S Published under CC BY-SA 4.0 DOI:10.5281/zen0do0.4021877
Mo

HELMHOLTZ ZENTRUM

DRESDEN ROSSENDORF

Adding CUDA® Support to Cling:JIT Compile to GPUs

S. Ehrig?, A. Huebl*?, A. Naumann® and V. Vassilev?

1 Helmholtz-Zentrum Dresden — Rossendorf
2Lawrence Berkeley National Laboratory
3CERN

2020 Virtual LLVM Developers' Meeting

October 6th-8th 2020
>

1 cAsusEZN
0’ CENTER FOR ADVANCED [T, " bt

Research Group Computer Assisted Radiation Physics - FWKT - Simeon Ehrig - s.ehrig@hzdr.de - www.hzdr.de o | SYSTEMS UNDERSTANDING

<)
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

Introduction

71 cnsusl’..\

t
0’ CENTER FOR ADVANCED "
w® SYSTEMS UNDERSTANDING

i
Using Cling

= 1/1 = |+ | | 3 Tilix: Default Q | = - + X

simeon@ELMN3:~$ cling

FokokkokkkkkEkEkAkkkkkkk CLING *kkkkFkFkFkEkEEkEkkkkkkk

* Type C++ code and press enter to run it *

. Type .q to exit .
kkk
[cling]l$ #include <iostream>

[cling]l$ std::cout << "Hello Cling" << std::endl;
Hello Cling

[cling]l$ |}
#include "cling/Interpreter/interpreter.h" JupyterLab - Mozilla Firefox -
—_ JupyterLab X |+
int ma|n(|nt argc’ Char *argv){ | (— = ¢ @ ‘ © | (@ localhost:8888/1ab “ee T}‘ N O » =
auto Cling = C|ing;:|nterpreter(a rgc, argv); "~ File Edit View Run Kemel Tabs Settngs Help
return O, #| Basics.ipynb (]

]
B + ¥ 0O [» ® C Markdown =~ c++14 O
© |
I Hello World
R

#include <iostream=

‘\ std::cout <= "Hello World" <= std::endl;
Hello World
(|
0 B 2 € cC++14|ldie Mode: Command & Ln1,Coll Basics.ipynb
D (| L B
3 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs (' ICF\SU“S D'EEﬁEeEp': v“ .
-

Properties

" Read-Eval-Print loop principle
" Does not interpret - the code is JIT compiled
* Fully compatible to existing libraries

* Can include header files, load unmodified shared libraries and JIT compile C++ source code
" Modifications on syntax and semantic of C++

" No main() function - everything in global space
" Missing semicolon at the end of the statement will print the return value

= Just allowed in the Cling terminal interface or Jupyter Notebook

A (A | |
4 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs @) CF\SUS D";Eﬁffp': v) — i ,R

CPU/GPU Model

CPU GPU

| | s || | | | |
Cl:ll‘ltl'_lll ALU ALU -I g l | ! I I I | l | S
| | | O O O O]
AU AL & [[[[TTIIL]] L1
- TS S I 5 S
-i |"
EEEEEEENEREREENE
W T TT] [EEEEEEE

Sources: Nvidia. CUDA Reference Guide

2 N
T . L . p % CASUS DRESDEN V‘ N —
5 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ‘ jwmmwm CCCCC pt ‘\v/ i i 'n
- SYSTE MS UNDERSTANDING

CPUI/GPU Model

CPU GPU

Control ALU ALU

ALU ALU

" Why GPU: Better performance for certain algorithms
" Why CUDA: existing algorithms and widest distribution

Sources: Nvidia. CUDA Reference Guide

. . . > DRESDEN /” \ W -
6 October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs f" Svﬂowswv\w{ms concept \‘ ez i 'n
. SYSTE! MS UNDERSTANDING v‘

<)
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

Basic concept

71 cnsusl’..\

t
0’ CENTER FOR ADVANCED "
w® SYSTEMS UNDERSTANDING

i
Extendable application flow

TU

th _ gth ; nar- ; CASUS DRESDEN = =
8 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('3, CASUS \ meoed—

i
Extendable application flow

Transaction 1
(initial state)

TU

th _ gth ; nar- ; CASUS DRESDEN = =
9 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('3, CASUS \ meoed—

i
Extendable application flow

Transaction 1
(initial state)

TU

Transaction 2
Int 1 = 3;

th _ gth ; nar- ; CASUS DRESDEN = =
10 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('3, CASUS \ meoed—

i
Extendable application flow

Transaction 1
(initial state)

TU

Transaction 2
Int 1 = 3;

Transaction 3
| =1+ 3:

th _ gth ; nar- ; CASUS DRESDEN \ = =
11 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('3, CASUS Pree i

