key (content key) and are able to decrypt 
all data items encrypted using the content key. The decryption process is allowed to be more 
computationally heavy as the decryption process can be executed by devices with much more 
computational capabilities, although only having to decrypt the content key is not an expensive 
operation. 
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In summary the system model is as follows: a device with low computational power, in general 
attached to its physical user, periodically measures a medical state, encrypts it using a 
symmetric key and uploads it to a cloud server. Next to that the symmetric key is encrypted 
using an ABE scheme, where the ciphertext of the encrypted key in some way incorporates a 
policy who should be able to do that. Another user then, if authorized, should be able to retrieve 
the symmetric key using the ABE scheme and, after downloading all the periodic medical 
states, should be able to decrypt them and use them for whatever purpose. This system model 
does not make assumptions about the entities necessary for the ABE scheme. 

It should be noted that the described system model does not include a part about FE which 
allows for statistical analysis of encrypted data. This report does not include that, as the early 
versions of ASCLEPIOS only include the FE part after data decryption by authorized users. 
Early versions describe a work flow, where authorized users decrypt the data and encrypt it 
again using FE, so that (medical) researchers might execute statistical queries on the (newly) 
encrypted data. 

 

3.2 Requirements 

 

This chapter describes the different requirements that the ASCLEPIOS should adhere to, at 
least according to the high-level overview of the system model in the previous section. Once 
again it should be noted that the high-level overview and these requirements are simply 
assumptions that had to be made to be able to make a good comparison between the different 
schemes, as while they all fall into the category "ABE"they all have different characteristics 
and intended goals. 

 

3.2.1 Strong requirements 

 

The following requirements were drawn up and are suggested to be "Strong" requirements, 
meaning that any ABE scheme used in a similar setting should at least implement these 
requirements. Most of them were drawn up from the requirements listed in [4]. 

 

3.2.1.1 CP-ABE 

 

According to Bethencourt et al.[3] CP-ABE allows the encryptor to determine which users are 
able to decrypt certain ciphertexts by setting the access policy when generating said 
ciphertexts. This is opposed to KP-ABE where the key issuer determines which policy is used 
to generate the key and so there is an additional need to trust the key issuer. The use of CP-
ABE is a strong requirement as this allows the user, instead of the key issuer, to determine 
which attributes together should allow the decryption of which ciphertexts, by stating the 
access policy based on which attributes a user needs to have to be able to decrypt the 
ciphertext and therefore there is less need to trust the key issuer. 

3.2.1.2 Collusion resistance 

 

Another important requirement is that any scheme should be collusion resistant. In ABE 
schemes collusion resistance means that users are not able to decrypt data encrypted with an 
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access policy which does not evaluate to True for any of the users. So for example, if one user 
has a Dutch nationality and is 15 years old, while another user has a Polish nationality and is 
37 years old, they together should not be able to decrypt a ciphertext that was encrypted using 

a policy 𝒫 = ℎ𝑎𝑠𝐷𝑢𝑡𝑐ℎ𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦() AND 𝑖𝑠𝐴𝑏𝑜𝑣𝑒𝑇𝑤𝑒𝑛𝑡𝑦() as none of the users actually is 
in possession of all the attributes to decrypt the ciphertext. 

3.2.1.3 Access revocation 

 

For the system to be real-world applicable the system needs to have some sort of revocation 
process. Schroer mentions the notions of "indirect" and "direct revocation" in [4], meaning that 
the revocation takes effect after a certain amount of time or is enforced directly, respectively. 
The former has the negative property that revocations are not enforced directly, meaning that 
there is a window of time where a revoked user still has access to the data in the system, but 
has the positive property that re-encryption or other costly methods do not have to be used, 
whereas these properties are reversed in direct encryption. 

A form of a revocation method might adapt policies by adding/removing policies form the 
ciphertext. While this is straightforward in KP-ABE, this is not in CP-ABE. In CP-ABE schemes 
adaptable policies almost always need some form of re-encryption which, in general, is usually 
quite expensive. Adaptable policies might be necessary in a real-life scenario, as for example, 
when a new hospital is added to the system it will most likely be added as a new attribute 
authority. The hospital is a trusted party that would be able to hand out attributes for its 
employees depending on their designated job. These new attributes might need to be added 
to existing ciphertexts to ensure the employees of the newly added hospital are able to decrypt 
the ciphertext when necessary. 

3.2.1.4 Scalability 

 

One of the most important requirements is that the system should be scalable. Scalability in 
terms of computations/communications denotes the possibility to, for example, add new 
hardware to the system so that the system in its entirety is able to perform more computations 
in the same amount of time. This ensures the system is not limited to a maximum amount of 
computations/communications per unit of time. Scalability in the example case denotes scaling 
an existing and running system. 

Another way the system should be scalable regards "adding users” and to a lesser degree 
also "adding authorities". As the ASCLEPIOS project aims to design POCs for a medical data 
sharing system that can be used EU wide, it should be a strong requirement that new entities, 
necessary for the system to function properly, can be added after initialization as not all 
participants might be known beforehand. This includes for example the addition of new users 
and new Attribute Authorities during runtime. 

 

3.2.2 Weak Requirements 

 

This section describes recommended properties of the system which are not necessarily 
required, but might make the system more secure or more usable in a real-life scenario. Most 
of these are based on the weak requirements mentioned by Schroer in [4]. 
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3.2.2.1 Multiple Authorities 

 

For an application that is will be used EU wide it might be important to have the possibility to 

have more than one entity that serves as Attribute Authority 𝐴𝐴𝑘 , where 𝑘 ∈ 𝑆𝐴. 𝑆𝐴 denotes the 
set of Attribute Authorities. This would solve the so-called key escrow problem, meaning that 
there is no single Attribute Authority holding the decryption keys for all attributes and so the 
attributes can be chosen in such a way that a user needs to decrypt a message using the 

attributes of at least two 𝐴𝐴s. This potentially increases the security of the system as 𝑘 Attribute 
Authorities would have to be compromised in order to illegitimately decrypt a ciphertext which 
is encrypted using attribute keys of 𝑘 Attribute Authorities, assuming the scheme is collusion 
resistant (Section 3.2.1.2). This would also be very useful in a real-world scenario as, for 
example, real-life authorities within the health-care domain, such as the Dutch BIG registration 
(registration service for the licences of medical practitioners and so on), hospitals and first aid 
carers can take on the task of being an Attribute Authority in the ASCLEPIOS POCs. In other 
(digital) medical data sharing systems these entities are already used as key 
issuers/authorities to prove that one is allowed to have access to certain data, so using these 

in the system proposed by ASCLEPIOS as 𝐴𝐴s seems to be a logical choice. 

3.2.2.2 Large Attribute Universe 

 

For a medical data sharing mechanism to be usable in a real-life scenario, for example that 
the system is deployed with in the EU and crossing multiple borders, it is assumed to be 
necessary to have the possibility to have a large attribute universe. The system would not be 
very usable if the attribute universe is limited in size as that would mean there is a lot less 
control on who has access to what. 

3.2.2.3 Regranting Access 

 

It is necessary to be able to revoke access to certain users if, for example, the time expires in 
which someone needs access to specific ciphertexts and be able to decrypt them. The 
possibility to re-grant access is therefore seen as a weak requirement as that might also be 
necessary in a real-life setting. Access management is quite important for any deployed 
application to be useful and so re-granting access should be a possibility. 

3.2.2.4 Multiple Access Controls 

 

The difference between read and write access should be addressed as any database-
managed application that is used in real-life differs in read and write access for specific users. 
In the case of ASCLEPIOS some medical practitioners should only be able to read data 
entries, but others might need to be able to also write data entries, such as comments to other 
data entries. 
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4 FAME: Fast Attribute-based Message Encryption 

4.1 Introduction 

 

FAME[8] is an ABE scheme developed by Agrawal and Chase. This scheme is the first scheme 
that allows using arbitrary string as attributes as they are mapped to group element in a group 
ℍ. The scheme is also the first scheme that includes elements from both groups 𝔾 and ℍ in 
every part of the ciphertext and the key. The authors state that they use Type-III pairings 
(Section 4.4.1) as they "are generally faster" and "are the recommended choice by experts". 
The fact that the decryption process is constant (in amount of needed computations) makes it 
usable for a large universe of users/attributes. The relatively fast encryption process, as no 
bilinear pairings but only multiplication and encryption are used, makes FAME usable on 
embedded devices with low computational power. 

FAME is a CP-ABE scheme, meaning that the ciphertext is associated with a policy 𝒫. The 

advantage of using CP-ABE instead of KP-ABE (key associated with 𝒫) is that the data owner 
can specify the attributes a user should be entitled to before being able to decrypt a ciphertext, 

whereas in KP-ABE the 𝐶𝐴 is the one that makes the "decision" who is able to decrypt or not, 

by embedding the access policy 𝒫 into the keys issued to users. 

FAME itself does not allow for revoking access to a ciphertext. The policy (𝒫𝑜𝑙𝑑) is embedded 
in the ciphertexts and can only be changed by generating a new ciphertext using another 

policy 𝒫𝑛𝑒𝑤 . 

FAME has the possibility that arbitrary strings can be used to denote attributes, which makes 
it in theory possible to encrypt ciphertexts for attributes of different instances. For example, 

the attribute 𝑖𝑠𝐷𝑜𝑐𝑡𝑜𝑟() might be issued by a government-regulated authority that holds the 
records of all medical practitioners within that country, while the attribute 𝑖𝑠𝑁𝑒𝑢𝑟𝑜𝑠𝑢𝑟𝑔𝑒𝑜𝑛() 
might be issued by the hospital the practioner works at. However, as there still is a central 

authority necessary to generate all decryption keys within FAME this means that this 𝐶𝐴 needs 
to be fully trusted as it can generate every key imaginable (within the key space). 

As FAME does not allow for revoking access, it also does not allow for regranting access. As 
there is also no access control to distinguish between read and write access rights or 
ownership proof within the system it might not be usable in a real-life scenario, although it 
points out some interesting features which might be usable in a real-life setting. 

The following (impactful) substitutions were made while describing the FAME ABE scheme. 
Keep in mind that this table only includes substitutions which were specific for this scheme: 

 

Notation in this report Notation in the original paper 

𝑣 𝑙 (denoting an arbitrary number used in hash function ℋ) 

Table 4: Notation substitutions specific to FAME 

4.2 Efficiency 

 

4.2.1 .Setup() 
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The .Setup() algorithm of FAME is used to set up the system parameters. FAME does not 
make use of multiple authorities and thus the scheme is between users and a single 𝐶𝐴. 

𝐺𝑟𝑜𝑢𝑝𝐺𝑒𝑛(1λ) is an external algorithm that finds a Type-III bilinear pairing: 𝑒(𝑔𝑎 , ℎ𝑏) =

𝑒(𝑔, ℎ)𝑎𝑏 or 𝔾 × ℍ → 𝔾𝑇, where 𝔾, ℍ and 𝔾𝑇 are three groups of prime order 𝑝. 

 

𝑐1: 𝐶𝐴 runs 𝐺𝑟𝑜𝑢𝑝𝐺𝑒𝑛(1λ) and obtains public parameters 𝑃𝑃 =
(𝑝, 𝔾, ℍ, 𝔾𝑇, 𝑒(𝑔, ℎ), 𝑔 ∈𝐺 𝔾, ℎ ∈𝐺 ℍ) (cost: 1 bilinear pairing). 

𝑐2: 𝐶𝐴 picks 𝑎1, 𝑎2 ∈𝑅 ℤ𝑝
∗  and 𝑑1, 𝑑2, 𝑑3 ∈𝑅 ℤ𝑝(cost: negligible). 

𝑐3: 𝐶𝐴 computes 𝐻1 = ℎ𝑎1 , 𝐻2 = ℎ𝑎2 (cost: 2 exponentiations). 

𝑐4: 𝐶𝐴 computes 𝑇1 = 𝑒(𝑔, ℎ)𝑑1𝑎1+𝑑3 , 𝑇2 = 𝑒(𝑔, ℎ)𝑑2𝑎2+𝑑3(cost: 2 exponentiations). 
𝑐5: 𝐶𝐴 picks 𝑏1, 𝑏2 ∈𝑅 ℤ𝑝∗ (cost: negligible). 

𝑐6: 𝐶𝐴 computes 𝑔𝑑1 , 𝑔𝑑2 , 𝑔𝑑3(cost: 3 exponentiations). 

𝑐7: 𝐶𝐴 sets its public key as 𝑃𝐾𝐶𝐴 = (ℎ, 𝐻1, 𝐻2 , 𝑇1 , 𝑇2)(cost: negligible). 

𝑐8: 𝐶𝐴 sets its master secret key as 𝑀𝑆𝐾𝐶𝐴 = (𝑔, ℎ, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑔𝑑1 , 𝑔𝑑2 , 𝑔𝑑3 ) (cost: 

negligible). 

𝑚1: 𝐶𝐴 publishes its 𝑃𝐾𝐶𝐴 and 𝑃𝑃 (cost: 1 message). 

Entity Computational Complexity  Communication Complexity 

𝐶𝐴 𝑂(1) 𝑂(1) 

Table 5: Complexities .Setup() FAME 

Both complexities are 𝑂(1) as they are not linearly dependent on the amount of users, 

attributes and ciphertexts as the 𝐶𝐴 is only set up once. 

4.3 .KeyGen() 

 

The .KeyGen() algorithm uses hash functions to express an attribute as a string. The hash 
function is given below: 

Definition 6 (Hash function 𝓗) FAME uses a hash function to get a deterministic value in 
group 𝔾. Agrawal and Chase (FAME[8]) use the hash function to get from any arbitrary 

string, describing an attribute, to a value in a pre-determined group 𝐼, which can be used 
further on in the scheme. 

Hash function ℋ has two types of input which will be explained in this section. 

• ℋ(α, 𝑦, 𝑡), where α denotes an arbitrary string (attribute), 𝑦 ∈ {1,2,3} and 𝑡 ∈ {1,2}. A 
string ‘Doctor’ therefore could be used as an attribute by calculating the hash function 
as ℋ(‘𝐷𝑜𝑐𝑡𝑜𝑟’, 𝑦, 𝑡) . The string ‘Doctor’ is of course first changed into a numeric value 

and 𝑦 and 𝑡 are concatenated to that value. 𝑦 and 𝑡 are used to define multiple different 
values that are all used to generate the ciphertext/decryption key for a single attribute. 

• ℋ(𝑗, 𝑦, 𝑡), where 𝑗 is a positive integer, corresponding with a column number in the 

access matrix 𝐴 as explained before. 𝑦 and 𝑡 are the same as explained above. From 

now on this input type will be denoted as ℋ(0, 𝑗, 𝑦, 𝑡) or ℋ(0𝑗𝑦𝑡), to distinct from the first 
input type. 
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The .KeyGen() algorithm is used to generate a secret key based on a set of attributes (𝑆α,𝑗) 

user 𝑢𝑗 is entitled to. It takes a list of attributes and the 𝑀𝑆𝐾 as inputs. 

𝑚2: 𝑢𝑗 ⇒ 𝐶𝐴, request for a secret key by sending (𝐶𝐴) (cost: 1 message). 

𝑐9: 𝐶𝐴 chooses 𝑟1, 𝑟2 ∈𝑅 ℤ𝑝(cost: negligible). 

𝑐10: 𝐶𝐴 computes 𝑠𝑘0 = (ℎ𝑏1𝑟1 , ℎ𝑏2𝑟2 , ℎ𝑟1+𝑟2) (cost: 3 exponentiations). 

𝑐11: 𝐶𝐴 chooses {σα ∈ 𝑍𝑝}α∈𝑆α,𝑗
(cost: negligible). 

𝑐12: 𝐶𝐴 computes {𝑠𝑘α,𝑡 = ℋ(α1𝑡)
𝑏1𝑟1

𝑎𝑡 ∗ ℋ(α2𝑡)
𝑏2𝑟2

𝑎𝑡 ∗ ℋ(α3𝑡)
𝑟1+𝑟2

𝑎𝑡 ∗ 𝑔
σα
𝑎𝑡 }α∈𝑆α,𝑗,𝑡∈{1,2} 

(cost: 7 exponentiations per attribute). 

𝑐13: 𝐶𝐴 computes {𝑠𝑘α = (𝑠𝑘α,1, 𝑠𝑘α,2, 𝑔−σα)}α∈𝑆α,𝑗
 (cost: 1 exponentiation). 

𝑐14: 𝐶𝐴 picks σ′ ∈𝑅 ℤ𝑝(cost: negligible). 

𝑐15: 𝐶𝐴 computes{𝑠𝑘𝑡
′ = 𝑔𝑑𝑡 ∗ ℋ(011𝑡)

𝑏1𝑟1
𝑎𝑡 ∗ ℋ(012𝑡)

𝑏2𝑟2
𝑎𝑡 ∗ ℋ(013𝑡)

𝑟1+𝑟2
𝑎𝑡 ∗ 𝑔

σ′

𝑎𝑡}𝑡∈{1,2} (cost: 10 

exponentiations). 

𝑐16: 𝐶𝐴 sets 𝑠𝑘′ = (𝑠𝑘1
′ , 𝑠𝑘2

′ , 𝑔𝑑3 ∗ 𝑔−σ′
)(cost: 1 exponentiation). 

𝑚2: 𝐶𝐴 ⇒ 𝑢𝑗 sends (𝑠𝑘0, {𝑠𝑘α}α∈𝑆α,𝑗
, 𝑠𝑘′) as its key(cost: 1 message per attribute). 

Entity Computational Complexity  Communication Complexity 

𝐶𝐴 𝑂(𝑎) 𝑂(𝑎) 

𝑢𝑗 - 𝑂(1) 

Table 6: Complexities .KeyGen() FAME 

The 𝐶𝐴 has to compute eight exponentiations for every attribute it received. This means that 

the computational complexity for the 𝐶𝐴 grows linearly with the amount of attributes and 

therefore it can be best expressed as 𝑂(𝑎). The communication complexity for the user is 𝑂(1) 

as the user needs to send a single message to the 𝐶𝐴 to request its secret key(s) and the 𝐶𝐴 
needs to send back a secret key which linearly grows with the amount of attributes embedded 
in said key. Keep in mind that this algorithm has to be run for every user per file he/she wants 
to decrypt (except if multiple files are encrypted using the same policy). 

 

4.3.1 .Encrypt() 

 

The .Encrypt() function is used by a data owner, user 𝑢𝑖, to encrypt a single message 𝑚 into 

a ciphertext 𝑐𝑡, embedded with an access policy 𝒫 so that only a user which is entitled to the 
right attribute is able to decrypt the ciphertext. It should be noted that it is also possible to 
use FAME to share a symmetric encryption key which was used to encrypt a number of files, 
making the system much more efficient. The .Encrypt() algorithm takes public key 𝑃𝐾 of the 

𝐶𝐴, access matrix (𝐴, ρ(𝑥)) and a message 𝑚 as input. Access matrix 𝐴 (𝑙 rows × 𝑛 

columns) is part of a linear secret sharing scheme as explained in Section 4.4.3. ρ(𝑥) maps 
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a row 𝐴𝑥 in the matrix 𝐴 to its corresponding attribute α. 

𝑐17: 𝑢𝑖 (data owner) chooses 𝑠1, 𝑠2 ∈𝑅 ℤ𝑝 (cost: negligible). 

𝑐18: 𝑢𝑖  computes 𝑐𝑡0 = (𝐻1
𝑠1 , 𝐻2

𝑠2 , ℎ𝑠1+𝑠2) (cost: 3 exponentiatons). 

𝑐19: 𝑢𝑖  computes {𝑐𝑡α,𝑦 = ℋ(ρ(𝑥)𝑦1)𝑠1 ∗ ℋ(ρ(𝑥)𝑦2)𝑠2 ∗ ∏ [ℋ(0𝑗𝑦1)𝑠1 ∗𝑛
𝑗=1

ℋ(0𝑗𝑦2)𝑠2]
𝐴𝑥𝑗 }𝑥∈𝐴,𝑦∈{0,1,2} (cost: 2*𝑛 exponentiations per attribute). 

𝑐20: 𝑢𝑖  sets 𝑐𝑡α = (𝑐𝑡α,1, 𝑐𝑡α,2, 𝑐𝑡α,3) as the ciphertext of a single attribute (cost: negligible). 

𝑐21: 𝑢𝑖 computes 𝑐𝑡′ = 𝑇1
𝑠1 ∗ 𝑇2

𝑠2 ∗ 𝑚 (cost: 2 exponentiatons). 

𝑚4: 𝑢𝑖 ⇒ 𝐶𝑆𝑃 stores ciphertext 𝑐𝑡 = (𝑐𝑡0, {𝑐𝑡α}α∈𝒫 , 𝑐𝑡′) (cost: 1 message per attribute). 

Entity Computational Complexity  Communication Complexity 

𝑢𝑖 𝑂(𝑎2) 𝑂(𝑎) 

Table 7: Complexities .Encrypt() FAME 

The complexity grows quadratically with the amount of attributes, as matrix A is generated 
based only on the attributes. Both the amount of rows and the amount of columns in matrix A 

are dependent on the amount of attributes and thus the computational complexity is 𝑂(𝑎2). It 
needs to be noted however that this step has to be repeated for every encryption of a new 
message (as this might otherwise leak data about s1 and 𝑠2). The amount of messages (to 
store a ciphertext) is linearly dependent on the amount of attributes. 

4.4 .Decrypt() 

 

The .Decrypt() algorithm is used by a user 𝑢𝑖 to decrypt a message that was encrypted using 

access policy 𝒫, by using an access matrix 𝐴 describing said policy. In order for this to work 
𝑢𝑗 computes the following parts of the decryption. Note that the decryptor has to be in the 

possession of the secret key in order to be able to decrypt any message.  𝑠𝑘0,𝑖 denotes the 

𝑖th part of 𝑠𝑘0 and 𝑐𝑡0,𝑖 denotes the 𝑖th part of 𝑐𝑡0. If the attributes in attribute set 𝑆α,𝑗 satisfy 

access policy 𝒫, then there exist weights ω𝑥, such that ∑ ω𝑥𝑥∈𝐴 ∗ 𝐴𝑥 = (1,0, … ,0). 

𝑚5: 𝑢𝑗 ⇒ 𝐶𝑆𝑃, message requesting a ciphertext (cost: 1 message). 

𝑚6: 𝐶𝑆𝑃 ⇒ 𝑢𝑗, requested ciphertext (cost: 1 message per attribute). 

𝑐22: 𝑢𝑗 computes 𝑛𝑢𝑚1 = 𝑒(∏ 𝑐𝑡α,1
ω𝑥

α∈𝒫 , 𝑠𝑘0,1) = 𝑒(∏ 𝑐𝑡α,1
ω𝑥

α∈𝒫 , ℎ𝑏1𝑟1) (cost: 1 bilinear 

pairing). 

𝑐23: 𝑢𝑗 computes 𝑛𝑢𝑚2 = 𝑒(∏ 𝑐𝑡α,2
ω𝑥

α∈𝒫 , 𝑠𝑘0,2) = 𝑒(∏ 𝑐𝑡α,2
ω𝑥

α∈𝒫 , ℎ𝑏2𝑟2) (cost: 1 bilinear 

pairing). 

𝑐24: 𝑢𝑗 computes 𝑛𝑢𝑚3 = 𝑒(∏ 𝑐𝑡α,3
ω𝑥

α∈𝒫 , 𝑠𝑘0,3) = 𝑒(∏ 𝑐𝑡α,3
ω𝑥

α∈𝒫 , ℎ𝑟1+𝑟2) (cost: 1 bilinear 

pairing). 

𝑐25: 𝑢𝑗 computes 𝑑𝑒𝑛1 = 𝑒(𝑠𝑘1
′ ∗ ∏ 𝑠𝑘α

ω𝑥
α∈𝒫 , 𝑐𝑡0,1) = 𝑒(𝑠𝑘1

′ ∗ ∏ 𝑠𝑘α
ω𝑥

α∈𝒫 , 𝐻1
𝑠1) (cost: 1 bilinear 

pairing). 

𝑐26: 𝑢𝑗 computes 𝑑𝑒𝑛2 = 𝑒(𝑠𝑘2
′ ∗ ∏ 𝑠𝑘α

ω𝑥
α∈𝒫 , 𝑐𝑡0,2) = 𝑒(𝑠𝑘2

′ ∗ ∏ 𝑠𝑘α
ω𝑥

α∈𝒫 , 𝐻2
𝑠2) (cost: 1 

bilinear pairing). 
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𝑐27: 𝑢𝑗 computes 𝑑𝑒𝑛3 = 𝑒(𝑠𝑘3
′ ∗ ∏ 𝑠𝑘α

ω𝑥
α∈𝒫 , 𝑐𝑡0,1) = 𝑒(𝑔𝑑3−σ′

∗ ∏ 𝑠𝑘α
ω𝑥

α∈𝒫 , ℎ𝑠1+𝑠2) (cost: 1 

bilinear pairing). 

𝑐28: 𝑢𝑗 obtains 𝑚 =
𝑐𝑡′∗𝑛𝑢𝑚1∗𝑛𝑢𝑚2∗𝑛𝑢𝑚3

𝑑𝑒𝑛1∗𝑑𝑒𝑛2∗𝑑𝑒𝑛3
 (cost: negligible). 

 

Entity Computational Complexity  Communication Complexity 

𝑢𝑗 𝑂(1) 𝑂(1) 

𝐶𝑆𝑃 - 𝑂(𝑎) 

Table 8: Complexities .Decrypt() FAME 

While the decryption process might take a bit longer if the amount of attributes increases, this 
only influences the amount of exponentiations and multiplications, which are far less expensive 
in terms of computations as bilinear pairings are. In the end any decryptor only needs six 
bilinear pairings to decrypt a message and therefore the computational complexity of 

decrypting one ciphertext is constant and thus is 𝑂(1). The 𝐶𝑆𝑃 sends a ciphertext, upon 
request from user 𝑢𝑗, to 𝑢𝑗. As the size of the ciphertext linearly increases with the amount of 

attributes used in its encryption this means that the communication complexity of the 𝐶𝑆𝑃 is 

𝑂(𝑎) per ciphertext. 

4.5 Advantages & Disadvantages 

 

First the requirements will be mentioned and whether FAME meets them in Section 6.5.1. After 
that, based on the requirements analysis, a list of advantages and a list of disadvantages will 
be mentioned in Sections 6.5.2 and 6.5.3. 

4.5.1 Requirement analysis 

 

This section will briefly mention the requirements as were listed in Section 5.2. Each paragraph 
will mention a requirement, whether it is strong or weak and whether FAME8 meets that 
requirement. 

CP-ABE (Strong) - CP-ABE  is a form of ABE where the access policy 𝒫 is embedded into 
the ciphertext encryption so that only users entitled to the right attributes are able to decrypt 
the encrypted file. FAME is a CP-ABE scheme where the encryption of data items includes 
the use of LSSS to embed an access policy into the ciphertext. 

Collusion resistance (Strong) - Collusion resistance ensures that different users are not able 
to combine their attributes/keys to decrypt a ciphertext if none of the users is able to decrypt 
the file on its own. In FAME every ABE key, which in fact are six general keys and a key for 
every attribute necessary for the decryption of a file, contains at least some of the values, 
which are random per user, 𝑟1, 𝑟2, σα (for every attribute α) and σ′. If these ABE keys are used 
together in the decryption of a ciphertext these keys combined nullify the random values, 
ensuring the original secret can be retrieved. Inserting a secret key of another user does not 
have this property and so FAME is collusion resistant. 

Access revocation (Strong) - An access revocation mechanisms allows for revocation of an 
attribute, the revocation of an attribute of a user and/or a method to update the access policy 
in the encryption of a ciphertext. This ensures certain users or users with certain attributes are 
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no longer able to decrypt a ciphertext. This can be done either mathematically or system wise. 
Unfortunately FAME does not have a method to revoke user access. 

Scalability (Strong) - Scalability ensures the system will not run out of computational 
resources as new computational resources can be added to the system during run time. This 
ensures the system is not limited in the amount of attributes, users or attribute authorities it 
can handle. ASCLEPIOS aims to design a system that makes it possible for on-person medical 

devices to continuously upload (encrypted) data to a 𝐶𝑆𝑃, meaning that the encryption phase 
is the most important operation to look at to be able to say anything about its scalability as 
these on-person devices, such as pacemakers, are usually very limited in the amount of 
computations they can handle. The complexity of the encryption step grows linearly with the 
amount of attributes used to encrypt a message and the most significant computation it has to 

perform is an exponentiation. If used in a hybrid system where a content key κ is used to 
(symmetrically) encrypt data items and the content key is shared using FAME it depends on 

the amount of attributes used to encrypt κ if applicable. FAME allows for the addition of users 
and attributes to the system after its original initialization. Existing ciphertexts are not updated 
when a new attribute is added. 

Multiple Authorities (Weak) - Having multiple Attribute Authorities (𝐴𝐴s) removes the need 

for trust in a single 𝐶𝐴 as each of the 𝐴𝐴s individually decides whether a user is entitled to a 

specific attribute α or not. If a ciphertext is encrypted using the attribute keys of multiple 𝐴𝐴s 
it would need all of the authorities to collude together for them to be able to decrypt the 
ciphertext. This potentially increases security. FAME, however, does not describe a method to 

decentralize attribute management and has a single 𝐶𝐴 
 that is needed for the generations of decryption key. 

Regranting Access (Weak) - Regranting access is only applicable if the system incorporates 
a revocation method. Regranting access ensures attribute/user revocation does not have to 
be permanent. The simplest way to implement such a functionality is by giving revoked users 
new attributes that allow for decryption of a ciphertext once again. FAME does not mention a 
revocation mechanism and thus regranting access is not mentioned as well. 

Multiple Access Controls (Weak) - Multiple Access Controls is not trivial in Attribute-Based 
Encryption schemes, but might just as well be necessary for real-life usage of any ABE 
scheme. Usually ABE schemes only deal with read access, meaning that once a user has 
decrypted a file it is only able to view the contents of said file. When dealing with medical files 
it might, for example, be necessary for a medical practitioner to be able to add a comment to 
a data entry, meaning that he should be able to change the ciphertext, i.e. he should have 
write access to the file. FAME does not include the possibility to make use of different access 
controls. 

 

4.5.2 Advantages 

 

User Addition - FAME does not need to define all users during the initialization process which 
should be a requirement for any such system to be deployable in a real-life scenario as not all 
user of a system can be known beforehand. 

4.5.3 Disadvantages 

 

Full trust in 𝐶𝐴 - In FAME, as there are no Attribute Authorities, the 𝐶𝐴 functions as the entity 
that sets up the system and is therefore an " all powerful " entity. It has access to all keys and 
attributes and therefore should be fully trusted. 
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Revocation not mentioned - In the paper regarding FAME, no revocation method is 
mentioned. While a revocation method should not necessarily depend on mathematical 
structures, but might also be implemented system wise, the FAME paper does not mention 
revocation at all. 
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5 DAC-MACS: Data Access Control for Multi-Authority 
Storage Systems 

5.1 Introduction 

 

DAC-MACS[10] was first described by Yang et al. in ‘Effective Data Access Control for Multi-
Authority Cloud Storage Systems’. The paper was published at INFOCOM 2013 and was 
written by Yang et al. The authors propose a Multi-Authority CP-ABE scheme that achieves 
both backward and forward security and is efficient as it outsources part of the decryption 

process to the 𝐶𝑆𝑃 without allowing the 𝐶𝑆𝑃 to learn anything about the actual message that 
was decrypted. It is noted that this chapter describes the 2013 paper with the title DAC-MACS, 
published at INFOCOM 2013. 

The system has a 𝐶𝐴 that is in charge of distributing global identifiers 𝑢𝑖𝑑 and 𝑎𝑖𝑑, to registered 
users and attribute authorities, respectively. Next to that the 𝐶𝐴 also generates a global 

secret/public key for new users. The 𝐶𝐴 " is not involved in any attribute management " [10]. 

Attribute Authorities (𝐴𝐴s) are " independent attribute authorities responsible for issuing, 

revoking and updating user’s attributes. " Each 𝐴𝐴 " can manage an arbitrary number of 
attributes’ and ‘has full control over the structure and semantics of its attributes. " Each 𝐴𝐴𝑘  
generates its own public attribute keys and secret keys for each user ‘reflecting their attributes 
" [10]. 

The 𝐶𝑆𝑃 stores (encrypted) data of certain users and allows other users to request specific 
data. Part of the decryption of a stored ciphertext is done by the 𝐶𝑆𝑃 to also allow less powerful 
devices to retrieve data from the server, without compromising the data security/privacy, 

meaning that the 𝐶𝑆𝑃 does not learn anything about the underlying plaintexts. 

Data owners encrypt specific data items using symmetric encryption with a so-called content 

key. This content key is then encrypted using an access policy 𝒫, thereby indicating which 
attributes together should be able to obtain the content key for decryption of the original data 
items. This design significantly increases decryption time as symmetric encryption/decryption 
is much faster than asymmetric encryption/decryption. The encrypted data and the encrypted 

content key are sent to the 𝐶𝑆𝑃 which allows every legal user of the system to retrieve them 
as users which do not have the right attributes are not able to decrypt the encrypted content 
key and then decrypt the data. 

The DAC-MACS protocol uses bilinear pairings for encryption and decryption of certain 
ciphertexts. First of all every protocol step will be analysed in Section 7.2 based on the 
communication cost and the computation cost of the protocol steps for each entity in the 
system. 

The following (large) substitutions were made while describing the DAC-MACS ABE scheme. 
Keep in mind that this table only includes substitutions which were specific for this scheme: 

 

Notation in this report Notation in the original paper 

σ𝐶𝐴 𝑠𝑘𝐶𝐴 (The signing/secret key of the Central Authority) 

𝑣𝐶𝐴 𝑣𝑘𝐶𝐴 (The verificative key of the Central Authority) 
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ϵ𝑘 α𝑘 (Part of secret key of 𝐴𝐴𝑘) 

𝑡𝑘,𝑗 
𝑡𝑗,𝑘 (Changed to better reflect it being generated by 𝐴𝐴𝑘, used in 

key generation) 

Table 9: Notation substitutions specific to DAC-MACS 

5.2 Efficiency 

 

5.2.1 .Setup() 

 

The .Setup() algorithm exists of two parts, namely .CASetup(), which sets up a 𝐶𝐴 and uses 
sub algorithms .UserRegistration() to register a user and .AARegistration() to set up a new 

Attribute Authority. Both users and 𝐴𝐴s are set up during the system initialization and so no 

new users or 𝐴𝐴s can be added later on in the system’s lifetime. The .AASetup() algorithm is 
used to setup a new Attribute Authority  at the system initialization. Both algorithms need 

groups 𝔾 (with generator 𝑔) and 𝔾𝑇, both of prime order 𝑝. A Type-I bilinear pairings 𝔾 × 𝔾 →
𝔾𝑇 is used in some of the calculations. The system also defines a hash function ℋ, which 

maps random bit strings to element in 𝔾 (ℋ: {0,1}∗ → 𝔾). 

5.2.1.1 .CASetup() 

 

The .CASetup() algorithm is used to set up the (centrally trusted) 𝐶𝐴. The 𝐶𝐴 takes security 

parameter λ as input and outputs master key 𝑀𝑆𝐾, system parameter 𝑆𝑃 and a singing and 
verificative key pair (σ𝐶𝐴, 𝑣𝐶𝐴). For each user 𝑢𝑖𝑑𝑗 it generates a global public/secret key pair 

(𝐺𝑃𝐾𝑢𝑖𝑑𝑗
, 𝐺𝑆𝐾𝑢𝑖𝑑𝑗

) and a certificate 𝐶𝑒𝑟𝑡(𝑢𝑖𝑑𝑗). 

𝑐1: 𝐶𝐴 chooses large prime 𝑝 (and thus chooses ℤ𝑝) (cost: negligible). 

𝑐2: 𝐶𝐴 chooses generator 𝑔 ∈𝐺 𝔾, where 𝔾 is an algebraic group op order 𝑝 (cost: 
negligible). 

𝑐3: 𝐶𝐴 computes bilinear pairing 𝑒(𝑔, 𝑔) (cost: 1 bilinear pairing). 

𝑐4: 𝐶𝐴 chooses hash function ℋ: {0,1}∗ → 𝔾 (cost: negligible). 

𝑐5:  𝐶𝐴 chooses value 𝑎 ∈𝑅 ℤ𝑝 uniformly at random as its Master Secret Key (𝑀𝑆𝐾) (cost: 

negligible). 

𝑐6: 𝐶𝐴 generates System Parameter (𝑆𝑃) as 𝑔𝑎 (cost: 1 exponentiation). 

𝑐7: 𝐶𝐴 chooses its signing key and computes its verificative key (𝜎𝐶𝐴, 𝑣𝐶𝐴) (cost: 1 
exponentiation). 

m1: 𝐶𝐴 publishes 𝑝, 𝑔, 𝔾, ℋ, 𝑒(𝑔, 𝑔) 𝑆𝑃 = 𝑔𝑎 (cost: 1 message). 
 

Entity Computational Complexity  Communication Complexity 

𝐶𝐴 𝑂(1) 𝑂(1) 

Table 10: Complexities .CASetup() DAC-MACS 
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Both complexities are 𝑂(1) as they do not grow with the amount of users, attributes and 

ciphertexts as the 𝐶𝐴 is only set up once. 

5.2.1.2 .UserRegistration() (sub-algorithm of .CASetup()) 

 

In this step the user registers itself to the 𝐶𝐴 during the system initialization. User 𝑢𝑗 obtains 

its global (user) identifier 𝑢𝑖𝑑𝑗, global public key 𝐺𝑃𝐾𝑢𝑖𝑑𝑗
 and global secret key 𝐺𝑆𝐾𝑢𝑖𝑑𝑗

. 

m2: User 𝑢𝑗 ⇒ 𝐶𝐴, request user identifier 𝑢𝑖𝑑𝑗 and its user keys (cost: 1 message). 

𝑐8: 𝐶𝐴 assigns global unique user identity (𝑢𝑖𝑑𝑗) to 𝑢𝑗 (cost: negligible). 

𝑐9: 𝐶𝐴 chooses 𝑢𝑢𝑖𝑑𝑗
∈𝑅 ℤ𝑝 and computes 𝐺𝑃𝐾𝑢𝑖𝑑𝑗

= 𝑔
𝑢𝑢𝑖𝑑𝑗  (cost: negligible). 

𝑐10: 𝐶𝐴 chooses 𝑧𝑢𝑖𝑑𝑗
∈𝑅 ℤ𝑝 and computes 𝐺𝑆𝐾𝑢𝑖𝑑𝑗

= 𝑧𝑢𝑖𝑑𝑗
 (cost: 1 exponentiation). 

𝑐11: 𝐶𝐴 generates certificate 𝐶𝑒𝑟𝑡(𝑢𝑖𝑑𝑗) = 𝐸𝜎𝐶𝐴
(𝑢𝑖𝑑𝑗, 𝑢𝑢𝑖𝑑𝑗

, 𝑔

1

𝑧𝑢𝑖𝑑𝑗 ), by using its signing key 

(𝑠𝑘𝐶𝐴) (cost: 1 exponentiaton). 

m3: 𝐶𝐴 ⇒ 𝑢𝑗, a message containing: 𝐺𝑃𝐾𝑢𝑖𝑑𝑗
, 𝐺𝑆𝐾𝑢𝑖𝑑𝑗

 and 𝐶𝑒𝑟𝑡(𝑢𝑖𝑑𝑗) (cost: 1 message). 

 

Entity Computational Complexity  Communication Complexity 

𝐶𝐴 𝑂(1) 𝑂(1) 

𝑢𝑗  - 𝑂(1) 

Table 11: Complexities .UserRegistration() DAC-MACS 

Every user has to request an 𝑢𝑖𝑑𝑗 and their global key pair by sending a single message per 

user to the 𝐶𝐴, therefore the complexity of every user in this protocol step is 𝑂(1) as it does 
not grow with to the amount of attributes, users or ciphertexts. The 𝐶𝐴 has to compute several 
things, but everytime this algorithm is executed the amount of computations and 

communications is constant for the 𝐶𝐴. It should be noted that this algorithm is executed for 
every user 𝑢𝑖𝑑𝑗 and thus both the computational and communication complexity of the 𝐶𝐴 

become 𝑂(𝑢) as they grow linearly with the amount of users. 

5.2.1.3 .AARegistration() (subalgorithm of .CASetup()) 

 

In this step an Attribute Authority (𝐴𝐴𝑘) registers itself to the 𝐶𝐴 during system initialization. 

m4: 𝐴𝐴𝑘 ⇒ 𝐶𝐴, 𝐴𝐴𝑘  requests its global identifier 𝑎𝑖𝑑𝑘 (cost: 1 message). 

c12: 𝐶𝐴 assigns global authority identity 𝑎𝑖𝑑𝑘 to 𝐴𝐴𝑘 (cost: negligible). 

m5: 𝐶𝐴 ⇒ 𝐴𝐴𝑘 , 𝑎𝑖𝑑𝑘 (cost: 1 message). 

 

Entity Computational Complexity  Communication Complexity 
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𝐶𝐴 - 𝑂(1) 

𝐴𝐴𝑘 - 𝑂(1) 

Table 12: Complexities .AARegistration() DAC-MACS 

Each 𝐴𝐴𝑘 has a communication complexity of 𝑂(1) as each one needs to send a single 

message to 𝐶𝐴 requesting to be assigned its own 𝑎𝑖𝑑𝑘. The 𝐶𝐴 has a communication 

complexity of 𝑂(1) as the amount of messages send by the 𝐶𝐴 to 𝐴𝐴𝑘 is constant. It should 
be noted that the communication complexity for the 𝐶𝐴 linearly grows with the amount of 

attribute authorities in the system, and so in the overall system increases to 𝑂(𝑘). 

5.2.1.4 .AASetup() 

 

This step sets up an Attribute Authority. Each Attribute Authority 𝐴𝐴𝑘 runs 

algorithm .AARegistration() to be assigned a global 𝑎𝑖𝑑. 𝑆𝛼𝑘
 denotes set of all attributes 

managed by authority 𝐴𝐴𝑘 .  

𝑐13: 𝐴𝐴𝑘  chooses 𝜖𝑘, 𝛽𝑘, 𝛾𝑘 ∈𝑅 ℤ𝑝 (cost: negligible). 

𝑐14: 𝐴𝐴𝑘  sets authority secret key 𝑆𝐾𝑘 = (𝜖𝑘, 𝛽𝑘, 𝛾𝑘) (cost: negligible). 

𝑐15: 𝐴𝐴𝑘  chooses attribute version key {𝑉𝐾𝛼 = 𝑣𝛼 ∈𝑅 ℤ𝑝}𝛼∈𝑆𝛼𝑘
 (cost: negligible). 

𝑐16: 𝐴𝐴𝑘  generates public attribute key {𝑃𝐾𝛼 = (𝑔𝑣𝛼ℋ(𝛼))𝛾𝑘}𝛼∈𝑆𝛼𝑘
 (cost: 2 exponentiations 

per attribute). 

