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Abstract— In this work, we propose a novel visuo-haptic
guidance interface to enable mobile collaborative robots to
follow human instructions in a way understandable by non-
experts. The interface is composed of a haptic admittance
module and a human visual tracking module. The haptic
guidance enables an individual to guide the robot end-effector
in the workspace to reach and grasp arbitrary items. The visual
interface, on the other hand, uses a real-time human tracking
system and enables autonomous and continuous navigation of
the mobile robot towards the human, with the ability to avoid
static and dynamic obstacles along its path. To ensure a safer
human-robot interaction, the visual tracking goal is set outside
of a certain area around the human body, entering which will
switch robot behaviour to the haptic mode. The execution of
the two modes is achieved by two different controllers, the
mobile base admittance controller for the haptic guidance and
the robot’s whole-body impedance controller, that enables phys-
ically coupled and controllable locomotion and manipulation.
The proposed interface is validated experimentally, where a
human-guided robot performs the loading and transportation
of a heavy object in a cluttered workspace, illustrating the
potential of the proposed Follow-Me interface in removing the
external loading from the human body in this type of repetitive
industrial tasks.

I. INTRODUCTION

The raising awareness of worker ergonomics and the
flexibility requirements of the modern enterprises have called
for a radical change in manufacturing processes. Thereupon,
companies started to focus on the design of new production
lines, rather than on corrective ex post interventions, which
were much more expensive and not always effective. Several
new tools such as collaborative robots (cobots) and wearable
sensors and displays (e.g., augmented reality) were intro-
duced, with the aim to provide better working conditions for
human labour, while keeping high levels of productivity, flex-
ibility, and cost-efficiency [1] in manufacturing processes.

Cobots, in particular, have demonstrated the potential of
pushing small-medium enterprises towards highly adaptive
and flexible production paradigms [1], [2], while, at the
same time, improving human ergonomics [3], [4]. To address
fast re-programming and adaptation requirements of cobots,
kinesthetic teaching and learning from demonstration [5]–
[7] techniques have been introduced. Once trained with few
demonstrations, a cobot can execute the same learned task
repetitively.
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Fig. 1. Conceptual illustration of a Mobile Collaborative Assistant coop-
erating with a worker, by means of the haptic guidance (left) and the visual
guidance while transporting loads (right), in a production environment.

Despite these advances, cobots are still far from being
widely exploited because of the limitations imposed by their
intrinsic complexity, which calls for specific expertise to
program and operate them. Because of that, so far, cobots
are exploited to perform simple and repetitive manipulation
tasks in structured environments, such as the picking of small
lightweight objects that are eventually assembled or placed in
a location within the reachable workspace of the robot. The
limitation on the workspace, caused by the length of the arm,
imposes additional strict constraints on the work cell design,
further restricting the usage of cobots in industry.

To address the above challenges, we recently introduced
the MObile Collaborative robot Assistant (MOCA), a robotic
coworker able to perform loco-manipulation tasks in manu-
facturing [8], [9] and logistic scenarios [10], [11]. The main
objective was to create a modular system that can reconfigure
and operate in various applications scenarios in industry, not
only autonomously, but also through far-distance [12] and
close-distance [11] teleoperation.

To make MOCA understandable and usable by non-
experts, in this work, we propose a novel visuo-haptic guid-
ance interface, through which a human user can intuitively
guide the MOCA in the workspace to perform long-distance
object picking and transportation tasks. These type of tasks
are known to impose high levels of physical fatigue to human
workers, contributing to the development of work-related
musculoskeletal disorders and lost productivity [13].

In literature, the general problem of collaborative ma-
nipulation and objects carrying and transportation has been
addressed mainly from the perspective of human-robot [14]–
[17] and mobile robot-robot co-manipulation [18], [19]. In
the first group, the proposed control strategies are able to
identify human actions and effort, using haptic sensing [14]–
[17], RGB-D visual feedback [15], [16] and learning by
demonstration techniques [17]. The approaches presented in
[18], [19] face the problem of the cooperative manipula-



tion of lightweight deformable and undeformable objects,
respectively. All these solutions present promising results,
but not suitable for the handling and transportation of large or
heavy objects, since, the locomotion complexity of humanoid
robots and the manipulation insufficiency of small mobile
manipulators impose severe constraints on their usage in such
industrial use-cases.

To go beyond the state of the art, we aim to exploit
the loco-manipulation potential of MOCA, to follow human
instructions for both manipulation (grasping and storage of
items) and long-distance locomotion (transportation) phases.
This is achieved by a novel interface called Follow-Me,
which is composed of a haptic admittance module and a
human visual tracking module. The haptic guidance enables
a human worker to guide the robot end-effector in the
workspace (even in long distances by using robot base
mobility). With the haptic interface, it is possible to achieve
accurate robot positioning to execute precise manipulation
tasks, also in the case of dynamically changing environments
and errors in the pose estimation of the robot. The visual
interface, on the other hand, uses a human tracking module
and enables autonomous and continuous navigation of the
MOCA robot towards the human, with the ability to avoid
static and dynamic obstacles on its path. The latter is meant
to make MOCA, with the loaded items, follow human
workers in long distances, by means of a visual feedback,
hence removing all the external loading from the human
body. To enhance human safety and agile reconfigurability,
a human interaction zone is defined around the human body
and, subsequently, the controller switches from locomotion
to the haptic guidance, as soon as the distance between
MOCA position and such zone get shorter, and vice-versa.
The execution of the haptic guidance is achieved through an
admittance controller, the visual guidance and other tasks,
instead, are achieved by MOCA’s whole-body impedance
controller, enabling physically coupled and controllable lo-
comotion and manipulation.

The performance of the proposed interface is evaluated
experimentally, where a subject guides the MOCA to grasp,
load, and transport an item in a workspace. Static obstacles
were placed on the path of the robot while following its
human counterpart to additionally evaluate the real-time re-
planning capacity of the proposed Follow-Me interface.

II. MOCA PLATFORM AND CONTROL

MOCA is a multi-purpose research platform, designed
for human-robot physical collaborative tasks. It is com-
posed of a robotic arm, the lightweight torque-controlled 7-
DoFs Franka Emika Panda, equipped with a robotic hand,
the underactuated Pisa/IIT SoftHand, mounted on top of a
mobile platform, the velocity-controlled 3-DoFs Robotnik
SUMMIT-XL STEEL.

The motion of MOCA is achieved by the impedance con-
troller to deal with the different causalities of the mobile base
and the robotic arm. To enhance whole-body affordances
for loco-manipulation of MOCA, the two main control

modes are employed in the control architecture of the in-
terface. First, a centralised weighted whole-body impedance
controller exploits to achieve the prioritised movement at
manipulation, or locomotion, or loco-manipulation that the
MOCA motion enables tracking the desired task (e.g., box
manipulation, human following, etc.). It allows online change
of parameters, to favour alternately the arm motion in close-
proximity manipulation tasks and the base mobility when
navigating in free spaces. Second, a decentralised strategy
was developed to obtain the haptic following, where the
Cartesian wrench estimated at the end-effector of the arm,
controlled with a Cartesian impedance controller, is fed
directly in the base admittance controller, generating, in this
way, velocity commands in the same direction of the haptic
input. The main difference with the approach in [12] consists
in the fact that, in the latter, during far-distance locomotion
tasks, the mobile base is decoupled from the arm controller,
actuated in open loop with an input torque proportional to
the displacement of the centre of pressure of the human
operator. Hence, a crucial improvement consists in enabling
the MOCA platform to execute task targeted behaviours
through the same whole-body controller, regulated by the
joint-level weights, with the capability to track a desired
trajectory and to reject external disturbances at the end-
effector.

A. Haptic Follow-Me control

For the sake of clarity, we will first explain the equa-
tions of the decoupled impedance-admittance controllers, that
constitute also the foundation of the weighted whole-body
impedance controller. The dynamics of a n-DoFs torque-
controlled arm can be formulated as

M r(qr)q̈r +Cr(qr, q̇r) + gr(qr) = τ r + τ ext
r , (1)

where qr ∈ Rn is the joint angles vector, M r ∈ Rn×n is
the symmetric and positive definite inertial matrix of the arm,
Cr ∈ Rn is the Coriolis and centrifugal force, gr ∈ Rn is the
gravity vector, τ r ∈ Rn, and τ ext

r ∈ Rn are the commanded
torque vector and external torque vector, respectively. At the
lower level, the torque control compensates for gravity and
the mixed Coriolis/centrifugal force