12

Creating a single transaction

Input

Metaparser

Parser

AST-Transformer

Code Generator

Executor

i i ; DRESDEN /’ \ W -
October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs (',’ ;'ﬂSL{S concept =1 D n

Creating a single transaction
foo()

Input

ERkEFEEEEEEEEEE R ERE C L I N G kEFEEFEEEEREREEREEEEE
* Type C++ code and press enter to run it *
* Type .q to exit *

ks ke ke ke ke ke ke

[cling]$ int foo() { return 3;}
[cling]$ foo()

Class references:
cling::UserInterface

A (|| | |
13 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs (' Iff\SUS D'EEﬁEeEp': v“ .
-

i
Creating a single transaction

void _ cling_Un1Qu32(void* vpClingValue)
Input {
foo();
}
Metaparser

Tasks of the Metaparser
= Transforms source code
= Detects meta commands
* e.g.. .Llibz.so
= Linking the shared library z

Class references:
cling::Metaprocessor
cling::utils::getWrapPoint

oD = = -
14 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('." ;‘ﬂsvs DIEE:CDeEpI\:) 1 D n

15

Creating a single transaction

Input

Metaparser

Parser

October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Properties of the Parser
= Non-modified Clang parser
* Needs valid C++ code

Class references:

cling::IncrementalParser

clang::Parser

clang::ASTConsumer
D (A | L B
Cycasys "o) madm

-

Creating a single transaction

Input

Metaparser

Tasks of the AST-Transformer

Parser = Enables functionality
= e.g. CUDA device kernel inliner

= Adds error protection

16

] = e.g. nullptr access
AST-Transformer = Adds cling specific features

= Shadow namespaces for

redefinition

Class references:
cling::ASTTransformer
llvm::legacy::PassManager

) cASUS DRESDEN /N = = mmm
(-"l e concept Wy "Dn

-

October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

17

Creating a single transaction

push rbp
g mov rbp, rsp
sub rsp, 8
mov QWORD PTR [rbp-8], rdi
Metaparser call foo()
nop
leave
ret
Parser

AST-Transformer

Code Generator

October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs

Class references:

cling::IncrementalJIT

llvm::orc

>
Cicnsus ©

N
RESDEN 7N\
concept W4

A=

18

Creating a single transaction

foo()

Input (int) 3

Metaparser

¥EEFEF ik {: L I N G ¥k EE

* Type C++ code and press enter to run it *
Parser * Type .q to exit *

EEEFEFEEEEErEEErr e E e EE ek ek E ke ke ke kR EE

[cling]$ int foo() { return 3;}

[cling]$ foo()
(int) 3
[cling]$ []

AST-Transformer

Code Generator

Class references:
Executor cling::IncrementalExecutor

; ; ; DRESDEN /* W -
October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ("" ;'ﬂS\{S concept \ =1 D n

<)
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

Challenges

1 cAsusEZN

t
’ CENTER FOR ADVANCED "
w® SYSTEMS UNDERSTANDING

Challenges

1) Is interactive CUDA C++ possible?
" The driver API allows it, but we want to use the runtime API

" Answered with many experiments with modified LLVM IR and prototypes

== (A -
20 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ("" c;‘sus DR;E:EeEpI\: v“ o P 4 i 'n

Challenges

1) Is interactive CUDA C++ possible?
" The driver API allows it, but we want to use the runtime API

" Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++7?

" CUDA C++ is not valid C/C++ - e.g. foo<<<1,1>>>();

" Google‘'s GPUCC project solved the problem for the compiler pipeline - only needed to be
activated in Cling

" Metaparser does not use the Clang parser

Sources: Google. gpucc: An Open-Source GPGPU Compiler

A (A | |
21 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs @) CF\SUS D";Eﬁffp': v) — i ,R

22

Challenges

1) Is interactive CUDA C++ possible?
" The driver API allows it, but we want to use the runtime API

" Answered with many experiments with modified LLVM IR and prototypes
2) How does Cling understand CUDA C++7?

" CUDA C++ is not valid C/C++ - e.g. foo<<<1,1>>>();

" Google‘'s GPUCC project solved the problem for the compiler pipeline - only needed to be
activated in Cling

" Metaparser does not use the Clang parser

3)How to integrate the device pipeline?
* Cling was not designed for a second compiler pipeline

= Solved a lot of different implementation tasks

Sources: Google. gpucc: An Open-Source GPGPU Compiler

th _ gth Addi A ina: mpi (CASUS DRESDEN \ '_D
October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs) Gvaromoms conce pt o I 4 R

-
General Problems

" CUDA s proprietary
" In general, the documentation is good ...

