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1 Introduction 

1.1 Contribution and Organization 
D2.1: Symmetric Searchable Encryption and Integration in Medical Devices, as specified in 
the ASCLEPIOS Grant Agreement, will 

• reveal advantages and limitations of Symmetric Searchable Encryption schemes, and  

• provide a detailed analysis on how and under which conditions such schemes could 
be used by Healthcare services. 

The contribution of this deliverable is twofold. First, we present a survey on existing SSE 
schemes, examining in detail the advantages and the disadvantages of each scheme. Then, 
we proceed by describing an SSE scheme that was designed to meet the needs of 
ASCLEPIOS according to (Tampere Univeristy (TUNI), Norwegian Centre for eHealth 
Research (NSE)). The rest of the deliverable is organized as follows: 

• In Section 2, we present the notation that will be used throughout the deliverable as 
well as some important definitions and the threat model. 

• Section 3 consists of a survey on Symmetric Searchable Encryption where multiple 
schemes are described. 

• In Section 4, we present the system model needed for our construction. This system 
model is in total accordance with the one presented in (Tampere Univeristy (TUNI), 
Norwegian Centre for eHealth Research (NSE)). 

• In Section 5, we describe in detail our SSE scheme, designed especially for the 
ASCLEPIOS project. 

• In Section 6, we present a protocol based on the SSE scheme and the reference 
architecture of ASCLEPIOS (Tampere Univeristy (TUNI), Norwegian Centre for 
eHealth Research (NSE)). 

• In Section 7, we prove the security of the proposed protocol. 

• In Section 8, we present several experiments of the SSE scheme. 

1.2 Symmetric Searchable Encryption 
Symmetric Searchable Encryption (SSE) along with Dynamic Symmetric Searchable 
Encryption (DSSE) in which file additions and deletions are allowed, are among the most 
promising encryption techniques that can pave the way to truly secure and privacy-preserving 
cloud-based services. In general, SSE schemes aim to provide confidentiality and integrity, 
while retaining main benefits of cloud storage – availability, reliability, and ensuring 
requirements through cryptographic guarantees rather than administrative controls. SSE 
allows a client to securely outsource private data to a Cloud Service Provider (CSP) in such a 
way that the client can later perform keyword searches directly on the stored ciphertexts. To 
perform such a search, the client sends a query for a specific keyword 𝑤 to the CSP. By 

processing his query, the CSP can find all stored ciphertexts containing 𝑤 without revealing 
any valuable information about the contents of the files and without even getting to know the 

actual keyword 𝑤 that the user searched for. Ideally, an SSE scheme should leak no 
information at all to the CSP. However, to achieve this, techniques such as oblivious RAM 
(ORAM) need to be used and according to (M. Naveed), it is even less efficient than 
downloading and decrypting the entire database locally. Leaked information is a problem of 
paramount importance in SSE since even a small leakage can lead to attacks that violate 
users’ privacy (Cash, Grubbs and Pery), (Islam, Kuzu and Kantarcioglu). For example, in 
(Zhang, Katz and Papamanthou), authors assumed that a malicious adversary can add new 
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files and showed that only after ten file injections, the adversary was able to reveal the contents 
of a past query thus, violating users’ privacy.  

Taking this into consideration, we have designed an SSE scheme that squarely fits on 
ASCLEPIOS’s reference architecture, as defined by (Tampere Univeristy (TUNI), Norwegian 
Centre for eHealth Research (NSE)), and at the same time offers stronger security guarantees. 
In particular, the scheme presented in this deliverable is both forward and backward private. 
Informally, forward privacy is achieved if for all file insertions that take place after the initial 
setup of the SSE scheme, the leakage is limited to the number of distinct keywords of the file, 
as well as the size of it. On the other hand, an SSE scheme is said to be backward-private if, 

whenever a keyword/document pair (𝑤, 𝑖𝑑(𝑓)) is added to the database and then deleted, 

subsequent search queries on 𝑤 do not reveal 𝑖𝑑(𝑓). 

1.1 Symmetric Searchable Encryption in ASCLEPIOS 
One of the core components of ASCLEPIOS, as defined n (Tampere Univeristy (TUNI), 
Norwegian Centre for eHealth Research (NSE)), is the cryptographic layer. The cryptographic 
layer is further divided into two subcomponents, namely traditional cryptography and modern 
cryptographic techniques.  

In this deliverable, we present a thorough study of Symmetric Searchable Encryption (SSE), 
one of the modern cryptographic techniques that constitute the backbone of the ASCLEPIOS 
project.  

By implementing an SSE scheme, we can ensure that the privacy of a patient’s data will not 
be compromised and at the same time, any registered user that satisfies certain access rights, 
will be able to search on the patient’s encrypted data.  
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2 Notation and Definitions 
In this section we present the notations and give definitions that will be used throughout this 
report. Moreover, we define security properties that are needed to formalize symmetric 
searchable encryption. 

2.1 Primitives 

Let 𝒳 be a set. We use 𝑥 ← 𝒳 is 𝑥 is sampled uniformly from 𝒳 and 𝑥 
$

←  𝒳, if 𝑥 is chosen 

uniformly at random. If 𝒳 and 𝒴 are two sets, then we denote by [𝒳, 𝒴] all the functions 

from 𝒳 to 𝒴 and by [𝒳, 𝒴] all the injective functions from 𝒳 to 𝒴. 𝑅(. ) is used for a truly 

random function, while 𝑅−1(. ) represents the inverse function of 𝑅(. ). A function 𝑛𝑒𝑔𝑙(. ) is 

called negligible if ∀𝑛 > 0, ∃𝑁𝑛: ∀𝑥 > 𝑁𝑛: |𝑛𝑒𝑔𝑙(𝑥)| <
1

𝑝𝑜𝑙𝑦(𝑥)
, where 𝑝𝑜𝑙𝑦(𝑥) represents a 

polynomial of 𝑥.  

Definition (Pseudorandom Function (PRF)). Let 𝐺 be a function such that 𝐺: 𝒦 × 𝒳 →
𝒴, where 𝒦 denotes the key-space, 𝒳 denotes the domain of definition and 𝒴, the range 

of the function 𝐺. Moreover, let 𝐺. 𝐺𝑒𝑛(1𝜆) be a probabilistic algorithm that given the 

security parameter 𝜆, outputs a key 𝑘 ∈ 𝒦 for 𝐺. 𝐺 is a PRF if for all probabilistic polynomial 

time adversaries 𝒜: 

|Pr[𝑘 ← 𝐺. 𝐺𝑒𝑛(1𝜆): 𝒜𝐺(𝑘,.)(1𝜆) = 1] − Pr [𝑘′[𝒳, 𝒴]
$

←: 𝒜𝑅(.)(1𝜆) = 1]| = 𝑛𝑒𝑔𝑙(𝜆) 

An invertible pseudorandom function (Boneh, Kim and Wu) is defined as follows: 

Definition (Invertible Pseudorandom Function (IPRF)). An IPRF 𝐺 with key-space 𝒦, 

domain of definition 𝒳 and range 𝒴 consists of two functions 𝐺: (𝒦 × 𝒳) → 𝒴 and 

𝐺−1(𝒦 × 𝒴) → 𝒳 ∪ {⊥}. Moreover let 𝐺. 𝐺𝑒𝑛(1𝜆) be a probabilistic algorithm that given the 

security parameter 𝜆, outputs a key 𝑘 ∈ 𝒦 for 𝐺. The functions 𝐺, 𝐺−1 satisfy the following 
properties: 

1. 𝐺−1(𝑘, 𝐺(𝑘, 𝑥)) = 𝑥, ∀𝑥 ∈ 𝒳. 

2. 𝐺−1(𝑘, 𝑦) = ⊥, if 𝑦 is not an image of 𝐺. 

3. 𝐺 𝑎𝑛𝑑 𝐺−1𝑐𝑎𝑛 𝑏𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑏𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠. 

4. 𝐺(𝑘, . ), 𝐺−1(𝑘, . ) ∈  [𝒳, 𝒴] 

A function 𝐺: 𝒦 × 𝒳 → 𝒴 is an IPRF if for all probabilistic polynomial time adversaries 𝒜: 

|Pr[𝑘 ← 𝐺. 𝐺𝑒𝑛(1𝜆): 𝒜𝐺(𝑘,.),𝐺−1(𝑘,.)(1𝜆) = 1] − Pr [𝑘′[𝒳, 𝒴]
$

←: 𝒜𝑅(.),𝑅−1(𝑘,.)(1𝜆) = 1]|

= 𝑛𝑒𝑔𝑙(𝜆) 
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Dynamic Symmetric Searchable Encryption (DSSE) 
We continue with a formal definition of a Dynamic Symmetric Searchable Encryption 
Scheme.  

Definition (Dynamic Symmetric Searchable Encryption (DSSE)). A DSSE scheme 
consists of the following algorithms: 

• Κ ← 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆): The data owner generates a secret key K that consists of a key 𝐾𝐺 

for an IPRF 𝐺 and a key 𝐾𝑆𝐾𝐸  for an IND-CPA secure symmetric key cryptosystem 
SKE. 

• (𝐼𝑛𝐶𝑆𝑃 , 𝐶)(𝐼𝑛𝑇𝐴) ← 𝐼𝑛𝐺𝑒𝑛(𝐾, 𝐹): The data owner runs this algorithm to generate the 

CSP index 𝑰𝒏𝑪𝑺𝑷 and a collection of ciphertexts 𝑪 that will be sent to the CSP. 

Additionally, the index 𝐼𝑛𝑇𝐴 that is stored both locally and in a remote location, since 
it is outsourced to a trusted authority TA is generated.  

• (𝐼𝑛𝐶𝑆𝑃
′ , 𝐶′), 𝐼𝑛𝑇𝐴

′ ← 𝐴𝑑𝑑𝐹𝑖𝑙𝑒(𝐾, 𝑓, 𝐼𝑛𝑇𝐴)(𝐼𝑛𝐶𝑆𝑃 , 𝐶): The data owner is running this 

algorithm to add a file to his/her collection of ciphertexts. All the indexes and the 
collection of cipehertexts are updated.  

• (𝐼𝑛𝐶𝑆𝑃
′ , 𝐼𝑤), 𝐼𝑛𝑇𝐴

′ ← 𝑆𝑒𝑎𝑟𝑐ℎ(𝐾, 𝑎, 𝑏, 𝐼𝑛𝑇𝐴)(𝐼𝑛𝐶𝑆𝑃 , 𝐶): This algorithm is executed by a 

user in order to search for all files 𝒇 containing a specific keyword 𝒘. The indexes 

are updated and the CSP also returns to the user a sequence of file identifiers 𝐼𝑤 . 

• (𝐼𝑛𝐶𝑆𝑃
′ , 𝐼𝑤), 𝐼𝑛𝑇𝐴

′ ← 𝑅𝑎𝑛𝑔𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝐾, 𝑤𝑖 , 𝐼𝑛𝑇𝐴)(𝐼𝑛𝐶𝑆𝑃 , 𝐶): This algorithm is executed by 

a user in order to search for all files 𝒇 containing values in the range [𝒂, 𝒃].The 
indexes are updated and the CSP also returns to the user a sequence of file identifiers 

𝐼𝑤 . 

• (𝐼𝑛𝐶𝑆𝑃
′ , 𝐶′), 𝐼𝑛𝑇𝐴

′ ← 𝐷𝑒𝑙𝑒𝑡𝑒(𝐾, 𝑐𝑖𝑑(𝑓), 𝐼𝑛𝑇𝐴)(𝐼𝑛𝐶𝑆𝑃 , 𝐶): The data owner runs this 

algorithm to delete a file from the collection. All the indexes are updated 
accordingly. 

• (𝐼𝑛𝐶𝑆𝑃
′ , 𝐶′), 𝐼𝑛𝑇𝐴

′ ← 𝑀𝑜𝑑𝑖𝑓𝑦(𝐾, 𝑓, 𝐼𝑛𝑇𝐴)(𝐼𝑛𝐶𝑆𝑃 , 𝐶): The data owner runs this algorithm to 

modify a file that already exists in the collection. 
 

Definition (Search Pattern). The Search Pattern is a mapping between queries and 
keywords. This mapping is used to tell whether two or more queries were for the same 
keyword.  

 

Definition (Access Pattern). The Access Pattern is defined to be the outcome of each 
search query.  

 

Definition (Forward Privacy). An SSE scheme is said to be forward private if for all file 
insertions after the initial setup the leakage is limited to the size of the inserted file and 
the number of unique keywords contained in it.  

 

Definition (Backward Privacy). An SSE scheme is said to be backward private if, 

whenever a keyword/document pair (𝑤, 𝑖𝑑(𝑓)) is added into the database and the deleted, 

subsequent search queries on 𝑤 do not reveal 𝑖𝑑(𝑓). 
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Moreover, let 𝐿𝐼𝑛𝐺𝑒𝑛 , 𝐿𝐴𝑑𝑑 , 𝐿𝑆𝑒𝑎𝑟𝑐ℎ , 𝐿𝐷𝑒𝑙𝑒𝑡𝑒 be the leakage functions associated with index 
creation, file addition and the search and delete operations. We have:  

𝐿𝐼𝑛𝐺𝑒𝑛 = (𝑁, 𝑛, 𝑖𝑑(𝑓𝑖), |𝑓𝑖|): This function leaks the total size 𝑁 of all the (𝑤, 𝑖𝑑(𝑓)) 
mappings, as well as the number of files, their ID’s and their sizes. 

• 𝐿𝐴𝑑𝑑  =  (𝑖𝑑(𝑓), |𝑓|, #𝑤𝑖 ∈ 𝑓): This function leaks the file id, its size and the number 

of unique keywords contained in it. 

• 𝐿𝑆𝑒𝑎𝑟𝑐ℎ = {𝐴𝑐𝑐𝑒𝑠𝑠 𝑃𝑎𝑡𝑡𝑒𝑟𝑛, 𝑆𝑒𝑎𝑟𝑐ℎ 𝑃𝑎𝑡𝑡𝑒𝑟𝑛}: This function leaks the Access and 
Search Patterns. 

