
For the OS operations we created a dedicated user (called prosnow) on the PROSNOW .
This readme file assumes every scripts are stored in and directory called from the home directory
for this user and this user have sudoer privileges.

PROSNOW Central Data Server
configuration

The PROSNOW machine used to develop the database, API and demonstrator was virtual
machine integrated in the INRAE hardware architecture and managed using VMWare

Machine harware performance: 8 cores and 60Go RAM
OS: Linux prosnow 4.9.0-8-amd64 #1 SMP Debian 4.9.144-3.1 (2019-02-19) x86_64

The PROSNOW Central Data Server relies on several softwares

A PostgreSQL DBMS (10.7 (Debian 10.7-1.pgdg90+1) on x86_64-pc-linux-gnu, compiled
by gcc (Debian 6.3.0-18+deb9u1) 6.3.0 20170516, 64-bit) with PostGIS (2.5 USE_GEOS=1
USE_PROJ=1 USE_STATS=1) extension and the R bindings using PLR (https://github.com/
jconway/plr) with underlying R version 3.4.4

PostgreSQL modified parameters:

shared_buffers = 8GB # (change requires restart)
work_mem = 4GB
maintenance_work_mem = 2GB

Apache/2.4.25 (Debian)

PHP7 server

Database first setup

Database schemas

"prosnow" schema is used for pre-processing operations (import raw data and process
some observations directly pushed to the public schema without using the API)
Some simple tables are mandatory: resorts, skitracks and snowguns

"public" schema is used by the API and its organization is described in the PROSNOW API
repository

Adding a resort

Import skitracks using files from resort

Fill skitracks table

 psql -h localhost -p 5432 -U USER -f create_table_prosnow_schema.sql

prosnow

ogr2ogr -f PostgreSQL PG:"dbname='prosnow' host='HOST' port='5432'

user='USER' password='PWD'" /PATH_TO_SPATIAL_DATA/GEODATAFILE -nln

"prosnow.skitracks_import_RESORTNAME" -nlt "MULTIPOLYGON

af://n2
https://github.com/jconway/plr
af://n30
af://n31
af://n38

Import snowmaking shafts using files from resort

Fill snowguns table

Create the PROSNOW information and
dedicated functions

Link between Skitracks and snowguns

A snowgun is assigned to a slope based on a nearest neighboor approach. Then to identify the
area covered by each snowgun is computed by the PLPGSQL function prosnow. we create
concentric buffers around the snowgun point with a step radius of 5 meters until the intersection
area between the buffer and the ski slopes geometry reaches 3000m² (as a snowgun is supposed
to cover 1/3 ha). The parameters radius step and 3000m² threshold are hard coded in the
PLPGSQL function.

PLPGSQL function creation: the function returns the corresponding buffer radius is called by
the SRU creation script for each track_id, gid couple.

Compute SRUs

Python prerequisites

Setup a virtual environment for python 3.5 in the home directory and activate it to run the
scripts below

Install the required modules

INSERT INTO prosnow.skitracks(resort_id, key, name, the_geom)

SELECT RESORT_ID, ORIGINAL_ID_FIELD, ORIGINAL_NAME_FIELD,

st_force2d(st_transform(wkb_geometry,3035))::geometry(multipolygon,3035)

FROM prosnow.skitracks_import_RESORTNAME;

ogr2ogr -f PostgreSQL PG:"dbname='prosnow' host='HOST' port='5432'

user='USER' password='PWD'" /PATH_TO_SPATIAL_DATA/GEODATAFILE -nln

"prosnow.snowguns_import_RESORTNAME"

INSERT INTO prosnow.snowguns(resort_id, key, name, the_geom)

SELECT RESORT_ID, ORIGINAL_ID_FIELD, ORIGINAL_NAME_FIELD,

st_force2d(st_transform(wkb_geometry,3035))

FROM prosnow.snowguns_import_RESORTNAME;

psql -h localhost -p 5432 -U USER -f function_snowgun_area.sql prosnow

sudo apt-get install python3.5

sudo apt-get install virtualenv

mkdir python35

virtualenv -p /usr/bin/python3.5 python35

source python35/bin/activate

af://n52
af://n53
af://n59
af://n60

For the use of psycopg2 in Python script, update connection parameters:

Rename conn_param.example to conn_param.py
Edit the file and set the variables to the required values

