
Tanwir Ahmad | Fredrik Abbors | Dragos Truscan | Ivan Porres

Model-Based Performance Testing
Using the MBPeT Tool

TUCS Technical Report
No 1066, February 2013

Model-Based Performance Testing
Using the MBPeT Tool

Tanwir Ahmad
Fredrik Abbors
Dragos Truscan
Ivan Porres

Åbo Akademi University, Department of Information Technology
Lemminkäisenkatu 14 A, 20520 Turku, Finland
{tahmad, fabbors, dtruscan, iporres}@abo.fi

TUCS Technical Report

No 1066, February 2013

Abstract

This document describes a model-based performance testing tool, called MBPeT,
used for generating synthetic workload from probabilistic models. The purpose
of the tool is two fold: (a) to simplify the creation and updating of test specifi-
cations by using abstract models for the user profiles and (b) to create, based on
a certain level of randomness introduced by the probabilistic models, synthetic
workload which is closer to the real workload as compared to the workload gener-
ated from static scripts. MBPeT has a distributed architecture, where one master
node controls multiple remote slave nodes. Each slave node is capable of gener-
ating synthetic workload based on the specified load profile. Besides measuring
different key performance indicators of the system under test, the tool monitors
permanently the resource utilization of its slave nodes and (when possible) the one
of the system under test. At the end of each test run, the measurements are ag-
gregated by the master into a detailed test report. This report describes the imple-
mentation details behind MBPeT and provides several experiments highlighting
the capabilities of the tool.

Keywords: load generation, performance testing, probabilistic timed automata,
tool support

TUCS Laboratory
Software Engineering Laboratory

1 Introduction

Software testing is the process of identifying incorrect behavior of a system, also
known as revealing defects. Uncovering these defects, typically, consists of run-
ning a batch of software tests (test suite) against the system under test (SUT). In
some sense, a second software artefact is built to test the primary one. This is
normally referred to as functional testing. A software test compares the actual
output of the system with the expected output for a particular known input. If the
actual output is the same as the expected output the test passes, otherwise a test
fails and a defect is found. Software testing is also the means to assess the quality
of a software product. The fewer the defects found during testing, the higher the
quality is of that software product. However, not all software defect are related
to functionality. Some systems may stop functioning or may prevent other users
to access the system simple because the system is under a heavy workload with
which it cannot cope. Performance testing is the means of detecting such errors.

Performance testing is the process of determining how a software system per-
forms in terms of responsiveness and stability under a particular synthetic work-
load. The purpose of the synthetic workload is that it should match the expected
workload (the load that normal users put on the system when using it) as closely
as possible. This is typically achieved by running a series of users concurrently,
but instead of focusing on the right output the focus is shifted towards measuring
non-functional aspects, i.e. the time between input and output (response time) or
number of requests processed in a second (throughput).

Traditionally, performance testing has been conducted by running a number of
predefined scenarios (or scripts) in parallel. One major drawback to this approach
is that it exercises only a limited combination of user actions which is a simplifi-
cation of the real usage. Traditionally, areas of interest in performance testing are
the system response times, throughput, scalability, reliability, resource usage, etc.
Today, these areas are equally important to that of functionality.

Software testing can be extremely time consuming and costly. In 2005, Ca-
per Jones - chief scientist of Software Productivity Research in Massachusetts -
estimated that as much as 60 percent of the software work in the United States
was related to detecting and fixing defects [1]. Another drawback is that software
testing, as well as performance testing, involves a lot of manual work, especially
in creating test cases. A software system typically undergoes a lot of changes
during its lifetime. Whenever a pieces of code is changed, a test have to be up-
dated or created to show that the change did not break any existing functionality
or introduce any new defects. This adds more time and cost to testing.

Research effort have be put into solving this dilemma. One of the most promis-
ing techniques is model-based testing (MBT). In MBT, the central artefact is an
abstract model, representing the behavior or the use of the SUT. Tests are then
automatically generated form the model. In MBT, the focus has shifted from
manually creating tests to creating and maintaining an abstract model. Due to

1

the fact that tests are automatically generated from that model, MBT copes better
with changing requirements and code compared to traditional testing. Research
has shown that MBT could reduce the total testing costs with 15 percent [5].

