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Model description and analysis

We considered the coevolution of quantitative trait and abundance under stabilizing selection to an environmental

optimum and interspecific competition among n species in a community. These species are assumed to belong to

a single trophic level such that they are competing for one type of natural resource. The distribution of natural

resources or environmental factor is assumed to be an unimodal distribution for simplicity. Thus the trait optimum

that is favored by the environment is fixed. We begin by defining an individual-based fitness function associated with

population growth and for a given trait value. We then derive a model describing the dynamics of trait evolution

and population dynamics.

Trait change in frequency distribution due to selection

The fitness of an individual with trait z is related to the change of abundance and frequency of the trait

Nt+1ft+1(z, µ+ ∆µ, VP + ∆Vp) = Ntft(z, µ, VP )ω(z) (1)

where Nt denotes the population size of the focal species at the t-th generation and ft(z) is the probability densities

of the trait at the t-th generation. We assume that the trait distribution follows a normal distribution but with

a small change in mean µ and variance VP in the next generation. Thus, we define the distribution at the t-th

generation as follows
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ft(z, µ, VP ) = 1√
2πVP

e
− 1

2
(z−µ)2
VP (2)

and at the t+ 1-th generation with the slight difference in mean ∆µ and variance ∆VP

ft+1(z, µ+ ∆µ, VP + ∆Vp) = 1√
2π(VP + ∆VP )

e
− 1

2
(z−µ−∆µ)2
VP+∆VP (3)

The increase of the population size at the t + 1th generation Nt+1 thus can be simply expressed in terms of the

mean fitness of the population (Lande 1976):

Nt+1 = Nt

∫
ft(z, µ, VP )ω(z)dz = Ntω̄t (4)

where the integration ω̄ =
∫
ft(z, µ, VP )ω(z)dz measures the mean fitness of the population at the t-th generation.

Substituting eq. 4 into eq. 1 yields the following dynamics of the frequency of trait z:

ft+1(z, µ+ ∆µ, VP + ∆Vp) = ft(z, µ, VP )ω(z)
ω̄t

. (5)

Expanding ω(z) around the mean trait µ up to the first order gives

ω(z) ≈ ω(µ) + ω′(µ)(z − µ). (6)

The mean fitness ω̄t can then be approximated by (see Fig. S1)

ω̄t =
∫
ω(z)ft(z)dz

≈
∫

(ω(µ) + ω′(µ)(z − µ)) ft(z)dz

≈ ω(µ) (7)

Applying Taylor expansion to the left hand side of 5 with respect ∆µ,∆Vp yields:

∆µ = VP
ω′(µ)
ω̄t

(8)

∆VP = V 2
P

ω′′(µ)
ω(µ) . (9)

Considering heritability h2 = VG
VP

where VG is the genetic variance, the change of the trait mean ∆µ must be
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Fig. S1 – Illustration of the model derivation. The orange curve denotes the fitness landscape with a wide and flat shape
due to the assumption of weak selection. The dashed curves are the trait distribution of species in which the
blue dashed curve is for the focal species i with the density function f(z) and the mean trait µi and the variance
Vi,P . The trait evolution strategy of species i depends on the attraction of the stabilizing selection and the
interspecific competition. The orange arrow accounts for the attraction toward the optimum θ favored by the
environment while the dashed gray arrows are the competition forces from the competitors.

multiplied by h2, which yields:

∆µ = h2VP
ω′(µ)
ω(µ) . (10)

Change in variance in the t + 1-th generation

The phenotypic variance results from two factors, i.e. genetic variance (VG) and environmental sources (VE).

The genetic variancechanges due to selection, which is formulated in the above section eq.9, due to reproduction,

and due to mutation.
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Change in variance due to selection

At the t-th generation, according to the dynamics Eq.9 after selection the variance changes to

VP,t,after selection = VP,t,before selection + V 2
P,t,before selection

ω′′(µ)
ω(µ) (11)

= VP,t,before selection · (1 + ω′′(µ)
ω(µ) VP,t,before selection) (12)

where VP,t,before selection is just VP,t. Thus, the genetic variance VG,t,after selection yields:

VG,t,after selection = h2VP,t,before selection · (1 + ω′′(µ)
ω(µ) VP,t,before selection). (13)

Change in variance due to sexual reproduction

We can compute the trait distribution of offspring with trait value z according to its parents’ traits z − δ
2 , z + δ

2

that independently follow the trait distribution of the previous generation, where δ is the deviation of the parents

from the offspring’s trait z. For clarity, we define the trait distribution by

H(z, µ, V ) ∼ N (µ, V )

where N (µ, V ) is a normal distribution with mean µ and variance V . The density function of the offspring’s trait is

therefore

f(z) =
∫ +∞

−∞
H(z − δ

2 , µ, V ) ·H(z + δ

2 , µ, V )dδ

= H(z, µ, V2 ). (14)

Eq.14 tells us that the reproduction will lose half of the variance in the trait distribution of offspring.