τ r = gr(qr) +Cr(qr, q̇r) + τ ref , (2)

where τ ref ∈ Rn is the reference torque vector. In this paper,
a two-level priority Cartesian torque control is exploited as

τ ref = JT
r F

ext + (I − JT
r ΛrJrM

−1
r )τ 0, (3)

where Jr ∈ R6×n is the arm Jacobian matrix, F ext ∈ R6

is the higher priority external force to be tracked, Λr ∈
R6×6 is the arm inertia and τ 0 ∈ Rn is the second task
torque, projected onto the null space of the first task. To
do this, the desired dynamic behaviour in response F ext

and the compliant joint behaviours on the null space can
be computed, respectively, using

F ext = Λd
¨̃x+Dd

˙̃x+Kdx̃ (4)
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Fig. 2. Architecture of the proposed framework. High-level tasks and the Follow-Me interface are activated by a FSM. The Follow-Me interface switches
on, alternately, the visual locomotion or the haptic guidance, according to the human tracked pose. The haptic interface exploits an admittance control
to allow the human to move the robot. A whole-body control strategy and motion planner are in charge of computing trajectories for manipulation and
locomotion tasks. A 6D path planner is added to ensure collision avoidance during locomotion tasks.

and
τ 0 = −D0q̇ −K0(q − q0), (5)

where x̃ = xdes − x ∈ R6 is the Cartesian error computed
with respect to the desired Cartesian equilibrium pose xdes,
Λd ∈ R6×6, Dd ∈ R6×6 and Kd ∈ R6×6 are the
desired Cartesian inertia, damping and stiffness, respectively.
Moreover, q0 is a desired joint configuration, K0 ∈ Rn×n

and D0 ∈ Rn×n are the desired joint-space stiffness and
damping.

Instead, the admittance model of mobile base, with virtual
joints qv ∈ Rm, where the number of DoFs m = 3, can be
described by

Madmq̈
des
v +Dadmq̇

des
v = τ vir

v + τ ext
v , (6)

where Madm ∈ Rm×m and Dadm ∈ Rm×m are the virtual
inertial and virtual damping, q̇desv ∈ Rm is the input velocity
sent to the mobile platform, τ ext

v ∈ Rm and τ vir
v ∈ Rm are

the external and the virtual torque, respectively. The desired
velocity q̇desv is then calculated by substituting q̈desv (t) =
t−1
s (q̇desv (t)− q̇desv (t− 1)) as

q̇desv (t) = (t−1
s Madm +Dadm)−1

(τ vir
v (t) + τ ext

v (t) + t−1
s Madmq̇

des
v (t− 1)),

(7)

where ts is the sampling time. In this control mode, we
set τ vir

v = 0 and τ ext
v = JT

v F
ext, where Jv ∈ R6×m is

the Jacobian matrix of mobile base and F ext ∈ R6 is the
estimated force at the end-effector Fmeas. Consequently, the
admittance controller will generate the desired velocity that
will be regulated by the forces applied by the human on the
end-effector. By changing the values of Madm and Dadm,
we can shape the relation between the force applied and the
response of the system. According to (7), the virtual mass
of the base represents the ratio between τ ext

v and q̇desv . For
instance, if ||Madm|| → 0, for a fixed τ ext

v , the admittance

controller will generate velocities q̇ → ∞. If ||Madm|| is
low, small forces measured at the end-effector allow the
human to easily move the robot. Furthermore, when the
haptic interface is active, the Cartesian stiffness Kd along
the z axis is set to 0, so, in that axis, the arm can freely move
just gravity compensated.