The install of the gdal module (for osgeo API) might be a bit tricky. The following steps could
help:

Install the binaries using apt

Add the required environment variables

Install the same python module version than the binary one

Launch SRU script

Before running the script some hard coded have to be changed at the end of the script
get_track_sector_3.5.py

List the resorts for which you want to compute SRUs: line 809, the variable resort_ids is
a list of strings from 1 to n elements, each representing the integer id of a resort
The variable src_mnt point for the DEM used by PROSNOW and is derived from
EU_DEM provided by the Copernicus programm available online here: https://land.cope
rnicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. PROSNOW uses a unique Virtual Raster
Tiles supposed to be store in the eudem3035 folder.

Launch the script
 python get_track_sector_3.5.py

Go get a coffee now ! If you setup gdal module for python, you really deserve a break:

Case when the SRUs are directly provided by the ski resort

The SRUs attributes values have to be filled and this is doable using a python script. Before
running the script, please, mind the hard coded parameters as for SRU script above

The resort_ids is a list of integer, line 112

python compute_idealized_values.py

pip install numpy

pip install psycopg2

sudo apt-get install gdal-bin

sudo apt-get install libgdal-dev

sudo apt-get install python3-gdal

sudo apt-get install python3.5-dev # Mind the python version !

export CPLUS_INCLUDE_PATH=/usr/include/gdal

export C_INCLUDE_PATH=/usr/include/gdal

pip install GDAL==$(gdal-config --version) --global-option=build_ext --

global-option="-I/usr/include/gdal"

gdalbuildvrt /PATH_TO_DOWNLOADED_EXTRACTED_TILES/*.TIF

/PATH_TO_DIRECTORY/eudem3035.vrt

af://n91
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
af://n105

The snowgun buffer size used for the distribution of water consumptions over SRUs,
another python script can be used to add this information in the prosnow.snowgun_buf
table

The resort_ids list of integer, line 81

python update_buffer_snowguns.py

Next steps: setup API which is a prerequisite for the
next steps

Now let's fill the core tables for PROSNOW in the public schema: skiresort, snowguns, skitracks
and srus for the considered SKIRESORT_ID

Add the required function

Execute the add_resort function

Set default parameters

Once the public schema prepared for PROSNOW data and the SRU and resort have been added,
it is time for some additional setup required to operate the demonstrator

If the prosnow.default_variablemapclasses has not been created yet you'll have to run this
SQL script:

Once the table exists and is filled, you'll be able to add the information in the public schema:

1. Add the default map classes for your SKIRESORT_ID

2. Add the default threshold for the variables for your SKIRESORT_ID

3. Add default available configurations for your SKIRESORT_ID: by default, to be fully
operationnal PROSNOW demonstrator requires configuration 1, 2, 11, and 12 but does
not require any configuration with snow production but the final set of available
configuration SHOULD be defined accordingly with the resort and not be more that 12

psql psql -h localhost -p 5432 -U USER -f create_function_add_resort.sql

prosnow

SELECT prosnow.add_resort(SKIRESORT_ID)

psql -h localhost -p 5432 -U USER -f create_table_default_values.sql prosnow

INSERT INTO variablemapclasses (skiresort_id, variable_id, rank,

valmin, valmax, colorhex, red, green, blue, alpha)

SELECT SKIRESORT_ID, variable_id, rank, valmin, valmax, colorhex, red,

green, blue, alpha

FROM prosnow.default_variablemapclasses

INSERT INTO variablethresholds(variable_id, operator, value)

SELECT SKIRESORT_ID, variable_id, operator, value

FROM prosnow.default_variablethresholds

af://n119
af://n128

configurations includind the 4 mandatory ones

4. Add default configuration for your SKIRESORT_ID: note that, here the purpose is only to
have an operationnal demonstrator but the default configuration is SRU based and
SHOULD defined accordingly with the resort

Deal with TechnoAlpin (TA) Data

SQL stuff

To import the TA data and spread it over SRUs it is compulsory to link the TA resort code
with the PROSNOW resort id (several TA codes can be assigned to a single PROSNOW resort)
in the prosnow.match_ta_resort table

The distribution of water consumption over SRUs rely on the weighted (between 0 and 1)
relationship between a snowgun and one or more SRU (the total weight for each snowgun is
1) which could be assigned manually or computed based on the SRU / buffer intersection

Get the data from TA FTP server

Using a basic Cron to retrieve data everyday at 6a.m., the import process is fully automated
based on spatial information and following some simple rules. It uses a Bash script which is
called wc.sh and who is supposed to be in the home directory of the user whose the crontab
belong to.