Change in variance due to mutation

Another factor that affects the trait distribution is mutation. The change of variance by mutation is given by

(Kimura and Crow 1964)

M = 2nνVG,max
1 + 4nν (15)

where ν is the mutation rate and VG,max is the maximum additive genetic variance. The expected change in the

trait by mutation is 0, thus it has no contribution to the mean of the trait distribution.
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Overall, due to reproduction and mutation, the additive genetic variance at the t+ 1th yields:

VG,t+1 = 1
2VG,t,after selection + 2nνVG,max

1 + 4nν . (16)

Incorporating the environmental variance VE yields:

VP,t+1 = VG,t+1 + VE (17)

= 1
2h

2VP,t + 1
2h

2ω
′′(µ)
ω(µ) V

2
P,t + 2nνVG,max

1 + 4nν + (1− h2)VP,t (18)

= (1− 1
2h

2)VP,t + 1
2h

2ω
′′(µ)
ω(µ) V

2
P,t + 2nνVP,max · h2

1 + 4nν (19)

where VE = VP,t − VG,t is the environmental variance which is assumed to be constant.

The general trait and population coevolution model

In summary, the trait and population dynamics are governed by the following set of equations:

ω(µi,t) = Ni,t+1

Ni,t
(20)

µi,t+1 = µi,t + h2VP,t
ω′(µi,t)
ω(µi,t)

(21)

VP,t+1 = (1− 1
2h

2)VP,t + 1
2h

2ω
′′(µi,t)
ω(µi,t)

V 2
P,t + 2Ni,tνVP,max · h2

1 + 4Ni,tν
(22)

This novel model tells us that the growth of abundance for one specific species depends on the fitness of its average

trait. The evolution of the average trait in response to selection is in the direction that increases the mean fitness in

the population (Lande 1976). In the subsequent section, we build a model for the mean fitness function associated

with stabilizing selection to an environmental optimum and competitive interactions.

Mean fitness function on species scale

We have derived a general trait and population dynamics model with dynamical variance at the species scale. To

complete the model we have to specify the mean fitness function. We define the mean fitness function for species

using the growth ratio of abundances in subsequent generations:

ω(µi,t) = Ni,t+1

Ni,t

= Re−β/β0 (23)
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where µi,t denotes the trait mean of species i at the t-th generation. The growth factorR depends on the trait value

and the parameter θ that can be interpreted as the optimum trait favored by abiotic stabilizing selection:

R = R0e
−γ(θ−µi,t)2

. (24)

where R0 is the optimal growth factor. Here, γ determines the strength of stabilizing selection towards the optimum.

In Eq. 23 , β quantifies the intensity of competition. Assuming a Gaussion competition kernel, we define β as

β =
n∑
j=1

(e−α(µi,t−µj,t)2
Nj,t). (25)

Eq.25 tells us that the strength of competition between two species depends on the similarity in their mean traits

weighted by their abundances. Thus, we have fitness function in the t-th generation

ω(µi,t) = R0e
−γ(θ−µi,t)2

· e−
β
β0 . (26)

The parameter β0 in Eq.23 and in Eq. 26 is a coefficient that can be interpreted as the carrying capacity of the

community.

Finally, we incorporate demographic stochasticity in the population dynamics by drawing species abundances from

a zero-truncated Poisson distribution (denoted byPois(·)) with the mean determined by the population dynamics.

The zero-truncation ensures that the population cannot go extinct when present in the phylogeny. Only when

extinction noccurs in the phylogeny, we remove the species.

Inserting this fitness function in model Eq.20-22 and adding demographic stochasticity ηi,t yields

Ni,t+1 ∼ Pois
(
Ni,tR0e

−γ(θ−µi,t)2
· e−β/β0

)
(27)

µi,t+1 = µi,t + h2Vi,t

2γ(θ − µi,t) + 2α
β0

∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2
Nj,t

+ ηi,t (28)

Vi,t+1 = (1− 1
2h

2)Vi,t + 2Ni,tνVP,max
1 + 4Ni,tν

· h2 (29)

+ 1
2h

2V 2
i,t

2γ(−1 + 2γθ2)− β−1
0

∑
j

(
4α2(µi,t − µj,t)2 − 2α

)
e−α(µi,t−µj,t)2

Nj,t

−

2γ(2θ − µi,t) + 2αβ−1
0

∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2
Nj,t


·

2γµi,t − 2αβ−1
0

∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2
Nj,t

 .
The demographic stochasticity follows a normal distribution with mean 0 and a population-related variance. It is
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defined as

ηi,t ∼ N(0, 1
2
Vi,t
Ne,i,t

)

where Vi,t is still the phenotypic variance, Ne,i,t is the effective population size which for simplicity is assumed to be

Ni,t in our case. This random variable describes the relationship between the variance and the population size. For

large population size, the trait distribution will have small variance.