There exist a plethora of commercial performance testing tools. In the fol-
lowing, we briefly enumerate a short list of the most popular performance testing
tools. FABAN is an open source framework for developing and running multi-tier
server benchmarks [10]. FABAN has a distributed architecture meaning load can
be generated from multiple machines. The tool has three main components: A
harness - for automating the process of a benchmark run and providing a con-
tainer for the benchmark driver code, a Driver framework - provides an API for
people to develop load drivers, and an Analysis tool - to provide comprehensive
analysis of the data gathers for a test. Load is generated by running multiple
scripts in parallel. JMeter [11] is an open source Java tool for load testing and
measuring performance, with the focus on web applications. JMeter can be set
up in a distributed fashion and load is generated from manually created scripts
that are run concurrently. Httperf [3] is a tool for measuring the performance of
web servers. Its aim is to facilitate the construction of both micro and macro-level
benchmarks. Httperf can be set up to run on multiple machines and load is gener-
ated from pre-defined scripts. LoadRunner [4] is a performance testing tool from
Hewlett-Packard for examining system behavior and performance. The tool can
be run in a distributed fashion and load is generated from pre-recorded scenarios.

MBPeT is tool for load generation and system monitoring. Load is gener-
ated from probabilistic timed automata (PTA) models describing the behavior of
groups of virtual users. The load is applied on the system while being generated
and different key performance indicators (KPIs) such as response times, through-
put, memory, CPU, disk, etc. are monitored. The MBPeT tool has a distributed
architecture where one master node controls several slave nodes which are the ac-
tual load generators. This means that the MBPeT tool is very suitable for a cloud
environment where computational nodes can be rented in an on-the-fly manner.
Besides monitoring, the tool also produces an performance test report at the end
of the test. The report contains information about important KPIs, such as re-
sponse times, throughput etc, but also graphs showing how CPU, memory, disk,
network utilization varied during the test session.

The rest of the report is structured as follows: In Section 2, we briefly describe
the load generation process. In Section 3, we overview the architecture of the tool.
In Section 4, we discuss the load generation process used by the tool. Section 5,
discusses the tool implementation and libraries used. In Section 6, we present a
auction web service case study and a series of experiments using our tool includ-
ing an evaluation of our approach against JMeter. Finally, in Section 7 we present
our conclusions and discuss future work.

2

2 The Load Generation Process
The MBPeT tool takes as input a set of Probabilistic Timed Automata (PTA) [6]
models as shown in Figure 1, applies the load against the SUT and generates a
test report in HTML format. We use these PTA models to describe the behavior of
different groups of virtual users (VUs). In brief, a PTA is composed of locations
connected by transitions. Transitions have associated probability distributions
which allow a PTA to decide based on a probabilistic choice what is the next
transition to take. Transitions can have associated time actions which specify
how time advances (e.g., how long to wait before taking the transition) or actions
(what is being executed once the transition is enabled). An example PTA is given
in Figure 2. In other words, if the time has not passed a certain set value, that
particular transition can not be fired. A location can have more than one outgoing
transitions. In that case, the transition to fire is based on a probabilistic choice. If
a transition has a action attached to it, that action is carried out when the transition
is fired. Every PTA has an exit location (depicted with a double circle) that will
eventually be reached.

SUTMBPeT Load

Input

Output

Figure 1: Overview of the MBPeT tool

The attributes of PTA models make them a good candidate for modeling the
behavior of VUs, which imitate the dynamic behavior of real users. Actions in the
PTA model corresponds to an action which a user can send to the system under
test (SUT) and the clocks represent the user think time.

Load is generated from these models by executing an instance of the model

3

1

2

 X=t1 / action1() / p0 /X:=0

3

 p1

4

 p2

5

 p3

6

 X=t2 / action2() / X:=0 X=t3 / action3() / X:=0 X=t4 / action4() / X:=0

 X = t5 / action5() / p4 / X:= 0

7

 X = t5 / action6() / p5 / X:= 0

8

 X=t6 / action7() / X:=0

Figure 2: Example of a probabilistic timed automaton

for every simulated VU. Whenever a transition with an action is fired, that action
is translated by the MBPeT tool and sent to the SUT. This process is repeated for
every simulated user and throughout the whole load generation process. During
load generation, the MBPeT tool monitors the SUT the whole time. At end of the
load generation process, an HTML report is created. The HTML report informa-
tion about important metrics and shows graphs for different KPIs. More details
will follow in the next sections.