• 𝐿𝐷𝑒𝑙𝑒𝑡𝑒 = (#𝑤𝑖 ∈ 𝑓): This functions leaks the number of unique keywords contained 
in the deleted file. 

 

Definition (SSE Security). Let SSE = (KeyGen, InGen, Add, Search, Delete, Modify, 
RangeSearch, ComplexSearch) be a dynamic symmetric searchable encryption 
scheme. Moreover, let 𝐿𝐼𝑛𝐺𝑒𝑛 , 𝐿𝐴𝑑𝑑 , 𝐿𝑆𝑒𝑎𝑟𝑐ℎ , 𝐿𝐷𝑒𝑙𝑒𝑡𝑒 be the leakage functions as defined 

above. 𝑊𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 the following experiment between a simulator 𝒮 and an adversary 

𝒜, 

𝑹𝒆𝒂𝒍𝓐(𝝀): 𝓐 outputs a set of files 𝐹. 𝒞 runs KeyGen to generate a key K, and runs 
InGen. 𝒜 then makes a polynomial time of adaptive queries (𝑞 = {𝑤, 𝑓1, 𝑓2}) such that 𝑓1 

is contained in a file 𝑓 ∈ 𝐹, 𝑓1 ∉ 𝐹 and 𝑓2 ∈ 𝐹. For each 𝑞, she receives bask either a 

search token 𝜏𝑠(𝑤), for 𝑤, an add token 𝜏𝛼(𝑓1) and a ciphertext 𝑐𝑓1
 for 𝑓1, or a delete 

token 𝜏𝑑(𝑓2) for 𝑓2. Finally, 𝒜 outputs a bit 𝑏.  

𝑰𝒅𝒆𝒂𝒍(𝝀): 𝓐 outputs a set of files 𝐹. 𝒮 gets 𝐿𝐼𝑛𝐺𝑒𝑛 as input and simulates InGen. 𝒜 then 

makes a polynomial time of adaptive queries (𝑞 = {𝑤, 𝑓1, 𝑓2}) such that 𝑓1 is contained in 

a file 𝑓 ∈ 𝐹, 𝑓1 ∉ 𝐹 and 𝑓2 ∈ 𝐹. For each 𝑞, 𝒮 is given either 𝐿𝑆𝑒𝑎𝑟𝑐ℎ(𝑤) , 𝐿𝐴𝑑𝑑(𝑓1) or 

𝐿𝐷𝑒𝑙𝑒𝑡𝑒(𝑓2). 𝒮 then simulates the tokens and, in the case of file addition, a ciphertext. 

Finally, 𝒜 outputs a bit b.  

We say that the SSE scheme is secure if for all Probabilistic Polynomial Time adversaries 

𝒜 , there exists a simulator 𝒮 such that: 
|Pr[(𝑅𝑒𝑎𝑙) = 1] − Pr(𝐼𝑑𝑒𝑎𝑙) = 1| ≤ 𝑛𝑒𝑔𝑙(𝜆) 

2.2 Threat Model 
The ASCLEPIOS threat model is similar to the one described in (Paladi, Gehermann and 
Michlas) which is based on the Dolev-Yao adversarial model (Dolev and Yao). More 
presicely, we assume the following: 

• Hardware Integrity:  Media  revelations  have  raised the  issue  of  hardware  
tampering  en  route  to  deployment sites. We assume that the cloud provider has 
taken necessary technical and non-technical measures to prevent such hardware 
tampering. 

• Physical Security:  We  assume  physical  security  of the   data   centres   where   
the   IaaS   is   deployed.   This   assumption  holds  both  when  the  IaaS  provider  
owns  and manages  the  data  center  (as  in  the  case  of  Amazon  WebServices,  
Google  Compute  Engine,  Microsoft  Azure,  etc.)and  when  the  provider  utilizes  
third  party  capacity,  since physical  security  can  be  observed,  enforced  and  
verified through known best practices by audit organizations. This assumption is 
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important to build higher-level hardware and software security guarantees for the 
components of the IaaS.  

• Low-Level Software Stack:  We  assume  that  at  installation  time,  the  IaaS  
provider  reliably  records  integrity measurements of the low-level software stack: 
the Core Root of  Trust  for  measurement;  BIOS  and  host  extensions;  host 
platform  configuration;  Option  ROM  code,  configuration and  data;  Initial  Platform  
Loader  code  and  configuration; state transitions and wake events, and a minimal 
hypervisor. We  assume  the  record  is  kept  on  protected  storage  withread-only 
access and the adversary cannot tamper with it.  

• Network Infrastructure:  The IaaS provider has physical  and  administrative  
control  of  the  network. ADV is  in full control of the network configuration, can 
overhear, create, replay and destroy all messages communicated between DM and 
their resources (VMs, virtual routers, storage ab-straction  components)  and  may  
attempt  to  gain  access  toother domains or learn confidential information. 

• Cryptographic Security:   We   assume   encryption schemes are semantically 
secure and the ADV cannot obtain the  plaintext  of  encrypted  messages.  We  also  
assume  the signature scheme is unforgeable, i.e. the ADV cannot forge the 
signatures and that the MAC algorithm correctly verifies message integrity and 
authenticity. We assume that the ADV, with a high probability, cannot predict the 
output of a pseudorandom function. We explicitly exclude denial-of-service attacks 
and focus on ADV that aim to compromise the confidentiality of data in IaaS.  

• Furthermore, we assume that the adversary 𝒜 is allowed to provide the enclaves 
with inputs of his/her choice and record the output. This assumption significantly 
strengthens the adversary since we need to ensure that only honest attested 
programs with correct inputs will run in the enclaves. At this point it is worth 
mentioning that, like similar works in the area (Dowsley, Michalas and Nagel), the 
threat model of the actual construction of ASCLEPIOS DSSE scheme is the, not so 
realistic, semi-honest model. To make our work secure under the threat model we 
described, earlier, we designed a protocol that shows how our scheme can be used in a 
cloud-based service. 
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3 Existing Encryption Approaches – State of the Art 

3.1 Two-Layered Encryption Scheme 
SSE was first introduced in (Song, Wagner and Perrig) where the authors presented a 
forward index scheme based on two different layers of encryption. The main idea of the 
scheme is to compute the deterministic encryption of each keyword and then use a stream 
cipher as the second layer of the encryption. In particular, for each keyword we compute 

𝑥 = 𝐸𝑛𝑐(𝑤) and then we parse  as 𝑥 = 𝑥𝑙||𝑥𝑟. The 𝑥𝑙 component is used for the creation of 
a key 𝑘 of a hash function ℎ, while at the same time, the exclusive bitwise or (XOR) of 𝑥𝑙 

with a random seed 𝑠 is computed. This will finally allow us to compute ℎ(𝑘, 𝑠) ⊕ 𝑥𝑟. The 

search token for a keyword 𝑤 is then 𝐸(𝑤) and the key 𝑘 is the one derived by 𝑥𝑙. The 

server can then perform the search operation by checking for each ciphertext 𝑐 whether it 

is of the form 𝑠||ℎ(𝑘, 𝑠). 

3.1.1 The Basic SSE Scheme 

Assume that a user Alice wants to encrypt a sequence of keywords 𝑊1, 𝑊2, … , 𝑊ℓ. Intuitively, 
the scheme works by computing the XOR of the plaintexts with a sequence of 
pseudorandom bits which have a special structure. This structure will allow to search on the 
data without revealing anything else about the clear text. More specifically, the basic 

scheme is as follows: Alice generates a sequence of pseudorandom values 𝑆1, 𝑆2 , … , 𝑆ℓ 
using some stream cipher (namely, a pseudorandom generator 𝐺), where each 𝑆𝑖 is 𝑛 − 𝑚 

bits long. To encrypt an 𝑛-bit word 𝑊𝑖 that appears in position 𝑖 , Alice takes the 

pseudorandom bits 𝑆𝑖, sets 𝑇𝑖=< 𝑆𝑖||𝐹𝑘𝑖
(𝑆𝑖) >, where 𝐹 is a pseudorandom function such 

that: 𝐹: 𝐾𝐹 ×  {0, 1}𝑛−𝑚 → {0, 1}𝑚, and ouputs 𝐶𝑖 = 𝑊𝑖  ⊕ 𝑇𝑖  .  

 

Figure 1: Basic SSE Scheme 

Note that only Alice can generate the pseudorandom stream 𝑇1, 𝑇2 , … 𝑇ℓ so no one else can 
decrypt. This scheme support searches over the ciphertexts in the following way: if Alice 

wants to search the word 𝑊, she can tell Bob 𝑊 and the 𝑘𝑖 corresponding to each location 

𝑖 where a word 𝑊 may occur. Bob can then search for 𝑊 in the ciphertext by checking 

whether 𝐶𝑖  ⊕ 𝑊𝑖 is of the form 𝑠||𝐹𝑘𝑖
(𝑠) for some 𝑠. At the positions where Bob does not 

know 𝑘𝑖, he learns nothing about the plaintext. Thus, the scheme allows a limited form of 
control: if Alice only wants Bob to be able to search over the first half of the ciphertext, Alice 

should reveal only the 𝐾𝑖, corresponding to those locations and none of the 𝑘𝑖 used in the 

second half of the ciphertext. However, for Alice to help Bob search for a word 𝑊, either 
Alice must reveal all the 𝑘𝑖 (thus revealing the entire document), or Alice must know in 
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advance which location 𝑊 may appear at- which seems to defeat the purpose of remote 
searching. 

3.1.2 The Final SSE Scheme 
In this final scheme authors tried to deal with the aforementioned problems. To this end, 
Alice computes a deterministic encryption of the words 𝑊 as 𝑋 = 𝐸(𝑊). She then parses 𝑋 

as 𝑋𝑖 = 𝐿𝑖||𝑅𝑖, where 𝐿𝑖 consists of the first 𝑛 − 𝑚 bits of 𝑋𝑖 and 𝑅𝑖 of the last 𝑚 bits. Alice 

now computes the keys as 𝑘𝑖 = 𝐹𝑘(𝐿𝑖). 

To decrypt, Alice computes 𝑆𝑖, using a pseudorandom generator, and can retrieve 𝑆𝑖 by 
XORing 𝑆𝑖with the first (𝑛 − 𝑚) bits of 𝐶𝑖. Finally, by knowing 𝐿𝑖, Alice can compute 𝑘𝑖 and 
hence, finish the encryption.  

This correction would not be correct if the words were not encrypted first since it is very 

common for different words to have the same 𝑛 − 𝑚 first bits. By encrypting the keywords 
in the first step, diminishes this problem since |Pr [𝐿𝑖 = 𝐿𝑗] = 1|  =  𝑛𝑒𝑔𝑙(. ). In particular, the 

authors assumed that the initial encryption is a pseudorandom permutation, and by the 
birthday paradox, the probability of collision is extremely low. After Alice is done with 
encrypting the words, she can re-order the ciphertexts using a pseudorandom permutation. 
This way, when Bob searches for a word, he will now knot the position of the word in the 
plaintext. This scheme deals with a number of problems: First of all, it uses fixed size words 
and then, even if Alice re-orders the ciphertexts, the position of the word can still be leaked. 

Finally, the complexity of a search operation is 𝑂(𝑚), where 𝑚 is the total number of words 
in a file. In other words, the complexity is linear to the total number of keywords in a file, 
which is the worst case.  

 

Figure 2: Final SSE Scheme 
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3.2 Forward Index 
In (Goh), authors suggested to use an encrypted data structure for searching on keywords 
and in particular, a bloom filter. Bloom filters are data structures that can efficiently check 
whether an element is part of a set.  

More specifically, they use an array of length 𝑛 whose bits are initially 0. For each keyword 

𝑤 to be inserted to the set, 𝑡 different hashes (ℎ1, … , ℎ𝑡) of the word are computed, where 

each ℎ𝑖 hashes into the set {1, … , 𝑛} and then the bits ℎ𝑖(𝑤) are set to 1. Using his data 
structure, it is possible to check whether the keyword is present in the document or not by 

checking if all the bits outputted by ℎ(𝑤𝑖) are set to 1 or not.  

To limit the information leakage about the keywords, the authors make use of two 
pseudorandom functions before inserting they keywords in the Bloom filter where the first 
function takes as input they keyword, and the second also takes as input the unique 
identifier of the file in order to avoid leaking similarities between the documents.  

There are two main problems with his approach: 

• Bloom Filters inherently return false positives;  

• The number of 1s in the bloofm filter, depends on the number of unique 
keywords in a file. As a result, the proposed scheme leaks the total number of 
keywords in each file. 

3.3 Hierarchical Structure of Logarithmic Levels 
Stefanov et al. (Stefanov, Papamantou and Shi) proposed a dynamic SSE scheme that 
uses     a hierarchical structure of logarithmic levels (which is reminiscent from techniques 
for oblivious RAMs). For P pairs of file/keywords, the server stores a hierarchical data 

structure containing log P + 1 levels. Each level ℓ can store up to 2ℓ entries, where each 
entry encrypts the information about one keyword k, one identifier of a file f that contains w, 
the type of operation performed (either add or delete) and a counter for the number of 
occurrences of keyword w in the level ℓ. The scheme ensures that within the same level only 
one operation is stored for each pair of file/keyword. One search token per level of the 
structure is used to perform the search operation. In this scheme, every update induces a 
rebuild of levels in the data structure. The basic idea is to take the new entry together with 

the entries in consecutive full levels 1,...,ℓ − 1 and merge them at level ℓ. 

This scheme has small leakage, a data structure of linear size (in the number of file/keyword 
pairs), and both updates and searches are in sub-linear time. In contrast to the other 
schemes, it achieves the notion of forward security: the search tokens used in the past 
cannot be used to search for the keyword in the documents that are added afterwards. It is 
achieved due to the fact that every time a level is rebuilt a new key is used to encrypt the 
entries within that level. However, this smaller leakage comes at the expense of poly-
logarithmic overhead (in the number of file/keyword pairs) on top of Dynamic SSE overhead 
of other schemes. 