" ... but some details are not documented - black box testing

th _ gth ; nar- ; 7~ cASUS DRESDEN 7N\ = —
23 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('3, S oncept i

General Problems

" CUDA is proprietary
" In general, the documentation is good ...

" ... but some details are not documented - black box testing
" Documentation

* The whole software stack containing Cling, Clang and LLVM is really complex and | had to
learn a lot

* The LLVM documentation is really good
" The Clang documentation was okay

* The Cling documentation is rudimentary and there are no other similar projects

24 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('t CF\SUS D'EE:EQEP': v) — i ,n

General Problems

" CUDA is proprietary
" In general, the documentation is good ...

" ... but some details are not documented - black box testing
" Documentation

* The whole software stack containing Cling, Clang and LLVM is really complex and | had to
learn a lot

* The LLVM documentation is really good
" The Clang documentation was okay

" The Cling documentation is rudimentary and there are no other similar projects
" The CUDA Runtime APl was not used interactively until now

" No experience

= Some workarounds necessary

A (A | |
25 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs @) CF\SUS D";Eﬁffp': v) — i ,R

<)
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

Implementation

71 cnsusl’..\

t
0’ CENTER FOR ADVANCED "
w® SYSTEMS UNDERSTANDING

i
General Implementation

Modified . Xx86 .
C++ Ctt AST Modified Machine Device
Code Code AST Code Code
AST
Trans- Ba)éskgnd
Source former
Code
Input |—> Trans.
former
Fatbin
Wrapper
C++ Modified AST Modified PTX Fatbinary
Code E;‘d"'e AST Code Code
Versions:
Cling 0.7
Clang/LLVM 5.0
27 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs f'\ CF‘SUS DFEE?E:,,’: \V} HZDR

i
General Implementation

cling::Interpreter
cling::ASTTranformer cling::Incremental)IT :
clang::Decl llvm::legacy::PassManager llvm::orc libcuda..so
Modified s x86 :
E;-d-'_e C++ AST Moglsﬁl_ed Machine Dg(\)’('jC:
Code Code

X86
3 Parser I Backend
Sé)udrce
> ode
Input Trans-
former

Fatbin

—> | Parser Wrapper

C++ Modified AST Modified PTX Fatbinary
Code C++ AST Code Code
Code
cling::Metaprocessor cling::IncrementalParser cling::Incremental CUDADeviceCompiler | |cling::IncrementalExecutor
cling::utils::getWrapPoint clang::Parser cling::Interpreter
clang::ASTConsumer llvm::NVPTX

A (| L B
28 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs (' ,CF\SUS DFEEﬁESEp': { “ i

Detail Problem: Metaparser + CUDA

" Problem

* The Metaparser is completely self-written and parses the “interactive” C++ semantic and the
meta commands of Cling

* The semantic of C++ is complex, the Cling extension makes it even more complex and the
CUDA extension too

= Alot of implementation work is necessary to cover all cases
= Solution

= Still looking for an optimum solution
* The most important cases are covered

* Raw input mode as workaround
" Possible improvements

* Modifying the Clang parser to handle the “interactive” C++ semantic of Cling

Function references:
cling::utils::getWrapPoint

29 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('t CF\SUS D'EE:EQEP': v) — i ,n

Detail Problem: Catching errors

" Problem

* The interpreter runtime and the user code use the same process and memory space. If a
segmentation fault occurs in the user code, the entire interpreter crashes.
= Solution

= Catch the errors with code analysis before the code is executed.

= Current solution is not generally applicable
" e.g. Segmentation faults via indirect pointers

D [g™ ..
h_ g : i : , CASUS DRESDEN {# 3\ = '—D
30 October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ("i Tt conce ot y ez n

Detail Problem: Updating the Clang/LLVM base

" Problems

* Each new Clang/LLVM version supports new CUDA versions, C++ features and has a lot of
bug fixes especially with respect to CUDA.

* The C++ APl is not stable and changes continuously. The JIT backend is also continuously
developed further.

* Cling requires a patched version of Clang/LLVM.