3 Tool architecture
MBPeT has a distributed architecture. It consists of two types of nodes: a mas-
ter node and a slave node. A single master node is responsible of initiating and
controlling multiple remote slave nodes, as shown in Figure 3. Slave nodes are de-
signed to be identical and generic, in the sense that they do not have prior knowl-
edge of the SUT, its interfaces, or the workload models. That is why for each
test session, the master gathers and parses all the required information regarding
the SUT and the test session configuration and sends that information to all the
slave nodes. Once all slaves are initialized, the master begins the load generation
process by starting a single slave while rest of the slaves are idling.

4

Master
Node

Slave
Node 1

Slave
Node 2

Slave
Node N

.

.

.

SUT Network
Adapter

A
da

pt
er

A

d
a

p
te

r
A

da
pt

er

Figure 3: Distributed architecture of MBPeT tool

3.1 Master Node
The internal architecture of the master node is shown in Figure 4. It contains the
following components:

3.1.1 Core

The core module of the master node controls the activities of other modules as
well as the flow of information among them. It initiates the different modules
when their services are required. The core module takes as input the following
information and distributes it among all the slave nodes:

1. User Models: PTA models are employed to mimic the dynamic behavior of
the users. Each case-study can have multiple models to represent different
types of users. User models are expressed in DOT language [2].

2. Test Configuration: It is a collection of different parameters, that are de-
fined in a Settings file, which is case-study specific. A Settings file specifies
the necessary information about the case-study and this information is later
used by the tool to run the experiment. There are several mandatory param-
eters in the Settings file, which are listed below with the brief description.
These parameters can also be provided as command-line arguments to the
master node.

(a) Test duration: It defines the duration of a test session in seconds.

(b) Number of users: It specifies the maximum number of concurrent
users for a test session.

5

Master Node

Model Validator Models

Configuration

User DB

User-
Resource
Data Base

Core

Test Report
Creator

Test
Report

Slave node 1

Slave Controller 1

User Input

User Output
Slave node N

Slave Controller N

.....

.....

Resource
utilization at SUT

Trace
File

Figure 4: Master Node

(c) Ramp: The ramp period is specified for all types of users. It can be
defined in two ways. One way is to specify it as a percentage of the
total test duration. For example, if the objective of the experiment is to
achieve the given number of concurrent users within the 80% of total
test duration, then the ramp value would be equal to 0.8. Then, the
tool would increase the number of users at a constant rate, in order to
achieve the given number of concurrent users within the ramp period.
The ramp period can also be defined as an array of tuples. For instance
the ramp function depicted in Figure 5, as illustrated in the Listing
1. A pair value is referred to as a milestone. The first integer in a
milestone describes the time duration in seconds since the experiment
started and the second integer states the target number of concurrent
users at that moment. For example, the fourth milestone in the Listing
1, that is (400, 30), indicates that at 400 seconds the number of concur-
rent users should be 400, and thus starting from the previous milestone
(100, 30) the number of concurrent users should drop linearly in the
interval 250-400 seconds. Further, a ramp period may consist of sev-
eral milestones depending upon the experiment design. The benefit of
defining the ramp period in this way is that the number of concurrent
users could increase and decrease during the test session.
...

6

Figure 5: Example ramp function

#=============== Ramp Period =================
ramp_list = [(0, 0), (100, 100), (250, 100), (400,

30), (480, 30), (580, 150)]
...

Listing 1: Ramp section of Settings file

(d) Monitoring interval: It specifies how often a slave node should check
and report its own local resource utilization level for saturation.

(e) Resource utilization threshold: It is a percentage value which defines
the upper limit of local resource load at the slave node. A slave node
is considered to be saturated if the limit is exceeded.

(f) Models folder: A path to a folder which contains all the user models.