Two variants of the trait-population coevolution model

To answer the question whether population dynamics really matters in the trait evolution, we developed two

additional models for comparison. One model is to simply remove the population dynamics and abundance weights

in the competition kernel, yielding:

µi,t+1 = µi,t + h2Vi,t

2γ(θ − µi,t) + 2α
∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2

+ ηi,t (30)

Vi,t+1 = (1− 1
2h

2)Vi,t + 2Ni,tνVmax
1 + 4Ni,tν

· h2+

1
2h

2V 2
i,t

2γ(−1 + 2γθ2)−
∑
j

(
4α2(µi,t − µj,t)2 − 2α

)
e−α(µi,t−µj,t)2

−

2γ(2θ − µi,t) + 2α
∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2


·

2γµi,t − 2α
∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2

 . (31)

The competition kernel of this model is similar to Drury et al. (2017)’s model in the sense that when the traits of two

competitors are very different, repulsion will be small due to competition being avoided. But it differs from Drury

et al. (2017)’s model in that when the traits of the two competitors are similar, Drury et al.’s model just assumes

strong repulsion, whereas our model shows a weak directional repulsion which emerges as a result of modelling

the population dynamics. Such a weak directional repulsion for similar trait values is realistic because if the trait

distributions of two populations largely overlap, there is no strong tendency to evolve either way. We refer to this

model as the Unweighted competition (UWC) model.

The other model we consider weighs competition by the total metabolic rate and hence we refer to it as the

Metabolism-weighted competition (MWC) model. Here we assume that it is not so much the abundance that affects

competitive strength, but the species’ energy consumption.The basal metabolic rate (Brody and Procter 1932; Brody

1945; Kleiber 1947) scales with body mass and body mass scales with body length in whales (Lockyer 1976), so the
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basal metabolic rate scales with body length as

Bi,t,per capita = B0µ
9/4
i,t . (32)

The total metabolic rate of species i is therefore

Bi,t = Bi,t,per capitaNi,t. (33)

Thus, the trait-metabolism coevolution model yields:

Ni,t+1 ∼ Pois
(
Ni,tR0e

−γ(θ−µi,t)2
· e
−1/β0

(∑
j
e−α(µi,t−µj,t)

2
Bj,t

))
(34)

µi,t+1 = µi,t + h2Vi,t

2γ(θ − µi,t) + 2α
β0

∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2
Bj,t

+ ηi,t (35)

Vi,t+1 = (1− 1
2h

2)Vi,t + 2Ni,tνVmax
1 + 4Ni,tν

· h2 (36)

+ 1
2h

2V 2
i,t

2γ(−1 + 2γθ2)− β−1
0

∑
j

(
4α2(µi,t − µj,t)2 − 2α

)
e−α(µi,t−µj,t)2

Bj,t

−

2γ(2θ − µi,t) + 2αβ−1
0

∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2
Bj,t


·

2γµi,t − 2αβ−1
0

∑
j

(µi,t − µj,t)e−α(µi,t−µj,t)2
Bj,t

 .
We used an ABC-SMC algorithm to compare the three models on the baleen whales data. We estimated 5 free

variables, i.e. γ, α, ν, Vm, θ.

Parameter inference and model selection using the ABC-SMC algorithm

The complexity of our model precludes analytical approaches to fit the model to data. Hence, we developed an

inference framework using Approximate Bayesian Computation based on Sequential Monte Carlo (ABC-SMC). In

ABC-SMC, first introduced by Toni et al. 2009, one starts with a large number of parameter sets sampled from

the prior (these are called particles in the terminology of the field), which are then used to simulate data. The

similarities of the simulated data to the empirical data (measured by one or more summary statistics) are then

used as weights to sample parameter sets in the next generation, with some random noise added to it. After a few

iterations (generations in the terminology of the field), the parameter sets will form the posterior distribution.

Specifically, the algorithm for parameter inference consists of the following steps for our model:
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1. Set a particle indicator j = 1, 2, · · · , n, where n is the total number of particles in each iteration for each

candidate model, and a maximum T to the number of iterations.

2. Initialize the algorithm with parameter sets θ(j)
t,sample. The parameters are sampled independently from a prior

distribution πk(θ) of model k. We used a uniform distribution, indicating no informative prior information on

the parameters.

3. Simulate data under all sampled parameter sets θ(j)
t,sample and obtain the trait data vector Z

(j)
t,sim and trait

variance V
(j)
t,sim from each simulation. Order the trait vector Z

(j)
t,sim and accordingly adjust trait variance

V
(j)
t,sim. Order the empirical trait vector Zobs as well. (This is for the algorithm using the sorted mean trait

distance (SMTD) as the summary statistic. Change it accordingly when using the phylogenetic independent

contrasts only (PICs) or the unsorted mean trait distance combined with the phylogenetic independent contrasts

(UMTD+PICs).)

4. Compute the goodness-of-fit (GOF) of each particle which is defined as

GOFj =
(

1− dz(j)

max{dz(i) , i = 1, · · · , n}

)
+
(

1− dV (j)

max{dV (i) , i = 1, · · · , n}

)

where dz(j) =
∥∥∥Z

(j)
t,sim −Zobs

∥∥∥ , dV (j) =
∥∥∥∥√V

(j)
t,sim −

√
V obs

∥∥∥∥.
5. Calculate weights within the particles using

w
(j)
t,k =


1,

π(θ(j)
t,sample

)∑n

j=1
w

(m)
t−1Kt(θ

(j)
t,sample

|θ(m)
t−1,sample)

,

if t = 0

if t > 0.

6. Normalize the weights and sample parameters set θ(j)
t+1,sample from the previous particles

{
θ

(m)
t,sample

}
that

have the 5% largest GOF values, using weights w(m)
t−1 , and perturb the particles under a perturbation kernel

Kt(θ(j)
t,sample|θ

(m)
t−1,sample) equal to a Gaussian distribution with the previous sampled parameters as the mean

and a weighted variance given by

var(θ(j)
t,sample) = 2×

∑
l∈{m}

{(
θ

(l)
t−1,sample − θ̄t−1,sample

)2
· w(l)

t−1

}

where θ̄t−1,sample =
∑
l∈{m} θ

(l)
t−1,sample · w

(l)
t−1 is the weighted mean.

7. Increment t by 1 and return to step 2 until reaching the prescribed maximum number of iterations T .

Finally, we obtain a vector of particles with GOF values and the corresponding parameter estimates.
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This ABC-SMC algorithm thus represents an evolutionary algorithm in which the parameter values generating

the best GOF-values are selected. A similar idea can be used to perform model selection: the algorithm will then

tend to select the model with the best GOF values. However, as in a real evolutionary process, such an algorithm

can suffer from drift effects, by which a model can quickly “become extinct” due to stochasticity, particularly if

the “population size” (i.e. the number of particles of each model) is not large enough. This may be remedied by

increasing the number of particles which is computationally unfeasible. Therefore we chose to run the algorithm

for each model (or each model scenario) separately and then at the end select the simulations with the 5% best

GOF-values. The proportion in which a model contributes simulations to this 5% elite is a measure of the support

for that model.

Finally, we sampled 1000 parameters from the posterior estimates to generate the evolutionary history for the

baleen whale study.

Parameter inference and model comparison on the untransformed body length

We believe that using the log-transformed data biologically makes more sense than using the untransformed data,

because it would be approximately equal to increase a certain proportion of weight for individuals at different sizes

which is correctly captured by the log-transformation. However, we are still curious to see whether the results are

very different when using the untransformed body length.

Our parameter inference using the untransformed data for our main model (AWC) again shows weak environmental

stabilizing selection and fairly strong competition in baleen whale body size evolution. Generation time and heritability

tend to have little influence on the inference of environmental stabilizing selection coefficient γ, competition coefficient

α and mutation rate ν. Alternative sets of summary statistics lead to similar results in the estimation of the

parameters except Vm (see Fig. S54 for SMTD, Fig. S55 for PICs and Fig. S56 for UMTD+PICs). The estimated γ

is smallest, around 2.5× 10−7, when using PICs. The value increases when the summary statistics include absolute

trait information (SMTD and UMTD+PICs), reaching 1×10−6 for the algorithm using SMTD only. The estimations

for α and ν are relatively consistent across sets of summary statistics: α is inferred to be 2× 10−4 ∼ 4× 10−4, more

than two orders of magnitude larger than γ, with ν being estimated around 1× 10−3. The maximum variance by

mutation Vm is consistently inferred to be 110 when using PICs and UMTD+PICs. We did not find substantial

differences in the estimates under different time scaling parameters, although with SMTD as the set of summary

statistics, the predicted Vm decreases when increasing the time scaling parameter and/or heritability. The estimation

of θ is estimated to be around 1100 when using PICs, while with absolute trait data (SMTD and UMTD+PICs) the

estimation is a bit larger, around 1300.
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The parameter estimations all suggest a small environmental stabilizing selection coefficient and a large competition

coefficient (see Fig. S60-S62 for the three sets of summary statistics). When using the summary statistics SMTD, the

best fitted value of the optimum trait θ is close to the mean of the extant species traits (1300.2) for the AWC model

and the UWC model, and around 750 for the MWC model. A similar pattern is also found in the estimation using

UMTD+PICs but a large variance emerges for the MWC model. Using PICs (but not SMTD and UMTD+PICs)

leads to large variance to estimations of θ in all three models.
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Supplementary results

Figures S2-S16. Trait trees under different parameter combinations of Scenarios 1, 2, 3 under the AWC model

and the UWC model for the tree values of scaling parameters, s = 100, 1000, 10000. For the figures of the rest of the

secenarios, they are stored in the folder “abundance_test”.