𝑐17: 𝐴𝐴𝑘  generates authority public key as 𝑃𝐾𝑘 =(𝑒(𝑔, 𝑔)𝜖𝑘, 𝑔
1

𝛽𝑘, 𝑔
𝛾𝑘
𝛽𝑘) (cost: 3 

exponentiations). 

m6: 𝐴𝐴𝑘  publishes 𝑃𝐾𝑘 and {𝑃𝐾𝛼}𝛼∈𝑆𝛼𝑘
 (cost: 1 message per attribute). 

 

Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 𝑂(𝑎) 𝑂(𝑎) 

Table 13: Complexities .AASetup() DAC-MACS 
 

Each 𝐴𝐴𝑘 has a computational complexity of 𝑂(𝑎) as it grows linearly with the amount of 

attributes of the 𝐴𝐴𝑘 . It has the communication complexity of 𝑂(𝑎) as it needs to publish a 
public key for every attribute it is manages. This means that both complexities grow linearly 
with the amount of attribute an authority 𝐴𝐴𝑘  manages. It should be noted that every 𝐴𝐴𝑘 

should run this algorithm at system initialization, and thus the total complexity is 𝑂(𝑎 ∗ 𝑘). 

 

5.2.2 .SKeyGen() 

 

In this step an 𝐴𝐴𝑘 generates a secret key for every attribute requesting user 𝑢𝑗 is entitled to. 

𝑆𝛼𝑘,𝑗 denotes the set of all attributes managed by 𝐴𝐴𝑘 user 𝑢𝑗 is entitled to (according to 𝐴𝐴𝑘). 
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m7: User 𝑢𝑗 ⇒ 𝐴𝐴𝑘, message containing 𝐶𝑒𝑟𝑡(𝑢𝑖𝑑𝑗) (cost: 1 message). 

c18: 𝐴𝐴𝑘 verifies 𝐸𝜎𝐶𝐴
(𝑢𝑖𝑑𝑗, 𝑢𝑢𝑖𝑑𝑗

, 𝑔

1

𝑧𝑢𝑖𝑑𝑗 ) in 𝐶𝑒𝑟𝑡(𝑢𝑖𝑑𝑗) using its verification key 𝑣𝐶𝐴 (cost: 1 

exponentiation). 

c19: 𝐴𝐴𝑘 authenticates user 𝑢𝑗 and otherwise aborts (cost: negligible). 

c20: 𝐴𝐴𝑘 assigns a set of attributes 𝑆𝛼𝑘,𝑗 to 𝑢𝑗 based on its identity (cost: negligible). 

c21: 𝐴𝐴𝑘 chooses 𝑡𝑘,𝑗 ∈𝑅 ℤ𝑝 (cost: negligible). 

c22: 𝐴𝐴𝑘 runs secret key generation algorithm .SKeyGen() and obtains user’s secret key 

𝑆𝐾𝑘,𝑗 = (𝐾𝑘,𝑗 , 𝐿𝑘,𝑗 , 𝑅𝑘,𝑗 = 𝑔𝑎∗𝑡𝑘,𝑗 , {𝐾𝛼,𝑗}𝛼∈𝑆𝛼𝑘,𝑗
), where: 

 𝐾𝑘,𝑗 = 𝑔

𝜖𝑘
𝑧𝑢𝑖𝑑𝑗 ∗ 𝑔

𝑎∗𝑢𝑢𝑖𝑑𝑗 ∗ 𝑔
𝑎

𝛽𝑘
𝑡𝑘,𝑗

 (cost: 3 exponentiations). 

  𝐿𝑘,𝑗 = 𝑔

𝛽𝑘
𝑧𝑢𝑖𝑑𝑗

𝑡𝑘,𝑗

 (cost: 2 exponentiations). 

  𝑅𝑘,𝑗 = 𝑔𝑎∗𝑡𝑘,𝑗 (cost: 1 exponentiations per attribute). 

 {𝐾𝛼,𝑗 = 𝑔

𝛽𝑘∗𝛾𝑘
𝑧𝑢𝑖𝑑𝑗

𝑡𝑘,𝑗

∗ (𝑔𝑣𝛼 ∗ ℋ(𝛼))
𝛾𝑘∗𝛽𝑘∗𝑢𝑢𝑖𝑑𝑗 )}𝛼∈𝑆𝛼𝑘,𝑗

 (cost: 2 exponentiations per 

attribute). 

m8: 𝐴𝐴𝑘 ⇒ 𝑢𝑗 , messages containing secret attribute keys (cost: 1 message per attribute). 

 

Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 𝑂(𝑎) 𝑂(𝑎) 

𝑢𝑗  - 𝑂(1) 

Table 14: Complexities .SKeyGen() DAC-MACS 

 
Each time this protocol is called user 𝑢𝑗 has a complexity of sending and receiving 1 message, 

step, meaning that its computational complexity is 𝑂(1). This, however, is only if this protocol 
is executed with a single user and Attribute Authority, otherwise the communication of the user 
𝑢𝑗 is linearly dependent with the amount of Attribute Authorities (𝑂(𝑘)). The Attribute Authority 

𝐴𝐴𝑘  then computes a secret key for every attribute the user 𝑢𝑗 is entitled to, meaning that its 

complexity is 𝑂(𝑎), both computationally and communication wise. However, the .SKeyGen() 
algorithm is called by every user 𝑢𝑗 for each 𝐴𝐴𝑘, meaning that each 𝐴𝐴𝑘 has a computation 

and communication complexity of 𝑂(𝑎 ∗ 𝑢) and each user 𝑢𝑗 has a communication complexity 

of 𝑂(𝑘). Both the overall computation and communication complexity grow with the amount of 
users, the amount of attribute authorities and the amount of attributes each authority manages, 

denoted as of 𝑂(𝑘 ∗ 𝑎 ∗ 𝑢). 

5.2.3 .Encrypt() 
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This .Encrypt() algorithm is used to encrypt a set of files owned by user 𝑢𝑖 (data owner) using 
content key 𝜅. The .Encrypt() function will also encrypt the content key. An access policy 𝒫 is 

converted to an access matrix (𝐴, 𝜌(𝑥)), where 𝜌(𝑥) maps a row 𝑥 in 𝐴 to its corresponding 

attribute 𝛼. 𝑆𝐴 denotes the set of all Attribute Authorities involved in the encryption of content 

key 𝜅. 

c23: 𝑢𝑖 generates content key 𝜅 (cost: negligible). 

c24: 𝑢𝑖 generates access matrix (𝐴, 𝜌) (size 𝑙 × 𝑛), according to access policy 𝒫 (cost: 
negligible). 

c25: 𝑢𝑖 symmetrically encrypts files {𝑓1, . . . , 𝑓𝑧} and obtains {𝑐𝑡1, . . . , 𝑐𝑡𝑧} using key 𝜅 (cost: z 
symmetric encryptions). 

c26: 𝑢𝑖 chooses secret 𝑠 ∈ ℤ𝑝 (cost: negligible). 

c27: 𝑢𝑖 chooses {𝑣2, . . . , 𝑣𝑛} ∈𝑅 ℤ𝑝 (cost: negligible). 

c28: 𝑢𝑖 sets 𝑣 = (𝑠, 𝑣2, . . . , 𝑣𝑛) (cost: negligible). 

c29: 𝑢𝑖 computes 𝜆𝑥 = 𝑣 ∗ 𝐴𝑥 for all rows in 𝐴 (cost: negligible). 

c30: 𝑢𝑖 chooses {𝑟𝛼}𝛼∈𝒫 ∈𝑅 ℤ𝑝 (cost: negligible). 

c31: 𝑢𝑖 computes ciphertext 𝑐𝑡 = (𝐶, 𝐶′, 𝐶″, {𝐶𝛼}𝛼∈𝒫 , {𝐷1,𝛼}𝛼∈𝒫 , {𝐷2,𝛼}𝛼∈𝒫), where: 

 𝐶 = 𝜅 ∗ (∏ 𝑒𝑘∈𝑆𝐴
(𝑔, 𝑔)𝜖𝑘)𝑠 (cost: k multiplications). 

 𝐶′ = 𝑔𝑠 (cost: 1 exponentiation). 

 𝐶″ = 𝑔
𝑠

𝛽𝑘 (cost: 1 exponentiation). 

 {𝐶𝛼 = 𝑔𝑎∗𝜆𝑥 ∗ ((𝑔𝑣𝛼 ∗ 𝐻(𝛼))𝛾𝑘)−𝑟𝛼}𝛼∈𝒫 (cost: 2 exponentiations per attribute). 

 {𝐷1,𝛼 = 𝑔
𝑟𝛼
𝛽𝑘}𝛼∈𝒫 (cost: 1 exponentiation per attribute). 

 {𝐷2,𝛼 = 𝑔
−

𝛾𝑘
𝛽𝑘

𝑟𝛼
}𝛼∈𝒫 (cost: 1 exponentiation per attribute). 

m9: 𝑢𝑖 ⇒ 𝐶𝑆𝑃, all the ciphertexts that were encrypted using content key 𝜅 (cost: z messages). 

m10: 𝑢𝑖 ⇒ 𝐶𝑆𝑃, 𝑐𝑡 (cost: l messages). 

 

Entity Computational Complexity  Communication Complexity 

𝑢𝑖 𝑂(𝑎) 𝑂(𝑎) 

Table 15: Complexities .Encrypt() DAC-MACS 

User 𝑢𝑖 encrypts all the files, using content key 𝜅, but as this is symmetric encryption it is 
relatively fast and does not contribute too much to the overall complexity. The exponentiations 
in this step however are non-negligible operations and thus attribute to the computational 

complexity, which is 𝑂(𝑎), meaning that the amount of computations linearly increases with 
the amount of attributes (in policy 𝒫). The same holds for the communication complexity of 𝑢𝑖. 

It should be noted that this step has to be repeated for every unique access policy 𝒫 a data 

owner uses to encrypt a content key 𝜅. 
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5.2.4 .Decrypt() 

 

Algorithm .Decrypt() exists of two sub algorithms. First a user asks the 𝐶𝑆𝑃 (with more 
computational capabilities) to generate a token using the secret attribute keys of the user in 
sub algorithm .TKGen() which is then sent to the 𝑢𝑗. The user then uses its secret value 𝑧𝑢𝑖𝑑𝑗

 

to retrieve content key 𝜅. 

5.2.4.1 .TKGen() 

 

User 𝑢𝑗 sends its secret keys {𝑆𝐾𝑘,𝑗}𝑘∈𝑆𝐴
 to the server which generates a token thereby 

outsourcing part of the decryption of ciphertext 𝐶𝑇. 𝑆𝐴 denotes all involved Attribute Authorities, 

whereas 𝑆𝐴𝑘
 denotes the set of attributes of 𝐴𝐴𝑘 . 𝑁𝐴 denotes the number of involved 𝐴𝐴s. 

m11: 𝑢𝑗 ⇒ 𝐶𝑆𝑃, {𝑆𝐾𝑘,𝑗}𝑘∈𝑆𝐴
 (cost: 1 message per attribute). 

c32: 𝐶𝑆𝑃 calculates 𝑇𝐾 = ∏
𝑒(𝐶′,𝐾𝑘,𝑗)∗𝑒(𝑅𝑘,𝑗,𝐶″)−1

∏ (𝛼∈𝑆𝐴𝑘
𝑒(𝐶𝛼,𝐺𝑃𝐾𝑢𝑖𝑑𝑗

)∗𝑒(𝐷1,𝛼,𝐾𝛼,𝑗)∗𝑒(𝐷2,𝛼,𝐿𝑘,𝑗))𝜔𝑥∗𝑁𝐴
𝑘∈𝑆𝐴

 

=
𝑒(𝑔,𝑔)

𝑎∗𝑢𝑢𝑖𝑑𝑗
∗𝑠∗𝑁𝐴

∗∏ 𝑒𝑘∈𝑆𝐴
(𝑔,𝑔)

𝜖𝑘
𝑧𝑢𝑖𝑑𝑗

𝑠

𝑒(𝑔,𝑔)
𝑢𝑢𝑖𝑑𝑗

∗𝑎∗𝑁𝐴∗∑ 𝜆𝑥𝑥∈𝐴 𝜔𝑥
= ∏ 𝑒𝑘∈𝑆𝐴

(𝑔, 𝑔)

𝜖𝑘
𝑧𝑢𝑖𝑑𝑗

𝑠

 (cost: 2 bilinear pairings per attribute 

and 3 bilinear pairings per attribute belonging to Attribute Authority 𝐴𝐴𝑘). 

m12: 𝐶𝑆𝑃 ⇒ 𝑢𝑗, 𝑇𝐾 (cost: 1 message). 

 

Entity Computational Complexity  Communication Complexity 

𝑢𝑖 - 𝑂(𝑎) 

𝐶𝑆𝑃 𝑂(𝑎) 𝑂(1) 

Table 16: Complexities .TKGen() DAC-MACS 

First of all user 𝑢𝑗 sends all its keys to the 𝐶𝑆𝑃 at a communication complexity of 𝑂(𝑎). The 

user sends a key per Attribute Authority, but as these keys exist of a sub key per attribute per 

𝐴𝐴𝑘 , this means that the amount of messages linearly increases with the amount of attributes 

in the system. The 𝐶𝑆𝑃 then generates a decryption token 𝑇𝐾. The 𝐶𝑆𝑃 can optimize its 
calculation of 2 bilinear pairings per attribute and 3 bilinear pairings per attribute belonging to 

Attribute Authority 𝐴𝐴𝑘 into 5 bilinear pairings per attribute and so the computational 

complexity linearly increases with the amount of attributes used for encrypting content key 𝜅. 
The 𝐶𝑆𝑃 in the end sends 𝑇𝐾 to user 𝑢𝑗 at a constant communication complexity (𝑂(1)). Keep 

in mind that the .TKGen() algorithm is run every time a user want to decrypt a content key. 

5.2.4.2 .UserDecrypt() 

 

User 𝑢𝑗 obtains content key 𝜅 by decrypting ciphertext 𝐶𝑇 using 𝑇𝐾 and its global secret key 

𝐺𝑆𝐾𝑢𝑖𝑑𝑗
. 
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c33: 𝜅 = 𝐶𝑇/𝑇𝐾
𝑧𝑢𝑖𝑑𝑗  (𝑧𝑢𝑖𝑑𝑗

= 𝐺𝑆𝐾𝑢𝑖𝑑𝑗
) (cost: 1 exponentiation). 

Entity Computational Complexity  Communication Complexity 

𝑢𝑖 𝑂(1) - 

Table 17: Complexities .UserDecrypt() DAC-MACS 

𝑢𝑗 has a computation complexity of 𝑂(1) as the complexity does not grow with any of the 

parameters of the system, as the computation is only a single (modular) division. 

5.2.5 .Update() 

 

An attribute 𝛼 user 𝑢𝜇 is entitled to is revoked by its authority 𝐴𝐴𝑘 .Update(), meaning that both 

the secret key and the ciphertext need to be updated. This step guarantees backwards as well 

as forward security. The .Update() algorithms is called by an 𝐴𝐴𝑘  if it decides a user no longer 

should be entitled to a specific attribute 𝛼. 

5.2.5.1 .UKeyGen() 

 

.UKeyGen() is run by 𝐴𝐴𝑘  to generate a user’s key update key 𝐾𝑈𝐾𝛼,𝑗 for every non-revoked 

user en the ciphertext update key 𝐶𝑈𝐾𝛼. 

c34: 𝐴𝐴𝑘 generates a new attribute version key 𝑉𝐾′𝛼 = 𝑣′𝛼 ∈𝑅 ℤ𝑝 (cost: negligible). 

c35: 𝐴𝐴𝑘 computes Attribute Update Key 𝐴𝑈𝐾𝛼 = 𝛾𝑘(𝑣′𝛼 − 𝑣𝛼) (cost: negligible). 

c36: 𝐴𝐴𝑘 computes user’s Key Update Key {𝐾𝑈𝐾𝛼,𝑗 = 𝑔
𝑢𝑢𝑖𝑑𝑗

𝛽𝑘𝐴𝑈𝐾𝛼}𝑢𝑗∈𝑆𝑈 ,𝑢𝑗≠𝑢𝜇
 (cost: 3 

exponentiations per user). 

c37: 𝐴𝐴𝑘 computes Ciphertext Update Key 𝐶𝑈𝐾𝛼 =
𝛽𝑘

𝛾𝑘
∗ 𝐴𝑈𝐾𝛼 (cost: negligible). 

c38: 𝐴𝐴𝑘 updates public attribute key 𝑃𝐾′𝛼 = 𝑃𝐾𝛼 ∗ 𝑔𝐴𝑈𝐾𝛼 (cost: 1 exponentiation). 

𝑚13: 𝐴𝐴𝑘 publishes 𝑃𝐾′𝛼 as the replacement of 𝑃𝐾𝛼  (cost: 1 message). 

 

Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 𝑂(𝑢) 𝑂(1) 

Table 18: Complexities .UKeyGen() DAC-MACS 

The Attribute Authority computes Key Update Keys 𝐾𝑈𝐾𝛼,𝑗 for each non-revoked user 𝑢𝑗, 

meaning that the complexity is linearly dependent on the amount of users and thus is denoted 
as 𝑂(𝑢). It then broadcasts that one of its attributes has been changed/revoked at cost 𝑂(1). 
It should be noted that this algorithm only revokes an attribute of one user, but could be 
optimized to allow for revocation of one single attribute for multiple users at the same cost. 

5.2.5.2 .SKUpdate() 
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For every user 𝑢𝑗 ≠ 𝑢𝜇 that has not been revoked 𝐴𝐴𝑘 has generated Key Update Key (𝐾𝑈𝐾𝛼,𝑗) 

and sends it to them. Each user 𝑢𝑗 ≠ 𝑢𝜇 updates it secret key. 𝑆𝑈 denotes the set of all users. 

m14: 𝐴𝐴𝑘 ⇒ 𝑢𝑗 (𝑢𝑗 ∈ 𝑆𝑈 , 𝑢𝑗 ≠ 𝑢𝜇), message containing 𝐾𝑈𝐾𝛼,𝑗 associated with 𝑢𝑖𝑑𝑗 (cost: u messages). 

c39: Each 𝑢𝑗 ≠ 𝑢𝜇 changes 𝐾𝛼𝑗
 in 𝑐𝑡 to 𝐾′𝛼,𝑗 ∗ 𝐾𝑈𝐾𝛼,𝑗 for changed attribute 𝛼 (cost: negligible 

per user). 

 

Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 - 𝑂(𝑢) 

𝑢𝑗  𝑂(1) - 

Table 19: Complexities .SKUpdate() DAC-MACS 

𝐴𝐴𝑘  sends a single message to every user containing their specific Key Update Key (𝐾𝑈𝐾) at 
communication cost 𝑂(1). User 𝑢𝑗 now computes a single multiplication to obtain its updated 

Secret Key for (revoked) attribute 𝑥. The computation cost per user is constant and thus 𝑂(1). 
Every time an attribute gets revoked every user updates its key corresponding to said attribute. 

5.2.5.3 .CTUpdate() 

 

Algorithm .CTUpdate() is run by the 𝐶𝑆𝑃 to update every ciphertext associated with (revoked) 

attribute 𝛼. 

m15: 𝐴𝐴𝑘 ⇒ 𝐶𝑆𝑃, 𝐶𝑈𝐾𝛼 (cost: 1 message). 

c40: 𝐶𝑆𝑃 changes 𝐶𝛼  in 𝑐𝑡 to 𝐶𝛼 ′ = 𝐶𝛼 ∗ 𝐷2,𝛼
𝐶𝑈𝐾𝛼 (cost: 1 exponentiation). 

 

Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 - 𝑂(1) 

𝐶𝑆𝑃 𝑂(𝑐𝑡) - 

Table 20: Complexities .CTUpdate() DAC-MACS 

𝐴𝐴𝑘  sends a single message to the 𝐶𝑆𝑃 containing a ciphertext update key with constant 
complexity 𝑂(1). The 𝐶𝑆𝑃 has to update every ciphertext (containing symmetric encryption 

key 𝜅). The amount of ciphertexts that need to be updated are dependent on the amount of 
users that use that attribute for encryptions and the amount of different policies used per user. 

Therefore, the computational complexity of the 𝐶𝑆𝑃 has been set at 𝑂(𝑐𝑡), where 𝑐𝑡 is 
dependent on the amount of users that use that specific attribute and the amount different 
policies the users each use. 

5.3 Advantages & Disadvantages 
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First the requirements will be mentioned and whether DAC-MACS[10] meets them in 
Section7.3.1. After that, based on the requirements analysis, a list of advantages and a list of 
disadvantages will be mentioned in Sections  7.3.2. Requirement analysis 

This section will briefly mention the requirements as were listed in Section 5.2. Each paragraph 
will mention a requirement, whether it is strong or weak and whether DAC-MACS meets that 
requirement. 

CP-ABE (Strong) - CP-ABE is a form of ABE where the access policy 𝒫 is embedded into the 
ciphertext encryption so that only users entitled to the right attributes are able to decrypt the 
encrypted file. DAC-MACS is a CP-ABE scheme where the encryption of data items includes 
the use of LSSS (Section 4.4.3) to embed an access policy into the ciphertext. 

Collusion resistance (Strong) - Collusion resistance ensures that different users are not able 
to combine their attributes/keys to decrypt a ciphertext if none of the users is able to decrypt 
the file on its own. In DAC-MACS a secret key for an attribute is made up of three general 
keys that all contain a random value, while one of them also includes some identifier for a user. 
The secret key for an attribute also contains the random value and the user identifier. The 
users therefore cannot collude by combining the keys for different attributes. 

Access revocation (Strong) - An access revocation mechanisms allows for revocation of an 
attribute, the revocation of an attribute of a user and/or a method to update the access policy 
in the encryption of a ciphertext. This ensures certain users or users with certain attributes are 
no longer able to decrypt a ciphertext. This can be done either mathematically or system wise. 
DAC-MACS incorporates an interesting revocation method. If an attribute should be revoked 
for a user the corresponding Attribute Authority first updates the attribute, by choosing a new 
version key, which in its turn is used to update the Attribute Update Key (𝐴𝑈𝐾). The 𝐴𝑈𝐾 is 

used to compute a Key Update Key (𝐾𝑈𝐾) for every non-revoked user and a Ciphertext 

Update Key (𝐶𝑈𝐾). The 𝐴𝐴 also updates the public attribute key using 𝐴𝑈𝐾. The 𝐾𝑈𝐾s are 
sent to the users who each use their 𝐾𝑈𝐾 to update the secret attribute key using a single 

multiplication. The 𝐶𝑈𝐾 is used by the 𝐶𝑆𝑃 to update all of the ciphertexts that were encrypt 
using the attribute. The revoked user does not receive an update key and is not able to update 
its attribute key(s) accordingly. 

Scalability (Strong) - Scalability ensure the system will not run out of computational resources 
as new computational resources can be added to the system during runtime. This ensures the 
system is not limited in the amount of attributes, users or attribute authorities it can handle. 
ASCLEPIOS aims to design a system that makes it possible for on-person medical devices to 

continuously upload (encrypted) data to the 𝐶𝑆𝑃 and thus the encryption phase is the most 
important operation to look at to be able to say anything about its scalability as these on-
person devices, such as pacemakers, are usually very limited in the amount of computations 
they can handle. The complexity of the encryption step grows linearly with the amount of 
attributes in DAC-MACS, but does require bilinear pairings and four exponentiations per 
encryption, which might be too expensive for devices with low computational power. 
Benchmarking might explain how much attributes would be feasible for the system. DAC-

MACS does describe some sort of hybrid system as a symmetric content key 𝜅 is used for fast 
encryption/decryption of data items while the heavier ABE scheme is used to encrypt and 
share the content key. It should also be noted that DAC-MACS assumes all users and attribute 
authorities are known when initializing the system, although a few alterations to the scheme 

might allow for the addition of users and 𝐴𝐴s after system initialization. 

Multiple Authorities (Weak) - Having multiple Attribute Authorities (𝐴𝐴s) removes the need 
for trust in a Central Authority as each of the 𝐴𝐴s individually decides whether a user is entitled 

to a specific attribute 𝛼 or not. If a ciphertext is encrypted using the attribute keys of multiple 

𝐴𝐴s it would need all of the authorities to collude together for them to be able to decrypt the 
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ciphertext. This potentially increases security and might be more useful in a real-life setting. 

DAC-MACS describes a method to include multiple 𝐴𝐴s that assign users different attributes. 

Regranting Access (Weak) - Regranting access is only applicable if the system incorporates 
a revocation method. Regranting access ensures attribute/user revocation does not have to 
be permanent. The simplest way to implement such a functionality is by giving revoked users 
new attributes that allow for decryption of a ciphertext once again. Regranting Access has not 
been described in DAC-MACS, but a Key Update Key for an attribute of a revoked user can 
just as easily be calculated when necessary, thereby allowing a revoked user to once again 
decrypt ciphertexts encrypted using that attribute (assuming it is entitled to all other attributes 
necessary for decryption as well). 

Multiple Access Controls (Weak) - Multiple Access Controls is not trivial in Attribute-Based 
Encryption schemes, but might just as well be necessary for real-life usage of any ABE 
scheme. Usually ABE schemes only deal with read access, meaning that once a user has 
decrypted a file it is only able to view the contents of said file. When dealing with medical files 
it might, for example, be necessary for a medical practitioner to be able to add a comment to 
a data entry, meaning that he should be able to change the ciphertext, i.e. he should have 
write access to the file. DAC-MACS does not include the possibility to make use of different 
access controls. 

 

5.3.1 Advantages 
 

Multiple Attribute Authorities - One of the advantages of the DAC-MACS scheme is that the 

authors describe a system that allows for multiple 𝐴𝐴s. Using multiple 𝐴𝐴s is seen as an 
advantage as no single authority is able to decrypt a ciphertext if it was encrypted using the 
attributes of multiple authorities. Furthermore, in a (European) Union wide setting, creating a 
𝐶𝐴 that issues attributes for all different hospitals, governmental regulation agencies in the 
healthcare domain and other medical instances is a difficult problem on its own. 

Revocation Method & Regranting Access - DAC-MACS describes an interesting method 
for the revocation of the attribute of a single user. The revocation process does not require all 

users to be online during the process, only the 𝐶𝑆𝑃 and the revoking 𝐴𝐴 need to be online for 
this process. Other users can just request their own update key when needing it for decrypting 
an item. The way DAC-MACS implements revocations also allows for regranting access to an 
‘attribute’ later on. 

Outsourced Decryption - Decryption in normal use cases should not be outsourced as it 
usually allows the decryptor to learn information regarding the contents of the ciphertexts. 
However, the authors of DAC-MACS found a clever way in which part of the decryption is 

executed by the 𝐶𝑆𝑃, but a secret element belonging to the user wanting to decrypt the file is 
still necessary to obtain the original message sent using the DAC-MACS scheme. As this 

means that the 𝐶𝑆𝑃 cannot learn anything about the contents of the ciphertext, this is seen as 
an advantage of the DAC-MACS scheme. 

5.3.2 Disadvantages 
 

No addition of authorities/users - DAC-MACS does not support the addition of 𝐴𝐴s or users 
after the system has been initialized. As the total user population of a system cannot be known 
beforehand it is seen as a disadvantage that the authors of DAC-MACS mention ‘that all 
users/𝐴𝐴s should be set beforehand’. It is noted however that, while the authors state that all 

users and 𝐴𝐴s are known at the set up phase, it is believed that the scheme can also be used 
in a setting where users and Attribute Authorities are added later in the life-time of the system. 
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Not Backwards Secure - The revocation process of DAC-MACS only influences the 
decryption of the content key 𝜅. After revoking an attribute for a specific user this user is no 

longer capable of obtaining 𝜅. But, if 𝜅 has already been decrypted by that user then the user 

is still able to decrypt all data items that were symmetrically encrypted using 𝜅. The system is 

therefore not backwards secure. It should also be noted that 𝜅 should be changed after 
revoking a user as, if that user already obtained 𝜅, it is also able to decrypt newly added data 
items, uploaded after being revoked. 

Update collusion attacks - DAC-MACS is vulnerable to collusion attacks between users, but 
only in the revocation process. Consider user 𝑢𝑗 receives User Update Key 𝑈𝑈𝐾𝛼,𝑗 =

𝑔
𝑢𝑢𝑖𝑑𝑗

∗𝐴𝑈𝐾𝛼∗𝛽𝑘 for attribute 𝛼 which was updated and user 𝑢𝑗. In this formula 𝑢𝑢𝑖𝑑𝑗
 denotes the 

identity of the user, 𝐴𝑈𝐾𝛼 denotes the Attribute Update Key for attribute 𝛼. 𝛽𝑘 denotes one of 
the secret values of Attribute Authority 𝐴𝐴𝑘. Every User Update Key can therefore be 

expressed as 𝑈𝑈𝐾𝛼,𝑏 = 𝑔(𝐴𝑈𝐾𝛼∗𝛽𝑘)∗𝑏 for every user 𝑢𝑏, which for simplicity will be expressed 

as 𝑔𝑎𝑏 from now on. As 𝑏 is known to all users this means that it is possible to obtain 𝑔𝑎 by 

finding the modular inverse of 𝑏 (𝑏−1) and calculating (𝑔𝑎𝑏)𝑏−1
= 𝑔𝑎. 𝑔𝑎 in this case denotes 

𝑔𝐴𝑈𝐾𝛼𝛽𝑘. So, every non-revoked user can find 𝑔𝑎 and share it with users which where revoked 

for this attribute, meaning such a revoked user 𝑢𝑖 can simply calculate a valid User Update 

Key 𝑈𝑈𝐾𝛼,𝑖 = (𝑔𝑎)𝑢𝑢𝑖𝑑𝑖  (𝑢𝑖 ≠ 𝑢𝑗). This means that any 𝑢𝑖 can collude with any 𝑢𝑗 for a specific 

attribute (where 𝑢𝑖 is revoked for and 𝑢𝑗 is not) to obtain a valid secret key for said attribute 

and is able to decrypt ciphertexts if it colludes with 𝑢𝑗. This only works if 𝑢𝑖 previously was 

entitled to attribute 𝛼 and thus at one point in time has received a first secret key for that 

attribute from 𝐴𝐴𝑘 . 

Another collusion attack is possible between a revoked user 𝑢𝑖 and the 𝐶𝑆𝑃This attack uses 
the 𝐶𝑈𝐾𝛼 obtained from the honest-but-curious 𝐶𝑆𝑃and allows 𝑢𝑖 to get the old version of a 

ciphertext, so that it can be decrypted by 𝑢𝑖 using its non-updated secret key(s). The authors 
of this follow-up paper therefore conclude that DAC-MACS does not meet the backwards 
security requirement the authors state in [11]. 
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6 RD-ABE: Revocable and Decentralized Attribute-Based 
Encryption 

6.1 Introduction 

 

RD-ABE[12] is a scheme which was published in The Computer Journal (2016). It was written 
by Cui and Deng at the Singapore Management University in Singapore. The authors propose 

a revocable and decentralized ABE scheme, meaning that there is no 𝐶𝐴. The system makes 

use of Attribute Authorities (𝐴𝐴𝑠), which do not have any communication with each other, 
except for a few global public parameters set at the initialization of the system, a global time 
element and a list of global identifiers of users. Any party can become an 𝐴𝐴 by generating its 

own authority public/secret key pair.  Cui and Deng[12] do not mention a server 𝐶𝑆𝑃 where 
ciphertexts can be stored for anyone to access, but for the sake of consistency we included it 
into this report as an actor in the system as other schemes do include this actor as well and 
ABE usually are used in Cloud settings. The authors describe a scheme which uses indirect 
revocation to revoke a user from decrypting a ciphertext. The scheme embeds a time element 
in certain elements within the scheme to ensure keys have to be updated to new time periods 
every period of time, otherwise encryption will fail. 

Each 𝐴𝐴𝑘 has a set of attributes as its own attribute universe (𝑆𝛼𝑘
). For each of these attributes 

𝐴𝐴𝑘  generates a public/secret key pair and publishes the public key. Next to that, the 𝐴𝐴s 
generate a secret attribute key per attribute per authorized user which includes a time period 
and they send it to the corresponding user over a secure channel. At the start of a new time 

period the 𝐴𝐴s generate new secret attribute keys for every attribute/user pair. Because the 
hash of a global identifier (𝑢𝑖𝑑𝑗) of a corresponding user 𝑢𝑗 is embedded into these secret 

attribute keys, keys for different attributes of different users cannot be combined to decrypt a 
ciphertext, thereby preventing collusion attacks. This ensures that only users that adhere to 

an access policy 𝒫 are able to decrypt a ciphertext. 

A data owner 𝑢𝑖 encrypts a ciphertext using the public keys of the attributes according to an 

access policy 𝒫. When another user 𝑢𝑖 wants to decrypt a ciphertext it uses the keys it received 

from the 𝐴𝐴s for attributes which are included in the access policy 𝒫 and obtains message 𝑚. 

It should be noted that a data owner 𝑢𝑖 has to update the ciphertext as well, as a time element 
is embedded into the ciphertext. This also means that a previous ciphertext needs to be 

deleted by the 𝐶𝑆𝑃. 

The RD-ABE scheme uses bilinear pairings in the encryption and decryption of ciphertexts 
and uses LSSS (Section 4.4.3) to embed access policies. The efficiency of the protocol will be 
explained in Section 8.2 based on the communication cost and the cost of the computations 
of different protocol steps. In Section 8.3 the advantages and disadvantages of RD-ABE will 
be elaborated upon. 

The following (large) substitutions were made while describing the RD-ABE scheme. Keep in 
mind that this table only includes substitutions which were specific for this scheme: 

Notation in this report Notation in the original paper 

ϵα α𝑖 (Denoting a secret value for an attribute α) 
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6.2 Efficiency 

 

6.2.1 .GSetup() 

 

The .GSetup() algorithm is used by the RD-ABE scheme to set the global system parameters 
(global public parameter 𝐺𝑃 as mentioned in the paper). First the system initializer (𝑆𝐼) 

chooses a composite order bilinear group 𝔾 of order 𝑁 = 𝑝1𝑝2𝑝3, where 𝑝1, 𝑝2 and 𝑝3 are 

distinct big primes. 𝑔1 ∈𝐺 𝔾𝑝1
 which is a subgroup of 𝔾 of order 𝑝1. The initializer also chooses 

hash functions ℋ0: {0,1}∗ → ℤ𝑁 and ℋ1: {0,1}∗ → 𝔾. 

c1: 𝑆𝐼 chooses (distinct) big primes 𝑝1, 𝑝2 and 𝑝3 (cost: negligible). 

c2: 𝑆𝐼 chooses group 𝔾 of order 𝑁 = 𝑝1𝑝2𝑝3 (cost: negligible). 

𝑐3: 𝑆𝐼 chooses subgroup 𝔾𝑝1
 of 𝔾 of order 𝑝1 (cost: negligible). 

c4: 𝑆𝐼 chooses generator 𝑔1 ∈𝐺 𝔾𝑝1
 (cost: negligible). 

c5: 𝑆𝐼 chooses hash function ℋ0: {0,1}∗ → ℤ𝑁 (cost: negligible). 

c6: 𝑆𝐼 chooses hash function ℋ1: {0,1}∗ → 𝔾 (cost: negligible). 

𝑐7: 𝑆𝐼 computes bilinear pairing 𝑒(𝑔1 , 𝑔1) (cost: 1 bilinear pairing). 

m1: 𝑆𝐼 publishes global public parameter 𝐺𝑃 = (𝑁, 𝑔1 , 𝑒(𝑔1 , 𝑔1), ℋ0, ℋ1) (cost: 1 message). 

 

Entity Computational Complexity  Communication Complexity 

𝑆𝐼 𝑂(1) 𝑂(1) 

Table 21: Complexities .GSetup() RD-ABE 

During the setup phase the System Initializer (𝑆𝐼) publishes global public parameters 𝐺𝑃. The 
generation of the 𝐺𝑃 is a constant cost and therefore the computational complexity of this 

protocol step is 𝑂(1). Next to that 𝑆𝐼 publishes 𝐺𝑃 at a constant cost and thus the 

communication complexity is denoted as 𝑂(1). 

6.2.2 .ASetup() 

 

The .ASetup() algorithm is used to set up a new Attribute Authority (𝐴𝐴𝑘) using global public 
parameters 𝐺𝑃 generated in the previous algorithm. 𝐴𝐴𝑘  executes this step for each attribute 

𝛼 ∈ 𝑆𝛼𝑘
 it manages, where 𝑆𝛼𝑘

 denotes the attribute universe managed by 𝐴𝐴𝑘. 

c8: 𝐴𝐴𝑘  chooses {𝜖𝛼 , 𝛾𝛼 ∈𝑅 ℤ𝑁} (cost: negligible). 

c9: 𝐴𝐴𝑘  computes 𝑔1
𝑦𝛼 (cost: 1 exponentiation per attribute). 

c10: 𝐴𝐴𝑘 computes 𝑒(𝑔1, 𝑔1)𝜖𝛼 (cost: 1 exponentiation per attribute). 

c11: 𝐴𝐴𝑘 sets the private key of attribute 𝛼 as 𝑎𝑠𝑘𝛼 = (𝜖𝛼 , 𝛾𝛼) (cost: negligible). 

m2: 𝐴𝐴𝑘  publishes the public key of attribute 𝛼 (𝑎𝑝𝑘𝛼 = (𝑒(𝑔1 , 𝑔1)𝜖𝛼 , 𝑔1
𝛾𝛼)) (cost: 1 message 

per attribute). 
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Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 𝑂(𝑎) 𝑂(𝑎) 

Table 22: Complexities .ASetup() RD-ABE 

For each of its attributes 𝐴𝐴𝑘 generates a secret key and a private key. The cost to generate 
these keys is a single exponentiation and a single bilinear pairing per attribute. Therefore the 
computational complexity of an Attribute Authority in this step is linearly dependent on the 

amount of attributes in its own attribute universe 𝑆𝛼𝑘
, namely 𝑂(𝑎). For each of its attributes 

𝐴𝐴𝑘  publishes the public key 𝑎𝑝𝑘𝛼 at a cost of a single message per attribute, meaning that 
the total communication complexity for an Attribute Authority in this protocol step is 𝑂(𝑎) 

(linearly dependent with the amount of attributes the 𝐴𝐴𝑘  manages). The overall system 
complexity of this protocol step is dependent on the amount of attributes in the system, setting 

the computational and communication complexity at 𝑂(𝑎 ∗ 𝑘). 

6.2.3 .KeyGen()/.KeyUpd() 

 

The .KeyGen() algorithm is used to generate an attribute-based private key for an attribute 𝛼 
for a user (𝑢𝑗) with global identifier 𝑢𝑖𝑑𝑗, who is in possession of said attribute (𝛼). 

The .KeyUpd() algorithm is the same, except for that it takes a revocation list 𝑟𝑙𝛼 for that 
attribute as input, ensuring that revoked users will not get an updated key for attribute 𝛼. A 

time element 𝑇𝑖𝑚𝑒 is embedded and thus this key is valid for a certain period of time. After 
that period has expired the .KeyUpd() algorithm is used to generate a new secret key 

corresponding to user 𝑢𝑗 with global identifier 𝑢𝑖𝑑𝑗, time period 𝑇𝑖𝑚𝑒𝑛𝑒𝑤 and attribute 𝛼. 

c12: 𝐴𝐴𝑘 computes ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒) (cost: negligible). 

c13: 𝐴𝐴𝑘 computes ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒)𝛾𝛼 (cost: 1 exponentiation). 

c14: 𝐴𝐴𝑘 computes ℋ0(𝑇𝑖𝑚𝑒) (cost: negligible). 

c15: 𝐴𝐴𝑘 computes 𝑔1
𝜖𝛼∗ℋ0(𝑇𝑖𝑚𝑒)

 (cost: 1 exponentiation). 

c16: 𝐴𝐴𝑘 computes secret key 𝑠𝑘𝛼,𝑢𝑖𝑑𝑗

𝑇𝑖𝑚𝑒 = 𝑔1
𝜖𝛼∗ℋ0(𝑇𝑖𝑚𝑒)

ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒)𝛾𝛼 (cost: negligible). 

m3: 𝐴𝐴𝑘  sends 𝑠𝑘𝛼,𝑢𝑖𝑑𝑗

𝑇𝑖𝑚𝑒  to user 𝑢𝑖 (cost: 1 message). 

Entity Computational Complexity  Communication Complexity 

𝐴𝐴𝑘 𝑂(𝑎 ∗ 𝑢 ∗ 𝑡) 𝑂(𝑎 ∗ 𝑢 ∗ 𝑡) 

Table 23: Complexities .KeyGen() RD-ABE 

For each attribute 𝛼 ∈ 𝑆𝛼𝑘
, 𝐴𝐴𝑘 generates a key for each user entitled to said attribute 𝛼. The 

complexity for a single key generation is constant at the cost of 2 exponentiations per key, but 
as this protocol step is executed every time period, for every attribute and for every user 

entitled to that attribute the computational complexity of this protocol step is 𝑂(𝑎 ∗ 𝑢 ∗ 𝑡). 𝐴𝐴𝑘  
also has to sent the secret key to its corresponding user, meaning that the communication 
complexity is also 𝑂(𝑎 ∗ 𝑢 ∗ 𝑡) as a single message per attribute, per user has to be sent every 
time period. 
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6.2.4 .Encrypt() 

 

Algorithm .Encrypt() is used by a data owner (𝑢𝑖) to encrypt message 𝑚 (which might be a 
symmetric key, used on its turn to encrypt large amounts of data). The algorithm takes 

access matrix (𝐴, 𝜌(𝑥)) with 𝑙 rows and 𝑛 columns as input, which corresponds with access 

policy 𝒫. 𝐴𝑥 denotes a row of the matrix and function 𝜌(𝑥) maps row 𝐴𝑥 of 𝐴 to attribute 𝛼, 

where 𝜌(𝑥) is injective, meaning that each attribute occurs as a row 𝐴 only once. As a time 

element is included in the ciphertext(s) this means that the user has to encrypt message 𝑚 

every period in time using the new timestamp and ensure the old encrypted version of 𝑚 is 
deleted. 