(g) Test report folder: The tool will save the test report at this given path.

In addition to mandatory parameters, the Settings file can contain other pa-
rameters, which are related to a particular case-study only. For example, if
a SUT is a web server then the IP address of the web server would be an
additional parameter in the Settings file.

3. Adapter: This is a case-study specific module which is used to communicate
with SUT. This module translates each abstract action interpreted from the
PTA model into a form that is understandable by the SUT, for instance a
HTTP request. It also parses the response from the SUT and measures the
response time.

4. Number of Slaves: This number tells the master node how many slave nodes
are participating in the test session. As detailed later, at startup, the master
node waits for all slaves to report theirpresence before proceeding to load
generation.

7

Two test databases are used by MBPeT: a user database and a user resource
database. The user database contains all the information regarding users such as
usernames, passwords or name spaces. In certain cases, the current state of the
SUT must be captured, in order to be able to address at load generation time data
dependencies between successive requests. As such, the user resource database
is used to store references to the resources (e.g. files) available on the SUT for
different users. The core module of the master node uses an instance of the test
adapter to query the SUT and save that data in the user resource database.

Further, the core module remotely controls the Dstat1 tool on SUT via SSH
protocol. Dstat is a tool that provides detailed information about the system re-
source utilization in real-time. It logs the system resources utilization information
after every specific time interval, one second by default. The delay between each
update is specified in the command along with the names of resources to be moni-
tored. This tool creates a log file in which it appends a row of information for each
resource column after every update, as shown in Figure 6. The log file generated
by the Dstat tool is used as basis for generating the test report, including graphs
on how SUT’s KPIs vary during the test session.

Figure 6: Dstat log file example

3.1.2 Model Validator

The Model Validator module validates the user models. It performs the different
number of syntactic checks on all models and generates a report similar to a report

1http://dag.wieers.com/home-made/dstat/

8

presented in Listing 2. This report describes the error description and the location
in model where it is occurred. A model with syntax anomalies could lead to the
inconclusive results. Therefore it is important to ensure that the all given models
are well-formed and no syntax mistakes have been made in implementing the
models. Examples of couple of validation rules are:

• Each model should have an initial and a final state

• All transitions have either probabilities or actions

• The sum of probabilities of transitions originating from a location is 1.

• all locations are statically reachable

======Running Test # 1 : test_InitialFinalState
Description : Checks that a model should have one initial

and one final state.
PASSED:: Model contains only 1 initial state: [’1’]
PASSED:: Model contains only 1 final state: [’9’]
======Running Test # 2 : test_actionCheck
Description : Checks whether the all transitions have

action names or not
FAILED::Action name is not specified for transition from 2

to 3 with probability 0.35
FAILED::Action name is not specified for transition from 2

to 4 with probability 0.21
FAILED::Action name is not specified for transition from 5

to 2 with probability 1.0
FAILED::Action name is not specified for transition from 7

to 2 with probability 1.0
FAILED::Action name is not specified for transition from 6

to 2 with probability 1.0
FAILED::Action name is not specified for transition from 8

to 2 with probability 1.0
======Running Test # 3 : test_isolationCheck
Description : Checks for isolated states in a model
PASSED::There is no isolated state in the model.
======Running Test # 4 : test_probabilityCheck
Description : Checks the sum of probabilities of all

outgoing transitions from a state must be equal to 1.
PASSED::Probability sum of each state is equal to 1.

Listing 2: Sample report of a PTA model syntax validation

3.1.3 Slave Controller

For each slave node there is an instance of SlaveController module in the master
node. The purpose of the SlaveController module is to act as a bridge between
slave nodes and the core master process and to control the slave nodes until the
end of the test session. The benefit of this architecture is in keeping the master core
process light and active, and more scalable. The SlaveController communicates
with master core process only in few special cases, so that the core process could
perform other tasks instead of communicating with slave nodes. Moreover, it
also increases the parallelism in our architecture, all the SlaveControllers and the
master’s core processes could execute in parallel on different processor cores.

9

Owning to the efficient usage of available resources, the master can perform more
tasks in less period of time. A similar approach has been employed at the slave
node, where each user is simulated as an independent process for the performance
gain.