B. Weighted Whole-Body Impedance Control

The weighted whole-body impedance controller is in
charge of computing the high-levels torque references for
the low-level torque controller of the manipulator, that com-
pensates for the gravity and the Coriolis and centrifugal
forces, and for the admittance controller of the mobile
base, that generates feasible velocity commands for its low-
level velocity controller. The whole-body dynamic model of
MOCA is the result of the composition of the parallel of the
dynamics of the arm and the base. Under the assumptions
that the motion of the mobile platform does not affect the
motion of the manipulator, and neglecting the dynamics of
the low-level velocity controller, i.e. q̈v ≈ q̈

des
v , we can write

the following whole-body dynamics1 as

(
Madm 0

0 M r

)(
q̈v
q̈r

)
+

(
Dadm 0

0 Cr

)(
q̇v
q̇r

)
+

(
0
gr

)
=

(
τ vir
v

τ r

)
+

(
τ ext
v

τ ext
r

)
,

(8)
that can be summarised by

Mq̈ +Cq̇ + g = τ + τ ext. (9)

The robot joint torques vector τ ∈ Rn is obtained by
solving the problem of finding the torque vector τ closest to

1 For the sake of readability, the dependencies on q and x are dropped
from now on.



desired τ 0,

min
τ

1

2
‖τ − τ 0‖2W s.t. J̄T

τ = F (10)

where J̄T
= (JM−1JT )−1JM−1. J̄ is the dynamically

consistent pseudo-inverse of J(q), and the constraint J̄T
τ =

F is the general relationship between the generalised joint
torques and the operational forces. By letting the positive
definite weighting matrix W ∈ R(n+m)×(n+m), the solution
of problem (10) can be obtaine by

τwb =W−1M−1JTΛWΛ−1F+

+ (I −W−1M−1JTΛWJM
−1)τ 0,

(11)

where
ΛW = J−TMWMJ−1 (12)

can be regarded as the weighted Cartesian inertia, analogous
to the Cartesian inertia Λ(x) = (JM−1JT )−1. F and τ0
can be computed according to (4) and (5), respectively. The
structure of the matrix W can be defined as

W (q) = HTM−1(q)H, (13)

where H ∈ R(n+m)×(n+m) is the tunable positive definite
weight matrix of the controller. In particular, in this paper,
H is diagonal and dynamically selected depending on the
task. A possible choice is represented by

H =

[
ηBIm×m 0m×n

0n×m ηAIn×n

]
, (14)

where ηB , ηA > 0 are constant scalar values, a higher value
of this will impede the motion. For instance, to obtain higher
mobility of the arm than the base, we set ηB > ηA.

III. VISUO-HAPTIC FOLLOW-ME INTERFACE

A. Navigation and Trajectory Planning

In order to ensure the generation of feasible reference
trajectories for the whole-body controller, we bestow MOCA
of a 6D Cartesian path planner, that allows to navigate in
space while avoiding fixed and moving obstacles, and a
trajectory planner, for both manipulation and locomotion
tasks. In general, for a locomotion task, we need to specify
a robot desired pose xgoal ∈ R3 × RP 3 defined w.r.t. a
specific frame in space. Given xgoal and the initial pose
xinit, the path planner generates a sequence of collision-
free waypoints x̄∗, where x̄∗ =

[
x∗,0 . . . x∗,k . . . x∗,K−1

]
with k = 0, . . . ,K−1. These waypoints are later interpolated
by means of geometric paths with timing laws. In this way,
we can set, for each control loop, a desired equilibrium pose
xdes of the controller.

To generate a suitable sequence of waypoints for the end-
effector wx̄∗

ee, defined in the world frame, we take advantage
of an existing planner algorithm for mobile robots2. Such al-
gorithm enables to deal with unknown environments, hence,
with empty maps and moving obstacles. As local planner, we
exploited TEB (Timed Elastic Band)3 , that computes a cost

2 http://wiki.ros.org/move_baseaaaaaaaaaaaaaaaaaaaaaaaaaaaa
3 http://wiki.ros.org/teb_local_planner

map which fuses the data sampled by the perception systems,
such as lasers and the front camera, with the odometry
estimation and computes the path by minimising the overall
navigation cost. The output of this planner is a sequence
of 3D spatially not uniformly distributed waypoints wx̄∗

b ∈
R2×S1. Then, through kinematics mapping, we hypothesise
suitable desired poses of the end-effector. We opted to use
a 3D Cartesian planner instead of a joint space planner like
RRT mainly for computational reasons: the search space of
our planner lies in a subspace of dimension 3, instead, the
search space of joint space planner would lie in a subspace
of dimension 10. The drawback of the proposed method
consists in the fact that we do not exploit the whole-body
strategy to avoid obstacles. Nevertheless, in our framework,
this choice does not impose any limitation to the robot loco-
manipulation capabilities.