3.4 Inverted Index 
The main idea proposed in (Kamara, Papamanthou and Roeder, Dynamic Searchbale 
Encryption) is to use an inverted index for each keyword instead for each file. The result is 
to reduce the search time from linear to the number of files to linear to the number of files 

containing the keyword 𝑤 we are searching for.  



 D2.1 Symmetric Searchable Encryption 
 

Work Package 2  Page 18 of 59 

 

For each keyword 𝑤, there exists a linked list 𝐿𝑤 containing identifiers for the files containing 
𝑤. The linked lists are encrypted to avoid information leakage. Hence, all nodes of 𝐿𝑤 are 

stored in an array 𝐴, unsorted and encrypted. The plaintext of each node contains three 
things: 

The unique file identifier of a file. 
The encryption key of the next node. 

A pointed to the next node.  

Thus, to search for a keyword 𝑤, we need the encryption key of the first node of 𝐿𝑤 and a 
pointer to its position in 𝐴. This information is stored encrypted in a pseudorandom position 

of a look-up table 𝑇. In other words, the user generates 𝐴 and 𝑇 along with her ciphertexts, 
and stores all of this information in the server.  

With this setup, the search token consists of the position of 𝑤 in 𝑇, along with the key used 

to insert the entry in 𝑇. 

3.4.1 Achieving Dynamicity using a Deletion Array 
The difficulty is that the addition, deletion or modification of a file requires the server to add, 
delete or modify nodes in the encrypted lists stored in As. This is difficult for the server to 
do since: (1) upon deletion of a file f , it does not know where (in A) the nodes corresponding 
to f are stored; (2) upon insertion or deletion of a node from a list, it cannot modify the pointer 
of the previous node since it is encrypted; and (3) upon addition of a node, it does not know 

which locations in 𝐴𝑠 are free. 

At a high-level, these limitations are addressed as follows:  

1. file deletion. We add an extra (encrypted) data structure Ad called the deletion 
array that the server can query (with a token provided by the client) to recover 
pointers to the nodes that correspond to the file being deleted.  More precisely, 
the deletion array stores for each file 𝑓 a   list 𝐿𝑓 of nodes that point to the 

nodes in 𝐴𝑠 that should be deleted if file 𝑓 is ever removed. So, every node in 
the search array has a corresponding node in the deletion array and every 
node in   the deletion array points to a node in the search array. 

2. pointer modification. The pointers are stored encrytped in a node with a 

homomorphic encryption scheme. By providing the server with an encryption of an 
appropriate value, it can then modify the pointer without ever having to decrypt the 
node. We use the  “standard” private-key encryption scheme which consists of 
XORing the message with the output of a PRF. This simple construction also has the 
advantage of being non-committing (in the private-key setting) which we make use of 
to achieve CKA2-security.   

3. memory management. to keep track of which location in 𝐴𝑠 are free, authors add 
and manage extra space, comprising a free list that the server uses to add new nodes.  

Example: The index is built on three documents, namely f1, f2, f3 over three keywords, 
namely w1, w2, w3.  All the documents contain keyword w1, keyword w2 is only contained in 
document f2 and w3 is contained in documents f2 and f3.  The respective search table Ts, the 
deletion table Td, the search array As and the deletion array Ad are also shown in the figure 
below.  Note that in a real DSSE index, there would be padding to hide the number of file-
word pairs; we omit padding for simplicity in this example. 

Searching: Searching is the simplest operation in the scheme.  Suppose the client 
wishes to search for all the documents that contain keyword w1. He prepares the 
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search token, which among others contains 𝐹𝑘1
(𝑤1) and 𝐺𝑘2

(𝑤1). The first value 

𝐹𝑘1
(𝑤1)  will enable the server to locate the entry corresponding to keyword w1 in 

the search table Ts. In our example, this value is x = (4||1) ⊕ 𝐺𝑘2
(𝑤1). The server 

now uses the second value  𝐺𝑘2
(𝑤1)  to compute x ⊕ 𝐺𝑘2

(𝑤1)..  This will allow the 

server to locate the right entry (4 in our example) in the search array and begin 
“unmasking” the locations storing pointers to the documents containing w1. This 
unmasking is performed by means of the third value contained in the search token 

File Addition: Assume now the client wishes to add a document f4 containing keywords w1 
and w2.  Note that the search table does not change at all since f4 is going to be the last 
entry in the list of keywords w1 and w2 and the search table only stores the first entries. 
However, all the other data structures must be updated in the following way. First the server 

uses free to quickly retrieve the indices of the “free” positions in the search array 𝐴𝑠, 

where the new entries are going to be stored. In our example these positions are 2 and 6.  
The server stores in these entries the new information (w1, f4) and (w2, f4).  Now the server 
needs to connect these new entries to the respective keywords lists:  using the add token, 

it retrieves the indices i = 0 and j = 3 in the search array 𝐴𝑠 of the elements x and y such 
that x and y correspond to the last entries of the keyword lists w1 and w2. In this way the 

server homomorphically sets 𝐴𝑠[0]’s and 𝐴𝑠[3]’s “next” pointers to point to the newly 

added nodes, already stored in the search array at positions 2 and 6. 

Note that getting access to the free entries in the search array also provides access to the 
respective free positions of the deletion array 𝐴𝑑. In our example, the indices of the free 
positions in the deletion array are 3 and 7.  The server will store the new entries (f4, w1) and 
(f4, w2) at these positions in the deletion array and will also connect them with pointers. 
Finally, the server will update the deletion table by setting the entry 𝐹𝑘1

(f4) to point to position 

3 in the deletion array, so that file f4 could be easily retrieved for deletion later. 

File Deletion: Suppose now the client wants to delete a document already stored in our 
index, say document f3, containing keywords w1 and w3.  The deletion is a “dual operation” 
to addition. First the server uses the value FK1 (f3) of the deletion token to locate the right 

value 4 ⊕ ttK2 (f3) in the deletion table.  This will allow the server to get access to the portion 
of the remaining data structures that need to be updated in a similar fashion with the addition 
algorithm. Namely it will “free” the positions 4 and 6 in the deletion array and positions 1 
and 3 in the search array. While “freeing” the positions in the search array, it will also 
homomorphically update the pointers of previous entries in the keyword list w1 and w3  to 

point to the new entries (in our example, to the end of the lists—generally  in the next pointers 

of the deleted items).  Note that no such an update of pointers is required for the   deletion 
array. 



 D2.1 Symmetric Searchable Encryption 
 

Work Package 2  Page 20 of 59 

 

 

Figure 3: Example of a dynamic encrypted index 

3.5 Keyword Red-Black Tree (KRB tree) 
In (Kamara and Papamanthou, Parallel and Dynamic Searchable Symmetric Encryption) 

authors, proposed a construction based on Red-Black trees. Assume that  𝑓 = (𝑓𝑖1
, … , 𝑓𝑖𝑛

) 

is a sequence of documents with corresponding identifiers 𝑖 = (𝑖1, … , 𝑖𝑛) over a set of 

keywords 𝑤 = (𝑤1 , … , 𝑤𝑛). Each individual 𝑓𝑖 is treated as a bit string of polynomial length, 

(i.e. 𝑓𝑖 = {0, 1}𝑝𝑜𝑙𝑦(𝑘)). Authors use an inverted index, in the sense that each 𝑤𝑖 ∈ 𝑤 is 
mapped to a set of document identifiers.  

Moreover, authors make the assumption that the universe of keywords is fixed. This is a 
significant drawback, since it does not allow for a universal solution. Apart from that, their 
construction is further based on the assumption that the total number of keywords is much 
smaller than the total number of files, which in our opinion is not realistic.  

Their construction makes use of a KRB tree. The KRB tree is a dynamic data structure that 

can be used to efficiently answer multi-map queries. A KRB tree 𝛿 is constructed from a set 

of documents𝑓 = (𝑓𝑖1
, … , 𝑓𝑖𝑛

)  and a universe of keywords 𝑤 = (𝑤1, … , 𝑤𝑛). The data 

structure is constructed as follows:  

1. Assume a total order on the documents f = (fi1 , . . . , fin ), imposed by the ordering 

of the identifiers i = (i1, . . . , in). Build a red-black tree T on top of i1, . . . , in. At the 

leaves, store pointers to the appropriate documents. We assume the documents 

are stored separately, e.g., on disk. Note that this is a slight modification of a red 

black tree since the tree is constructed on top of the identifiers but the leaves store 

pointers to the files. 

2. At each internal node u of the tree, store an m-bit vector datau. The i-th bit of datau 
accounts for keyword wi, for i = 1, . . . , m. Specifically, if datau[i] = 1, then there is at 
least one path from u to some leaf that stores some identifier j, such that fj contains 
wi; 

3. We guarantee the above property of vectors datau, by computing datau as follows: 
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for every leaf l storing identifier j, set datal[i] = 1 if and only if document fj contains 
keyword wi. Now let u be an internal node of the tree T with left child v and right child 
z. The vector datau of the internal node u is computed recursively as follows: 

𝑑𝑎𝑡𝑎𝑢 = 𝑑𝑎𝑡𝑎𝑣  ⊕  𝑑𝑎𝑡𝑎𝑧  

To search for a keyword w in a KRB tree T one proceeds as follows. Assuming that w has 

position i in the m-bit vectors stored at the internal nodes, check the bit at position i of 

node v and examine v’s children if the bit is 1. When this traversal is over, return all the 

leaves that were reached. The intuitive reason the KRB tree is  useful is that it allows both 

keyword-based operations (by following paths from the root to the leaves) and file-based 

operations (by following paths from the leaves to the root). 

Example: The construction of a dynamic symmetric searchable encryption (DSSE) 

scheme using the KRB tree data structure, for a collection of n = 8 documents indexed 

over m = 5 keywords. Note that for each node v we store two vectors. The encryption of 

the actual bit of position i at node v is stored to either hash table λ0v or hash table λ1v , 

depending on the output of the random oracle. The red arrows indicate the search for 

keyword 5, returning documents f3, f6, f7. Note that the two searches displayed can be 

parallelized 

 

Figure 4: Example of Searching on a KRB Tree 

3.6 Blind Storage 
Blind storage is a technique introduced in (Naveed, Prabhakaran and Gunter). The scheme 
is considered to be simpler than the ones described previously. In particular, it does not 
require the server to support any operation other than upload and download the data. Thus, 
the server in that scheme can be based solely on a cloud storage service, rather than a 
cloud computation service as well. The important feature is that the server does not need 
to carry any decryptions. In linked-lists based constructions as the one described in Section 
3.4, each node in the list is progressively revealed. In contrast, Blind Storage allows the 
server to be free from cryptographic operations and still have a constant number of rounds 
of interaction. Indeed, the only operations that need to be supported by the server are 
uploading and downloading blocks of data, and if possible, parallel. Most of the previous 
SSE schemes that have been presented, use a dedicated server, that performs both storage 
and computation like in the figure below: 
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Figure 5: Topology of a Generic SSE scheme 

Naturally, to deploy such a scheme, one would need to rely not only on cloud storage 
services but also on cloud computation services.  

The Blind Storage scheme allows a client to store a set of files on a remote server in such 
a way that the server does not learn how many files are stored, or the lengths of the 
individual files. Only when a file is retrieved, the server will learn about its existence. A 
drawback is that the storage server can notice if the same file being downloaded 
subsequently, but again the file’s name and its content are not revealed.  

In building the SSE scheme, the search index entries for all the keywords are stored as 
individual files in the Blind Storage scheme. 

 

Figure 6: Topology of Blind Storage 

Each file is stored as a collection of blocks that are kept in pseudorandom locations, as can 
be seen in the figure below. 

The server sees only a super-set of the locations where the file’s blocks are kept, and not 
the exact set of locations. The key security property, from the point of view of the server, is 
that each file is associated with a set of locations independently of the other files in the 
system. On the other hand, the sets of locations for two files can overlap. The only 
cryptographic tools used in this scheme are block ciphers for standard symmetric key 
cryptography, as well as for generating pseudorandom locations where the data blocks are 
kept, and collision resistant hash functions. 
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Figure 7: File transforming to a collection of blocks 

There is however, an upper bound 𝑁 on the number of data blocks that can be stored. Given 
a file 𝑓 with 𝑛 blocks, 𝛼𝑛 locations on the set {1, … , 𝑁} are chosen using a pseudorandom 

number generator and the 𝑛 blocks of 𝑓 are stored in 𝑛 of these positions. The reason to 

choose 𝛼 as many blocks as necessary to store 𝑓 is that there may be collisions with the 

storage positions of other files, as already stated. Hence, the 𝛼𝑛 positions that are retrieved 
from the server to access 𝑓 are chosen completely independently from the other files (and 

so this does not leak any information to the server) and then 𝑓 is stored encrypted in 𝑛 of 

these positions. One issue is that the client needs to know the number of blocks in 𝑓 to 
retrieve it, This can be achieved by either storing these information on the client (which is 
practical if the data collections consists of a small number of relatively large files), or by 
storing this information in the first block and adding one additional round of interaction, in 

which the client retrieves the 𝜅 first blocks of 𝑓. This construction also supports dynamic 
blind storage, but the updates leak the size of the files. For a typical scenario, one can have 

a blowup factor 𝛼 = 4. 

The idea to obtain an SSE scheme from this blind storage scheme is to store, for all 
keywords, the search index entries (which lists all the files containing the keyword) as 
individual files in the blind storage scheme. For dynamic SSE, the original files and the 
added files are treated by their scheme, which uses two different indexes. The index 
corresponding to the original files is done using the blind storage scheme and lazy deletion 
(i.e. after the deletion of one of the original files, the index file of a keyword is not updated 
before the first search is done for that keyword).  