Figures S17-S18. Trait trees under different parameter combinations of different scenarios.

Figures S19-S21. Prediction of the abundance distribution versus body length across 1000 simulations using

the estimated parameters for Scenarios 1-3. For the figures of the rest of the scenarios, they are stored in the folder

“PredictionDis”.

Figures S22-S24. Predictions of the trait variance distribution across 100 simulations using the estimated

parameters for Scenarios 1-3. For the figures of the rest of the scenarios, they are stored in the folder “PredictionDis”.

Figures S25-S27. Comparison of the parameter estimates for those generating parameters for which the ratio
√
α/γ

Richness is in the range of (0.5, 1.5). The figures of other scenarios are stored in the folder “Estimation”.

Figures S28-S58. Comparison of the estimates among different scenarios.

Figures S59-S60. Parameter estimates under PICs and UMTD+PICs for the AWC model on the logtransformed

body length.

Figures S61-S63. Parameter estimates under SMTD, PICs and UMTD+PICs for the AWC model on the

untransformed body length.

Figures S64-S66. Results of the model comparison analysis on the untransformed body length.

Figures S67-S69. Results of the model comparison analysis on the logtransformed body length.

Figure S70. Abundance distributions of the AWC and MWC models.

Figure S71. Trait variance distributions of the AWC and MWC models.

Figures S72-74. Distribution of the goodness-of-fit of the three models using three summary statistics. The

red dashed line represents the 5% best GOF-values.

Figure S75. The predicted contrasts using the estimated parameters under the three models and the true

contrasts for PICs.

Figure S76. The predicted contrasts using the estimated parameters under the three models and the true

contrasts for UMTD+PICs.

Phylogenetic tree data for Scenarios 1-22. They are stored in the folder “SimTreeInfo” and indexed accordingly.
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All the data of generated trees used in the simulation study (Scenarios 1-22) are stored in the folder “SimTreeInfo”.

The inference results of the simulation study are stored in the folder “SimEstResults”

The baleen whale data and results are stored in the folder “BaleenWhaleData&Results”.
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Fig. S2 – Trait trees along Tree 1 across all parameter combinations under the AWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 100 indicating in total 1,500 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S3 – Trait trees along Tree 2 across all parameter combinations under the AWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 100 indicating in total 1,500 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S4 – Trait trees along Tree 3 across all parameter combinations under the AWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 100 indicating in total 1,500 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S5 – Trait trees along Tree 1 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 100 indicating in total 1,500 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S6 – Trait trees along Tree 2 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 100 indicating in total 1,500 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S7 – Trait trees along Tree 3 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 100 indicating in total 1,500 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S8 – Trait trees along Tree 1 across all parameter combinations under the AWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 1000 indicating in total 15,000 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S9 – Trait trees along Tree 2 across all parameter combinations under the AWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0 and
variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with variance
of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15
Myr. The time scaling parameter is s = 1000 indicating in total 15,000 time steps in trait simulation. Trees are
shown only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical:
a highly compressed line such as the pattern on the diagonal.
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Fig. S10 – Trait trees along Tree 3 across all parameter combinations under the AWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 1000 indicating in total 15,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S11 – Trait trees along Tree 1 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 1000 indicating in total 15,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S12 – Trait trees along Tree 2 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 1000 indicating in total 15,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S13 – Trait trees along Tree 3 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 1000 indicating in total 15,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S14 – Trait trees along Tree 1 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 10000 indicating in total 150,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S15 – Trait trees along Tree 2 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 10000 indicating in total 150,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S16 – Trait trees along Tree 3 across all parameter combinations under the UWC model. Different colors denote the
traits of different species. The simulation is initialized with two ancestral species with identical trait mean 0
and variance 1/2 and the population size is randomly chosen from a normal distribution centering 500 with
variance of 100. The parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a
crown age of 15 Myr. The time scaling parameter is s = 10000 indicating in total 150,000 time steps in trait
simulation. Trees are shown only for the informative parameters domain (γ < α); when γ > α, the trait trees
are all almost identical: a highly compressed line such as the pattern on the diagonal.
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Fig. S17 – Trait trees along Tree 2 across all parameter combinations. Different colors denote the traits of different
species. The simulation is initialized with two ancestral species with identical trait mean 0 and variance 1/2
and the population size is randomly chosen from a normal distribution centering 500 with variance of 100. The
parameters used to generate the phylogenetic tree are λ = 0.4, µ = 0,K = 30 with a crown age of 15 Myr. The
time scaling parameter is s = 10000 indicating in total 150,000 time steps in trait simulation. Trees are shown
only for the informative parameters domain (γ < α); when γ > α, the trait trees are all almost identical: a
highly compressed line such as the pattern on the diagonal.
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Fig. S18 – Trait trees along Tree 3 across all parameter combinations (similar to Fig. S17). The parameters used to
generate the phylogenetic tree are λ = 0.4, µ = 0,K = 100 with a crown age of 15 Myr. The time scaling
parameter is s = 10000 indicating in total 150,000 time steps in trait simulation. Some plots show incomplete
trait trees, because there is no complete simulation under these parameter combinations after 10,000 attempts.
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Fig. S19 – Abundance distribution against trait means for 100 replicate simulations under the 36 parameter combinations
of Scenarios 1. Both the abundance and the trait mean are normalized.
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Fig. S20 – Abundance distribution against trait means for 100 replicate simulations under the 36 parameter combinations
of Scenarios 2. Both the abundance and the trait mean are normalized.
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Fig. S21 – Abundance distribution against trait means for 100 replicate simulations under the 36 parameter combinations
of Scenarios 3. Both the abundance and the trait mean are normalized.
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Fig. S22 – Trait variance distribution against trait means for 100 replicate simulations under the 36 parameter combinations
of Scenarios 1. Both the trait mean and variance are normalized.
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Fig. S23 – Trait variance distribution against trait means for 100 replicate simulations under the 36 parameter combinations
of Scenarios 2. Both the trait mean and variance are normalized.
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Fig. S24 – Trait variance distribution against trait means for 100 replicate simulations under the 36 parameter combinations
of Scenarios 3. Both the trait mean and variance are normalized.
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Fig. S25 – Comparison of generating and estimated parameter values for the generating parameter combinations for
whichthe ratio