Let’s start with finding the goal for the 3D planner. The
6D goal pose4 wT goal

ee has to be projected on a subspace of
the 6D space, that is the joint space of the base (translation
in the x-y plane and the rotation around the z axis). In
order to compute the 3D goal pose wT goal

b that will be sent
to the 3D planner, the rotational and translational part are
computed separately. We assume that the relative pose of
the end-effector w.r.t. the base of the robot bT ee at the end
of the motion is the same as the one at the beginning; in
this way to compute wT goal

b , we can take the yaw angle
and the translational component directly from wT goal

ee , both
defined in the base frame w.r.t. the world frame. Once the
3D planner has received wT goal

b , it outputs the 3D pose of
each waypoint. Then, this waypoints are projected to the 6D
space keeping roll, pitch, and the z axis constant as in the
initial pose of the end-effector in the world frame wT ee .
Noteworthy, wT goal

ee is added in the queue of the waypoints
vector to ensure that wT goal

ee is reached.
One crucial requirement for enabling a loco-manipulation

task is to be able to smoothly interpolate the waypoints wx̄∗
ee.

A possible simple solution consists in using quintic polyno-
mial functions that allow setting an initial, final velocity and
acceleration, usually set to 0. However, with this method,
the robot will stop and restart the motion at each waypoint.
To ensure the continuity of motion, we use quintic Bezier
splines, a piecewise polynomial parametric curve that ensures
C2 continuity at the waypoint [20]. Furthermore, the desired
trajectory continuously update while the previous motion
is still executing that enables to take into account for the
presence of moving obstacles.

However, the problem of finding a trade-off between the
spatial and temporal waypoint is not solved. For instance,
in long-distance locomotion, the relative distance between
waypoints might vary widely. If the waypoints are uniformly
distributed in time, but not spatially, the computed trajec-
tories will present high velocities and accelerations, and,
consequently, the robot controller will generate undesired or
infeasible motions to track such trajectories. On the contrary,
if the quintic spline interpolates waypoints with a long
4 For the sake of clarity, we adopt just for this section the homogeneous
transformation matrices T to specify a pose instead of x.



waypoints duration, the path generated might present high
curvature. Our solution consists in finding a desired temporal
window [0, Tmax], where we can distribute all the time
waypoints, proportional to the maximum desired velocity
vmax, then generate accordingly the time samples t̄∗, and
finally the spline s(t) from the pairs time/waypoint t̄∗, x̄∗

ee.
Then the length of the curve `(s(t)) is measured. The desired
spline is the one that minimises the curvature length. The
pseudocode for a 1D trajectory is summarised in algorithm 1.

Algorithm 1 Trajectory Time Optimisation.
1: procedure smin(t) = TRAJTIMEOPT(x̄∗, vmax)
2: Tmin ← (xfinal − xinit) ∗ v−1

max

3: Tmax ← αTmin, with α > 1
4: for n < N do
5: generate t̄

∗
where

6: . ti ∼ U(0, Tmax) with i = 1, ... ,K − 1
7: . t0 ← 0
8: sort(t̄∗)
9: s(t)← SPLINE5(t̄

∗
, x̄∗, ẋi, ẋf , ẍi, ẍf , )

10: `←
∫ tI
0

√
ṡ2dt

11: if ` < `min then
12: `min ← `
13: smin(t)← s(t)
14: end if
15: end for
16: end procedure

For N →∞ the algorithm ensures the spline that minimises
the trajectory length is found. In practice, N can be set
according to the desired computational planning time.

B. Human Tracking
In this section we will describe the visual human whole-

body tracking module. In literature, different sensory systems
are able to provide accurate position, velocity and accelera-
tion information of a body, such as optical (OptiTrack5, Vi-
con6, etc.) and inertial (Xsens suit7) motion capture systems.
These systems, unfortunately, present some disadvantages,
that make them unsuitable for industrial scenarios. For these
reasons, we opted for a solution that does not require the
human worker to wear any sensor. To do this, we exploit
a vision-based skeleton tracker algorithm, which adopts an
OpenPose pre-trained deep learning model [21], to detect
human skeletons extracted from the frames of a stereo
camera8 at 25 Hz, calibrated with respect to the world
frame of the robot. The output of the detector consists in
the position of 25 skeleton keypoints in pixel coordinates
[ui, vi], with i = 0, ... , 24, and the associated likelihood.
To estimate the 3D coordinates of each keypoint from the
2D pixel coordinates, we exploited the stereo 3D projection:
by means of the camera projection matrices P left,P right,
we triangulate the position of a keypoint in 3D coordinates
from right and left detections. It is also possible to repeat the
triangulation for the N − 1 neighbour pixels to the detected
ones and then average the results. To further strengthen
the result of the procedure, we consider the dynamics of
the detection by applying a median filter with a fixed-size