One advantage of this scheme is that the server does not need to perform any computation, 
but only provide interfaces for uploading and downloading files, which makes the scheme 
much more transparent for using in cloud environments. However, a significant 
disadvantage is that it does not provide the same level of security for original and added 
files. The updates leak a deterministic function of the keywords and so, the security 
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guarantees for the added files are much weaker than for the original files. This is particularly 
worrisome for databases that start almost empty and grows over the times-which is often 
the case in practice.  

3.7 Limitations of the SSE schemes and Future Direction 
Symmetric Searchable Encryption faces three problems that renders it impractical for wide 
commercial use. In this sub-section we address both of them and describe the steps we 
plan to take in order to face them. 

• Revocation: Taking into consideration the aforementioned works, is seems as if there 
is no efficient way to embed a revocation mechanism in an SSE scheme. Thus, the 
only way to revoke a user and deny his/her access to the encrypted database, is to 
download the entire database, decrypt it, re-encrypt it with a fresh key and upload 
everything again on the storage server. Naturally, this solution does not scale well 
since for big data volumes, this procedure is very computationally expensive. To 
address the problem of revocation, we plan to develop hybrid encryption techniques 
that will combine Symmetric Searchable Encryption with Attribute-Based Encryption 
(ABE) (Bethencourt, Sahai and Waters) and will make further use of a trusted 
execution environment. ABE allows users to encrypt their data, and bind them with a 
policy. At the same time, each user receive a unique secret key with attached 
attributes. This way, a user can decrypt the ciphertext if and only if his/her attributes 
satisfy the policy bound on it. Such a technique can be used to encrypt the SSE secret 
key along with a policy. As a result, only users that satisfy the policy bound to the key 
will be able to access the database. Moreover, by changing the policy bound to the 
key, the data owner will be able to efficiently revoke users from her database. 

• Multi Writers/Multi Readers: The most efficient SSE schemes so far, address the 
single client model. In other words, they propose solutions where the data owner 
encrypts his/her data, uploads them to the storage server and then searches through 
his/her encrypted database. Obviously, even if such a scheme seems ideal for a 
casual user who simply wants to store data online, this is a limitation that prevents 
companies and big industrial players to adopt SSE in their work environments. To this 
end, we have designed a scheme that will allow data owners to securely share their 
SSE keys with multiple other users so that they will all be able to access and edit the 
same database. Naturally, giving the ability multiple users to add files , renders the 
scheme vulnerable to file injection attacks. Thus, the aforementioned scheme will 
need to be forward private, to offer the maximum level of security. 

• Threat Model: Most constructions so far are purely theoretical and their security is 
proven in the random oracle model by assuming a semi-honest adversary. This 
prevents key industrial players from adopting such a techniquq since they are looking 
for realistic and practical scenatios. To deal with this problem, we present a protocol 
in Section 6 those security is proven against realistic malicious adversaries. 
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Table 4: Comparison 

SCHEME Dynamic Multi-Client Forward 
Privacy 

Range Queries 

Two-Layered 
Encryption 
Scheme 

    

Forward Index 
    

Inverted Index 
    

KRB 
    

Blind Storage 
    

Ours 
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4 System Model 
The system model is derived from (Tampere Univeristy (TUNI), Norwegian Centre for eHealth 
Research (NSE)) where the reference architecture was described in detail. In this section, we 
describe the entities needed for the proper run of the DSSE scheme that we will describe later.  

Users: We denote by 𝒰 = {𝑢1, 𝑢2 , … , 𝑢𝑛} the set of all users that have been already registered in 
a cloud service that allows them to store, retrieve, update, delete and share encrypted files while at the 
same time being able to search over encrypted data by using the ASCLEPIOS DSSE scheme. The 
users in the ASCLEPIOS system model are mainly classified into two categories: data owners and 
registered users that they have not yet upload any data to the CSP. The role of data owner is the most 
important for this study since he/she is the one who actually uses the main functions of this scheme 
to encrypt data locally and create a dictionary that will be sent to the CSP. More precisely, a data 
owner first needs to locally parse all the data that wishes to upload to the CSP. During this 
process, the data owner generates three different indexes: 

• No.Files[w] contains a hash of each keyword w along with the number of files that w can be 
found at. 

• No.Search[w] contains the number of times a keyword w has been searched by a user. 

• Order[w] contains hashes of the keywords, sorted by the plaintext.  

• Dict is a dictionary that maintains a mapping between keywords and filenames. 

No.Files[w], No.Search[w], Order[w] are of size 𝑂(𝑚), where 𝑚 is the total number of keywords 

while the size of Dict is 𝑂(𝑁) = 𝑂(𝑛𝑚), where 𝑛 is the total number of files. To achieve the 
multi-client model, the data owner outsources No.Files[w], No.Search[w] and Order[w] to a 
trusted authority TA on the cloud, but also keeps a copy locally. These indexes will allow 
registered users to create consistent search tokens. Dict is finally sent to the CSP.  

Cloud Service Provider(CSP): We consider a cloud computing environment similar to the one 
described in (Paladi, Gehermann and Michlas). The CSP must support TEE since core entities 
will be running in the trusted execution environment offered by TEE. The CSP storage will consist 
of the ciphertexts as well as of the dictionary Dict. Each entry of Dict is encrypted under a different 
symmetric key Kw. Thus, given Kw and the number of files containing a keyword w, the CSP can 

recover the files containing w. 

Trusted Authority (TA): TA is an index storage that stores the No.Files and No.Search indexes 
that have been generated by the data owner. All registered users can contact the TA to access the 
No.Files w and No.Search w values for a keyword w. These values are needed to create the 
search tokens that will allow users to search directly on the encrypted database. Similarly to the 
CSP, the TA is also TEE enabled. 

Trusted Execution Environment (TEE): Our construction requires a TEE like the one 
described in (Tampere Univeristy (TUNI), Norwegian Centre for eHealth Research (NSE)). In 
particular, we want that the TEE should satisfy the following properties: 

• Isolation: We require the TEE to offer an isolated environment located in a hardware 
guarded area of memory. The TEE needs to be based on memory isolation built in the 
processor along with strong cryptogaphy. The processor will track which parts of 
memory belong to which enclave and ensures that only enclaves can attest their own 
memory.  

• Sealing: The TEE must come with a special Key with which, data is encrypted when stored 
in untrusted memory. Sealed data should be able to be recovered even after the isolated 
environment is destroyed and rebooted on the same platform 

• Attestation: The TEE should finally support local and remote attestation. In the case of 
local attestation, the TEE will be able to verify another TEE, as well as the 
program/software running in the later, on the same platform. This will be achieved 
through a cyrptographic message authentication code (MAC) in which all the isolated 
environments on the same platform, share a key. In the case of remote attestation, the 
verfication will be achieved by a public key signature scheme. Thus, an Attestation 
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server is required (like the one described in (Tampere Univeristy (TUNI), Norwegian 
Centre for eHealth Research (NSE))). 

 

Figure 8: System Model 
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5 ASCLEPIOS SSE 

5.1 High-Level Overview  
In this section we provide a high-level overview of the ASCLEPIOS encryption scheme.  

The server stores an encrypted index that associates each keyword with a set of file identifiers 
representing the files that contain that keyword. The entries associated with a keyword w are 
encrypted with a key Kw that depends on both w and the number of times w has been searched 
for. Kw is derived using a pseudorandom function from a master key that is stored by the client 
and by the TA. So, the TA must store the number of times each keyword has been searched 
for so far. We do this in a dictionary called No.Search[w]. To search for a keyword, the client 
generates and reveals the key Kw to enable the server to operate on the appropriate entries 
in the encrypted index, find the identifiers of files sharing the keyword, and return the 
corresponding (encrypted) files. 

Incrementing the number of times w has been searched for on each search leads to a new 
key Kw be generated for w and invalidates the previous key revealed to the server. This 
ensures the freshness of Kw on each search. Therefore, if w appears in a new file being added, 
the corresponding entry will be encrypted under a fresh key and the server cannot link it to the 
previous searches and realize that the new file contains w. This provides the essential forward 
privacy property. On the downside, this requires another round of interaction (at the end of 
search) to encrypt the accessed index entries with the new key and upload them back to the 
server. (We ask the server to remove the accessed entries from the index during a search. 
The server can keep the deleted entries, but they have already been leaked and contain no 
new information.) Note that this does not increase the asymptotic search cost. Besides, we 
can eliminate the extra round using piggybacking and upload the current updated entries 
together with the next search token. The whole process ensures that no entry of the 
outsourced index is encrypted under a revealed key. Furthermore, the revealed keys will never 
be used again.  

Another requirement for forward privacy is that the identifiers of all files containing a keyword 
cannot be stored in an easily linkable fashion (e.g., in a set or a file). Otherwise, adding a new 
file would trivially reveal which of the previously searched for keywords are contained in this 
new file. It may further leak information about other files the new file shares keywords with. 
This requires the identifiers of all files containing each keyword w to be stored at random 
locations in the index that are also determined by Kw. 

This solution immediately enables parallelism for efficiency. A sequence number is assigned 
to each file ID among the set of files containing a given keyword. These sequence numbers 
are used to generate the addresses at which the respective encrypted file IDs will be stored. 
Therefore, given the total number of file IDs, the provider can divide it by the number of 
available servers and ask each one to extract a subset of file IDs to be returned. The client 
again needs to store the total number of file IDs sharing a keyword in a dictionary named 
No.Files[w]. 

Example: We give an example to better illustrate the client (data owner and TA) and server 
indexes and how the protocols operate on them. Assume that there are three files and four 
keywords: 𝑓1 contains 𝑤1 , 𝑤3, 𝑤4, 𝑓2 contains 𝑤1 , 𝑤2, 𝑓3 contains 𝑤1 , 𝑤4. Let 𝑔(𝑤, 𝑓, 𝑖) denote 

the masked version of the id of the file after the 𝑖𝑡ℎ search for 𝑤 to be stored in Dict. Hence, 

𝑔(𝑤1, 𝑓1 , 0), 𝑔(𝑤3, 𝑓1 , 0), 𝑔(𝑤4, 𝑓1, 0) are added into Dict for 𝑓1, 𝑔(𝑤1, 𝑓2, 0), 𝑔(𝑤2, 𝑓2, 0) for 𝑓2 and 

𝑔(𝑤1, 𝑓3 , 0), 𝑔(𝑤4, 𝑓3, 0) for 𝑓3.  
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Figure 9: TA and Server indexes after adding files 

Now, the user wishes to search for 𝑤1. She sends the server the key 𝐾1 and the number of 

files 𝑤1 appears in (i.e. 3). The server locates the given number of Dict entries, decrypts the 

contents and sends the files to the user. The user increments the number of times 𝑤1 is 

searched for as: 𝑁𝑜. 𝑆𝑒𝑎𝑟𝑐ℎ[𝑤] + +. Then it re-encrypts the received pairs with a fresh key 
generated using the updated 𝑁𝑜. 𝑆𝑒𝑎𝑟𝑐ℎ[𝑤], and sends them back to the server. The server 
stores them in their new locations in Dict. Finally, an acknowledgement is sent to the TA, so 
that it will also update its local indexes.  

 

Figure 10: TA and server indexes after searching for w1. 

5.2 The Encryption Scheme 
Our scheme consists of seven algorithms: 

• KeyGen: Generates all the necessary keys. 

• InGen: Generates all the indexes. 

• Search: Allows users to search for a specific keyword over the encrypted data. 

• Add: Allows users to add new files to the encrytped database. 

• Delete: Allows users to delete files from the encrypted database. 

• Range Search: Allows users to issue range queries over the encrypted data 

• Modify: Allows a user to modify an encrypted file. 

Below, we provide a detailed description of all seven algorithms.  

Key Generation: This algorithm generates the secret key K = (𝐾𝐺 , 𝐾𝑆𝐾𝐸), where 𝐾𝐺  is a key 

for the IPRF G and 𝐾𝑆𝐾𝐸  is the key for the CPA-Secure symmetric key encryption scheme. 𝐾𝐺 
is also sent to the TA. This is a probabilistic algorithm run by the data owner. 
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Algorithm 1: ASCLEPIOS.KeyGen 

Input: Security parameter 𝝀 

Output:  K ← Gen(𝟏𝝀)(𝟏𝝀) 

1.   𝐾𝐺 ← GenIPRF(1𝜆 ) 

2.   𝐾𝑆𝐾𝐸 ← SKE.Gen(1𝜆)  

3.   return K = (𝐾𝐺 , 𝐾𝑆𝐾𝐸) 
 
Indexing: After the data owner generates the secret key K, he/she will generate the indexes 
needed for the scheme. In particular, she will generate three indexes in total: No.Files[w], 
where she stores the total number of files sharing a keyword, No.Search[w], where he/she 
stores the number of times each keyword has been searched for, Order[w] where he/she 
stores hashes of the keywords sorted by the plaintext and finally, Dict, in which every keyword 
is mapped to the set of file identifiers in which the keyword appears. No.Files[w], No.Search[w] 
and Order[w] are outsourced to the TA but the data owner also keeps a copy locally. On the 
other hand, Dict is sent directly to the CSP. This protocol is treated like a set of AddFile 
protocols; thus the data owner is required to internally run AddFile. Note that upon its 
generation, Dict is already encrypted and thus, is directly sent to the CSP. However, this is 
not the case for No.Files[w], No.Search[w] and Order[w]. As a result, before outsourcing these 
indexers to the TA, they need to be encrypted under TA’s public key. Although this process is 
not characterized by its efficiency, it will only occur once and it is a necessary trade-off to 
achieve a multi-client scheme. Upon reception, TA decrypts the indexes using its private key 
and stores them in plaintext. 

Algorithm 2: ASCLEPIOS.InGen 

Input: K, 𝑭 

Output:  (𝑰𝒏𝑪𝑺𝑷 , 𝑪) ← InGen(𝑲)(𝑭) 
1.   𝐶𝑖𝑝ℎ𝑒𝑟 = { } 
2.   𝐴𝑙𝑙𝑀𝑎𝑝 = { } 
3.   for all 𝒇𝒊 do 

4.        Run AddFile to generate 𝑐𝑖 and 𝑀𝑎𝑝𝑖  (Results are NOT sent to the CSP) 
5.        𝐶𝑖𝑝ℎ𝑒𝑟 = 𝐶𝑖𝑝ℎ𝑒𝑟 ∪ 𝑐𝑖 

6.        𝐴𝑙𝑙𝑀𝑎𝑝 =  𝐴𝑙𝑙𝑀𝑎𝑝 ∪ 𝑀𝑎𝑝𝑖 

7.   𝐼𝑛𝑇𝐴 = (No. Files[w], No. Search[w], Order[w])  
8.   Send (𝐴𝑙𝑙𝑀𝑎𝑝, 𝐶) 
9.   Send 𝐼𝑛𝑇𝐴   
10. CSP stores 𝐴𝑙𝑙𝑀𝑎𝑝 in a dictionary Dict 

11. 𝐼𝑛𝐶𝑆𝑃 = {Dict}, 𝐼𝑛𝑇𝐴 = {No. Files, No. Search, Order} 
 
File Insertion: The data owner 𝑢𝑖 can add files to his/her collection, even after the execution 
of Algorithm 1. To do so, he/she retrieves the No.Files[w], No.Search[w] and Order[w] indexes 
that are stored locally on his/her device. These indexes will allow her to create an add token 

𝜏𝛼(𝑓), for the file 𝑓 that he/she wishes to add to his/her collection. For each distinct keyword 
𝑤𝑖 ∈ 𝑓, he/she increments No.Files[𝑤𝑖] by one and then computed the corresponding address 

on Dict. Moreover, he/she encrypts the files wishes to add as 𝑐 ← 𝐸𝑛𝑐(𝐾𝑆𝐾𝐸 , 𝑓) and sends the 

results to the CSP. As a last step, 𝑢𝑖 sorts the new keywords 𝑤𝑖, hashes them, inserts them 
to Order[w] and sends an acknowledgement to the TA to update its indexes as well.  

Algorithm 3: ASCLEPIOS.AddFile 

Input: K, 𝒇, 𝑰𝒏𝑻𝑨 

Output:  (𝑰𝒏𝑪𝑺𝑷
′ , 𝑪′), 𝑰𝒏𝑻𝑨

′ ← Add(𝑲, 𝒇, 𝑰𝒏𝑻𝑨)(𝑰𝒏𝑪𝑺𝑷, 𝑪) 

1.   𝑀𝑎𝑝 = { }  
2.   for all 𝑤𝑖 ∈ 𝑓 do 

3.        No. Files[wi] + + 
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4.        𝐾𝑤𝑖
= 𝐺(𝐾𝐺 , ℎ(𝑤𝑖 )||No. Search[wi])  

5.        𝑎𝑑𝑑𝑟𝑤𝑖 = ℎ(𝐾𝑤𝑖||No. Files[wi]) 

6.        𝑣𝑎𝑙𝑤𝑖 = 𝐸𝑛𝑐(𝐾𝑆𝐾𝐸 , 𝑖𝑑(𝑓𝑖)||No. Files[w])  

7.        𝑀𝑎𝑝 = 𝑀𝑎𝑝 ∪ {𝑎𝑑𝑑𝑟𝑤𝑖 , 𝑣𝑎𝑙𝑤𝑖}  

8.   𝑐 ← 𝑆𝐾𝐸. 𝐸𝑛𝑐(𝐾𝑆𝐾𝐸 , 𝑓) 
9.   𝜏𝛼(𝑓) = (𝑐, 𝑀𝑎𝑝)  

10. Send 𝜏𝛼(𝑓) to the CSP 

11. CSP adds 𝑐𝑖 to 𝐶 and 𝑀𝑎𝑝 to Dict 
12. Send the updated value of No.Files to the TA 
13. TA updates No.Files 
 
Search: We now assume that the data owner has successfully shared his/her secret key K 
with multiple users to give them access to his/her encrypted data. For a user 𝑢𝑗 to create the 

search token 𝜏𝑠(𝑤) for a specific keyword 𝑤, the user first needs to request the corresponding 
No.Files[w] and No.Search[w] values from the TA. After 𝑢𝑗 receives these values, the user can 

compute the key 𝐾𝑤 as 𝐾𝑤 = 𝐺(𝐾𝐺 , ℎ(𝑤)||No. Search[w]). Apart from that, he/she increments 

the No.Search[w] value by one and computes the updated key for 𝑤, 𝐾𝑤 ′, and the new 

addresses 𝑎𝑑𝑑𝑟𝑤 for Dict. The user will finally store the new addresses in a list 𝐿 that will be 
sent to the CSP. Upon reception, Dict will forward (𝐾𝑤 , No. Files[w]) to the TA to ensure that 
𝑢𝑗 sent the correct values. At this point, TA will retrieve 𝑤 and No.Search[w] by inverting the 

IPRF G. In particular, since the TA holds the key for the IPRF G (𝐾𝐺), it can compute the 
following:  

𝐺−1 (𝐾𝐺 , 𝐾𝑤) = 𝐺−1 (𝐾𝐺 , 𝐺(ℎ(𝑤)||No. Search[w]) = ℎ(𝑤)||No. Search[𝑤] 

As soon as TA retrieves these values, is can compute 𝐾𝑤′ by incrementing the No.Search[w] 
value by one. Furthermore, it will also compute the updated addresses for Dict. These 

addresses will be stored in a list 𝐿𝑇𝐴 that will be sent to the CSP. Upon reception, the CSP will 

check whether 𝐿 = 𝐿𝑇𝐴   or not. If 𝐿 ≠ 𝐿𝑇𝐴, the CSP will output an error message ⊥ and abort 
the protocol. Otherwise, the CSP locates the file identifiers from the list of addresses it 
received, sends the files identifiers back to 𝑢𝑗 and updates the addresses with the new ones. 

Finally, the CSP sends an acknowledgement to the TA that the search is completed so that 
the TA will increment No.Search[w] by one. This acknowledgement is also sent to the data 
owner, to update his/her local indexes. 

Algorithm 4: ASCLEPIOS.Search 

Input: K, w, 𝑰𝒏𝑻𝑨  
Output:  (𝑰𝒏𝑪𝑺𝑷

′ , 𝑰𝒘), 𝑰𝒏𝑻𝑨
′ ← 𝑺𝒆𝒂𝒓𝒄𝒉(𝑲, 𝒘, 𝑰𝒏𝑻𝑨)(𝑰𝒏𝑪𝑺𝑷, 𝑪)   

User: 
1.   Request the values No.Files[w] and No.Search[w] from the TA 

TA: 
2.   Verifies the user and send back the values 

User:  

3.   𝐾𝑤 = 𝐺(𝐾𝐺 , ℎ(𝑤)||No. Search[w]) 

4.   𝑁𝑜. 𝑆𝑒𝑎𝑟𝑐ℎ[𝑤] + + 

5.   𝐾𝑤
′ = 𝐺(𝐾𝐺 , ℎ(𝑤)||No. Search[w]) 

6.   𝐿𝑢 = { } 
7.   for 𝑖 = 1 to 𝑖 = No. Files[w] do 

8.        𝑎𝑑𝑑𝑟𝑤 = ℎ(𝐾𝑤
′ , 𝑖||0) 

9.         𝐿𝑢 = 𝐿𝑢 ∪ { 𝑎𝑑𝑑𝑟𝑤} 
10. Send 𝜏𝑠(𝑤) = (𝐾𝑤 , No. Files[w], 𝐿𝑢)  to the CSP 

CSP: 

11. Forward 𝐾𝑤 , No. Files[w] to the TA 
TA: 
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12. 𝑤||No. Search[w] = 𝐺−1 (𝐾𝐺 , 𝐾𝑤) 
13. No. Search[w] + + 

14. 𝐾𝑤
′ = 𝐺(𝐾𝐺 , ℎ(𝑤)||No. Search[w]) 

15. 𝐿𝑇𝐴 = { } 
16. for 𝑖 = 1 to 𝑖 = No. Files[w] do 

17.      𝑎𝑑𝑑𝑟𝑤 = ℎ(𝐾𝑤
′ , 𝑖||0) 

18.      𝐿𝑇𝐴 = 𝐿𝑇𝐴 ∪ {𝑎𝑑𝑑𝑟𝑤} 
19. Send 𝐿𝑇𝐴 to the CSP 

CSP: 
20. if 𝐿𝑢 = 𝐿𝑇𝐴 then 

21.      𝐼𝑤 = { } 
22.      for 𝑖 = 1 to 𝑖 = No. Files[w] do 
23.           𝑐𝑖𝑑(𝑓𝑖) = Dict[ℎ(𝐾𝑤 , 𝑖||0)] 

24.           𝐼𝑤 = 𝐼𝑤 ∪ { 𝑐𝑖𝑑(𝑓𝑖)} 

25.           Delete Dict[ℎ(𝐾𝑤 , 𝑖||0)] 
26.      Add the new addresses as specified by 𝐿𝑢 
27. else 

28.      Output ⊥ 
29. Send an acknowledgement to the user and acknowledgement to the TA and the data 
owner 

TA: 
30. No. Search[w] + + 

User: 

31. No. Search[w] + + 
 
Range Queries: For a user 𝑢𝑗 to issue a range query to the CSP, he/she first needs to contact 

TA. In particular, if 𝑢𝑗 wishes to search for all files containing values in the range [𝑎, 𝑏], the 

user first hashes the extreme values of the range (i.e. ℎ(𝑎) and ℎ(𝑏)) and sends them to the 

TA. Upon reception, TA retrieves the sorted index Order[w], locates the values ℎ(𝑎) and ℎ(𝑏) 
and sends back to 𝑢𝑗 every entry that lies in between of ℎ(𝑎) and ℎ(𝑏). Finally, for each ℎ(𝑤𝑖) 

returned, 𝑢𝑗 performs a search operation just as described in Algorithm 3.   

Algorithm 5: ASCLEPIOS.RangeSearch 

Input: K, 𝒉(𝜶), 𝒉(𝜷) 𝑰𝒏𝑻𝑨  
Output:  (𝑰𝒏𝑪𝑺𝑷

′ , 𝑰𝒘), 𝑰𝒏𝑻𝑨
′ ← 𝑺𝒆𝒂𝒓𝒄𝒉(𝑲, 𝒘𝒊, 𝑰𝒏𝑻𝑨)(𝑰𝒏𝑪𝑺𝑷, 𝑪)   

User: 

1.   Send ℎ(𝛼), ℎ(𝛽) to the TA 
TA: 

2.   Locate  ℎ(𝛼), ℎ(𝛽) on Order [w]. Let Order[𝛼] = ℎ(𝑎) and Order [𝛽] = ℎ(𝛽)  
3.   𝐿𝑜𝑟𝑑 = { } 
4.   for 𝑖 = 𝛼  to 𝑖 = 𝛽 do 

5.        𝐿𝑜𝑟𝑑 = 𝐿𝑜𝑟𝑑  ∪ 𝑂𝑟𝑑𝑒𝑟[𝑖] 
6.   Return 𝐿𝑜𝑟𝑑  to 𝑢𝑗 

User: 

7. for all 𝒉(𝒘𝒊) ∈ 𝑳𝒐𝒓𝒅  do 
8.      Run ASCLEPIOS.Search 

 

File Deletion: A data owner 𝑢𝑖 can also delete files. To do so, he/she sends a request to the 

CSP requesting the file 𝑓 to be deleted. Note here that since the file names are encrypted, the 
CSP can not learn which file will be deleted. After 𝑢𝑖 receives 𝑓, he/she decrypts it locally, 
extracts every keyword and updates his/her local indexers accordingly. The data owner will 

also send an acknowledgement to the TA to also update its indexers. Finally, 𝑢𝑖 needs to 
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compute the new addresses and values for each keyword 𝑤𝑖 ∈ 𝑓. These addresses will be 

sent to the CSP who will proceed with the deletion of every Dict entry associated to 𝑓. 

Algorithm 6: ASCLEPIOS.Delete 

Input: 𝒄𝒊𝒅(𝒇) 

Output:  (𝑰𝒏𝑪𝑺𝑷
′ , 𝑪′), 𝑰𝒏𝑻𝑨

′ ← 𝑫𝒆𝒍𝒆𝒕𝒆(𝑲, 𝒄𝒊𝒅(𝒇), 𝑰𝒏𝑻𝑨)(𝑰𝒏𝑪𝑺𝑷, 𝑪)   

Data Owner: 

1.   𝐹𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 = { } 
2.   for all 𝑤𝑖 ∈ 𝑓 do 

3.        if No. Files[wi] > 1 then 

4.           𝑎𝑑𝑑𝑟𝑤𝑖
= ℎ(𝐾𝑤𝑖

, No. Files[wi]||0) 

5.           𝑣𝑎𝑙𝑤𝑖
= 𝐸𝑛𝑐(𝐾𝑆𝐾𝐸 , 𝑖𝑑(𝑓), No. Files[wi])  

6.           𝑁𝑜. 𝐹𝑖𝑙𝑒𝑠[𝑤𝑖] 
7.           𝑛𝑒𝑤𝑎𝑑𝑑𝑟𝑤𝑖

= ℎ(𝐾𝑤 , No. Files[w]||0) 

8.           𝑛𝑒𝑤𝑣𝑎𝑙𝑤𝑖 = 𝐸𝑛𝑐(𝐾𝑆𝐾𝐸 , 𝑖𝑑(𝑓)||No. Files[w]) 

9.      else 

10.         𝑛𝑒𝑤𝑎𝑑𝑑𝑟𝑤𝑖
= 0 

11.         𝑛𝑒𝑤𝑣𝑎𝑙𝑤𝑖
= 0 

12.    Delete No.Files[w], No.Search[w] and Order[w]  

13.    𝐹𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 = 𝐹𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 ∪ {ℎ(𝑤), No. Files[w]}      
14. Send 𝐹𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 to the TA 

15. 𝜏𝑑(𝑓) = {𝐾𝑤 , (𝑎𝑑𝑑𝑟𝑤𝑖
, 𝑛𝑒𝑤𝑎𝑑𝑑𝑟𝑤𝑖

), (𝑣𝑎𝑙𝑤𝑖
, 𝑛𝑒𝑤𝑣𝑎𝑙𝑤𝑖

)}
𝑖=1

#𝑤∈𝑓

.
 

16. Send 𝜏𝑑(𝑓) to the CSP 
TA:  

17. for all 𝑤𝑖 ∈ 𝑓 do 
18.      if 𝑁𝑜. 𝐹𝑖𝑙𝑒𝑠[𝑤] > 1 then    

19.           𝑁𝑜. 𝐹𝑖𝑙𝑒𝑠[𝑤] − − 
20.      else    

21.           Delete No.Files[𝑤𝑖], No.Search[𝑤𝑖] and Order[𝑤𝑖] 
CSP: 

22. For 𝑖 = 1 𝐭𝐨 𝑖 = #𝑤 ∈ 𝑓 do 

23.      if 𝑛𝑒𝑤𝑎𝑑𝑑𝑟𝑤𝑖
= 0 then  

24.           Delete 𝑎𝑑𝑑𝑟𝑤𝑖
 and 𝑣𝑎𝑙𝑤𝑖

 

25.      else 

26.           𝑎𝑑𝑑𝑟𝑤𝑖
= 𝑛𝑒𝑤𝑎𝑑𝑑𝑟𝑤𝑖

 

27.           𝑣𝑎𝑙𝑤𝑖
= 𝑛𝑒𝑤𝑣𝑎𝑙𝑤𝑖

 

 

File Modification: Finally, the dataowner 𝑢𝑖 can modify/update a file. If 𝑢𝑖 wishes to modify a 
file 𝑓 that is stored online, he/she first needs to run the Delete algorithm to make sure that 

each entry associated with 𝑓 will be deleted and that all indexes will be updated accordingly. 

Recall that during the delete process, 𝑢𝑖 has received a local copy of 𝑓 that has also decrypt 

it. As a result, 𝑢𝑖 modifies the decrypted 𝑓 locally and then runs the AddFile algorithm for the 
updated file. 

Algorithm 1: ACLEPIOS.Modify 

Input: 𝒄𝒊𝒅(𝒇) 

Output:  (𝑰𝒏𝑪𝑺𝑷
′ , 𝑪′), 𝑰𝒏𝑻𝑨

′ ← Add(𝑲, 𝒇, 𝑰𝒏𝑻𝑨) 
1.   Run ASCLEPIOS.Delete with 𝑓 as input 
2.   Modify 𝑓 

3.   Run ASCLEPIOS.AddFile with 𝑓 as input 
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6 A Security Protocol Based on ASCLEPIOS SSE 
In this section we present a detailed security protocol that shows how the scheme described earlier 
can be incorporated into a cloud-based service. The description of such a protocol is important 
not only because it allows us to assume a stricter adversarial model but also because it can give 
valuable insights to developers  o n how to incorporate such schemes into their existing cloud-based 
services. 

For the description of the protocol we assume the existence of an IND-CCA2 secure public key 

cryptosystem PKE= (Gen, Enc, Dec) and an EUF-CMA secure signature scheme 𝑆 =
(sign, verify). Every entity participating in the protocol has a public/private key pair, as well as a 
signature/verification key pair. Our protocol protocol is divided into two main phases, the Setup 
phase, and the Running Phase. 

6.1 Setup Phase 

6.1.1 Key Generation  

In the Setup Phase, a data owner 𝑢𝑖 runs the KeyGen algorithm to generate the secret key 
K= (𝐾𝑮 , 𝐾𝑺𝑲𝑬). 𝐾𝐺 will then be sent to the TA. To this end, 𝑢𝑖 generates and sends 𝑚1 = <
𝑟1, 𝐸𝑛𝑐𝑝𝑘𝑇𝐴

(𝐾𝐺 ), 𝜎𝑖(𝐻(𝑟1||𝐾𝐺)) > where 𝑟1 is a random number used to ensure the freshness 

of the message, 𝜎𝑖 is 𝑢𝑖 ’s signature and 𝐻 is a cryptographic hash function.  

 

Figure 11: Key Exchange 

6.1.2 Index Generation 

As a next step, 𝑢𝑖 runs the InGen algorithm to generate the four indexes needed and the 

encrypted files. After the successful execution on InGen the data owner sends 𝑚2 = <
𝑟2, 𝐸𝑛𝑐𝑝𝑘𝑇𝐴

(𝐼𝑛𝑇𝐴), 𝜎𝑖(𝐻(𝑟2||𝐼𝑛𝑇𝐴)) > to the TA. He/she also sends 𝑚3 = <

𝑟3, 𝐶, 𝐷𝑖𝑐𝑡, 𝑠𝑖(𝐻(𝑟3||𝐶||𝐷𝑖𝑐𝑡)) > to the CSP. Upon reception, both entities will verify the integrity 
and the freshness of the messages and will store the indexes locally. Note here, that Dict is 
already encrypted upon its generation, so there is no need to encrypt it with the CSP’s public 

key. Moreover, the size of the indexes stored in the TA are all 𝑂(𝑚), where 𝑚 is the total 
number of keywords. Hence, if we consider a case with 1 million keywords with the size of an 
integer being at 4 bytes and the average size of a keyword at 10 bytes, then the total size 
required for the three indexes will be:  
 1 × 106 × (10 + 4 + 10 + 4 + 10 +  4) = 106 × 42 = 42𝑀𝐵  

As a result, storing a very large number of keywords does not require computationally powerful 
machines. 
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Figure 12: Outsourcing the Indexes 

6.2 Running Phase 
In the Running Phase, the data owner 𝑢𝑖 can update his/her collection of encrypted files by 
adding or deleting files but most importantly, share these files with other users.  

6.2.1 File Addition 

After the completion of the Setup Phase, the data owner 𝑢𝑖 can still add files to his/her 
encrypted database by running the AddFile algorithm. To do so, the data owner first genrates 

the add token 𝜏𝛼(𝑓) for the file 𝑓, and then sends 𝑚4 = < 𝑟4, 𝜏𝛼(𝑓), 𝜎𝑖(𝐻(𝑟4||𝜏𝛼(𝑓))) > to the 

CSP and 𝑚5 =< 𝑟5, {ℎ(𝑤𝑖), 𝐸𝑛𝑐𝑝𝑘𝑇𝐴
(𝑛𝑖)}

1

#𝑤∈𝑓
, 𝜎𝑖(𝐻(𝑟5||{ℎ(𝑤𝑖), 𝐸𝑛𝑐𝑝𝑘𝑇𝐴

(𝑛𝑖)}
1

#𝑤∈𝑓
)) >, where 

𝑛𝑖 ∈  ℕ represents the No.Files[𝑤𝑖], to the TA. 

 

Figure 13: File Addition 

6.2.2 Searching  

We now assume that the data owner 𝑢𝑖 has successfully shared his/her secret key K with 
other users. For a user 𝑢𝑗 to search for the files containing a keyword w, the user first contacts 

TA to get 𝑛1 = 𝑁𝑜. 𝐹𝑖𝑙𝑒𝑠[𝑤] and 𝑛2 = 𝑁𝑜. 𝑆𝑒𝑎𝑟𝑐ℎ[𝑤], (𝑛1 , 𝑛2 ∈  ℕ), to be able to compute 𝐾𝑤. 
To this end, he/she sends 𝑚6 =< 𝑟6, ℎ(𝑤), 𝜎𝑗(𝐻(𝑟6||ℎ(𝑤))) to the TA and receives back 𝑚7 =

 < 𝑟7, 𝐸𝑛𝑐𝑝𝑘𝑢𝑗
(𝑛1 , 𝑛2), 𝜎𝑇𝐴(𝑟7||𝑛1||𝑛2) >. Now, 𝑢𝑗 can finally construct the search token 𝜏𝑠(𝑤). 

And so the user sends 𝑚8 = < 𝑟8, 𝜏𝑠(𝑤), 𝜎𝑢𝑖(𝐻(𝑟8||𝜏𝑠(𝑤))) > to the CSP. Upon reception, the 

CSP forwads this message to the TA that will compute 𝐿𝑇𝐴 based on 𝐾𝑤 and 𝑁𝑜. 𝐹𝑖𝑙𝑒𝑠[𝑤]. 
Then, TA sends 𝑚9 = < 𝑟9, , 𝜎𝑇𝐴(𝐻(𝑟9||𝐿𝑇𝐴)) > back to the CSP. The CSP will then check 

whether 𝐿𝑇𝐴 = 𝐿𝑢𝑗
, where 𝐿𝑢𝑗

∈ 𝜏𝑠(𝑤). If not, the CSP will output ⊥ and abort the protocol, 
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Otherwise, it will find the files containing 𝑤 and will send them back to 𝑢𝑗. Furthermore, the 

CSP sends an akcnowledgement to both the TA and the data owner 𝑢𝑖, so that they will 

increment the 𝑁𝑜. 𝑆𝑒𝑎𝑟𝑐ℎ[𝑤] value by one.  

 

Figure 14: Search 

Range Queries: A user can also perform range queries. A range query could be the following 

actions. “Search for all patients with disease 𝐷1 that are older than 25 years old.” Such queries 
can be very useful in the healthcare section, since they allow the interested party to search for 
groups of patients that their data will be later used for privacy preserving analytics. For a user 
to perform a range query, one extra round of interaction between the user and the TA is 
needed. In particular, the user 𝑢𝑗 initiates the protocol by sending 𝑚𝑟𝑎𝑛𝑔𝑒 =<

𝑟𝑟𝑎𝑛𝑔𝑒 , ℎ(𝛼), ℎ(𝛽), 𝜎𝑢𝑗
(𝑟𝑟𝑎𝑛𝑔𝑒||ℎ(𝛼), ℎ(𝛽)) > to the TA. The TA then retrieves Order[w], where 

all the keywords are sorted by the plaintext, locates ℎ(𝛼) and ℎ(𝛽) and sends back to 𝑢𝑗 every 

Order[w] entry that lies between ℎ(𝛼) and ℎ(𝛽) via 𝑚𝑣𝑎𝑙𝑢𝑒𝑠 = <
𝑟𝑣𝑎𝑙𝑢𝑒𝑠 , {ℎ(𝑤𝑖)}𝛼≤𝑤𝑖≤𝛽 , 𝜎𝑇𝐴(𝐻(𝑟𝑣𝑎𝑙𝑢𝑒𝑠||{ℎ(𝑤𝑖)}𝛼≤𝑤𝑖≤𝛽)) >. Upon reception, 𝑢𝑗 creates a search 

token for each ℎ(𝑤𝑖) that she received and initiates the search protocol.  
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Figure 15: Range Queries 

6.2.3 File Deletion  

The data owner ui can also delete files from his/her database. To do so, the owner first 
requests from the CSP the the file he/she wants to delete. Note, that since the filenames are 
encrypted, the CSP does not learn which file will be deleted. After, ui receives the file, he/she 

can create the delete token. Next, the data owner 𝑢𝑖 sends the delete token to the CSP via 

𝑚10 =< 𝑟10, 𝜏𝑑(𝑓), 𝜎𝑢𝑖
(𝐻(𝑟10||𝜏𝑑(𝑓))) >. Moreover, he/she sends the list FileNumber to the 

TA via 𝑚11 =< 𝑟11, 𝐹𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟, 𝜎𝑢𝑖(𝐻(𝑟11||𝐹𝑖𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟)) >. Finally, the CSP deletes each 

Dict entry associated to the file 𝑓.  

 

Figure 16: File Deletion 
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6.2.4 File Modification 
Finally, as already stated the data owner can also modify one or more of his/her files. As 
already described, to do so the data owner first needs to run the delete protocol for the file 
he/she wants to modify. This will result to the deletion of both the file and every Dict entry 
associated with the file. As a next step, the data owner will modify the file as he/she wishes, 
and will initiate the AddFile protocol to add the modified file in his/her collection as a new file. 
This way the CSP does not learn that this a new file that is a modified version of an old file. 
As a result, the CSP cannot correlate between these files. 

 

Figure 17: File Modification 
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7 Security Analysis 
In this section we prove the security of our construction against the threat model defined in Section 
2.2. We will construct a simulator that will simulate the ASCLEPIOS SSE scheme as well as the 
communications between the TEE’s. 

Theorem: Let SKE be a CPA-secure symmetric key encryption scheme, G an invertible 
pseudorandom function and h a hash function. Then our construction is secure according to 
the definition of the security game in Section 2.  

We will construct a simulator 𝒮 that will simulate all the ASCLEPIOS.SSE algorithms but range 
search in a way that no probabilistic, polynomial time (PPT) adversary will be able to 
distinguish between the real algorithms and the simulator. To this end, we will make use of a 
Hybrid Argument. 

7.1 Hybrid Argument 
Before we continue with the proof of this theorem, we briefly present a general model of the 
Hybrid Argument. This section is purely theoretical and aims at helping the reader understand 
the proof of the theorem.  

Suppose we have two distributions 𝒪0 , 𝒪1 and we want to prove that they are indistinguishable, 

i.e. for every PPT distinguisher 𝒟, the following must hold: 

|Pr[𝐷𝒪1 = 1] − Pr[𝐷𝒪0 = 1]| = 𝑛𝑒𝑔𝑙(. ) 

The Hybrid Argument allows us to take multiple steps, using the triangle inequality: 

• First, it allows definition of a polynomial set of hybrids. In other words, let 𝑞(𝑛) be a 

polynomial function of the security parameter, and ℋ𝑖  are hybrid oracles (or input 
distributions) for all 𝑖 ∈ {0, 1, 2, … , 𝑞(𝑛)}, where ℋ0 =  𝒪0 and ℋ𝑞(𝑛) = 𝒪1 . We choose 

hybrids ℋ𝑖, for 𝑖 ∈ {1, 2, … , 𝑞(𝑛) − 1} to be indistinguishable, intermediate steps between 
𝒪0 and 𝒪1. 