√
α/γ

Richness is in the range of (0.5, 1.5) under Scenario 1. The green dots denote parameter estimates
for which m < 1; the orange dots denote parameter estimations for which 1 < m < 2; the red dots denote
parameter estimates for which m > 2.

Fig. S26 – Comparison of generating and estimated parameter values for the generating parameter combinations for
whichthe ratio

√
α/γ

Richness is in the range of (0.5, 1.5) under Scenario 2. The green dots denote parameter estimates
for which m < 1; the orange dots denote parameter estimations for which 1 < m < 2; the red dots denote
parameter estimates for which m > 2.
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Fig. S27 – Comparison of generating and estimated parameter values for the generating parameter combinations for
whichthe ratio

√
α/γ

Richness is in the range of (0.5, 1.5) under Scenario 3. The green dots denote parameter estimates
for which m < 1; the orange dots denote parameter estimations for which 1 < m < 2; the red dots denote
parameter estimates for which m > 2.
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Fig. S28 – Parameter inference for the 36 parameter combinations under Scenarios 4, 5 and 6. The dashed lines in three
colors denote three parameter values used to generate the data. Note that the scale of mutation rate is 10−11.
Box plots indicate the distribution of inferred parameter values, where the whiskers extend from the minimum
to the maximum value. Some plots show no estimates for part of the parameter combinations, because there is
no complete simulation under these parameter combinations after 10,000 attempts. The shared parameters
used to generate the phylogenetic trees are λ = 0.4, µ = 0.2 with a crown age of 15 Myr. The clade-level
carrying capacity is K = 10, 30, 100 for trees 4, 5, 6, respectively. Data are shown only for the informative
parameter domain (γ ≤ α); when γ > α, the parameter estimation show major bias and substantial variance.
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Fig. S29 – Parameter inference for the 36 parameter combinations under Scenarios 7, 8 and 9. The dashed lines in three
colors denote three parameter values used to generate the data. Note that the scale of mutation rate is 10−11.
Box plots indicate the distribution of inferred parameter values, where the whiskers extend from the minimum
to the maximum value. Some plots show no estimates for part of the parameter combinations, because there is
no complete simulation under these parameter combinations after 10,000 attempts. The shared parameters
used to generate the phylogenetic trees are λ = 0.8, µ = 0 with a crown age of 15 Myr. The clade-level carrying
capacity is K = 10, 30, 100 for trees 7, 8, 9, respectively. Data are shown only for the informative parameter
domain (γ ≤ α); when γ > α, the parameter estimation show major bias and substantial variance.