 

c17: 𝑢𝑖 chooses secret value 𝑠 ∈ ℤ𝑁 (cost: negligible). 

c18: 𝑢𝑖 chooses {𝑣2, . . . , 𝑣𝑛} ∈𝑅 ℤ𝑁 (cost: negligible). 

c19: 𝑢𝑖 sets 𝑣 = (𝑠, 𝑣2, . . . , 𝑣𝑛) (cost: negligible). 

c20: 𝑢𝑖 chooses {𝑤2 , . . . , 𝑤𝑛} ∈𝑅 ℤ𝑁 (cost: negligible). 

c21: 𝑢𝑖 sets 𝑤 = (0, 𝑤2 , . . . , 𝑤𝑛) (cost: negligible). 

c22: 𝑢𝑖 chooses 𝑟𝑥 ∈𝑅 ℤ𝑁 for all rows in 𝐴 (cost: negligible). 

c23: 𝑢𝑖 computes 𝐶0 = 𝑚 ∗ 𝑒(𝑔1 , 𝑔1)𝑠 (cost: 1 exponentiation). 

c24: 𝑢𝑖 computes ℋ0(𝑇𝑖𝑚𝑒) (cost: negligible). 

c25: 𝑢𝑖 computes 𝑒(𝑔1 , 𝑔1)ℋ0(𝑇𝑖𝑚𝑒) (cost: 1 exponentiation). 

c26: 𝑢𝑖 computes {(𝑒(𝑔1, 𝑔1)ℋ0(𝑇𝑖𝑚𝑒))𝜖𝛼𝑟𝑥 = 𝑒(𝑔1, 𝑔1)𝜖𝛼ℋ0(𝑇𝑖𝑚𝑒)𝑟𝑥}𝛼∈𝒫 (cost: 1 exponentiation 

per attribute). 

c27: 𝑢𝑖 computes {𝑒(𝑔1, 𝑔1)𝜆𝑥  where 𝜆𝑥 = 𝐴𝑥 ∗ 𝑣}𝛼∈𝒫 (cost: 1 exponentiation per attribute). 

c28: 𝑢𝑖 computes {𝐶1,𝛼 = 𝑒(𝑔1 , 𝑔1)𝑣𝑥𝑒(𝑔1, 𝑔1)𝜖𝛼ℋ0(𝑇𝑖𝑚𝑒)𝑟𝑥  (cost: negligible). 

c29: 𝑢𝑖 computes {𝐶2,𝛼 = 𝑔1
𝑟𝑥}𝛼∈𝒫 (cost: 1 exponentiation per attribute). 

c30: 𝑢𝑖 computes {𝐶3,𝛼 = 𝑔1
𝛾𝛼𝑟𝑥𝑔1

𝑤𝑥}𝛼∈𝒫 where 𝑤𝑥 = 𝐴𝑥 ∗ 𝑤 (cost: 1 exponentiation per 

attribute). 

m4: 𝑢𝑖 publishes ciphertext 𝑐𝑡 = (𝐶0 , {𝐶1,𝛼}𝛼∈𝒫 , {𝐶2,𝑥}𝛼∈𝒫 , {𝐶3,𝑥}𝛼∈𝒫) (cost: 3 messages per 

attribute). 

 

Entity Computational Complexity  Communication Complexity 

𝑢𝑖 𝑂(𝑎) 𝑂(𝑎) 

Table 24: Complexities .Encrypt() RD-ABE 

User 𝑢𝑖 encrypts message 𝑚 using access policy 𝒫. The computational complexity for the user 

is linearly dependent on the amount of attributes used in the access policy 𝒫 and thus is 𝑂(𝑎). 

The amount of messages 𝑢𝑖 needs to send is also linearly dependent on the amount of 
attributes as the ciphertext 𝑐𝑡 contains an element per row 𝑥 in (𝐴, 𝜌(𝑥)). The communication 

complexity therefore is also 𝑂(𝑎). 
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6.2.5 .Decrypt() 

 

The .Decrypt() algorithm is used to decrypt the ciphertext 𝑐𝑡 containing message 𝑚, which 
was encrypted at time 𝑇𝑖𝑚𝑒. If user 𝑢𝑗 (𝑢𝑖𝑑𝑗) is in possession of a set of attributes with 

adheres to the access policy of the same time 𝑇𝑖𝑚𝑒 the user is able to decrypt the 
ciphertext. 

m5: 𝑢𝑗 ⇒ 𝐶𝑆𝑃, request ciphertext 𝑐𝑡 from the CSP (cost: 1 message). 

m6: 𝐶𝑆𝑃 ⇒ 𝑢𝑗, reply with ciphertext 𝑐𝑡 (cost: 3 messages per attribute). 

c31: 𝑢𝑗 computes ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒) (cost: negligible). 

c32: 𝑢𝑗 computes {𝐶1,𝛼𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝐶3,𝛼)}𝛼∈𝒫 (cost: 1 bilinear pairing per attribute). 

c33: 𝑢𝑗 computes {𝑒(𝑠𝑘𝛼,𝑢𝑖𝑑𝑗

𝑇𝑖𝑚𝑒 , 𝐶2,𝛼)}𝛼∈𝒫 (cost: 1 bilinear pairing per attribute). 

c34: 𝑢𝑗 computes {
𝐶1,𝛼𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒),𝐶3,𝛼)

𝑒(𝑠𝑘𝛼,𝑢𝑖𝑑𝑗
𝑇𝑖𝑚𝑒 ,𝐶2,𝛼)

= 𝑒(𝑔1, 𝑔1)𝑣𝑥𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝑔1)𝑤𝑥 }𝛼∈𝒫 (cost: 

negligible). 

c35: 𝑢𝑗 chooses {𝑐𝑥 ∈ ℤ𝑁}𝑥∈𝐴 such that ∑ 𝑐𝑥𝑥 𝐴𝑥 = (1,0, . . . ,0) (cost: negligible). 

c36: 𝑢𝑗 computes {(𝑒(𝑔1, 𝑔1)𝑣𝑥𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝑔1)𝑤𝑥)𝑐𝑥 =

𝑒(𝑔1, 𝑔1)𝑣𝑥𝑐𝑥𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝑔1)𝑤𝑥𝑐𝑥}𝛼∈𝒫 (cost: 1 exponentiation per attribute). 

c37: 𝑢𝑗 computes ∏ (𝑥∈𝐴 𝑒(𝑔1, 𝑔1)𝑣𝑥𝑐𝑥𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝑔1)𝑤𝑥𝑐𝑥) 

= 𝑒(𝑔1, 𝑔1)(∑ 𝑣𝑥𝑥 𝑐𝑥)𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝑔1)(∑ 𝑤𝑥𝑥 𝑐𝑥) = 𝑒(𝑔1 , 𝑔1)𝑠𝑒(ℋ1(𝑢𝑖𝑑𝑗||𝑇𝑖𝑚𝑒), 𝑔1)0 =

𝑒(𝑔1, 𝑔1)𝑠 (cost: negligible). 

c38: 𝑢𝑗 computes 
𝐶0

𝑒(𝑔1,𝑔1)𝑠 = 𝑚 (cost: negligible). 

 

Entity Computational Complexity  Communication Complexity 

𝑢𝑗  𝑂(𝑎) 𝑂(1) 

𝐶𝑆𝑃 - 𝑂(𝑎) 

Table 25: Complexities .Decrypt() RD-ABE 

 

The user requests ciphertext 𝐶 by sending a single message to the 𝐶𝑆𝑃at the communication 
complexity of 𝑂(1). The 𝐶𝑆𝑃 replies with the ciphertext. As the amount of components of the 

ciphertext is linearly dependent on the amount of attributes used in the access policy 𝒫, the 

amount of messages the 𝐶𝑆𝑃 sends is as well, setting the communication complexity of the 
𝐶𝑆𝑃 at 𝑂(𝑎). User 𝑢𝑗 then decrypts the ciphertext and obtains message 𝑚 at a constant cost 

of 2 bilinear pairings per attribute in access policy 𝒫. The computational complexity therefore 

is 𝑂(𝑎). 

6.3 Advantages & Disadvantages 

 



 D2.2 Attribute-Based Encryption 
 

Work Package 2   Page 47 of 77 
 

First the requirements will be mentioned and whether RD-ABE[12] meets them in Section 
8.3.1. After that, based on the requirements analysis, a list of advantages and a list of 
disadvantages will be mentioned in Sections 8.3.2 Requirement analysis 

This section will briefly mention the requirements as were listed in Section 5.2. Each paragraph 
will mention a requirement, whether it is strong or weak and whether RD-ABE meets that 
requirement. 

CP-ABE (Strong) - CP-ABE is a form of ABE where the access policy 𝒫 is embedded into the 
ciphertext so that only users entitled to the right attributes are able to decrypt the encrypted 
file. RD-ABE is a CP-ABE scheme where the encryption of data items includes the use of 
LSSS to embed an access policy into the ciphertext. 

Collusion resistance (Strong) - Collusion resistance ensures that different users are not able 
to combine their attributes/keys to decrypt a ciphertext if none of the users is able to decrypt 
the file on its own. In RD-ABE every ABE key includes the secret key of an attribute, a time 
period and the (global) identity of the user. Because the user identity is embedded in the 
ciphertext different users cannot combine their attribute keys to collude to decrypt a ciphertext. 
RD-ABE is therefore collusion resistant. 

Access revocation (Strong) - An access revocation mechanism allows for revocation of an 
attribute, the revocation of an attribute of a user and/or a method to update the access policy 
in the encryption of a ciphertext. This ensures certain users or users with certain attributes are 
no longer able to decrypt a ciphertext. This can be done either mathematically or system wise. 
RD-ABE achieves revocation by updating the secret attribute keys of users using 
the .KeyUpd() algorithm every period of time and re-encrypting messages using the new time 
period as the time period is embedded in the ciphertext as well. It should be noted that re-
encryption of messages can only be done by the data owner. Revocation in RD-ABE does not 
prevent a user from decrypting a ciphertext which was decrypted at a moment in time where 
the user was able to decrypt the ciphertext, even if the time period has been long passed. In 
order to prevent a user decrypting an old ciphertext the ciphertext should either be deleted 

from the 𝐶𝑆𝑃 or the 𝐶𝑆𝑃 should not allow revoked user to access the old ciphertext. This 
however, does not prevent a (revoked) user from decrypting an old ciphertext if it obtained the 

ciphertext from a different source than the 𝐶𝑆𝑃. 

Scalability (Strong) - Scalability ensure the system will not run out of computational resources 
as new computational resources can be added to the system during run time. This ensures 
the system is not limited in the amount of attributes, users or attribute authorities it can handle. 
As ASCLEPIOS aims to design a system that makes it possible for on-person medical devices 

to continuously upload (encrypted) data to a 𝐶𝑆𝑃meaning that the encryption phase is the 
most important operation to look at to be able to say anything about its scalability as these on-
person devices, such as pacemakers, are usually very limited in the amount of computations 
they can handle. The complexity of the encryption step grows linearly with the amount of 
attributes used to encrypt a message and the most significant computation it has to perform is 
an exponentiation (assuming the bilinear pairings 𝑒(𝑔1, 𝑔1) is calculated as a public 

parameter). If used in a hybrid system where a content key 𝜅 is used to (symmetrically) encrypt 
data items and the content key is shared using RD-ABE it really depends on the amount of 
attributes used to encrypt 𝜅 if applicable. RD-ABE allows for the addition of users and attributes 
to the system after its original initialization. Existing ciphertexts are not updated when a new 
attribute is added, but have to be updated every new period of time. 

Multiple Authorities (Weak) - Having multiple Attribute Authorities (𝐴𝐴s) removes the need 
for trust in a central authority as each of the Authorities on itself decides whether a user is 
entitled to a specific attribute or not. If a ciphertext is encrypted using the attribute keys of 

multiple 𝐴𝐴s it would need all of the authorities to collude together for them to be able to 
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decrypt the ciphertext, meaning that if one 𝐴𝐴 was not compromised the system would still 
function correctly. This potentially increases security. RD-ABE describes a method to 
decentralize attribute management. 

Regranting Access (Weak) - Regranting access is only applicable if the system incorporates 
a revocation method. Regranting access ensures attribute/user revocation does not have to 
be permanent. RD-ABE has a possibility to regrant access by generating a new update key 
for a specific attribute using the global identity of the user and the current time period. 

Multiple Access Controls (Weak) - Multiple Access Controls is not trivial in ABE schemes, 
but might just as well be necessary for real-life usage of any ABE scheme. Usually, ABE 
schemes only deal with read access, meaning that once a user has decrypted a file it is only 
able to view the contents of said file. When dealing with medical files it might, for example, be 
necessary that a medical practitioner is able to add a comment to a data entry, meaning that 
he should be able to change the ciphertext, i.e. he should have write access to the file. RD-
ABE does not include the possibility to make use of different access controls. 

 

6.3.1 Advantages 

 

Exponentiations in Encryption - In the Encryption phase of RD-ABE the most significant 
operation is the exponentiation (assuming the bilinear pairing is calculated as a global 
parameter). While relatively expensive in computation time it is far less expensive than finding 
a bilinear pairing, such as the DAC-MACS scheme uses. 

User Addition - RD-ABE does not need to define all users during the initialization process 
which should be a requirement for any such system to be deployable in a real-life scenario. 
As not all schemes allow for such additions this is seen as an advantage of using RD-ABE. 

Attribute Authority Addition - RD-ABE allows any entity at any moment during the lifetime 
of an RD-ABE-based program to function as an Attribute Authority by simply generating its 
own public/secret key pair. As not all schemes allow an Attribute Authority to be added during 
run time this is seen as one of the advantages of RD-ABE. It is up to a data owner to choose 
which attributes to use encrypt a ciphertext and thus the addition of new Attribute Authority 
does not influence the security of the scheme. 

Revocation Method - One of the advantages of using RD-ABE is that the scheme includes a 
revocation method. Revocation is achieved by including a time element in ciphertexts and 
secret attribute keys of users in the system. By simply not updating a key and re-encrypting 
(part of) the original message a revoked user is not able to decrypt the re-encrypted ciphertext 
using its new attribute keys. It should be noted that the user is still able to decrypt the previous 
ciphertext if it is in possession of all the previous attribute keys. It might therefore be better for 
the scheme to only generate a secret attribute key and send it to the corresponding user on 
request. This would also greatly influence the efficiency of the scheme. 

6.3.2 Disadvantages 

 

Not backwards secure - The RD-ABE scheme is not backwards secure, meaning that once 
a user was able to decrypt a specific version (corresponding to a certain time period) of a 
ciphertext (i.e. had the right secret attribute keys) it will be able to do so as long as it is in 
possession of the ciphertext and the keys. It would therefore be better to only issue keys to 
users once requested as this would mean that a revoked user who did not receive a secret 
attribute key for a specific time period is not able to decrypt a ciphertext encrypted using a 
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policy containing said attribute (unless another combination of attributes without said attribute 
is "accepting" as well). 

Re-encryption of a ciphertext - As the time period is also embedded in (part of) the ciphertext 
this means that, for a user to be able to decrypt a ciphertext and obtain the original message, 
using its updated secret attribute keys, the ciphertext needs to be updated, while embedding 
the new time period. This means that (part of) the ciphertext needs to be re-calculated and this 

amounts to a single exponentiation per attribute included in the access policy 𝒫. As this is 
quite an expensive operation this is seen as a disadvantage of the RD-ABE scheme. 
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7 Comparison 

7.1 Introduction 

 

This chapter describes the comparison of the three schemes described in this report (FAME[8], 
DAC-MACS[10]  and RD-ABE[12]). First a comparison of each of the traditional protocol steps 
of an ABE scheme (.Setup(), .Encrypt(), .KeyGen() and .Decrypt()) is made by using the 
efficiency analysis which was described in their respective chapters in Section 9.2. Then,  Non-
traditional protocol steps of the specific schemes are compared in. After that a comparison 
between the schemes is made based on how/whether each scheme adheres to the 
requirements set in Section 5.2. In the end a conclusion is drawn in Section 9.4. 

7.2 Efficiency 

 

First the computational and communication complexity and the most significant operation (only 
applies to the computational complexity), per scheme, per entity are listed. Sub algorithms are 
aggregated. After that a brief description is given of the efficiencies of the different schemes 
and the comparison between the scheme is given as well. This in the end is used to draw a 
conclusion in Section 9.4. 

7.2.1 .Setup() 
 

Scheme Entity Comp. complex.  Most significant Comm. complex. 

FAME 𝐶𝐴 𝑂(1) Bilinear pairing 𝑂(1) 

DAC-MACS 

𝐶𝐴 

𝐶𝐴 
𝑢𝑗 

𝑂(1) 

𝑂(𝑢) 
- 

Bilinear pairing 
Exponentiation 

- 

- 

𝑂(𝑢 + 𝑘) 

𝑂(1) 

RD-ABE 
𝑆𝐼 

𝐴𝐴𝑘 

𝑂(1) 

𝑂(𝑎) 

Bilinear pairing 
Exponentiation 

𝑂(1) 

𝑂(𝑎) 

Table 26: Complexities Comparison .Setup() 

Table 26 shows the computational and communication efficiency of the .Setup() algorithm, per 

scheme, per entity. It should be noted that the 𝐶𝐴 is mentioned twice at the DAC-MACS 
scheme, but this was added as a single bilinear pairing is computed in all schemes and thus 
the complexity would not be complete if that pairing was not added to the scheme. It is noted 
that FAME is far more efficient than DAC-MACS and RD-ABE which are dependent on the 
amount of users/attribute authorities and the amount of Attribute Authorities (and they in their 
turn on the amount of attributes they manage), respectively. It is however assumed that a 
system in real-life deployment has far more users than Attribute Authorities/attributes and thus 
DAC-MACS has (in practice) the least efficient .Setup() algorithm. 

 

7.2.2 .KeyGen() 

 

Scheme Entity Comp. complex.  Most significant Comm. complex. 
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FAME 
𝐶𝐴 
𝑢𝑗 

𝑂(𝑎 ∗ 𝑢) 
- 

Exponentiation 
- 

𝑂(𝑎 ∗ 𝑢) 

𝑂(1) 

DAC-MACS 
𝐴𝐴𝑘 
𝑢𝑗 

𝑂(𝑎 ∗ 𝑢) 
- 

Exponentiation 
- 

𝑂(𝑎 ∗ 𝑢) 
𝑂(𝑘) 

RD-ABE 𝐴𝐴𝑘 𝑂(𝑎 ∗ 𝑢 ∗ 𝑡) Exponentiation 𝑂(𝑎 ∗ 𝑢 ∗ 𝑡) 

Table 27: Complexities Comparison .KeyGen() 

Table 27 shows the computational and communication complexity of the .KeyGen() algorithm 
per scheme. It can be seen that the FAME ABE scheme is again relatively efficient, as 𝑢𝑗 only 

needs to send a single message to retrieve its key, whereas in DAC-MACS, with the same 
computational complexities, a user has to sent a message to each involved Attribute Authority 

(𝐴𝐴𝑘). It should however be noted that if the global amount of attributes in the system is the 
same in both schemes DAC-MACS allows for the distribution of computations among multiple 

Attribute Authorities (and so in total less computations per entity), whereas in FAME the 𝐶𝐴 
performs every computation. DAC-MACS has the same complexities except for the fact that a 

user has to sent multiple messages to each involved 𝐴𝐴𝑘 as mentioned before. The RD-ABE 
crypto scheme is the least efficient on of the three schemes as a new key has to be generated 
for every attribute and every user each new period of time. 

7.2.3 .Encrypt() 

 

Scheme Entity Comp. complex.  Most significant Comm. complex. 

FAME 𝑢𝑖 𝑂(𝑎2) Exponentiation 𝑂(𝑎) 

DAC-MACS 𝑢𝑖 𝑂(𝑎) Exponentiation 𝑂(𝑎) 

RD-ABE 𝑢𝑖 𝑂(𝑎) Exponentiation 𝑂(𝑎) 

Table 28: Complexities Comparison .Encrypt() 

Table 28 shows the computational and communication complexity of the .Encrypt() algorithm 
being the same for the DAC-MACS and RD-ABE schemes as the method in both schemes is 
linearly dependent on the amount of attributes. FAME however is much less efficient as the 
complexity grows quadratically with the amount of attributes. Especially the .Encrypt() step in 
ASCLEPIOS should be efficient as this protocol step is likely executed on a device with low 
computational capabilities, such as a pace maker, making FAME possibly a less useful 
candidate depending on the actual amount of attributes featured in the system. 

7.2.4 .Decrypt() 

 

Scheme Entity Comp. complex.  Most significant Comm. complex. 

FAME 
𝑢𝑗 

𝐶𝑆𝑃 

𝑂(1) 
- 

Bilinear pairing 
- 

𝑂(1) 
𝑂(𝑎 ∗ 𝑢) 

DAC-MACS 
𝑢𝑗 

𝐶𝑆𝑃 

𝑂(1) 

𝑂(𝑎 ∗ 𝑢) 

Exponentiation 
Bilinear pairing 

𝑂(𝑎) 

𝑂(𝑎) 
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RD-ABE 
𝑢𝑗 

𝐶𝑆𝑃 

𝑂(𝑎) 
- 

Bilinear pairings 
- 

𝑂(1) 

𝑂(𝑎 ∗ 𝑢) 

Table 29: Complexities Comparison .Decrypt() 

Table 29 shows the computational and communication complexity of the .Decrypt() algorithm 
per scheme. It shows that there are enormous differences between the complexities of the 
different schemes. FAME is the most efficient scheme as the communication complexity of the 
𝐶𝑆𝑃 is dependent on the amount of attributes (influences the size of the ciphertext) and users 
when talking about the communication complexity. Each user however only sends a single 
message requesting the ciphertext and computes a constant amount (6) bilinear pairings per 
decryption. The second most efficient scheme, for the users, is the DAC-MACS crypto 
scheme, which only requires the user to send a key for each of the attributes involved to the 

𝐶𝑆𝑃, which the 𝐶𝑆𝑃 uses to generate a token 𝑇𝐾 at the cost of 5 bilinear pairings per attribute 
(per user requesting such a token). A user only needs to compute a single encryption to 
decrypt the ciphertext. In RD-ABE on its turn, the 𝐶𝑆𝑃 has no mathematical operations to 
compute, but each user computes 2 bilinear pairings per attribute involved. This makes RD-

ABE globally more efficient, but a 𝐶𝑆𝑃 usually has more computational power. It is left up to 
the reader to decide what he prefers. 

7.2.5 Other 

7.2.5.1 DAC-MACS - Update/Revocation method 

 
DAC-MACS – Update/Revocation method 

 

Scheme Entity Comp. complex.  Most significant Comm. complex. 

DAC-MACS 

𝑢𝑗 

𝐴𝐴𝑘 
𝐶𝑆𝑃 

𝑂(1) 

𝑂(𝑢) 

𝑂(𝑐𝑡) 

Exponentiation 
Exponentiation 
Exponentiation 

- 

𝑂(𝑢) 
- 

Table 30: Complexities Comparison .Update() 

Table 30 shows the computational cost of the .Update() algorithm in DAC-MACS. No clear 
comparison can be drawn as the other two schemes do not incorporate such a protocol step. 