Only TA resort codes referenced in the prosnow.match_ta_resort will be imported and it is
mandatory to fill the "filetype" field because the xml structure differs between Liberty and
ATASS softwares.

A TA shaft is identified using both the TA id and the TA resort code

The Bash script activate the virtual environment and launch the python script
get_wc_fromTA.py (which is also supposed to be in the home directory)

WARNING To reset spatial information for a TA resort, it is required to delete the
corresponding data in the prosnow.ta_shafts

INSERT INTO configuration_skiresort(skiresort_id, configuration_id)

VALUES (SKIRESORT_ID, 1), (SKIRESORT_ID, 2), (SKIRESORT_ID, 11),

(SKIRESORT_ID, 12)

UPDATE srus SET configuration_id = 12

WHERE skiresort_id = SKIRESORT_ID;

psql -h localhost -p 5432 -U USER -f create_technoalpin_tables.sql prosnow

crontab -e

The crontab line should look like this

m h dom mon dow command

 59 5 * * * .PROSNOW_PATH/Other_scripts/wc.sh > cron.log

af://n149
af://n150
af://n157

Plot charts
To fulfill the demonstrator requirements, two PL/R functions

Interactive SRU chart over time

Required packages: dygraphs, xts, magrittr

Edit file create_function_prosnow_new_sru_dyngraph.sql to set the right server url line 19:
change 'demonstrator.prosnow.org' by your own server url

Create function create_function_prosnow_new_sru_dyngraph.sql

Arguments to call the function

Output a html file (and the required JS libraries) at the path hard coded at the end of the
function (variable "path")

Probability matrix of snow management
configuration

Create function

Arguments to call the function

DELETE FROM prosnow.ta_shafts

WHERE ta_resort = TA_RESORT

psql -h localhost -p 5432 -U USER -f

create_function_prosnow_new_sru_dyngraph.sql prosnow

SELECT * FROM prosnow.prosnow.new_sru_dyngraph(

 sru, --integer SRU id

 config, --integer snow management configuration id

 var, --character varying DEFAULT 'sd'::character varying PROSNOW var to

be plotted

 thd, --double precision DEFAULT 0.6 Threshold for computing PROSNOW

probabilities

 nbdays --integer DEFAULT 9999 time extent for the plot (number of days)

)

psql -h localhost -p 5432 -U USER -f

create_function_prosnow_sru_probgraph.sql prosnow

af://n170
af://n172
af://n186

Output a blob file at the path hard coded in the variable "file"

Contributing
This code has been developped between 2017 and 2020 by Hugues François (INRAE Grenoble -
LESSEM, Université Grenoble Alpes, hugues.francois@inrae.fr) with the support of Frédéric Bray
(INRAE Grenoble - LESSEM, Université Grenoble Alpes, frederic.bray@inrae.fr) and Carlo
Carmagnola (CNRM-CEN - UMR Météo-France/CNRS, carlo.carmagnola@meteo.fr)

Licence
This code is limited at the prosnow consortium. It will be public in 2023

SELECT prosnow.blob_sru_probgraph(

 sru, --integer SRU id

 var, character varying DEFAULT 'sd'::character varying PROSNOW var to be

plotted

 thd double, --precision DEFAULT 0.6 Threshold for computing var PROSNOW

probabilities

 thd_wbt --double precision DEFAULT '-4'::integer Threshold for computing

wbt var PROSNOW probabilities

)

af://n196
af://n198

	PROSNOW Central Data Server configuration
	Database first setup
	Database schemas
	Adding a resort

	Create the PROSNOW information and dedicated functions
	Link between Skitracks and snowguns
	Compute SRUs
	Python prerequisites
	Launch SRU script
	Case when the SRUs are directly provided by the ski resort

	Next steps: setup API which is a prerequisite for the next steps
	Set default parameters

	Deal with TechnoAlpin (TA) Data
	SQL stuff
	Get the data from TA FTP server

	Plot charts
	Interactive SRU chart over time
	Probability matrix of snow management configuration

	Contributing
	Licence