43

Fig. S30 – Parameter inference for the 36 parameter combinations under Scenarios 10, 11 and 12. The dashed lines in
three colors denote three parameter values used to generate the data. Note that the scale of mutation rate
is 10−11. Box plots indicate the distribution of inferred parameter values, where the whiskers extend from
the minimum to the maximum value. Some plots show no estimates for part of the parameter combinations,
because there is no complete simulation under these parameter combinations after 10,000 attempts. The shared
parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.2 with a crown age of 15 Myr. The
clade-level carrying capacity is K = 10, 30, 100 for trees 10, 11, 12, respectively. Data are shown only for the
informative parameter domain (γ ≤ α); when γ > α, the parameter estimation show major bias and substantial
variance.
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Fig. S31 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 1 and 7. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0,K = 10 and λ = 0.8, µ = 0,K = 10 with
a crown age of 15 Myr, respectively.
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Fig. S32 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 2 and 8. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0,K = 30 and λ = 0.8, µ = 0,K = 30 with
a crown age of 15 Myr, respectively.
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Fig. S33 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 3 and 9. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0,K = 100 and λ = 0.8, µ = 0,K = 100
with a crown age of 15 Myr, respectively.
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Fig. S34 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 4 and 10. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0.2,K = 10 and λ = 0.8, µ = 0.2,K = 10
with a crown age of 15 Myr, respectively.
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Fig. S35 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 5 and 11. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0.2,K = 30 and λ = 0.8, µ = 0.2,K = 30
with a crown age of 15 Myr, respectively.
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Fig. S36 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 6 and 12. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0.2,K = 100 and λ = 0.8, µ = 0.2,K = 100
with a crown age of 15 Myr, respectively.
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Fig. S37 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 1 and 4. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0,K = 10 and λ = 0.4, µ = 0.2,K = 10
with a crown age of 15 Myr, respectively.
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Fig. S38 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 2 and 5. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0,K = 30 and λ = 0.4, µ = 0.2,K = 30
with a crown age of 15 Myr, respectively.
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Fig. S39 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 3 and 6. The
parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0,K = 100 and λ = 0.4, µ = 0.2,K = 100
with a crown age of 15 Myr, respectively.
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Fig. S40 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 7 and 10. The
parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0,K = 10 and λ = 0.8, µ = 0.2,K = 10
with a crown age of 15 Myr, respectively.
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Fig. S41 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 8 and 11. The
parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0,K = 30 and λ = 0.8, µ = 0.2,K = 30
with a crown age of 15 Myr, respectively.
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Fig. S42 – Parameter inference (similar to Fig. S28) for the 36 parameter combinations under Scenarios 9, 12, 13 and 14.
The parameters used to generate the phylogenetic trees are λ = 0.8,K = 100 and µ = 0, 0.2, 0.4, 0.6 with a
crown age of 15 Myr, respectively.
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Fig. S43 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 4 and 15 (the
corresponding phylogenetic trees are shown at the bottom left). The shared parameters used to generate the
phylogenetic trees are λ = 0.4, µ = 0.2,K = 10 with a crown age of 15 Myr. Phylogenetic tree 15 is pruned
from tree 4.
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Fig. S44 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 5 and 16. The
shared parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0.2,K = 30 with a crown age of 15
Myr. Phylogenetic tree 16 is pruned from tree 5.
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Fig. S45 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 6 and 17. The
shared parameters used to generate the phylogenetic trees are λ = 0.4, µ = 0.2,K = 100 with a crown age of 15
Myr. Phylogenetic tree 17 is pruned from tree 6.
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Fig. S46 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 10 and 18. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.2,K = 10 with a crown age of 15
Myr. Phylogenetic tree 18 is pruned from tree 10.
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Fig. S47 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 11 and 19. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.2,K = 30 with a crown age of 15
Myr. Phylogenetic tree 19 is pruned from tree 11.
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Fig. S48 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 12 and 20. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.2,K = 100 with a crown age of 15
Myr. Phylogenetic tree 20 is pruned from tree 12.
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Fig. S49 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 13 and 21. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.4,K = 100 with a crown age of 15
Myr. Phylogenetic tree 21 is pruned from tree 13.
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Fig. S50 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 14 and 22. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.6,K = 100 with a crown age of 15
Myr. Phylogenetic tree 22 is pruned from tree 14.
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Fig. S51 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 9 and 23. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0,K = 100 with a crown age of 15
Myr. In Scenario 23, the time scaling parameter s = 10000 is used to generate observed traits while s = 20000
is used in the inference algorithm.
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Fig. S52 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 12 and 24. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.2,K = 100 with a crown age of 15
Myr. In Scenario 24, the time scaling parameter s = 10000 is used to generate observed traits while s = 20000
is used in the inference algorithm.
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Fig. S53 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 13 and 25. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.4,K = 100 with a crown age of 15
Myr. In Scenario 25, the time scaling parameter s = 10000 is used to generate observed traits while s = 20000
is used in the inference algorithm.
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Fig. S54 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 14 and 26. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.6,K = 100 with a crown age of 15
Myr. In Scenario 26, the time scaling parameter s = 10000 is used to generate observed traits while s = 20000
is used in the inference algorithm.
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Fig. S55 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 9 and 27. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0,K = 100 with a crown age of 15
Myr. In Scenario 9, the time scaling parameter s = 10000 is used both in generating observed traits and in
inference algorithm while in Scenario 27 s = 20000.
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Fig. S56 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 12 and 28. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.2,K = 100 with a crown age of 15
Myr. In Scenario 12, the time scaling parameter s = 10000 is used both in generating observed traits and in
inference algorithm while in Scenario 28 s = 20000.
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Fig. S57 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 13 and 29. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.4,K = 100 with a crown age of 15
Myr. In Scenario 13, the time scaling parameter s = 10000 is used both in generating observed traits and in
inference algorithm while in Scenario 29 s = 20000.
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Fig. S58 – Parameter inference (similar to Figure S28) for the 36 parameter combinations under Scenarios 14 and 30. The
shared parameters used to generate the phylogenetic trees are λ = 0.8, µ = 0.6,K = 100 with a crown age of 15
Myr. In Scenario 14, the time scaling parameter s = 10000 is used both in generating observed traits and in
inference algorithm while in Scenario 30 s = 20000.
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Fig. S59 – Parameter inference under 8 scenarios on the Log10 transformed body length to test the influence of the number of time steps and heritability on parameter
estimation using PICs only as the summary statistic. The three dashed lines in the violin plot are 1st quantile, median and 3rd quantile of the samples in
the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale data.
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Fig. S60 – Parameter inference under 8 scenarios on the Log10 transformed body length to test the influence of the number of time steps and heritability on parameter
estimation using UMTD+PICs as the summary statistic. The three dashed lines in the violin plot are 1st quantile, median and 3rd quantile of the samples
in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale data.
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Fig. S61 – Parameter inference under 8 scenarios on the untransformed body length to test the influence of the number of time steps and heritability on parameter
estimation using SMTD only as the summary statistic. The three dashed lines in the violin plot are 1st quantile, median and 3rd quantile of the samples in
the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale data.
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Fig. S62 – Parameter inference under 8 scenarios on the untransformed body length to test the influence of the number of time steps and heritability on parameter
estimation using PICs only as the summary statistic. The three dashed lines in the violin plot are 1st quantile, median and 3rd quantile of the samples in
the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale data.
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Fig. S63 – Parameter inference under 8 scenarios on the untransformed body length to test the influence of the number of time steps and heritability on parameter
estimation using UMTD+PICs as the summary statistic. The three dashed lines in the violin plot are 1st quantile, median and 3rd quantile of the samples
in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale data.
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Fig. S64 – Parameter inference comparison among the three models using SMTD as the summary statistic on the untransformed body length. The boxes in the violin
plot are 1st quantile, median and 3rd quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale
data.
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Fig. S65 – Parameter inference comparison among the three models using PICs only as the summary statistic on the untransformed body length. The boxes in the
violin plot are 1st quantile, median and 3rd quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen
whale data.
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Fig. S66 – Parameter inference comparison among the three models using UMTD+PICs as the summary statistic on the untransformed body length. The boxes in the
violin plot are 1st quantile, median and 3rd quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen
whale data.
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Fig. S67 – Parameter inference comparison among the three models using SMTD as the summary statistic on the log-transformed body length. The boxes in the violin
plot are 1st quantile, median and 3rd quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen whale
data.
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Fig. S68 – Parameter inference comparison among the three models using PICs only as the summary statistic on the log-transformed body length. The boxes in the
violin plot are 1st quantile, median and 3rd quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the baleen
whale data.
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Fig. S69 – Parameter inference comparison among the three models using UMTD+PICs as the summary statistic on the log-transformed body length. The boxes in
the violin plot are 1st quantile, median and 3rd quantile of the samples in the last iteration of the ABC algorithm that produce the 5% best fits to the
baleen whale data.
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Fig. S70 – Distribution of the prediction of the abundance of species under the AWC model and the MWC model across
1000 simulations using estimated parameters from the UMTD+PICs test. x-axis denotes the species index
ranked by the body size sorting from small to large. The abundance distribution under the AWC model shows
a symmetric distribution while the MWC model produces a decreasing pattern with increase of the body size.
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Fig. S71 – Distribution of the prediction of the trait variance of species under the AWC model, the UWC model and the
MWC model across 1000 simulations using estimated parameters from the UMTD+PICs test. x-axis denotes
the species index ranked by the body size sorting from small to large. The abundance distribution under the
AWC model shows a symmetric distribution while the MWC model produces a decreasing pattern with increase
of the body size.
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Fig. S72 – The goodness-of-fit distribution of the three models using the summary statistic SMTD. Higher values on GOF
value axis denotes a better fit to data. The red dashed line denotes the 5% best GOF-values.
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Fig. S73 – The goodness-of-fit distribution of the three models using the summary statistic PICs. Higher values on GOF
value axis denotes a better fit to data. The red dashed line denotes the 5% best GOF-values.
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Fig. S74 – The goodness-of-fit distribution of the three models using the summary statistic UMTD+PICs. Higher values
on GOF value axis denotes a better fit to data. The red dashed line denotes the 5% best GOF-values.
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