• Second, it states that, according to the triangle inequality, as illustrated in Fig. 18, the 
following is true: 

|Pr[𝐷𝒪1 = 1] − Pr[𝐷𝒪0 = 1]| ≤  ∑ | Pr[𝐷ℋ𝑖] − Pr[𝐷ℋ𝑖−1] |

𝑞(𝑛)

𝑖=1

 

Therefore, it suffices to show that every ℋ𝑖−1 and ℋ𝑖 are indistinguishbale.  

 

Figure 18: The triangle inequality applied to the general hybrid argument 

For each 𝑖 ∈ {1, 2, … , 𝑞(𝑛)}, we prove, using reduction or a probabilistic argument, that 

ℋ𝑖−1  and ℋ𝑖 are indistignuishable, i.e. , that for every PPT distinguisher 𝒟: 

|Pr[𝐷ℋ𝑖] − Pr[𝐷ℋ𝑖−1]| = 𝑛𝑒𝑔𝑙(. ) 

 The same argument can be used for several steps.  

• Finally, because of the previous two steps, we know that: 
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|Pr[𝐷𝒪1 = 1] − Pr[𝐷𝒪0 = 1]| ≤  ∑|Pr[𝐷ℋ𝑖] − Pr[𝐷ℋ𝑖−1]|

𝑞(𝑛)

𝑖=1

 

                                                             =  ∑ 𝑛𝑒𝑔𝑙

𝑞(𝑛)

1

(. ) 

                                                             =    𝑞(𝑛) × 𝑛𝑒𝑔𝑙(. ) 
                                                             =     𝑛𝑒𝑔𝑙(. ) 
                                                             ⟹   𝒪0  ≈  𝒪1 

And this completes the proof that 𝒪0 and 𝒪1 are indistinguishable. 

7.2 Proof of the Theorem 
We are now ready to prove the indistinguishability of the Real and Ideal games as defined in 

Section 2.2. Our goal is to prove the existence of a simulator 𝒮 such that, for all PPT 

adversaries 𝒜: 

|Pr[(𝑅𝑒𝑎𝑙) = 1] − Pr(𝐼𝑑𝑒𝑎𝑙) = 1| ≤ 𝑛𝑒𝑔𝑙(𝜆) 

In this proof, the adversary plays the role of the distinguisher. 

ℋ0:  The real experiment runs.  

ℋ1: Like ℋ0 but instead of ASCLEPIOS.InGen 𝒮 is given ℒ𝐼𝑛𝐺𝑒𝑛 and proceeds as follows: 

1. 𝑘 ← 𝑆𝐾𝐸. 𝐺𝑒𝑛(1𝜆) 
2. for 𝑖 = 1 to 𝑖 = 𝑁 do 

a. Simulate (𝑎𝑖, 𝑣𝑖) pairs 
b. Store all(𝑎𝑖, 𝑣𝑖) pairs in a dictionary Dict 

3. for all 𝑓𝑖 ∈ 𝐹 do 

a. 𝑐𝑖 ← 𝑆𝐾𝐸. 𝐸𝑛𝑐(𝑘, 0|𝑓(𝑖)|) 
4. Create a dictionary KeyStore to store the last 𝐾𝑤 for each keyword 
5. Create a dictionary Oracle to reply to the random oracle queries 

Lemma 1: ℋ0  ≈ ℋ1  

Proof: 𝒜 cannot distinguish between the two Hybrids since the simulated dictionary has 
exactly the same size as the real one. Moreover, the CSP security of the symmetric encryption 

scheme, ensures us that 𝒜 cannot distinguish between the encryption of the actual files and 

that of a string of zeros. Hence, ℋ0  ≈ ℋ1 . 

ℋ2: Like ℋ1 but instead of ASCLEPIOS.AddFile, 𝒮 is given ℒ𝐴𝑑𝑑 and proceeds as follows: 

1. 𝐿𝑎 = { } 
2. for 𝑖 = 1 to 𝑖 = #𝑤𝑖  do 

a. Simulate (𝑎𝑖, 𝑣𝑖) pairs 

b. 𝑐𝑖𝑑(𝑓𝑖) ← 𝑆𝐾𝐸. 𝐸𝑛𝑐(𝑘, 0|𝑖𝑑(𝑓)|)  

c. Add (𝑐𝑖𝑑(𝑓), {𝑎𝑖 , 𝑣𝑖}) in Dict 

d. 𝐿𝑎 = 𝐿𝑎 ∪ {𝑎𝑖 , 𝑣𝑖} 

3. 𝑐 ← 𝑆𝐾𝐸. 𝐸𝑛𝑐(𝑘, 0|𝑓|) 
4. 𝜏𝛼(𝑓) = (𝑐𝑖𝑑(𝑓), 𝑐, 𝐿𝑎) 

Lemma: ℋ1  ≈ ℋ2  

Proof: The simulated add token, allows 𝒮 to keep its dictionary up to date with files provided 

by 𝒜, after the execution of InGen. The token provided by the simulator has exactly the same 
format and size as the real add token. Moreover, we show that the add token can be simulated 
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by only knowing ℒ𝐴𝑑𝑑, and as a result, we prove that our scheme preserves the  property of 
forward privacy. Finally, once again the CPA security of the symmetric encryption scheme, 

ensures us that 𝒜 cannot distinguish between the encryption of actual files and that of a string 

of zeros. Hence, ℋ1  ≈  ℋ2. 

ℋ3: Like ℋ2 but instead of ASCLEPIOS.Search, 𝒮 is given the access and search patterns 
and proceeds as follows: 

1) 𝑑 = |𝐹𝑤|     (Number of files containing 𝑤) 
2) if 𝐾𝑒𝑦𝑆𝑡𝑜𝑟𝑒[𝑤] = 𝑛𝑢𝑙𝑙 then 

a) 𝐾𝑒𝑦𝑆𝑡𝑜𝑟𝑒[𝑤] ← {0, 1}𝜆 
b) 𝐾𝑤 = 𝐾𝑒𝑦𝑆𝑡𝑜𝑟𝑒[𝑤] 

3) for 𝑖 = 1 to 𝑖 = 𝑑 do 
a) if 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][0][𝑖] is null then 

i) if 𝑓𝑖  is added after InGen then 
(1)   Pick a (𝑐𝑖𝑑(𝑓𝑖), {𝑎𝑖 , 𝑣𝑖}) pair 

ii) Else 
(1) Pick an unused {𝑎𝑖 , 𝑣𝑖} pair at random 

iii) 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][0][𝑖] = 𝑎𝑖  
iv) 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][1][𝑖]  = 𝑣𝑖||𝑐𝑖𝑑(𝑓𝑖) 

b) else  
i) 𝑎𝑖 = 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][0][𝑖] 

ii) 𝑣𝑖 = 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][1][𝑖]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][1][𝑖] − |𝑐𝑖𝑑(𝑓𝑖)|) 

c) Remove 𝑎𝑖  from the dictionary 
4) 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙 = { } 
5) 𝐾𝑤

′ ← {0, 1}𝜆  
6) 𝐾𝑒𝑦𝑆𝑡𝑜𝑟𝑒[𝑤] = 𝐾𝑤

′  
7) for 𝑖 = 1 to 𝑖 = 𝑑 do 

a) Generate a new 𝑎𝑖  and match it with the 𝑣𝑖 from step (c) 
b) Add (𝑐𝑖𝑑(𝑓𝑖), {𝑎𝑖, 𝑣𝑖} to the dictionary 

c) 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙 = 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙 ∪ {𝑐𝑖𝑑(𝑓𝑖), 𝑎𝑖} 

d) 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤
′ ][0][𝑖] = 𝑎𝑖  

e) 𝑂𝑟𝑎𝑣𝑙𝑒[𝐾𝑤
′ ][1][𝑖] = 𝑣𝑖||𝑐𝑖𝑑(𝑓𝑖) 

8) 𝜏𝑠(𝑤) = (𝐾𝑤 , 𝑑, 𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑉𝑎𝑙)   

Lemma 2: ℋ3  ≈  ℋ2  

Proof: The KeyStore[w] is used to keep track of the last key 𝐾𝑤 used for each keyword 𝑤. 
The 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][𝑗][𝑖] dictionary is used to reply to 𝒜’s queries. Foe example, 𝑂𝑟𝑎𝑐𝑙𝑒[𝐾𝑤][0][𝑖] 
represents the address of a Dict entry assigned to the i-th file in the collection F. Similarly, 
𝑂𝑟𝑎𝑐𝑙𝑒[𝑘𝑤][𝑤][𝑖] represents the masked value needed to recover 𝑐𝑖𝑑(𝑓). It is clear, that the 

simulated search token has exactly the same size and format as the real one and as a result, 

no PPT adversary 𝒜 can distinguish between them. Moreover, 𝒜 cannot tamper with the 
messages that are constructed by the TEEs. The reason for this, is that these messages are 
signed with a secret key that is only known to the enclaves. As a result, tampering with the 
reports, implies producing a valid TEE’s signature, which can only happen with negligible 

probability. Hence, Lemma: ℋ3  ≈  ℋ2 . 

ℋ4: Like ℋ3 but instead of ASCLEPIOS.Delete, 𝒮 is given ℒ𝐷𝑒𝑙𝑒𝑡𝑒 and proceeds as follows: 

1) 𝐿𝑑 = { } 
2) 𝐿𝑠 = { } 
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3) 𝑐𝑖𝑑(𝑓) ← 𝑆𝐾𝐸. 𝐸𝑛𝑐(𝑘, 0|𝑖𝑑(𝑓)|) 

4) 𝐿𝒮 =  𝐿𝒮 ∪ 𝑐𝑖𝑑(𝑓) 

5) for 𝑖 = 1 to 𝑖 = ℓ do     (Number of keywords that exist in more files) 
a) Generate a new {𝑎𝑖

′, 𝑣𝑖
′} pair 

b) Select an unused {𝑎𝑖 , 𝑣𝑖} pair 

c) 𝐿𝑑 = 𝐿𝑑 ∪ {{𝑎𝑖
′, 𝑣𝑖

′}, {𝑎𝑖 , 𝑣𝑖}} 

d) Replace {𝑎𝑖 , 𝑣𝑖} with {𝑎𝑖
′, 𝑣𝑖

′} 
6) for 𝑖 = ℓ + 1 to 𝑖 = #𝑤    (Number of keywords that only exist in the deleted file) 

a) Generate a new 𝑣𝑖
′  

b) Pick an unused {𝑎𝑖 , 𝑣𝑖} pair and delete it 
c) 𝐿𝑑 = 𝐿𝑑 ∪ {𝑣𝑖

′, 0} 
7) Output 𝜏𝑑(𝑓) = (𝑐, 𝐿𝑑) 

Lemma 3: ℋ4  ≈  ℋ3  

Proof: The list 𝐿𝒮  is used by the simulator to reply correctly to future queries. The simulated 
delete token is indistinguishable from the real one as they share the same format and size. 
Moreover, 𝒜 could once again try to tamper the TEE’s messages. However, as already stated 

before, tampering the messages implies that 𝒜 could produce a valid TEE’s signature without 
owning the corresponding key. However, this can only happen with negligible probability. 

Hence, ℋ4  ≈ ℋ3 

With this last hybrid our proof is complete. We constructed a simulator 𝒮 that simulates all the 

real protocols in a way that no PPT adversary 𝒜 can distinguish between the real and the 

ideal experiments. In other words we showed that ℋ0 ≈  ℋ4 . 

Range Search: The reason that we did not include this algorithm in the security analysis, is 
that after the initial communication with the TA, this algorithm is reduced to the original Search 
algorithm for which we already proved its security. The initial exchange of messages between 
the user and the TA is not vulnerable to any attacks either. The messages are constructed in 
such a way that their freshness, integrity and authenticity are maintained.   
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8 Experimental Results 
Our experiments mainly focused at analysing the performance of the our scheme. To do so, we 
implemented it  in Python 2.7 using the PyCrypto library ((Ed.)). To test the overall performance of the 
underlying dynamic SSE scheme, we used files of different size and structure. More precisely, we 
selected random data from the Gutenberg dataset (Gutenberg Project). Our experiments focused on 
three main aspects:  

(1) Indexing,  
(2) Searching for a specific keyword, and  
(3) Deleting a specific file.  

Additionally, our dictionaries were implemented as tables in a MySQL database. In contrast to other 
similar works, we did not rely on the use of data structures such as arrays, maps, sets, lists, trees, 
graphs, etc. and we decided to build a more durable implementation with an actual database that 
properly represents a persistent storage. While the use of a database system decreases the over- all 
performance of the scheme it is considered as more durable and closer to a production level. 
Conducting our experiments by solely relying on data structures would give us better results. 
However, this performance would not give us any valuable insights about how the scheme would 
perform outside of a lab. Hence, we would not be able to argue about the actual practicality of our 
scheme in a proper cloud-based service. Additionally, storing the database in RAM raises several 
concerns. For example, a power loss or system failure could lead to data loss (because RAM is 
volatile memory). Further to the above mentioned, since we wanted to evaluate the performance of 
our construction under realistic conditions, we decided to use different machines. To this end, we ran 
our experiments in the following three different machines: 

• Intel Core i7-8700 at 3.20GHz (6 cores), 32GB of RAM running Ubuntu 18.04 Desktop 
operating system. 

• Microsoft Surface Book laptop with a 4.2GHz Intel Core i7 processor (4 cores) and 16GB 
RAM running Windows 10 64-bit. 