* Updating the Clang specific patches causes a lot of work.
" Possible Solution

" RFC for simple Clang REPL by Vassil Vassilev (August 2020)

" Move as many REPL specific patches as possible upstream to Clang

i i i DRESDEN | W —
31 October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ‘(L CASUS ccccc pt “ ™ & D n

What is still missing

= Some C++ and CUDA statements, although supported by
Clang 5.0 on CUDA 8.0

* e.g. CUDA ___constant__ memory

= and CUDA global _ _device_ memory
" Not all Cling features work with CUDA yet

" e.g. redefinition of kernels via namespace shadowing
" Metaparser does not detect all valid CUDA C++ statements

" Error catching needs to be improved

e > (A N
32 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ("‘ c‘nt‘sus DR;E:EeEpI\: v“ < i 'n

<)
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

Application Areas

71 cnsusl’..\

t
0’ CENTER FOR ADVANCED "
w® SYSTEMS UNDERSTANDING

Application areas

Cling was initially developed for large data analysis in HEP physics
Big, interactive simulation with GPUs

Teaching GPU programming
Easing development and debugging P I Con @@

almaka

https://github.com/alpaka-group/alpaka https://github.com/ComputationalRadiationPhysics/picongpu/

A (A | L B
34 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs (' Y CF\SUS D':E:E:p’: v‘\ — D n

<)
HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

Summary

1 cAsusEZN

t
’ CENTER FOR ADVANCED "
w® SYSTEMS UNDERSTANDING

Summary

" First interactive C++ JIT compiler for the CUDA runtime API

" Added a dual compiler instance concept to Cling, which can be used for
other GPU APIs (AMD, Intel)

" Most features already upstream in cling master

" Interactive CUDA C++ in Jupyter Notebook enables new areas of
application

= Data analysis in notebooks with GPUs
" Big, interactive simulations with GPUs
= Teaching GPU programming

" Easing development and debugging

Versions:
Cling 0.7
Clang/LLVM 5.0

N (A
th_ g ; ing- i CASUS DRESDEN N\ = m—
36 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs @) cASUS PR) M i ,R

Detail Problem: Clang CUDA expected a completed TU

" Problem
" How does CUDA register kernels? No official documentation.

" The Compiler generates the __cuda_module_ctor and __cuda_module_dtor functions which
register and unregister the kernels and register the functions in the global constructor and

destructor.

= Cling creates the functions for each transaction. But Cling is lazy and only translates the first
occurrence of __ cuda_module_ctor into machine code and reuses it for each transaction. So

you can only register one kernel in each cling instance.
= Solution

* Make the function names __cuda_module_ctor and __cuda_module_dtor unique.

Class references:
UngiueCUDACtorDtorName

37 October 6" - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ('t CF\SUS D'EE:EQEP': v) — i ,n

Detail Problem: Embedding the Fatbin Generator

" Problem

* The LLVM IR code of the device compiler pipeline is translated into Nvidia PTX code (a kind of
assembler) and embedded in a fatbinary file (struct with meta data and ptx code).

= Compared to the PTX code, the fatbin struct is not officially specified. Only Nvidia’s external
fatbin tool is available for embedding PTX code in the fatbin struct.
= Solution

* Reimplementation of the fatbin tool based on a header file from the CUDA SDK in “llvm-
project-cxxjit”

* Thanks to Hal Finkel

Class references:
cling::Incremental CUDADeviceCompiler

i i i DRESDEN | W —
38 October 6™ - 8" 2020 Adding CUDA® Support to Cling:JIT Compile to GPUs ‘(L CASUS ccccc pt “ ™ & D n

demo

September 9, 2020

1 Hello World

[1]: | #<nclude <iostream>
std::cout << "Hello World" << std::endl;

Hello World

2 Global and Local Variables

[2]:|// global wariable
int gl = 1;

[31: // local warzable
{
int 11 = 2;

[4]: std::cout << 11 << std::endl;

input_line_11:2:15: error: use of undeclared identifier
111|
std::cout << 11 << std::endl;
input_line_11:2:15: error: use of undeclared
identifier '11'

std::cout << 11 << std::endl;

~

Interpreter Error:

[6]: std::cout << gl << std::endl;

{
// hide global wvartiable
int gl = 3;
std::cout << gl << std::endl;
by
std::cout << gl << std::endl;
1
3
1

3 Including and Linking

[6]: %J%file foo.hpp
#pragma once

namespace foo {
int bar();
}

Writing foo.hpp

[71: %%file foo.cpp
#include "foo.hpp"

int foo::bar() { return 42; }

Writing foo.cpp
[8]: !gcc -shared foo.cpp -o foo.so
[9]: | #include "foo.hpp"
[10]: | #pragma cling(load "foo.so")
[11]: foo::bar()

[11]: 42

4 CUDA

[12]: template <int A, int B>
class CUDA {
int host;
int *device;

public:
static __global__ void kernel(int *out){
*out = A + B;

}
CUDA(){

cudaMalloc((void**)&device, sizeof (int));

~“CUDAO{
cudaFree(device) ;

int compute (){
kernel<<<1,1>>>(device);
cudaMemcpy (&host, device, sizeof(int), cudaMemcpyDeviceToHost) ;
return host;

T3
[13]: CUDA<19,23> c;
[14]: c.compute()
[14]: 42

[]:

