
Adding CUDA® Support to Cling:JIT Compile to GPUs

S. Ehrig1, A. Huebl1,2, A. Naumann3 and V. Vassilev3

1 Helmholtz-Zentrum Dresden – Rossendorf
2 Lawrence Berkeley National Laboratory
3 CERN

2020 Virtual LLVM Developers' Meeting

October 6th-8th 2020

Research Group Computer Assisted Radiation Physics · FWKT · Simeon Ehrig · s.ehrig@hzdr.de · www.hzdr.de

Published under CC BY-SA 4.0 DOI:10.5281/zenodo.4021877

Introduction

Using Cling

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs3

#include "cling/Interpreter/Interpreter.h"

int main(int argc, char *argv){
auto cling = cling::Interpreter(argc, argv);

 return 0;
}

Properties

■ Read-Eval-Print loop principle
■ Does not interpret → the code is JIT compiled
■ Fully compatible to existing libraries

■ Can include header files, load unmodified shared libraries and JIT compile C++ source code
■ Modifications on syntax and semantic of C++

■ No main() function → everything in global space

■ Missing semicolon at the end of the statement will print the return value

■ Just allowed in the Cling terminal interface or Jupyter Notebook

4 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

CPU/GPU Model

5

CPU GPU

Sources: Nvidia. CUDA Reference Guide
October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

CPU/GPU Model

6

CPU GPU

Sources: Nvidia. CUDA Reference Guide

■ Why GPU: Better performance for certain algorithms
■ Why CUDA: existing algorithms and widest distribution

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Basic concept

Extendable application flow

8

TU

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Extendable application flow

9

TU Transaction 1
(initial state)

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Extendable application flow

10

TU Transaction 1
(initial state)

Transaction 2
int i = 3;

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Extendable application flow

11

TU Transaction 1
(initial state)

Transaction 2
int i = 3;

Transaction 3
i = i + 3;

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Creating a single transaction

12

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Creating a single transaction

13

Input
foo()

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::UserInterface

Creating a single transaction

14

Input

Metaparser

void __cling_Un1Qu32(void* vpClingValue)
{
 foo();
}

Tasks of the Metaparser
■ Transforms source code
■ Detects meta commands

■ e.g.: .L libz.so
■ Linking the shared library z

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::Metaprocessor
cling::utils::getWrapPoint

Creating a single transaction

15

Input

Metaparser

Parser
Properties of the Parser
■ Non-modified Clang parser
■ Needs valid C++ code

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalParser
clang::Parser
clang::ASTConsumer

Creating a single transaction

16

Input

Metaparser

Parser

AST-Transformer

Tasks of the AST-Transformer
■ Enables functionality

■ e.g. CUDA device kernel inliner
■ Adds error protection

■ e.g. nullptr access
■ Adds cling specific features

■ Shadow namespaces for
redefinition

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::ASTTransformer
llvm::legacy::PassManager

Creating a single transaction

17

Input

Metaparser

Parser

AST-Transformer

Code Generator

push rbp
mov rbp, rsp
sub rsp, 8
mov QWORD PTR [rbp-8], rdi
call foo()
nop
leave
ret

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalJIT
llvm::orc

Creating a single transaction

18

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

foo()
(int) 3

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalExecutor

Challenges

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes

20 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be
activated in Cling

■ Metaparser does not use the Clang parser

21 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Sources: Google. gpucc: An Open-Source GPGPU Compiler

Challenges

1) Is interactive CUDA C++ possible?

■ The driver API allows it, but we want to use the runtime API

■ Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++?

■ CUDA C++ is not valid C/C++ → e.g. foo<<<1,1>>>();

■ Google‘s GPUCC project solved the problem for the compiler pipeline → only needed to be
activated in Cling

■ Metaparser does not use the Clang parser

3)How to integrate the device pipeline?

■ Cling was not designed for a second compiler pipeline

■ Solved a lot of different implementation tasks

22 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Sources: Google. gpucc: An Open-Source GPGPU Compiler

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing

23 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects

24 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

General Problems

■ CUDA is proprietary

■ In general, the documentation is good …

■ … but some details are not documented → black box testing
■ Documentation

■ The whole software stack containing Cling, Clang and LLVM is really complex and I had to
learn a lot

■ The LLVM documentation is really good

■ The Clang documentation was okay

■ The Cling documentation is rudimentary and there are no other similar projects
■ The CUDA Runtime API was not used interactively until now

■ No experience

■ Some workarounds necessary

25 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Implementation

General Implementation

27

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

 PTX
 Back-

end

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Versions:
Cling 0.7
Clang/LLVM 5.0

General Implementation

28

Input
Source
Code
Trans-
former

AST
Trans-
former

Parser x86
Backend

Exe-
cutor

CUDA
Runtime

AST
Trans-
former

Parser

Fatbin
Wrapper

C++
Code

Modified
C++
Code

Modified
C++
Code

C++
Code

AST

AST Modified
AST

PTX
Code

Fatbinary
Code

Modified
AST

x86
Machine

Code

Device
Code

cling::Metaprocessor
cling::utils::getWrapPoint

cling::IncrementalParser
clang::Parser
clang::ASTConsumer

cling::IncrementalCUDADeviceCompiler
cling::Interpreter
llvm::NVPTX

cling::IncrementalJIT
llvm::orc

cling::Interpreter
cling::ASTTranformer
clang::Decl llvm::legacy::PassManager libcuda..so

cling::IncrementalExecutor

 PTX
 Back-

end

October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Detail Problem: Metaparser + CUDA

■ Problem

■ The Metaparser is completely self-written and parses the “interactive” C++ semantic and the
meta commands of Cling

■ The semantic of C++ is complex, the Cling extension makes it even more complex and the
CUDA extension too

■ A lot of implementation work is necessary to cover all cases
■ Solution

■ Still looking for an optimum solution

■ The most important cases are covered

■ Raw input mode as workaround
■ Possible improvements

■ Modifying the Clang parser to handle the “interactive” C++ semantic of Cling

29 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Function references:
cling::utils::getWrapPoint

Detail Problem: Catching errors

■ Problem

■ The interpreter runtime and the user code use the same process and memory space. If a
segmentation fault occurs in the user code, the entire interpreter crashes.

■ Solution

■ Catch the errors with code analysis before the code is executed.

■ Current solution is not generally applicable
■ e.g. Segmentation faults via indirect pointers

30 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Detail Problem: Updating the Clang/LLVM base

■ Problems

■ Each new Clang/LLVM version supports new CUDA versions, C++ features and has a lot of
bug fixes especially with respect to CUDA.

■ The C++ API is not stable and changes continuously. The JIT backend is also continuously
developed further.

■ Cling requires a patched version of Clang/LLVM.

■ Updating the Clang specific patches causes a lot of work.
■ Possible Solution

■ RFC for simple Clang REPL by Vassil Vassilev (August 2020)

■ Move as many REPL specific patches as possible upstream to Clang

31 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

What is still missing

■ Some C++ and CUDA statements, although supported by
Clang 5.0 on CUDA 8.0

■ e.g. CUDA __constant__ memory

■ and CUDA global __device__ memory
■ Not all Cling features work with CUDA yet

■ e.g. redefinition of kernels via namespace shadowing
■ Metaparser does not detect all valid CUDA C++ statements
■ Error catching needs to be improved

32 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Application Areas

Application areas

■ Cling was initially developed for large data analysis in HEP physics
■ Big, interactive simulation with GPUs
■ Teaching GPU programming
■ Easing development and debugging

34 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

https://github.com/alpaka-group/alpaka https://github.com/ComputationalRadiationPhysics/picongpu/

Summary

Summary

■ First interactive C++ JIT compiler for the CUDA runtime API
■ Added a dual compiler instance concept to Cling, which can be used for

other GPU APIs (AMD, Intel)
■ Most features already upstream in cling master
■ Interactive CUDA C++ in Jupyter Notebook enables new areas of

application

■ Data analysis in notebooks with GPUs

■ Big, interactive simulations with GPUs

■ Teaching GPU programming

■ Easing development and debugging

36 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Versions:
Cling 0.7
Clang/LLVM 5.0

Detail Problem: Clang CUDA expected a completed TU

■ Problem

■ How does CUDA register kernels? No official documentation.

■ The Compiler generates the __cuda_module_ctor and __cuda_module_dtor functions which
register and unregister the kernels and register the functions in the global constructor and
destructor.

■ Cling creates the functions for each transaction. But Cling is lazy and only translates the first
occurrence of __cuda_module_ctor into machine code and reuses it for each transaction. So
you can only register one kernel in each cling instance.

■ Solution

■ Make the function names __cuda_module_ctor and __cuda_module_dtor unique.

37 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
UnqiueCUDACtorDtorName

Detail Problem: Embedding the Fatbin Generator

■ Problem

■ The LLVM IR code of the device compiler pipeline is translated into Nvidia PTX code (a kind of
assembler) and embedded in a fatbinary file (struct with meta data and ptx code).

■ Compared to the PTX code, the fatbin struct is not officially specified. Only Nvidia’s external
fatbin tool is available for embedding PTX code in the fatbin struct.

■ Solution

■ Reimplementation of the fatbin tool based on a header file from the CUDA SDK in “llvm-
project-cxxjit”

■ Thanks to Hal Finkel

38 October 6th - 8th 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:
cling::IncrementalCUDADeviceCompiler

demo

September 9, 2020

1 Hello World

[1]: # include <iostream>

std::cout << "Hello World" << std::endl;

Hello World

2 Global and Local Variables

[2]: // global variable
int g1 = 1;

[3]: // local variable
{

int l1 = 2;
}

[4]: std::cout << l1 << std::endl;

input_line_11:2:15: error: use of undeclared identifier

'l1'
std::cout << l1 << std::endl;

ˆ

input_line_11:2:15: error: use of undeclared

identifier 'l1'
std::cout << l1 << std::endl;

ˆ

Interpreter Error:

1

[5]: std::cout << g1 << std::endl;
{

// hide global variable
int g1 = 3;
std::cout << g1 << std::endl;

}
std::cout << g1 << std::endl;

1
3
1

3 Including and Linking

[6]: %%file foo.hpp
pragma once

namespace foo {
int bar();

}

Writing foo.hpp

[7]: %%file foo.cpp
include "foo.hpp"

int foo::bar() { return 42; }

Writing foo.cpp

[8]: !gcc -shared foo.cpp -o foo.so

[9]: # include "foo.hpp"

[10]: # pragma cling(load "foo.so")

[11]: foo::bar()

[11]: 42

4 CUDA

[12]: template <int A, int B>
class CUDA {

int host;
int *device;

2

public:
static __global__ void kernel(int *out){

*out = A + B;
}

CUDA(){
cudaMalloc((void**)&device, sizeof(int));

}

~CUDA(){
cudaFree(device);

}

int compute(){
kernel<<<1,1>>>(device);
cudaMemcpy(&host, device, sizeof(int), cudaMemcpyDeviceToHost);
return host;

}
};

[13]: CUDA<19,23> c;

[14]: c.compute()

[14]: 42

[]:

3