It should however be taken into mind that this revocation method requires the 𝐶𝑆𝑃, the involved 
𝐴𝐴𝑘  and each involved, non-revoked user to perform exponentiations every time an attribute 
gets revoked for a user. 

7.3 Requirement analysis 

 

Requirement FAME DAC-MACS RD-ABE 

CP-ABE Yes Yes Yes 

Collusion resistance Yes Partly Yes 

Access revocation No Direct Indirect 
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Scalability Partly Partly Partly 

Table 31: Adherence to strong requirements 

 
Table 31 shows the strong requirements which were set out in Section 5.2.1 and the adherence 
of the different schemes to them. All three schemes described are CP-ABE schemes (and not 
KP-ABE schemes) and thus the decision which attributes together should allow for decryption 
lies with the user and not the key issuer. Both FAME and RD-ABE are collusion resistant, 
although one should keep in mind that in FAME there is a Central Authority, which is able to 
generate any key it wants and thus has to be fully trusted. DAC-MACS has a revocation 
method, but it is possible to, as a user revoked for a specific attribute, to obtain the update key 

for said attribute by colluding with a non-revoked user (for that attribute) or the 𝐶𝑆𝑃. This 
means however, that the revocation method has a flaw and not the overall crypto scheme. 

FAME does not allow for the revocation of an attribute, whereas DAC-MACS and RD-ABE 
respectively allow for direct and indirect revocation of an attribute for a specific user. Both 
direct and indirect revocation have their advantages/disadvantages. It is left up to the reader 
to decide which he prefers. The last strong requirement is that the schemes should be scalable 
which is only entirely the case for the .Setup() of all three schemes. The .Encrypt() algorithm 
is relatively efficient in the DAC-MACS and RD-ABE scheme, but in FAME the computational 
complexity quadratically increases with the amount of attributes and is thus less useful when 
deployed on devices with low computational capabilities, such as pace makers. The difference 
between the schemes becomes clear in the comparison of the .KeyGen() algorithm and 
the .Decrypt() algorithm as the RD-ABE scheme needs to resend a new attribute key every 
once in a while to every non-revoked user (whereas DAC-MACS only sends an update to all 
involved users once an attribute is revoked for a user). FAME and DAC-MACS have roughly 
the same computational complexity. The .KeyGen() algorithm however only deals with 
exponentiations and is therefore still quite scalable, whereas the .Decrypt() algorithm deals 
with Bilinear pairings. The complexity of FAME is constant and thus is by far the most efficient 
scheme when decrypting a ciphertext. Both RD-ABE and DAC-MACS have the same global 
computational complexity, but RD-ABE allows for the distribution of these computations among 

all involved users, whereas these computations are done by the 𝐶𝑆𝑃 in DAC-MACS. Both 
situations have their advantages, but as these complexities grow more than linear the question 
remains whether DAC-MACS and RD-ABE are scalable or not. 

 

Requirement FAME DAC-MACS RD-ABE 

Multiple Authorities No Yes Yes 

Regranting access - Yes Yes 

Multiple Access Controls No No No 

Table 32: Adherence to weak requirements 

Table 32 shows the weak requirements which were set out in Section 5.2.2 and the adherence 
of the different schemes to them. First of all, none of the scheme allows for multiple access 
controls and so this requirements is not met. The FAME crypto scheme does not make use of 
multiple authorities and so the Central Authority always has to be trusted. As FAME does not 
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allow for revocation, the scheme does also not describe a method to regrant access. Both 
DAC-MACS and RD-ABE distribute the management of attributes among different Attribute 
Authorities and have a method which allows for regranting access for a specific attribute to a 
revoked user. 
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8 Ciphertext Delegation 

In this section we briefly describe ciphertext delegation as it is defined in [13].  Ciphertext 
delegation is a process by which a ciphertext can be made harder to decrypt using only public 
operations in a more efficient way than decrypting and re-encrypting under a more restrictive 
policy.  
 
In particular, we want a user that has access to only the ciphertext and public key to process 
this information into a completely new encryption under a more restrictive access policy. We 
say that a ciphertext with a given access policy can be delegated to a more restrictive policy if 
there is a procedure that given any valid encryption of a message under the first policy 
produces an independent and uniformly chosen encryption of the same message under the 
new access policy. It is important to stress out that delegation is required to produce a new 
encryption of the same message that is independent of the randomness and access policy of 
the original ciphertext being delegated from. This requirement is crucial in multiple delegations 
from the same base ciphertext are used in a scheme. Without this guarantee, multiple 
delegations may have correlated randomness and the security of the underlying scheme would 
not imply any security in these applications.  Before we continue, we need to recall some 
notation defined previously.  
 

8.1 Ciphertext Policy Delegation 

 
The most important analysis for delegation comes when considering CP-ABE scheme as the 
ciphertexts may be associated with complex access policies. Some of the most prominent CP-
ABE schemes (including the ones presented in this document) are built upon an underlying 
secret sharing scheme corresponding to their access policy. The first step in the encryption 
procedure in these schemes is to share a uniformly chosen secret according to the implied 
secret sharing scheme with the shares of the secret embedded into certain components of the 
ciphertext. The encryption scheme is said to be based on a given secret sharing scheme if it 
falls into the above paradigm for this secret sharing scheme.  
 

 Notation: A linear secret sharing scheme over a field 𝔽 for a set of players ℙ is defined    

through a pair (𝐴, 𝜌) with 𝐴 the share generating matrix of dimension 𝑛 × ℓ and 𝜌 the  

assignment function from [𝑛] → ℙ. To evaluate the shares of a secret, the vector  
𝑢 = (𝑠, 𝑘1 , … , 𝑘ℓ−1) is produced, where 𝑠 is the secret to be shared and 𝑘1 , … , 𝑘ℓ−1 are chosen  

uniformly at random, The share vector is defined to be  �⃗� = 𝐴𝑢 with party 𝑖 receiving all  �⃗�[𝑗] 
such that 𝜌(𝑗) = 𝑖. 
 
We say that a secret sharing scheme 𝑆 consists of two polynomial time algorithms. A sharing 
algorithm Share and a reconstruction algorithm Rec. The reconstruction algorithm is 
responsible for reconstructing the shares returned by the parties. However, the sharing 
algorithm, instead of returning one share to each party, it outputs (�⃗�, 𝛼) where the components 

of 𝑣 are elements on the share space and 𝛼 is an assignment of indices of �⃗� to [𝑛], where 𝑛 

is the number of users that determines which components of �⃗� should be sent to which user. 
 

8.1.1 Delegation Procedure  
 
It is observed that most known CP-ABE schemes have the access structure embedded into 
the ciphertexts in the form of a secret sharing scheme. Informally, such schemes work as 
follows:  
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• The encryption algorithm generates a secret 𝑠 and shares it according to the policy it 
is being encrypted under. 

• The decryption algorithm uses all the shares that correspond to the possessed 

attributes to reconstruct 𝑠. Reconstructing 𝑠 implies recovering the plaintext message.  

With this in mind, we make use of a share extractor 𝑋 that recovers the shares built-in the 
ciphertexts.  
 
Informally, we say that a CP-ABE scheme is secret sharing based for a secret sharing scheme 
𝑆 with share space 𝑆 is there is a share extractor 𝑋 that on input a valid ciphertext 𝑐𝑝 outputs 

(𝑠, (�⃗�, 𝛼)) where 𝑠 ∈ 𝕊, (�⃗�, 𝛼) ← 𝑆. 𝑆ℎ𝑎𝑟𝑒(𝑠, 𝑃). If 𝐹(𝐶) = (𝑠, (�⃗�, 𝛼)) with (�⃗�, 𝛼) ← 𝑆. 𝑆ℎ𝑎𝑟𝑒(𝑠, 𝑃) 

then 𝐶 is a valid ciphertext.    
 

8.1.2 Elementary Delegation Properties 
 
For a CP-ABE scheme to support ciphertext delegation, it needs to allow certain operations to 
be performed directly on the ciphertexts that manipulate the shares of the shared secret.  
 

1. Property 1. A well-formed ciphertext under a given access policy can be re-
randomized to an independent encryption of the same message under the same policy.  

2. Property 2. There exists a probabilistic polynomial time algorithm Combine such that 

for any 𝑖, 𝑗 ≤ 𝑙𝑒𝑛(�⃗�) with (𝛼𝑖) = (𝛼𝑗) we have Combine(𝐶, 𝑖, 𝑗, 𝑎𝑖 , 𝑏𝑗, 𝑑) = 𝐶′ with 

𝐹(𝐶′) = (𝑠, (�⃗�′ , 𝛼)) where:  

𝑣′[𝑘]⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = {
�⃗�[𝑘], ∀ 𝑘 ≠ 𝑖

𝑎𝑖�⃗�[𝑖] + 𝑏𝑗�⃗�[𝑗] + 𝑑, 𝑖𝑓 𝑘 = 𝑖
 

 
3. Property 3. There exists a probabilistic polynomial time algorithm Delete such that for 

any 𝑖 ≤ 𝑙𝑒𝑛(𝑣)⃗⃗⃗⃗⃗ we have Delete(𝐶, 𝑖) = 𝐶′ where  𝐹(𝐶′) = (𝑠, (�⃗�′, 𝛼)), 𝑙𝑒𝑛(𝑣′⃗⃗ ⃗⃗ ) = 𝑙𝑒𝑛(�⃗�) 

and: 

 (𝑣′⃗⃗ ⃗⃗ [𝑘], 𝛼′(𝑘)) = {
(�⃗�[𝑘], 𝛼(𝑘)), ∀ 𝑘 < 𝑖

(�⃗�[𝑘 + 1], 𝛼(𝑘 + 1)), 𝑖𝑓 𝑘 ≥ 𝑖
 

 
4. Property 4. There exists a probabilistic polynomial time algorithm Add such that for 

any 𝑖 ∈ [𝑛] we have Add(𝐶, 𝑖) = 𝐶′ where 𝐹(𝐶′) = (𝑠, (�⃗�′, 𝛼)), 𝑙𝑒𝑛(𝑣′⃗⃗ ⃗⃗ ) = 𝑙𝑒𝑛(�⃗�) + 1 

and: 

(𝑣′⃗⃗ ⃗⃗ [𝑘], 𝛼′(𝑘)) = {
(�⃗�[𝑘], 𝛼(𝑘)), ∀ 𝑖 < 𝑙𝑒𝑛(�⃗�)

(0, 𝑖), 𝑖𝑓 𝑘 = 𝑙𝑒𝑛(�⃗�) + 1
 

  
5. Property 5. There exists a probabilistic polynomial time algorithm Swap such that for 

any 𝑖, 𝑗 ≤ 𝑙𝑒𝑛(�⃗�) we have Swap(𝐶, 𝑖, 𝑗) = 𝐶′ where 𝐹(𝐶′) = (𝑠, (�⃗�′ , 𝛼)) and: 

 

(𝑣′⃗⃗ ⃗⃗ [𝑘], 𝛼′(𝑘)) =  {

(�⃗�[𝑘], 𝛼(𝑘)), ∀𝑘 ∉ {𝑖, 𝑗}

(�⃗�[𝑘], 𝛼(𝑖)), 𝑖𝑓 𝑘 = 𝑗     

(�⃗�[𝑘], 𝛼(𝑗)), 𝑖𝑓  𝑘 = 𝑖   

 

These ciphertext manipulations are basic for ciphertext delegation. If a ciphertext allows 

delegation of any well-formed ciphertext under policy 𝑃 to a well-formed ciphertext under policy 

𝑃′ using the elementary delegation operations, this implies that any ciphertext encrypted with 
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a policy 𝑃 may be delegated to a uniformly random encryption of the same message under a 
new policy 𝑃′ by the re-randomization guarantee.  
 
We will not go into further details for ciphertext delegation as depending on the secret sharing 
scheme the CP-ABE scheme is based on, the elementary delegation operations may have 
different capabilities.  
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9 Combining Symmetric Searchable Encryption and 
Ciphertext-Policy Attribute-Based Encryption 

In this section we design a protocol that combines SSE D2.1 with CP-ABE with respect to the 
reference architecture proposed in D1.2. 
 

9.1 Architecture 

 
Before we procced to a detailed description of the protocol, we briefly recall some core entities 
that participate in it, as they were defined in D1.2. and in [16] and [17] 
 
Cloud Service Provider (CSP): One of the common models of a cloud computing platform is 
Infrastructure-as-a-Service (IaaS). In its simplest form, such a platform consists of cloud hosts 
which operate virtual machine guests and communicate through a network. Often a cloud 
middleware manages the cloud hosts, virtual machine guests, network communication, 
storage resources, a public key infrastructure and other resources. Cloud middleware creates 
the cloud infrastructure abstraction by weaving the available resources into a single platform. 
In our system model we consider a cloud computing environment based on a trusted IaaS 
provider. The IaaS platform consists of cloud hosts which operate virtual machine guests and 
communicate through a network. In addition to that, we assume a Platform-as-a-Service 
(PaaS) provider that is built on top of the IaaS platform and can host multiple outsourced 
databases. Furthermore, the cloud service provider is responsible for storing users’ data. 
Finally, the CSP must be TEE enabled since core entities of the protocol will be running in a 
trusted execution environment offered by SGX. 
 
Master Authority (MS): MS is responsible for setting up all the necessary public parameters 
that are needed for the proper run of the underlying protocols. Furthermore, MS is responsible 
for generating and distributing ABE keys to the registered users. Finally, MS is considered as 
a single trusted authority. Thus, we assume that MS is TEE-enabled and is running in an 
enclave called the Master Enclave. 
 
Key Tray (KeyTray): KeyTray is a key storage that exists in the CSP and stores ciphertexts of 
all the symmetric keys that have been generated by various data owners and are needed in 
order to decrypt data. Every registered user  can contact the KeyTray directly and request 
access to the stored ciphertexts. Furthermore, the symmetric keys are encrypted with a CP-
ABE scheme. Thus, a single symmetric key is encrypted only once and users with certain 
access rights and different keys are able to access it (i.e. decrypt it). Moreover, similar to MS, 
KeyTray is also TEE-enabled and is running in an enclave called the KeyTray Enclave. 
 
Revocation Authority (REV): REV is responsible for maintaining a revocation list (rl) with the 
unique identifier of the users that have been revoked. At this point it is worth mentioning that 
a single user might own more than one CP-ABE secret key. Therefore, rl maintains a mapping 
of users with the CP-ABE keys they own. Every time that a key of a user is revoked, REV 
needs to update rl. This, as we will see later, will prevent revoked users from accessing 
ciphertexts that are not authorized anymore. Similar to MS and KeyTray, REV is also TEE-
enabled and is running in an enclave called the Revocation Enclave. 
 
Registration Authority (RA): RA is responsible for the registration of users in the CSP. 
Additionally, RA has a public/private key pair denoted as pkRA/skRA. RA can run as a separate 
third party but can be also implemented as part of the CSP. The registration process is out of 
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|| || 

the scope of this paper. Thus, we will not describe how the registration of a new user takes 
place. Instead, we will assume that a user has been already registered and has access to the 
remote storage and the services offered by the CSP. 

9.2 Protocol  

 
We are now ready to proceed with a formal and detailed description of the core algorithms.  
The SSE scheme we are using is based on the presented in [18]. 
 
ASCLEPIOS.Setup : Each entity from the described system model obtains a public/private 
key pair (pk, sk) for a CCA2 secure public cryptosystem and publishes its public key while it 
keeps the private key secret. Apart from that, all three entities that are running in an enclave  
generate a signing and a verification key. Furthermore, MS runs CPABE.Setup and generates 
a master public and private key. Below we provide the list of the generated key pairs: 
 

• (𝑝𝑘𝐶𝑆𝑃 , 𝑠𝑘𝐶𝑆𝑃 )- public/private key pair for the cloud service provider. 

• (𝑝𝑘𝑀𝑆 , 𝑠𝑘𝑀𝑆), (𝑠𝑖𝑔𝑀𝑆 , 𝑣𝑒𝑟𝑀𝑆), (𝑀𝑃𝐾, 𝑀𝑆𝐾)-public/private, verification/signing and 
master key pairs for the Master Authority. 

• (𝑝𝑘𝐾𝑇 , 𝑠𝑘𝐾𝑇), (𝑠𝑖𝑔𝐾𝑇 , 𝑣𝑒𝑟𝐾𝑇)- public/private and verification/signing key pairs for the 
KeyTray. 

• (𝑝𝑘𝑅𝐸𝑉 , 𝑠𝑘𝑅𝐸𝑉 ), (𝑠𝑖𝑔𝑅𝐸𝑉 , 𝑣𝑒𝑟𝑅𝐸𝑉)- public/private and verification/signing key pairs for the 

Revocation Authority.  

ASCLEPIOS.ABEUserKey : This phase is taking place between a registered user 𝑢𝑖 that 
wishes to obtain a CP-ABE key and MS who is responsible for generating such keys. This is 
a probabilistic key-generation algorithm that runs in the master enclave and takes as input 
MSK, the identity of the user that is requesting a key and a list of attributes A that is derived 

from user’s registered information. More precisely, 𝑢𝑖 contacts MS and proves that she is a 
registered user. Then, attests MS and requests a new CP-ABE key. MS then runs CPABE.Gen 

and generates 𝑠𝑘𝐴,𝑢𝑖
. This is then sent back to the user over a secure channel. 

 
ASCLEPIOS.Store : After a successful registration, we assume that ui has received a valid 
credential (credi) that can be used to login to a cloud service offered by the CSP. Additionally, 

𝑢𝑖 is now able to store data to the cloud storage. During  this phase the communication takes 

place between the user and the CSP. First, 𝑢𝑖 contacts the CSP by sending the following:  

𝑚1 =< 𝑟1, 𝐸𝑝𝑘𝐶𝑆𝑃
(𝐴𝑢𝑡ℎ), 𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑞, 𝐻1) > where 𝑟1 is a random number generated by 𝑢𝑖, 𝐴𝑢𝑡ℎ 

is an authenticator that allows 𝑢𝑖 to prove to the CSP that is a legitimate/registered user and 
𝐻1 is the following hash 𝐻(𝑟1||𝐴𝑢𝑡ℎ||𝑆𝑡𝑜𝑟𝑒𝑅𝑒𝑞). Upon reception, CSP verifies the freshness of 
the message, the identity of the user and starts processing the store request. To do so, CSP 

creates the message 𝑚2 = (𝑟2, 𝜎𝐶𝑆𝑃(𝐻2)), where H2 is the following hash 𝐻(𝑟2||𝑢𝑖) and 𝜎𝐶𝑆𝑃  

is a signature of CSP on 𝐻2. Then, 𝑚2 is sent back to 𝑢𝑖. Upon reception, 𝑢𝑖 verifies both the 
freshness as well as the integrity of the message. Now, 𝑢𝑖 simply generates a symmetric key 

𝐾𝑖 by running SSE.Gen. This key will be used to protect the data that will be stored in the 

cloud. The final step of this phase is the storage of encrypted files by 𝑢𝑖 to a storage resource 

offered by the CSP. User 𝑢𝑖 runs StoreFile – a deterministic algorithm that takes as input the 
symmetric secret key 𝐾𝑖 that generated earlier and a collection of files 𝒇𝒊 and outputs a 

collection of ciphertexts 𝒄𝒊 as well as an encrypted index 𝛾𝑖. Both 𝛾𝑖  and 𝒄𝒊 are then send to 

the CSP via a secure channel. More precisely, 𝑢𝑖 sends the following message to the CSP: 

𝑚3 =< (𝑟3, 𝐸𝑝𝑘𝐶𝑆𝑃
(𝛾𝑖), 𝒄𝒊, 𝐻3)𝜎𝑢𝑖

(𝐻3) > ,  where  𝐻3 = 𝐻(𝑟3||𝛾𝑖||𝒄𝒊).  Upon  reception,  CSP 

verifies both the integrity and the freshness of 𝑚3 and stores 𝒄𝒊 along with the encrypted index 
𝛾𝑖 in a local database. 
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ASCLEPIOS.KeyTrayStore : A key storage algorithm that allows an already logged-in user 

to safely store a symmetric secret key 𝐾𝑖, that generated earlier, in the Key- Tray.  This is a 

probabilistic algorithm that takes as input a symmetric key   𝐾𝑖, MPK and a policy 𝑃 and outputs 

an encrypted version of 𝐾𝑖 which is associated  with  𝑃. This  is  done  by  running  

𝑐𝑝
𝐾𝑖 ← 𝐶𝑃𝐴𝐵𝐸. 𝐸𝑛𝑐(𝑀𝑃𝐾, 𝐾𝑖 , 𝑃). The generated ciphertext, is sent by 𝑢𝑖 to the KeyTray  who 

stores it locally. More precisely, 𝑢𝑖 first attests the KeyTray and then sends the following 

message: 𝑚4 =< 𝐸𝑝𝑘𝐾𝑇
(𝑟4), 𝑐𝑝

𝐾𝑖 , 𝜎𝑖(𝐻(𝑟4||𝑐𝑝
𝐾𝑖))>. Additionally,  the  KeyTray  generates  a 

random number 𝑟𝐾𝑖
  encrypts it with 𝑝𝑘𝑖 and stores it next to 𝑐𝑝

𝐾𝑖  . As we will see later, this 

number will be used during the revocation phase to prove that 𝑢𝑖 is the owner of 𝐾𝑖. 
 