• Microsoft Surface Book tablet mode with a 1.9GHz Intel Core i7 processor and 16GB RAM 
running Windows 10 64-bit 

As can be seen, apart from the first test-bed where we used a powerful machine with lot of 
computational power and resources, the other two machines are considered as commodity 
machines that a typical user can own (especially the tablet). The reason for measuring the 
performance of the scheme on such machines and not only in a powerful desktop – like other similar 
works – is that in a practical scenario, the most demanding processes of any SSE scheme (e.g. 
the creation of the dictionary) would take place on a user’s machine. Hence, conducting the 
experiments only on a powerful machine would result in a set of non-realistic measurements. 

8.1 Dataset  
For the needs of our experiments, we created a dataset containing five different sub-datasets with 
random text files (i.e. e-books in .txt format) from the Gutenberg dataset. The selected datasets 
ranged from text files with a total size of 184MB to a set of text files with a total size of 1.7GB. 
It is important to mention that using text files (i.e. pure text in comparison to other formats such as 
PDF, word, etc.) resulted in a very large number of extracted keywords – thus creating a dictionary 
containing more than 12 million distinct keywords (without counting stop words). Furthermore, in our 
implementation we also incorporated a stop words (such as “the", “a", “an", “in") removal process. 
This is a common technique used by search engines where they are programmed to ignore 
commonly used words both when indexing entries for searching and when retrieving them as the 
result of a search query. This makes both the searching and indexing more efficient while also 
reducing the total size of the dictionary. Table 4 shows the five different sub-datasets that we used 
for our experiments as well as the total number of unique keywords that were extracted from each 
of the incorporated collections of files. 

Is our Dataset Realistic (i.e. big enough)? As can be seen from Table 4, our dataset is 
divided into five different sub-datasets ranging from 1,370,023 to 12,124,904 distinct 
keywords mainly collected from English books. During a project (Jean-Baptiste, Yuan Kui and 
Aviva P) researchers from Harvard University and Google in 2010 were looking at words in 
digitised books. They estimated a total of 1,022,000 words and estimated that this number 

• 

• 
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would grow by several thousand each year. Furthermore, it is important to mention that this 
number also includes different forms of the same word. It also includes many archaic words 
not used in modern English. In addition to that, in the second edition of the Oxford English 
dictionary, there are approximately 600,000 word forms defined. Again, this includes many 
words not in common use any more. As a result, even our smallest sub-dataset is almost 
double in the size of the Oxford English dictionary as well as slightly larger than the total 
number of words found in digitized books in 2010. As a result our dataset that contains more 
12,000,000 distinct keywords can be considered as realistic and can give us valuable insights 
about how our scheme would behave in real-life scenarios where users would use a cloud 
service based on our scheme to store their personal files online in encrypted forms. 

8.2 Indexing and Encryption 
The indexing phase is considered as the setup phase of the SSE scheme. During this phase the 
following three steps take place:  

(1) reading plaintext files and generating the dictionary,  
(2) encrypting the files, and  
(3) building the encrypted indexes.  

In our experiments, we measured the total setup time for each one of the sub-datasets shown in 
Table 4. Each process was run ten times on each machine and the average time for the completion 
of the entire process on each machine was measured. Figure 19 illustrates the time needed for 
indexing and encrypting text files ranging from 184MB to 1.7GB that resulted to a set of more than 
12 million unique keywords. As can be seen from Figure 19 the desktop machine needed the less 
time to complete the setup phase while the tablet took significantly more time not only compared 
to the desktop but also in comparison to the time needed by the laptop. However, in all three cases 
it is evident that the scheme can be considered as practical and can even run in typical users’ 
devices. This is an encouraging result and we hope that will motivate researchers to design and 
implement even better and more efficient SSE schemes but most importantly we hope that will 
inspire key industrial players in the field of cloud computing to create and launch modern cloud-
services based on the promising concept of Symmetric Searchable Encryption. Table 6 
summarizes our measurements from this phase of the experiments. As can be since, to index and 
encrypt text files that contained 1,370,023 distinct keywords the average processing time was 
8.49m, 22.48min and 68.75m for the desktop, laptop and tablet accordingly while for a set of files 
that resulted in 12,124,904 distinct keywords the average processing time was 68.44m, 203.28m 
and 545.28. Based on the fact that this phase is the most demanding one in an SSE scheme the 
time needed to index and encrypt such a large number of files is considered as acceptable not only 
based on the size of the selected dataset but also based on the results of other schemes that do 
not offer forward privacy (Dowsley, Michalas and Nagel) as well as on the fact that we ran our 
experiments on commodity machines and not only on a powerful server. 

  

Number of TXT Files Dataset Size Unique Keywords 

425 184MB 1,370,023 

815 357MB 1,999,520 

1,694 670MB 2,668,552 

1,883 1GB 7,453,612 

2,808 1.7GB 12,124,904 

Table 5: Size of Datasets and Unique Keywords 
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Unique Keywords (𝒘, 𝒊𝒅) Pairs 

1,370,023 5,387,216 

1,999,520 10,036,252 

2,668,552 19,258,625 

7,453,612 28,781,567 

12,124,904 39,747,904 

Table 6: Keywords and Filenames pairs 

 
 
 
 
 
 
 
 
 

Table 6: Setup time (in minutes) of ASCLEPIOS.SSE 

 

Figure 19: Indexing and Encrypting Files 

8.3 Search 
In this part of the experiments we measured the time needed to complete a search over 
encrypted data. In our implementation, the search time is calculated as the sum of the time 
needed to generate a search token and the time required to find the corresponding matches 
at the database. It is worth mentioning that the main part of this process will be running on the 
CSP (i.e. a machine with a large pool of resources and computational power). To this end, in 
our experiments we measured the time to generate the search token on the laptop and the 
tablet (i.e. typical users’ machines) while the actual search time was measured using the 
desktop machine described earlier. On average the time needed to generate the search token 
on the Surface Book laptop was 9µs while on the Surface tablet the time for token generation 
slightly increased to 13µs. Regarding the actual search that is taking place on the CSP it needs 
to be noted that the actual process is just a series of SELECT and UPDATE queries to the 

Testbed Dataset Tablet Laptop Desktop 

184MB 68.75m 22.48m 8.49m 

357MB 109.36m 40.00m 13.51m 

670GB 195.09m 86.43m 29.51m 

1GB 367.75m 141.60m 48.99m 

1.7GB 545.28m 203.28m 68.44m 
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database. More precisely, searching for a specific keyword over a set of 12,124,904 distinct 
keywords and 39,747,904 addresses required 1.328sec on average while searching for a 
specific keyword over a set of 1,999,520 distinct keywords and 10,036,252 addresses took 
0.131sec. 

8.4 Delete 
To measure the performance of the delete process, we randomly selected 100 different files, 
performed the delete operation and measured the average processing time for the delete process to 
be completed. We performed the delete queries in our largest dataset containing 12,124,904 distinct 
keywords and 39,747,904 addresses. The average time to delete a single file and update all the 
relevant addresses in the database was 1.19min. Even though this time might be considered as 
high for just deleting a single file it is important to mention that this process will be running on a CSP 
with a large pool of resources and computational power (e.g. Amazon EC2). Hence, this time is 
expected to drop significantly on such a computer where more cores will be also utilized. 
Furthermore, it is important to mention that to properly test the performance of our delete function 
we need to conduct further experiments where we will also consider the number of keywords 
contained in the file to be deleted as well as the number of other files that each keyword can be 
also found at. This is important because it is expected that these factors will heavily affect the 
performance of the delete function. We plan to conduct further and more detailed experiments on 
the delete function in our future works. 
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9 Symmetric Searchable Encryption and Demonstrators 
Integration 

As described in Deliverable 1.2 (section 6.7, 7.14, 8.21), the Symmetric Searchable Encryption 
(SSE) schemes can be utilized by the ASCLEPIOS demonstrators to achieve data sharing 
feature. However, the integration between these demonstrators and the SSE scheme is not 
straightforward due to differences in their supported data. The SSE supports data as text files, 
while the demonstrators support structured data (i.e. relational database) and/ or blob data 
(i.e. images). More specifically, the input/ output of the SSE scheme are text files, and the 
operations (add, search, delete, modify) are file-based. In the meanwhile, the demonstrators 
do not produce any text files. Instead, they work with relational databases and/ or image files. 
This difference raises a need to coordinate the data standard for communication and 
integration between the demonstrators and the SSE scheme. 

The solution is to use JavaScript Object Notation (JSON). Considering the demonstrators as 
web applications, JSON can be used by the applications to fetch inputs to the SSE scheme. 
Additionally, the SSE scheme will be changed to adapt this new kind of data input. Based on 
such changes, the following scenarios describe how the demonstrators will supply the SSE 
scheme with data, and how they will search and retrieve data using the SSE scheme. In both 
scenarios, we have three main components: 

• Demonstrator’s Web Application: This application is developed by the demonstrator, 
and integrated with ASCLEPIOS. Users will interact with this application; 

• SSE Client: A JavaScript program running on the client side, and implementing the 
required SSE functionality based on a JSON object that is given as input; 

• SSE Server: Server side part of the SSE scheme which is responsible for storing the 
received encrypted data in a MySQL database on ASCLEPIOS cloud storage (server 
side). 

a. Scenario 1: The demonstrator supplies data to the SSE scheme 
This scenario happens when a user of the demonstrator wants to add data, for i.e. medical 
data, to the server. 

 

Figure 20: Demonstrator forwards data to the SSE scheme 

(1) The demonstrator’s web application supplies data to the SSE client 
The demonstrator collects data from a user, which involves medical data and/ or 
encrypted medical images. In addition to such data, the user needs to provide a 
password, which will be used by the SSE scheme to generate an AES symmetric key 
for encrypting data prior to sending to the server. Apart from that, a User ID is needed 
for the SSE Server to categorize the datasets among different users. All information 
will be converted into a JSON object that will be given as input to the SSE client as 
described below. 

• Medical data (in text): The demonstrator’s web application receives medical data 
from a user, and converts it into JSON that will be given as input to the SSE client. 

• Password: The password is integrated as part of the JSON object. Upon 
reception, the SSE client will use this password to generate an AES symmetric 
secret key with which the data in the JSON data will be encrypted. 
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• Medical Images: In the case where a user wishes to upload medical images in 
addition to medical text data:  

o The demonstrator’s application will extract all metadata from the underlying 
image file, and will add them at the corresponding JSON that already 
contained the medical text data.  

o The underlying image, will be encrypted locally prior to sending to the SSE 
server along with the encrypted JSON data.  

Example of JSON data: 

{ ``patient’’:  

{ ``id’’: 155415463 ``name’’: John Snow,}, 

  ``image_metadata’’: 
{ ``name’’: ‘x-ray’} 

``user.password: ‘pass’ 

``user.id’’: 12345 
} 

 

(2) The SSE client sends the encrypted data 
The SSE Client uses the user’s password to generate an AES symmetric secret key, 
which is then used to encrypt each pair of name/value in the underlying JSON object. 
Then, the SSE Client sends the encrypted JSON data (along with any received 
encrypted medical image) to the SSE Server. The encrypted data will be maintained 
on ASCLEPIOS cloud storage in an encrypted form (server side). 

b. Scenario 2: The demonstrator uses the search function of the SSE scheme 
This scenario happens when a user of the demonstrator wishes to search for data (i.e. 
medical data) by some criterion (i.e. by name). 

 

Figure 21: Demonstrator runs search operation using the SSE scheme 

(1) The demonstrator’s web application supplies the SSE client with keyword, 
password, User ID (in JSON) 

When a user wishes to search for medical data by keyword (for e.g. the user searches 
by patient’s name with the value ``John Snow’’), she provides the demonstrator’s web 
application with the keyword (which is used for searching), a password (which is the 
same password provided when data is created in Scenario 1), and User Id. All 
information will be converted into JSON data object to supply to the SSE client. More 
details are described as follows.  

• Keyword and User ID: The demonstrator’s web application receives a keyword 
from a user. The demonstrator will convert it into JSON which is then given as 
input, along with the user’s specific info (e.g. user id, which can be used for 
authentication purpose from other components), to SSE client. 

• Password: The password is integrated as part of the JSON object. Upon 
reception, the SSE client will use this password to generate an AES symmetric 
secret key with which the search token is created, and the returned data will be 
decrypted. 
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Example: 

{     
``user.password’’: pass,  

      ``user.id’’: 12345,  

 ``keyword’’: { patient.name: John Snow } 
} 

 
(2) The SSE client sends search token to the SSE server 
Upon reception of the JSON object, the SSE client generates a search token that is sent 
to the CSP. The search token is generated based on the provided keyword and password. 

(3) The SSE server returns the encrypted data 
The SSE server executes the user’s search query by using the received search token. The 
result, which is encrypted data, will be sent back to the SSE client. 

(4) The SSE client sends the results to the demonstrator’s web application 
Upon reception, the SSE client will decrypt the result and will return the data to the 
demonstrator’s web application in a JSON format. After that, the demonstrator will show 
the received data to the user. 
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10 Conclusion 
In this deliverable we described the core functionality of the ASCLEPIOS cryptographic layer. 
The contribution of this document is fourfold.  

- First, we presented various SSE schemes pointing out their advantages and 
disadvantages.  

- Second, taking into consideration the requirements of ASCLEPIOS, we designed an 
SSE scheme that squarely fits the needs of the project. To prove the security of our 
construction against malicious adversaries, we designed a detailed protocol that defines 
how different entities communicate with each other. The system model of the 
ASCLEPIOS SSE scheme is in accordance with the reference architecture as specified 
in D1.2: ASCLEPIOS Reference Architecture, Security and eHealth Use Cases, and 
Acceptance Criteria.  

- Third, we conducted extensive experiments to test the performance of our construction. 
In the conducted experiments we focused on measuring the performance of our scheme 
under a wide range of devices with different characteristics. The results showed that the 
designed and developed SSE scheme can run smoothly even in devices with low 
computational resources.  

- Fourth, we explained how the ASCLEPIOS SSE scheme can be modified to fit the needs 
of the ASCLEPIOS demonstrators.  
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