5 optitrack . com 6 vicon . com 7 xsens . com
8 roboception.com/product/rc_visard-160-color/

moving window, so the keypoint values are averaged also
in time. The values of skeleton keypoints are then broadcast
to the visuo-haptic Follow-Me interface at the frequency of
10 Hz. A more accurate description of the filters applied
to strengthen the skeleton detection can be found in [3].
In case the right and left detections to not match, due to
delays and wrong detections, we do not update the 3D human
position. Besides, to enhance the detection robustness we
remove possible false positives, by considering the likelihood
associated to the keypoint provided by OpenPose. In case of
an object is misdetected or only few keypoints of a human are
detected, the probability associated to each keypoint is low.
In our scenario, a keypoint is detected with probability lower
than a fixed threshold pth, we considered the keypoint as not
detected, and, thus, we do not broadcast the information to
the visual guidance module. In this work, we experimentally
set pth to a conservative value of 0.65.

C. FSM & Modes switching

A high-level Finite State Machine (FSM) aims at enabling
for continuous transition from one mode to another, in re-
sponse to the human tracking module and to the whole-body
task module. FSM is in charge of switching the different
modes of operation and actions, which are autonomously
executed by the MOCA, such as grasp, locomotion, etc., and
to activate the visuo-haptic Follow-Me interface. Every action
wraps different informations, for instance the action-related
desired pose and the control parameters (Cartesian and joint-
space stiffness K0, K0, controller weight H). Our general
strategy consists in being always compliant, to minimise
the eventual exerted force in unexpected contacts with the
environment and with other coworkers, and stiffening only if
required by precision manipulation tasks. If the visuo-haptic
Follow-Me interface is activated, the distance between the
end-effector of MOCA and the ”neck” keypoint xhuman

of the tracked skeleton is measured. If this distance in the
x-y plane is farther than a certain human interaction zone
δhuman, the visual guidance is then activated, otherwise, the
haptic guidance is executed.

In the visual guidance mode, the projection of the human
pose xhuman on a circular bounding box of the human, along
the axis represented by the distance between the robot and
human, is passed to the 6D navigation stack. The size of the
bounding box depends on a safety threshold δsafety , that, in
practice, scales the human pose. In this way, the robot goal
pose is set on the boundary of the safety zone to account
for inaccurate human tracking. To determine more accurately
the size of safety zones such as δsafety , in compliance
with the requirements of ISO/TS 15066, one might refer
to [22]. Moreover, the desired orientation is independent of
human orientation. Thanks to this trick, the human can freely
turn around without producing unnecessary motions of the
robot. To avoid the continuous update of the robot goal,
and, hence, to prevent unnecessary motions, the goal pose
is updated when the distance between the position of the
human is greater than a fixed distance δgoal. The new path
is continuously computed at 10 Hz but it is updated at 0.3
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Fig. 3. Experimental setup for the visuo-haptic Follow-Me interface. The
three main phases of the experiment (bottom) consist of a visual locomotion
to reach the human partner (PHASE 1), a manipulation task (PHASE 2), i.e.
load carrying (top right), and human following (PHASE 3). The execution of
the phases is triggered by the Follow-Me interface according to the human
tracked pose (top left).

Hz. The navigation stack computes collision-free pairs of
time-position waypoints that are later smoothly interpolated
by quintic splines, as explained in III-A. Once the spline is
computed, a new equilibrium pose is passed to the whole-
body controller.