ASCLEPIOS.KeyShare : Now that 𝑢𝑖 has stored an encrypted version of 𝐾𝑖 to the KeyTray, 

other users should be able to access it. Hence, 𝑢𝑖 must have a way to share the encrypted 
data 𝒄𝒊 that stored earlier. Let’s assume that there is another registered user 𝑢𝑗, 𝑗 ≠ 𝑖 that 

wishes to access 𝒄𝒊. To do so, 𝑢𝑗 needs to get access to 𝐾𝑖 that is stored in the KeyTray. The 

important thing to notice here is that the data sharing will be done without the involvement of 

𝑢𝑖. Therefore, after 𝑢𝑖  stores 𝑐𝑝
𝐾𝑖    to the KeyTray,  she can be offline. In order for 𝑢𝑗  to access 

𝐾𝑖   she first needs to get a special token from REV that will prove that 𝑢𝑗 ’s access has not 

been revoked. To this end, 𝑢𝑗 first attests REV and  then sends the following message to 

obtain the token: 𝑚5 = (𝑟5, 𝐸𝑝𝑘𝑅𝐸𝑉
(𝑢𝑗), 𝜎𝑗(𝐻(𝑟5, 𝑢𝑗))) . Upon reception, REV verifies the integrity 

and the freshness of the message and checks if 𝑢𝑗 ∈ 𝑟𝑙. In such case, REV drops the 

connection since 𝑢𝑗 has been revoked. Otherwise, REV generates a token 𝜏𝑘𝑠  and sends the 

following to 𝑢𝑗: 𝑚6 = (𝑟6, 𝐸𝑝𝑘𝐾𝑇
(𝑢𝑗, 𝜏𝑘𝑠), 𝜎𝑅𝐸𝑉 (𝐻 (𝑟6 ||𝑢𝑗|| 𝜏𝑘𝑠))). Upon reception, 𝑢𝑗  forwards 

𝑚6 to the KeyTray who verifies the signature as well as the freshness and user’s id and sends 

𝑐𝑝
𝐾𝑖    to 𝑢𝑗. At this point, 𝑢𝑗 uses her private CP-ABE key to recover 𝐾𝑖.The decryption will only 

work if the attributes that are associated with 𝑢𝑗 ’s key satisfy the policy that is associated with 

𝑐𝑝
𝐾𝑖 . Apart from that, the KeyTray sends  also  the  following  to  𝑢𝑗:  𝑚7 =

(𝐸𝑝𝑘𝐶𝑆𝑃
(𝑢𝑗, 𝑡), 𝜎𝐾𝑇 (𝐻(𝑢𝑗||𝑡))),  where 𝑡  is the time that 𝑢𝑗 accessed 𝑐𝑝

𝐾𝑖 . As we will see in the 

next step, 𝑡 plays a crucial role in the access control. 
 
 
ASCLEPIOS.Search : Now that 𝑢𝑗 has gained access to 𝐾𝑖, she can start searching directly 

over encrypted data. Let’s assume that 𝑢𝑗 wishes to search over the ciphertexts that have 

been encrypted with 𝐾𝑖, for a specific keyword 𝑤. To do so, she first forwards to the CSP 𝑚7 
that received in the previous step. Upon reception, CSP recovers 𝑢𝑗 ’s identity and the 

timestamp 𝑡, verifies the signature and then checks if 𝑡 is valid. We assume that there is a time 
interval since 𝑢𝑗 got access to 𝐾𝑖, where she is eligible to access files that are stored in the 

CSP. After that time, 𝑢𝑗 will have to run again the previous step in order to receive a fresh 

timestamp. This will guarantee that 𝑢𝑗  has not been revoked since the last time that got access 

to 𝐾𝑖. Then,          if all the verifications are successful, 𝑢𝑖 runs SSE.SearchToken (𝐾𝑖, 𝑤) → 
𝜏𝑠(𝑤) and obtains a search token 𝜏𝑠(𝑤) . Then, she sends the generated token to the CSP 

who runs SSE.Search(𝛾𝑖, 𝒄𝒊, 𝜏𝑠(𝑤)) → 𝐼𝑤  that outputs a sequence of file identifiers 𝐼𝑤 , such 
that 𝐼𝑤 ⊂ 𝒄𝒊. In addition to that, all files in 𝐼𝑤  contain the keyword 𝑤 that 𝑢𝑗 searched for. The 

resulted 𝐼𝑤  is sent back to the user. Upon reception, 𝑢𝑗 executes the SSE.Dec algorithm by 

giving as input 𝐾𝑖 and the sequence of encrypted files that corresponds to the list of identifiers 
that received from the CSP. By doing this, 𝑢𝑗 recovers the files that contain keyword 𝑤. 
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ASCLEPIOS.Update : Apart from storing data and searching over the encrypted data, users 
also need to be able to update stored data. Here, we consider the scenario where 𝑢𝑗  wishes 

to add a new file 𝑓 to the cloud storage. A naive approach  that 𝑢𝑗  could follow would be to 

run ACLEPIOS.Store again, generate the ciphertext  of 𝑓 and send it to the CSP. However, 
this  would  mean  that 𝑢𝑗  would  also create a new encrypted index that would correspond to 

the encryption of file  𝑓 . Such  an approach is not efficient since the user  would end-up with 
a long   list of encrypted indexes that are not related to each other and every time that wishes 
to perform a search over her data would require from the CSP to search over all the encrypted 
indexes.  To  avoid  this,  𝑢𝑗  needs  to  store  𝑓 but  instead of creating a separate encrypted 

index she needs to update the current one in order to also include the newly added file. To 

achieve that, 𝑢𝑗 first generates an add token by executing (𝜏𝛼(𝑓), 𝑐𝑓) ←  AddToken(𝐾𝑖, 𝑓 ) and 

sends it to the CSP. Upon reception, CSP executes SSE.Add (𝛾𝑖, 𝒄𝒊, 𝜏𝛼(𝑓), 𝑐𝑓 ) → (𝛾𝑖 ′, 𝒄𝒊′) 

and outputs an updated encrypted index 𝛾𝑖′ and an updated sequence of ciphertexts 𝒄𝒊′  that 
corresponds to the data stored by 𝑢𝑗. Thus, by running SSE.Add, CSP stores the ciphertext of 

𝑓 and updates the existing encrypted index and ciphertext list of 𝑢𝑖. 
 
 
ASCLEPIOS.Delete : Users must also be able to delete a file. Assume that 𝑢𝑗 wishes to delete 

a file 𝑓 . To do so, 𝑢𝑗 runs SSE.DeleteToken which takes as input the symmetric key 𝐾𝑖 and 

the file that needs to be deleted and outputs a delete token:  𝜏𝑑(𝑓) ←DeleteToken (𝐾𝑖 , 𝑓) which 
is sent to the CSP. Upon reception, the CSP first checks that 𝑢𝑗 is eligible to delete a file and 

she has not been revoked (this is done by opening 𝑚7 and looking at the timestamp provided 

by the KeyTray). Then, the CSP runs SSE.Delete (𝛾𝑖, 𝒄𝒊, 𝜏𝑑(𝑓)) ←  (𝛾𝑖′, 𝒄𝒊′) which removes the 
requested file 𝑓 and updates both the corresponding encrypted index and the sequence of 
ciphertexts. 
 
 
ASCLEPIOS.Revoke : The last phase of our protocol allows a data owner to revoke access 
to a user. We assume that 𝑢𝑖 wishes to revoke access to 𝑢𝑗. To do so, 𝑢𝑖 contacts the 

revocation authority (REV) by sending 𝑚8 = (𝑟8, 𝐸𝑝𝑘𝑅𝐸𝑉
(𝑢𝑖 , 𝑢𝑗 , 𝑐𝑝

𝐾𝑖), 𝜎𝑖 (𝐻 (𝑟8||𝑢𝑖 ||𝑢𝑗|| 𝑐𝑃
𝐾𝑖))). 

Upon reception, REV checks the integrity and the freshness of the message and recovers the 

identity of data owner (𝑢𝑖) as well as the user that needs to be revoked (𝑢𝑗). Then, REV 

contacts the KeyTray by  requesting the ciphertext of 𝑟𝐾𝑖
  that was stored next to 𝑐𝑝

𝐾𝑖  during 

the run of ASCLEPIOS.KeyTrayStore. So, KeyTray sends the following message to REV: 

𝑚9 = (𝑟9, 𝐸𝑝𝑘𝑢𝑖
(𝑟𝐾𝑖

), 𝜎𝐾𝑇 (𝐻 (𝑟𝐾𝑖
||𝑟9))). Upon reception, REV forwards 𝑚9 to 𝑢𝑖  who recovers 

𝑟𝐾𝑖
 and verifies that the message has been generated by the KeyTray (verifying the signature). 

Then, 𝑢𝑖 signs 𝑟𝐾𝑖
 and sends it to the KeyTray through REV. KeyTray verifies the signature 

and is also convinced that 𝑢𝑖 is the owner of 𝐾𝑖. Hence, KeyTray generates a fresh random 

number 𝑟𝐾𝑖
′ that replaces 𝑟𝐾𝑖

 and also sends an acknowledgement to REV that ui has the right 

to revoke access to 𝑢𝑗 for all files that are encrypted with 𝐾𝑖. Finally,  REV adds the identity of 

𝑢𝑗  in 𝑟𝑙. As a result, the next time that 𝑢𝑗 will try to access any of the files that are encrypted 

with 𝐾𝑖 access will be denied.
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9.3 Protocol Security 

 
We now analyze our protocol’s behavior in the presence of a malicious adversary. We 
prove the security of the scheme by showing its resistance to a list of malicious 
behaviors. In this part the security analysis explicitly focuses on the described protocol 
and not on the underlying cryptographic schemes. This analysis is based the ones 
described in [19] and [20] 
 
Realistic Assumption. We assume that all user ids have the same length (or at least 
they are not a prefix of each other). By ensuring this property is satisfied, we can avoid 
a prefix attack, such as the following: 
Assume two users with ids 𝑢0 = 001 and 𝑢1 = 0011 respectively. Then if an adversary 

ADV gets a valid signature 𝜎𝐾𝑇(𝐻(𝑢1||𝑡)) (from a valid m7) this will be the same as a 

valid signature on 𝑢0 with a much larger time. However, by setting all users’ ids to 
have the same length we avoid such an attack. 
 

Proposition 1 (Compromise Revoked Users). Let 𝒰 be the set of all users that have 

been given access to Ki and ℛ the set of all users that their access  to Ki has been 

revoked. Assume an adversary ADV corrupts n, n ≤ |ℛ| users out of those in the set 
ℛ . Then ADV cannot infer any information about the files that have been encrypted 

with Ki. 

 
 
Proof. Here, we consider the case where ADV corrupts at least one user uc ∈ ℛ . In 

other words, ADV corrupts at least a user who in the past was eligible to use Ki and 

therefore she was able to decrypt all files from 𝐜𝐢 that were encrypted with that key. 

ADV will try to use uc in order to obtain the collection of ciphertexts 𝐜𝐢 and access the 
contents of the files.  

ADV trying to access the content of any file in 𝐜𝐢 can succeed if all the following 
conditions hold: 
 

1. Access the symmetric key Ki that used to encrypt the files. 
2. Successfully bypass the authentication of CSP during the ASCLEPIOS.Search 

phase. 

3. Access the latest ciphertexts list 𝑐𝑖
𝑓𝑟𝑒𝑠ℎ

 

 

• Condition 1 is always true. We  know that u𝑢𝑐 ∈ ℛ . Therefore, at some point  in 

the past 𝑢𝑐 was member of 𝒰 . Hence, we can safely assume that 𝑢𝑐 was able to 

decrypt 𝑐𝑝
𝐾𝑖 and recover 𝐾𝑖  

 
• Condition 2 can only be true if the adversary convince the CSP that 𝑢𝑐 ∉ ℛi. To 

do so, ADV needs to generate a valid 𝑚8 message that will also contain a 

fresh timestamp 𝑡𝑐, that will proove that 𝑢𝑐received access to 𝐾𝑖 recently and 

is still active. Generating a valid 𝑚8 message can be done with the following 

two options: 

o Replay Old Message: First, we consider the case were ADV 

replays an older message 𝑚7 in order to generate a valid 𝑚8 
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that will allow her to bypass the checks of the CSP. To this 
end, ADV uses the following message that was received in 

the past: 𝑚7 = (𝐸𝑝𝑘𝐶𝑆𝑃
(𝑢𝑐 , 𝑡), 𝜎𝐾𝑇(𝐻(𝑢𝑐 , 𝑡))). This is a valid 

message that contains the identity of the corrupted user as 
well as a valid signature from the KeyTray. Then ADV 

generates a fresh random number 𝑟 and creates a new 𝑚8 
that is sent to the CSP. Even though the structure of the 
generated message is correct, the CSP will drop the connection 
since it will identify it as an old message. This is due to the fact 
that the timestamp 𝑡 contained in 𝑚7 has expired. Therefore, 

the CSP cannot be sure if 𝑢𝑐 ’s access right is still active. To 

bypass that, ADV will try to replace 𝑡 with the current time 𝑡𝑐 . 

To do so, the adversary will use 𝑝𝑘𝐶𝑆𝑃 to generate 

𝐸𝑝𝑘𝐶𝑆𝑃
(𝑢𝑐 , 𝑡𝑐) and replace the first part of 𝑚7. However, the 

second part of the message has a signature from the KeyTray 

that contains the initial timestamp 𝑡. Replacing this with a 

valid signature on 𝑡𝑐  fails due to the assumption of 
soundness of the signature scheme. Therefore, ADV will fail 
to bypass CSP’s authentication. 

o Impersonate a Legitimate User : The only remaining alternative 

for the adversary is to impersonate a legitimate user 𝑢𝑙 from the 
set 𝒰 . To so, ADV overhears the communication between 𝑢𝑙 

and the CSP. By doing this, ADV intercepts the message 𝑚8 

that 𝑢𝑙 sent to the CSP. This message is fresh and contains 

an acceptable timestamp 𝑡. However, it also contains (in 𝑚7) 
the identity of ul. This will be used at the end of the 
ASCLEPIOS.Search phase where the CSP will use pkul   to 

encrypt the data that will be sent to the user. Therefore, ADV 

will use 𝑝𝑘𝐶𝑆𝑃 and will replace 𝐸𝑝𝑘𝐶𝑆𝑃
(𝑢𝑙 , 𝑡) with 𝐸𝑝𝑘𝐶𝑆𝑃

(𝑢𝑐 , 𝑡) we 

denote the new message as 𝑚𝑐. In addition to that, she will 

calculate a new signature that will be included in 𝑚8 along 
with 𝑚𝑐.Upon reception, CSP will verify the first signature but 

will fail to verify the one that is included in𝑚𝑐c. This is due to 
the fact that ADV had to change the identity of the legitimate 

user to 𝑢𝑐 but she could not generate a valid signature on 
the new message. Hence, the attack will fail. 

 

• Condition 3 cannot be true. This is implied immediately from the 
exculpability of the previous attack. More precisely, in order fot ADV to 

access 𝑐𝑖
𝑓𝑟𝑒𝑠ℎ

, she needs to bypass the CSP’s authentication. However, 

we showed that this is not possible.  

 

 

Proposition  2 (Revoke Legitimate Users).  Let  ui  be  the owner of data that  has been 

encrypted with Ki. Additionally, let 𝒰CSP the set of all users that have been given registered 

with the CSP and 𝒰 be the set of all users that have been given access to Ki. Assume an 

adversary ADV corrupts a user uc, uc ∈ 𝒰CSP\ {ul}. Then ADV cannot successfully revoke 
access to any ul ∈ 𝒰. 
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Proof.  Here,  we  consider  the  case  where   ADV  corrupts  a  user  𝑢𝑐   such  that   𝑢𝑐 ∈
𝒰\{𝑢𝑙}. The attack will be successful if ADV manages to revoke access to data that has been 

encrypted with Ki for a  legitimate  user  𝑢𝑙 ∈ 𝒰 .  To  do  so, ADV needs  to  run  
ASCLEPIOS.Revoke  and  convince  REV  that  she  is  the data owner. Hence, ADV generate 
the corresponding message and sends it to REV. Upon reception, REV checks the integrity 
and the freshness of the message and recovers the identity of 𝑢𝑐, who is pretending to act as 

data owner, as well as the id of user that needs to be revoked 𝑢𝑙. Then, REV contacts the 

KeyTray  by  requesting the ciphertext of 𝑟𝐾𝑖
 that was stored next to 𝑐𝑝

𝐾. The ciphertext of the 

random number 𝑟𝐾𝑖
 is then forwarded to 𝑢𝑐 who fails to recover it as it is encrypted with the 

public key of 𝑢𝑖. Therefore, the attack fails. 
 

9.4 Simulation-based Security 

 
In this section we capture the notion of security by using the standard real experiment versus 
ideal experiment formalization. In particular, in the real experiment the adversary observes the 
algorithms being executed honestly, while in the ideal experiment a simulator S simulates the 
functionalities of the protocol based on specified leakage from the SSE scheme. 
 
Definition (Sim-Security). We consider the following experiments. In the real experiment, all 

algorithms run as defined in our construction, In the ideal experiment, a simulator 𝒮 intecepts 
ADV’s queries and answers with simulated responses. 
 
 
Real Experiment: 
 

1. 𝑬𝑿𝑷𝒓𝒆𝒂𝒍(𝟏𝝀): 
 

2. (𝑴𝑷𝑲, 𝑴𝑺𝑲) ← 𝑨𝑺𝑪𝑳𝑬𝑷𝑰𝑶𝑺. 𝑺𝒆𝒕𝒖𝒑(𝟏𝝀) 
 

3. (𝜸, 𝒄) ← 𝑨𝑫𝑽𝑺𝑺𝑬.𝑺𝒆𝒕𝒖𝒑(𝑲,𝒇) 
 

4. 𝑨𝑺𝑪𝑳𝑬𝑷𝑰𝑶𝑺.𝑺𝒆𝒂𝒓𝒄𝒉() → 𝑰𝒘 
 

5. 𝑨𝑺𝑪𝑳𝑬𝑷𝑰𝑶𝑺. 𝑼𝒑𝒅𝒂𝒕𝒆() → (𝜸′, 𝒄′) 
 

6. 𝑨𝑺𝑪𝑳𝑬𝑷𝑰𝑶𝑺. 𝑫𝒆𝒍𝒆𝒕𝒆() → (𝜸′, 𝒄′) 
 

7. 𝑶𝒖𝒕𝒑𝒖𝒕 𝒃 

 
Ideal Experiment: 
 

1. 𝑬𝑿𝑷𝒊𝒅𝒆𝒂𝒍(𝟏𝝀): 
 

2. (𝑴𝑷𝑲) ← 𝓢(𝟏𝝀) 
 

3. (𝜸, 𝒄) ← 𝑨𝑫𝑽𝓢(𝓛𝒊𝒏(𝒇)) 
 

4. 𝓢(𝓛𝒔𝒆𝒂𝒓𝒄𝒉) → 𝑰𝒘 
 

5. 𝓢(𝓛𝒂𝒅𝒅) → (𝜸′, 𝒄′) 
 

6. 𝓢(𝓛𝒅𝒆𝒍) → (𝜸′, 𝒄′) 
 

7. 𝑶𝒖𝒕𝒑𝒖𝒕 𝒃 
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We say that the protocol is Sim-Secure if for all probabilistic polynomial time adversaries ADV: 
 

|Pr[(𝑅𝑒𝑎𝑙) = 1] − Pr [(𝐼𝑑𝑒𝑎𝑙) = 1]| ≤ 𝑛𝑒𝑔𝑙(𝜆) 
 
At a high-level, we will construct a simulator that will replace all of the ASCLEPIOS 

algorithms. 𝒮  can simulate Key generation and encryption oracles. S is given the length of the 

challenge message as well as the leakage functions ℒ as they were defined in D2.1. Moreover, 
since the data owner is the only one who can run ASCLEPIOS.Revoke we do not include that 

algorithms in the simulator. We start by defining the functionalities 𝒮. 
 

 
 
 

• 𝒮. 𝑆𝑒𝑡𝑢𝑝: This algorithm will only generate 𝑀𝑃𝐾 that will be given to ADV. 

 

• 𝒮. 𝑆𝑡𝑜𝑟𝑒: 𝒮 generates a dictionary that will enable it to consistently reply to 
search queries even after file additions and deletions. 

 

• 𝒮. 𝐾𝑒𝑦𝑆ℎ𝑎𝑟𝑒: 𝒮 encrypts 𝐾𝑎𝑑𝑣 under 𝑀𝑃𝐾 and sends it back to ADV. Moreover 

𝒮 simulates and sends to ADV the corresponding messages.  
 

• 𝒮. 𝑆𝑒𝑎𝑟𝑐ℎ/𝑈𝑝𝑑𝑎𝑡𝑒/𝐷𝑒𝑙𝑒𝑡𝑒: 𝒮 gets as inputs the corresponding SSE leakage 
function and simulates the tokens.  

 

Theorem: Let 𝑆𝐾𝐸 = (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) be an IND-CPA secure symmetric key cryptosystem. 
Moreover, let Sign be an EUF-CMA secure signature scheme. Then, our construction is sim-
secure.  
 
 
We will now use  a hybrid argument to prove that ADV cannot distinguish between the real 
and ideal experiments.  
 
Hybrid 0: Everything runs normally.  
 

Hybrid 1: Like Hybrid 0 but 𝒮. 𝑆𝑒𝑡𝑢𝑝 runs instead of 𝐴𝑆𝐶𝐿𝐸𝑃𝐼𝑂𝑆. 𝑆𝑒𝑡𝑢𝑝. These algorithms are 

identical from ADV’s point of view since in both algorithms ADV is only given 𝑀𝑃𝐾 and hence, 
they are indistinguishable.  
 

Hybrid 2: Like Hybrid 1 but 𝒮. 𝑆𝑡𝑜𝑟𝑒 runs instead of 𝐴𝑆𝐶𝐿𝐸𝑃𝐼𝑂𝑆. 𝑆𝑡𝑜𝑟𝑒. Nothing changes from 
ADV’s perspective since the simulated index has exactly the same size and format like the 
real one. Moreover, the IND-CPA security of the symmetric encryption scheme ensures that 
ADV cannot distinguish between encryptions of files and encryptions of zeros.  
 