In the haptic guidance mode, i.e. if the distance is less than
human interaction zone δhuman, the robot will switch from
whole-body control to the decoupled control, with an arm
desired robot pose equal to the actual one. In this way, the
robot will stop any motion performed and wait for the haptic
interaction. In the base admittance controller, we assume that
the external forces applied at the end-effector, as explained
in II-A, are defined in the end-effector frame with the same
orientation of the world frame. Hence, the human worker
can move manually the robot to a precise desired pose.
Since the relationship between the force estimated at the
end-effector and the actuation velocity depends mainly on the
value of the virtual mass Madm of the admittance controller,
to provide higher velocity with a small estimated force we
set Madm = diag{20, 20, 4} (see Tab. I). On the contrary,
if the distance is higher than δhuman the guidance mode will
switch back to the visual guidance and restart following the
human with whole-body control as soon as the human move
far from MOCA. To ensure the safe behaviour and avoid the
tracking error during the haptic guidance mode, the FSM
keep checking the joint velocity. For instance, if the joint
velocity is different from zero, due mainly to the admittance
controller, the mode will stay with the haptic guidance mode,
even in case of the wrong detection of the human. It is a
crucial aspect that the human intention or action is assigned
to higher priorities during the collaboration.

Fig. 4. Plots of human tracked position (blue circles) and robot de-
sired/executed plan (orange dashed/red continuous) in the x-y plane. The
collision-free plan is continuously updated according to the human position,
that constitutes the locomotion goals (green dots) in the visual guidance.

TABLE I
VALUE OF PARAMETERS USED IN THE EXPERIMENTAL SETUP

Parameter Value Description
δhuman 0.5 Human interaction zone [m]

δsafety 0.7 Safety distance threshold [m]

δgoal 1.5 Update goal distance [m]

f th 7 Contact force threshold [N ]

Mhaptic
adm diag{20, 20, 4} Mass (haptic Follow-Me) [Kg ·m]

Mwb
adm diag{32.5, 32.5, 6.5} Mass (wb) [Kg ·m]

ηmanip
B

√
8 Weight base (wb manipulation)

ηlocB 1 Weight base (wb locomotion)
ηA 1 Weight arm (wb)

IV. EXPERIMENTS

A. Experimental setup

The proposed interface was validated with a proof-of-
concept experiment in an unstructured scenario, typical of
fast-reconfigurable and flexible factory setup, where the robot
will have to achieve sequentially either a manipulation task
and different navigation ones when triggered by the visuo-
haptic interface. The task-related desired positions were not
pre-planned but online assigned by means of the visuo-haptic
interface, according to the human actions. Some objects were
placed in the environment to prove that with the proposed
planner algorithm, the MOCA was not just following the
human partner, but also was able to avoid obstacles.

The experimental setup and the main experiment phases
are depicted in Fig. 3. In PHASE 1, a human worker was
located in the trackable area of the camera, while MOCA ap-
proached him/her through the visual guidance mode. During
PHASE 2, the haptic guidance was activated (subsequent to
the MOCA approaching human), during which the subject
could manually guide MOCA end-effector in space, by ex-
ploiting arm and mobile base, to perform a manipulation task.
Once a target object was reached using this mode, the user
pushed a button, which is located on the robot end-effector, to
trigger a set of pre-planned actions: first, the SoftHand closed
the fingers to grasp the object, then a spline was generated
to place the object on the carriage space of the MOCA
robot. To obtain such a motion, the weight of the whole-
body controller was set to favour arm motions rather than
base motions (see Tab. I for the values of the parameters)
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Fig. 5. Snapshots of the experiment. MOCA joins the human through the visual guidance (A), then the location of the manipulation task is reached
by means of the haptic guidance (B), and MOCA performs a manipulation task (C). Once finished, the previous haptic guidance mode is activated (D).
Finally, the robot dynamically follows the human through the visual guidance (E). Lower plots show the values monitored to obtain the correct modes
switching, that are the distance between the MOCA and the partner, MOCA joint velocities, end-effector measured forces, if the human is tracked, and
the manipulation mode. The combination of these variable triggers the activation of the haptic Follow-Me.

and the joint-space stiffness K0 was set to 0. After releasing
the toolbox, the arm moved back to the initial position. For
safety considerations, during the toolbox placement, the arm
stopped its motion if the estimated force at the end-effector
was higher than a force threshold f th. In PHASE 3, the
MOCA carried the box to a desired position, which was
defined by the human via the visuo-haptic interface. The
human worker was asked to pass through a narrow way on
his/her path, with a 0.5 m distance between two obstacles (o3
and o4), causing a potential collision for the MOCA platform
(approx. length 0.6 m) (See Fig. 4). In this situation, to
follow the human via the visuo-haptic interface, the robot
has to recognise and avoid the obstacles by generating a
new obstacle-free path.

B. Results

The full experiments paths on the x-y plane of the human,
tracked by the vision system, and MOCA, both planned
and executed, are depicted in Fig. 4. The figure shows
that the desired MOCA trajectory is correctly tracked by
the controller (red and orange lines); the goals sent to the
robot (green dots) correspond to human detected pose (cyan
circles), according to the update rule imposed by δgoal and
the frequency. Moreover, even if the human subject passes
through the two obstacles, the proposed planner algorithm
generates collision-free paths that reach eventually the hu-
man. In Fig. 5 we show the different phases of the experiment
and the logged data from each phase of the experiment, used
to trigger the different haptic and visual guidance. In the

initial phase (A) the human is detected and its distance is
higher than the human interaction zone δhuman. For this
reason, the visual guidance is activated and MOCA moves
towards the human. When the human enters the interaction
zone, the haptic guidance is activated and the human subject
can move MOCA in the desired pose of the manipulation
action (B) and then activate the primitive by pressing the
button (C). In that area the person cannot be tracked, so for
safety issues, we prevent any automatic change of mode. For
this reason, the haptic phase lasts until the button is pressed
and the manipulation primitive until it finishes. When the
manipulation finishes, the haptic following is reactivated (D),
even if the person is not tracked. We want to point out that in
this phase, even if the human is detected, and his distance is
higher than the interaction zone, the mode does not change
because of the robot velocity generated by the admittance
controller. Whenever the subject exits the interaction zone,
the visual guidance triggers the whole-body locomotion and
the planner generates online collision-free paths to follow
the moving subject (E).

To further evaluate the effectiveness of the proposed
interface in removing the external loading from the human
body, we estimated the human effort in our experiment and
compared it with the effort that the same worker would
allocate to achieve the same action manually. In order to
measure this effort, similarly to [23], [24], we calculated
impulse, i.e. the norm of the aggregate of the forces in
time exerted by the human, in both tasks. In the manual



transportation of the load, we considered just the gravity
force that the human exerts when he is carrying the toolbox.
Since the toolbox weights approx. 1.8 Kg, the force applied
by the human is approx. 17.64 N , for an average duration of
the transportation task of 25 s, from the toolbox grasping to
the final transportation location. In this case, the estimated
impulse is 441 Ns. On the other hand, in our experiment,
the worker exerts a force on the robot only during the haptic
guidance. Hence, the human impulse was calculated from
the measured wrench Fmeas

ee that corresponds to the haptic
phase. From the plot in Fig. 5, it is clear that such forces
are quite small, bounded to ±10 N . The resulting impulse
is 292.7 Ns, that is lower than the impulse required to
achieve the same task manually. Furthermore, we would like
to highlight that, in the case of heavier boxes, or longer
transportation distance (and, therefore, longer duration), the
effort in the manual execution would increase, while using
our interface it will remain constant. The reason is that
the forces applied by the human are needed only in haptic
phase, to obtain an accurate positioning of the robot for the
manipulation task, instead, during the locomotion task, the
load is entirely carried by MOCA.

V. CONCLUSION

In this work, we presented a novel visuo-haptic interface
for collaborative mobile assistants to simplify the physical
interaction between human workers and robotic assistants.
The proposed framework enabled MOCA to simultaneously
adapt to the co-worker’s behaviour by means of the FSM
and different control modules to achieve haptic and visual
guidance. The results showed the potential of the interface
in offloading human workers from heavy tasks, providing,
at the same time, natural and simplified interactions between
coworkers, demonstrating the potential of collaborative robot
in improving labourer ergonomics conditions and boosting,
at the same time, also flexibility. The proposed interface in
this work is suitable not only for flexible logistic of medium-
small industrial enterprises, but also for commercial scenar-
ios, like department stores, where the employees are required
to bring goods from the storage to shelves or exhibitors.
Future works will focus on the ergonomics assessment of
the proposed interface and on the improvement of the vision
module to enable multi-human tracking, enabling MOCA to
distinguish the human partner from other coworkers.
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