Hybrid 3: Like Hybrid 2 but 𝒮. 𝐾𝑒𝑦𝑆ℎ𝑎𝑟𝑒 runs instead of 𝐴𝑆𝐶𝐿𝐸𝑃𝐼𝑂𝑆. 𝐾𝑒𝑦𝑆ℎ𝑎𝑟𝑒. 
 
Lemma: Hybrid 3 is indistinguishable from hybrid 2. 
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Proof: By replacing the two algorithms, nothing changes from ADV’s point of view. Moreover, 
if ADV can generate 𝑚6 without having contacted REV before, then she can produce a valid 
REV’s signature. However, given the security of the signature scheme, this can only happen 
with negligible probability. Hence, the hybrids are indistinguishable. 
 
Hybrid 4: Like Hybrid 3 but 𝒮 is now given as input the leakage functions from the SSE scheme 
and simulates search, add and delete tokens.  
 
Lemma: Hybrid 4 is indistinguishable from hybrid 3. 
 
Proof: Proof is omitted as it is included in D2.1.  
 
 

And this hybrid concludes our proof. We managed to construct a simulator 𝒮 that can “fool” 
any PPT adversary ADV into thinking that she is running the real algorithms whereas she is 
only getting simulated responses.  
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10 Experiments 

For the implementation of CP-ABE, we used Agrawal's scheme [8] shipped by Charm-Crypto 
Framework version 50.0 inside a Charm-Crypto Docker container. The Charm-Crypto 
Framework was developed in Python language. Therefore, these experiments were 
implemented in Python 3.6. All CP-ABE experiments were conducted on a desktop machine 
with Intel Core i7-8700 at 3.20GHz (6 cores), 32GB RAM. 

10.1 Setup Phase 

 
The first phase of the experiments, we devoted to measuring the execution time required to 
generate a pair of keys for a master entity. This is part of the setup phase for ASCLEPIOS, 
we consider the existence of at least one master entity responsible for the generation of CP-
ABE keys. However, it can be argued that the overall security of the system cannot rely on 
one single master authority. Furthermore, in cases where it is required to achieve a high level 
of security, a master secret key pair might be generated for each data owner. Such an 
approach could also lead to a multi-authority ABE model, as described in [14]. 
 
In contrast, it has been observed that in multi-authority settings malicious adversaries may 
collude from the different authorities. Taking all cases into consideration, we ran a key 
generation algorithm increasing the number of generated master key pairs up to 200. The 
result of the experiment is illustrated in Figure 3(a). As can be seen in the graph, the time to 
generate 200 master key pairs took almost six seconds. Moreover, the time to generate one 
master key pair is less than a second, which is considered acceptable. Apart from that, in 
Figure 3(a), the time is growing linearly with the increasing number of key pairs that are being 
generated. 

10.2 Users Key Generation 

 
In the second phase of the experiments, we show the average time that it takes to generate 
the user's keys. It is essential to mention that we developed an algorithm which automatically 
generates a list of attributes with a different length since each ABE user’s key is associated 
with attributes. Namely, we measured execution time for several users’ keys, increasing the 
number of attributes associated with the key. The results showed that even for a very large 
organization and/or publicly available online services, the size of attributes bound to a key is 
considered acceptable. As can be seen in the Figure 3(b), the average time to generate a user 
key with 1,000 attributes took almost six-and-a-half seconds, and to generate a user key with 
500 attributes took approximately three-and-a-half seconds. These results are suitable for 
covering even more complex cases where companies are required to generate large keys 
based on a wide variety of information. Thus, it can be stated that covering a long list of 
attributes is realistic and should not prevent an organization from adopting such an approach. 
 
In addition to that, it is interesting to observe how the file size of the user’s key is changing 
with the increase in several attributes associated with the key. In Figure 3(c), we can see that 
the size of the generated user's key is increasing precisely in line with growth in the number 
of attributes. The results showed that the disk size of one key with 1,000 attributes is around 
420KB, while a key with 500 attributes almost twice as less 210KB. Moreover, the key 
associated with 50 attributes has a size of 50KB on the disk. 
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10.3 Encryption/Decryption 

 
In ASCLEPIOS, we use CP-ABE to encrypt a symmetric key and not large volumes of data. 
Hence, we measured the time needed to encrypt and decrypt a symmetric key under policies 
of different sizes. We used access policies of type “1 and 2 and … and n” similar to [15]. Such 
size is the most demanding as it requires a key to contain all attributes associated with the 
policy for the successful decryption. The experiment can be divided into two stages. In the first 
stage, we measured the encryption process. Namely, we ran an encryption algorithm on a 
message with different policies. In the second stage, we were decrypting the freshly generated 
ciphertexts with keys that are associated with a different number of attributes. In addition to 
that, we were adding access policies of a different structure in order to record the performance 
of the decryption not only when all conditions needed to be fulfilled (most demanding case), 
but also when a random number of attributes is needed to satisfy the underlying policy. 
 
During the first stage of the experiment, we generated access policies of type "1 and 2 and ... 
and n" similar to the [15] and [8]. The policy is considered the most demanding case since all 
n attributes are required for successful decryption. Figure 4(a), demonstrates that the 
encryption time required to encrypt a message with a random policy of size up to 1,000. Figure 
4(b) shows the time needed to decrypt the ciphertext of the message by using a key with up 
to 1,000 attributes where all were required to satisfy the policy. As it can be seen in the Figure 
4(a, b), the time to encrypt and decrypt a message depends on the particular attributes 
available and the size of the policy. Namely, the encryption of the message with a policy size 
of 1,000 attributes took approximately 6.3 seconds where the decryption time took almost 
0.070 seconds. However, for much more realistic scenarios where policies contain around 200 
attributes, the encryption time took around a second and the decryption time was less than a 
half of the second. It is evident that the underlying CP-ABE scheme does not add any real 
computational burden to the overall performance of the protocol. 
 
In the second stage of the experiment, we focused on analyzing the behavior of the underlying 
CP-ABE scheme. More precisely, we created an algorithm which randomly generates a policy 
that contains numerical attributes as well as conditions such as the following: “(1 and 2) or (3 
and 4)”. This condition required that at least one of two parenthesis are satisfied by the 
attributes associated with the key that is trying to the decrypt a ciphertext. Figure 4(c) shows 
the time needed to decrypt a ciphertext previously bound with a policy size up to 1,000 but 
generated randomly. In the other words, unlike previous experiment, it does not require a key 
with all attributes. From the result shown in the graph, we can observe that the decryption time 
is linear regardless the randomness of the policy. This indicates that the decryption time is 
more less the same as long as the size of the policy is the same length. 
 



 D2.2 Attribute-Based Encryption 
 

Work Package 2   Page 69 of 77 
 

 

Figure 3: Processing time for the generation of user keys and measurement of the required 
disk space 

 

Figure 4: CP-ABE encryption and decryption with a policy size of up to 1000 
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11 Integration in Constrained Devices 

In this section, we are attempting to integrate parts of the proposed protocol to constrained 
devices. In particular, we are working with Zolertia devices that have very limited resources 
(512KB flash, 32MHz and 32KB of RAM). Hence, we can be sure that whatever runs on these 
devices will also run on medical devices. Apart from that, it should be mentioned that what we 
are presenting in this section is just a first step in integrating cryptographic software into 
medical devices and as such, at its current state may not be fully compatible with the needs 
of ASCLEPIOS.  
 

11.1 Components 

 
In this section, we present a detailed description of how the SSE parts of our protocol could 
be integrated in constrained devices. More specifically, we design a protocol consisting of two 
main algorithms; AddData and SearchData. The proposed algorithms are heavily influenced 
by the SSE scheme presented in D2.1. However, we need to make some modifications as in 
this case we are regard the Zolertia devices as the data owners. Before we proceed to the 
formal construction, we give a high level description of the different entities that participate in 
the construction, with respect to D1.2 and D2.1.  
 

• Data owners: Let 𝒟 = {𝑑1, … 𝑑𝑛} be the set of all sensor nodes in our environment 
deployed to register the occurrence of specific environmental events. The data owners in 
our system are able to add and update encrypted data using the proposed scheme. For 
the purposes of our implementation, we utilize the Zolertia Re-Mote board devices that 
are based on the Texas Instruments CC2538 ARM Cortex-M# system on chip (SoC). 
These boards feature a 2.4GHz IEEE 802.15.4 RF Interface, running up to 32MHz with 
512KB of programmable flash and 32KB of RAM while possessing a built-in battery 
charger (500mA) with energy harvesting capabilities as well as a CC1200 868/915MHz 
RF transceiver which allows for dual band operation. The functions performed by a 
Zolertia device are: 
 

1. Register the occurrence of a sensed event (e.g. Temperature, Humidity, etc). Data 
about a sensed data is referred to as keyword throughout the rest of this section 

and is denoted by 𝑤𝑖. 

2. Generate a hash of data about every sensed event ℎ(𝑤𝑖) 
3. Generate a unique identifier 𝑖𝑑𝑗 for each sensed event based on the sensing 

device’s id, timestamp and the nature of the event (e.i. temperature, humidity, etc). 

4. Encrypt the unique identifier with a symmetric key 𝐾 to generate a keyword value, 

𝑐𝑖𝑑(𝑤𝑖), that corresponds directly to each keyword.  

The sensor device then sends both ℎ(𝑤𝑖) and 𝑐𝑖𝑑(𝑤𝑖) to a trusted authority TA. 

 

• Trusted Authority (TA): TEE enabled storage that stores the following indexes: 
 

1. NoApp [𝑤𝑖], which contains a hash of the keyword along with the number of times 
it has received that keyword. 

2. NoSearch [𝑤𝑖], which contains a has of the keyword along with the number of 
times the keyword has been searched for 
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• Cloud Service Provider (CSP): TEE enabled cloud storage that contains a dictionary 
DICT. DICT contains a mapped between each keyword and a unique identifier of the 
sensor device that sent it. 
  

11.2 Formal Construction 

 
The AddData algorithm is undertaken by both a sensor device 𝑑 and the TA. The sensor 
device is deployed to register the occurrence of an environment event event such as 
temperature, humidity, motion, etc. Data about a sensed event is referred to as a keyword 𝑤𝑖 
Once an event has been registered, 𝑤𝑖 is hashed to produce ℎ(𝑤𝑖). 𝑑 then generates a unique 
identifier that will be used to identify the particular keyword. This unique identifier ID is made 
up on the sensor device’s id, timestamp and the type of event being registered (i.e. 
temperature, humidity, etc). The ID is then encrypted with a secret shared key 𝐾 to produce 
𝑐𝑖𝑑(𝑤𝑖) (line 4 of algorithm 1). The sensor device sends ℎ(𝑤𝑖) and 𝑐𝑖𝑑(𝑤𝑖) to the TA. Upon 

reception, TA retrieves the corresponding NoApp and NoSearch indexes from its local 
database. Based on these indexes TA can compute the DICT addresses that will be sent to 
the CSP.  
 
Algorithm 1 Add Data 
  
Sensor 
 
1: Register data about a sensed event 𝑤𝑖 

2: Compute hash of the data ℎ(𝑤𝑖) 
3: Generate a unique identifier for the sensed data ID. (ID = SensorID||t||T ), where 
SensorID is the unique id of the sensor, t is the timestamp, T is the type of the measurement. 

4: Compute 𝑐𝑖𝑑(𝑤𝑖) = 𝐸𝑛𝑐(𝐾, 𝐼𝐷) 

5: Send ℎ(𝑤𝑖), 𝑐𝑖𝑑(𝑤𝑖) to the TA 

TA 
 

6: NoApp[ℎ(𝑤𝑖)] + + 

7: 𝐾𝑤𝑖
 =  𝐻(𝐾ℎ,ℎ(𝑤𝑖 )||NoSearch[ℎ(𝑤𝑖)])   \\ Where 𝐾ℎ is the key for a keyed has function 

and 𝐾𝑤 the keyword key as defined in D2.1 

8: 𝑎𝑑𝑑𝑟𝑤𝑖
 = ℎ(𝐾𝑤𝑖

, NoApp[ℎ(𝑤𝑖  )]||0) 

9: Map = Map ∪ {𝑎𝑑𝑑𝑟𝑤𝑖
, 𝑐𝑖𝑑(𝑤𝑖)} 

10: Send [Map] to the CSP  
 
CSP 
11: Add Map into central Dict  
 
 
The search algorithm enables users that posses the secret key (obtained as described in 
Section 9) to perform a search operation over the encrypted data. To do so, a user first hashes 
the keyword she wants to search for, and sends ℎ(𝑤𝑖) to the TA. Upon reception, TA retrieves 
the NoApp and NoSearch indexes from its local database and computes the keyword key 𝐾𝑤 
as 𝐾𝑤 = ℎ(𝐾ℎ , ℎ(𝑤𝑖)||𝑁𝑜𝑆𝑒𝑎𝑟𝑐ℎ[𝑤𝑖]) in order to calculate the addresses of all possible 
instances of ℎ(𝑤𝑖) in DICT. More specifically, TA generates a list 𝐿𝑠 containing all the 
addresses on DICT. As a next step, TA increases the NoSearch Times by one which is then 
used to compute a fresh 𝐾𝑤 and the new addresses for DICT. The new addresses are stored 
in a list 𝐿𝑠

′ . Finally, the two lists are sent to the CSP along with the user’s identity. Upon 
reception, the CSP uses 𝐿𝑠 to find all the 𝑐𝑖𝑑(𝑤𝑖) and stores them in a list 𝑅. As a next step, it 

file://///Where
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removes the current addresses and inserts the new ones contained in 𝐿𝑠
′ . Finally, 𝑅 is sent 

back to the user. 
 
 
 Algorithm 2 Search Data    
 
User 

  
1: Compute and send ℎ(𝑤𝑖) to TA 

 
TA 

  
2: Retrieve the values NoApp[ℎ(𝑤𝑖)] and  NoSearch[ℎ(𝑤𝑖)] from the local database 

3: 𝐾𝑤𝑖
 =  𝐻(𝐾ℎ,ℎ(𝑤𝑖)||NoSearch[ℎ(𝑤𝑖)])    

4: NoSearch[𝑤𝑖] + + 

5: 𝐾𝑤𝑖
′  =  𝐻(𝐾ℎ,ℎ(𝑤𝑖)||NoSearch[ℎ(𝑤𝑖)])    

6: 𝐿𝑠 = {} 
7: for i = 1 to i = NoApp[ℎ(𝑤𝑖)] do 

8: 𝑎𝑑𝑑𝑟𝑤𝑖
 = ℎ(𝐾𝑤𝑖

, 𝑖||0) 

9: 𝐿𝑠 = 𝐿𝑠 ∪ {𝑎𝑑𝑑𝑟𝑤𝑖
} 

10: 𝐿𝑠
′ = {} 

11: for i = 1 to i = NoApp[ℎ(𝑤𝑖)] do 

12: 𝑎𝑑𝑑𝑟𝑤𝑖
′  = ℎ(𝐾𝑤𝑖

′ , 𝑖||0) 

13: 𝐿𝑠
′ = 𝐿𝑠

′ ∪ {𝑎𝑑𝑑𝑟𝑤𝑖
′ } 

14: Send (𝐿𝑠 , 𝐿𝑠
′ ) to the CSP  

 
CSP 

 

15: 𝑅 = {} 
16: for i = 1 to i = Sizeof(𝐿𝑠) do 

17: 𝑐𝑖𝑑(𝑤𝑖) = Dict[𝐿𝑠[𝑖]] 

18: 𝑅 = 𝑅 ∪ {𝑐𝑖𝑑(𝑤𝑖)} 

19: Delete the row on Dict and update it according to the address in 𝐿𝑠
′  

20: Send R to the user  
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12 Experimental Evaluation in Constrained Devices 

 
In this section, we present the results of experiments conducted to demonstrate the feasibility 

of our proposed work. Our experiments focused primarily on evaluating the performance of 
the algorithms de-scribed in section 5 on both the sensor device and the TA. For this work, 
we utilized a zolertia device with 512KB programmable flash and 32KB RAM as our sensor 

device while using an Intel i7 Ubuntu desk-top with 16GB RAM as the TA. To implement the 
necessary algorithms, we developed a Contiki-NG application on the sensor device written in 

C, using modified cryptographic functions from the Tinycrypt library [Wood, 2019]. On the TA, 
we developed a node js application to interact with a local database. With regards to this 
database, our dictionary is implemented as tables in a MySQL database hosted on the TA. 

Although existing works in the field of SSE rely on data structures such as arrays, maps, sets, 
lists, trees, etc, we opted for a relational database to represent a persistent storage. The 
experiments measure the performance of the core cryptographic components of our work on 

the re-source constrained sensor device, as well as the over-all performance of the add and 
search algorithms us-ing datasets of arbitrary sizes. 
 

Datasets: To comprehensively measure the performance of both the search and add 

algorithms, it was important that we utilized datasets of different sizes. Due to the uniqueness 

of our work, the datasets had to be created as part of our experiments (i.e. using the add 

algorithm of the protocol). We left the sensor device to collect the temperature in a room every 

5s for a varying number of hours and forwarded that in-formation to the TA. We did this for 

1hr, 4hrs, 12hrs and 24hrs with a temperature range of 10-to-35 degrees (Figure 1). 

 

Table 33: Dataset Size 

               Duration (hrs)                 Number of Entries 

DS1 1 737 

DS2 4 2,844 

DS3 12 8,617 

DS4 24 17,287 

 
 
Add Algorithm: This part of our work consists of two phases and is performed on both the 

sensor device and the TA: 
 

PH1: The sensor device collects data on a sensed event, generates a unique id, hashes the data 

about the sensed event, encrypts the unique id, and finally sends both the hashed data 
and the ciphertext to the TA; 

 
PH2: The TA retrieves the NoApp and NoSearch from the database based on the hashed 

message received from the sensor device, builds the en-crypted index and generates the 

dictionary. 
 
We measure the total performance of the add algorithm by evaluating the performance of the 

cryptographic components on the sensor device and the time taken by the TA to complete the 

algorithm. 
 
Performance of Cryptographic Components on Sensor Device: As mentioned during the 

description of our dataset, the sensor device is left to collect measurements for a varying 
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period of time. From table 1, it is observed that, for a timespan of 24 hours, the sensor device 

and the TA node run through various portions of the add algorithm 17,287 times. The system 

time for the CC2538 platform for which the sensor device is based on is represented as CPU 

ticks. As a result of this limitation, the performance metrics on the sensor devices are recorded 

in ticks and externally converted to seconds. Specific figures are derived by dividing the 

number of ticks by 128 (CPU ticks per second [Kurniawan, 2018]). In 17,287 iterations of the 

first part of the add function, the sensor device takes an average of 4.5 ticks to generate the 

hash of the keyword (temperature) and the ciphertext of the unique filename. This corresponds 

to 0.035s 

 

Execution Time on the TA: In this part of our experiments, we measured the time taken by 

the TA to build the index table and generate the encrypted dictionary. For 17,287 runs of our 

protocol, the TA takes an average of 14.516ms for each keyword hash received from the 

sensor device. This time includes the time taken to query and update the database. This is a 

very encouraging result as it illustrates that the TA will continue to be very efficient even if we 

increase the number of sensor devices that communicate with it. We acknowledge that the 

results for this section would better resemble real life scenarios if we utilized multiple sensor 

devices. Unfortunately, our current implementation supports just one sensor device per TA. 

 

From the measurements described above, it can be seen that the add algorithm is quite 

efficient and fast. Hence, we can safely assume that there will be no backlog on both the 

sensor device and the TA even if the sensor device collects data every 1s and sends to the 

TA. The total execution time of the add algorithm is 0.0495s. 

 

Search Algorithm: In this part of our experiments, we measured the total time taken to 

complete the search algorithm over the encrypted dictionary generated by the add algorithm. 

As described in Section 5, the search algorithm is performed on the TA in a local search and 

is performed on the CSP in a global search. For the purposes of our experiments, we assumed 

that the CSP has the same specifications as the TA. Hence, the performance of both the local 

and global search will only vary based on the size of the dataset. The search time is calculated 

by measuring the following: 

 
 
1. Time taken by the TA to generate a search token from a hashed keyword sent by a user; 

 

2. Time needed to find the respective matches in the database; 
 
3. Generate a new keyword address to replace the address retrieved in the dictionary. 

 

On average, the time taken to generate the search token is 0.066ms. The search algorithm 

involves gen-erating a new keyword address for every keyword value found. As such, the 

actual search time also in-cludes the time taken to generate new keyword ad-dresses. 

Searching for a keyword that appears 760 times in a database with 17,287 entries takes 

approx-imately 11.36s (i.e. time taken to find all the key-word values and generate new 

keyword addresses for all 760 instances of the keyword). The search al-gorithm for a keyword 

that appears 22 times in a database with 737 entries takes approximately 134ms. These two 

times represent the fastest and slowest search operation times for our experiments. The 
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search operation times correlate directly to the size of the dataset and the number of times 

the keyword appears in that dataset. 

 

 

Table 34: Performance Summary 

Function                                      Execution Time (ms) 
Add (Sensor Side) 35 

Add (TA Side) 14.516 
Total Add Algorithm 49.51 

Search Token Generation 0.066 
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13 Conclusion 

Based on the efficiency and requirement analysis no clear ‘winner’ can be selected. The FAME 
crypto scheme is much more efficient, but has no revocation method and therefore does not 
meet the strong requirements listed in section 5.2.1. However, also DAC-MACS and RD-ABE 
do not meet all the strong requirements (or only partly) and those schemes are much less 
efficient than FAME. This means that none of the schemes, in their current form, are suited to 
be used in ASCLEPIOS, but they show interesting concepts which might be used, or at least 
taken into regard when designing a framework such as ASCLEPIOS. 
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