3.1.4 Test Report Creator

This module performs two tasks: Data Aggregation and Report Creation. In the
first task, it combines the test result data from all slaves into an internal repre-
sentation. Further, it retrieves the log file generated by the Dstat tool from the
SUT via Secure File Transfer Protocol (SFTP). The second task of this module
is to calculate different statistical indicators and render a test report based on the
aggregated data.

3.2 Slave Node

Slave nodes are started with one argument, the IP-address of the master node.
The Core module opens the socket and connects to the master node at the given
IP-address with the default port number. After connecting with the master node
successfully, it invokes the Load Initiator module.

Slave Node

Load Initiator

Adapter

Resource
Monitor

Reporter

Input from
Master node

Output to
Master
Node

Core

Load Generator UserSimulator

Model Parser

Figure 7: Slave Node

10

3.2.1 Load Initiator

The Load Initiator module is responsible for initializing the test setup at the slave
node, as well as storing the case-study and model files in a proper directory struc-
ture. It receives all the information from the master node at initialization time.

3.2.2 Model Parser

The Model Parser module reads the PTA model into an internal structure. It is
a helper module that facilitates the UserSimulator module to perform different
operations on the PTA model.

3.2.3 Load Generator

The purpose of this module is to generate load for the SUT at the desired rate,
by creating and maintaining the desired number of concurrent virtual users. It
uses the UserSimulator module to simulate virtual users where each instance of
UserSimulator presents a separate user with unique user ID and session. The
UserSimultor utilizes the Model Parser module to get the user’s action from the
user model and uses the Adapter module to perform the action. Then it waits for
a specified period of time (i.e. the user think time) before performing the next
action, which is chosen based on the probabilistic distribution.

3.2.4 Resource Monitor

The Resource Monitor module runs as a separate thread and wakes up regularly
after a specified time period. It performs two tasks every time it wakes up: 1)
checks the local resource utilization level and saves the readings, 2) calculates
the average of resource utilizations over a certain number of previous consecutive
readings. The value obtained from the second task is compared with resource uti-
lization threshold value, defined in the test configuration. If the calculated average
is above a set threshold value of 80 percent, then it means that the slave node is
about to saturate and the master will be notified. When a slave is getting saturated,
its current number of generated users is kept constant, and additional slaves will
be delegated to generate the more load.

3.2.5 Reporter

All the data that has been gathered during the load generation is dumped into
files. The Load Generator creates a separate data file for each user; it means that
the total number of simulation data files would be equal to the total number of
concurrent users. In order to reduce the communication delay, all these data files
are packed into a zip file, and sent to the master at the end of the test session.

11

4 Load Generation

In each test setup, there is one master node that carries out the entire test session
and generates a report. The user only interacts with the master node by initializing
it with the required parameters (mentioned in the section 3.1.1) and getting the test
report at the end of the test run, as illustrated in Figure 8. The master core uses the
given information to set up the test environment. After that, it invokes the Model
Validator. This module validates the syntax of user models. If the validation fails,
it gives the user a choice whether the user wants to continue or not. If the user
decides to continue or the validation was successful, then the master enters into
the next phase.

Figure 8: MBPeT tool activity diagram

12

4.1 Test Setup
This phase consists of two parts: slave discovery and slave initialization, as fol-
lows.

4.1.1 Slave Discovery

In this phase, master starts listening for incoming connections from the slave
nodes. It opens the socket that listens for TCP connection on given TCP/IP port.
And all slaves are by default configured to look for master on a same port at the
given IP address. Whenever the master receives a new connection request from the
slave, it accepts the request and initializes the new internal process called Slave-
Controller for the slave. Subsequently, it passes the new slave connection object
to the newly created SlaveController.

The master node only accepts the defined maximum number of slave connec-
tions. As soon as all slaves have made a connection with the master, the master
core process stops listening for the new connections. Afterwards, the master core
waits until all SlaveControllers inform the core process that they have successfully
initialized all the slaves and they are ready to generate load.

4.1.2 Slave Initialization

The SlaveController starts the slave initialization process as soon as it connects
with the remote slave node. It sends the all the information that is required by the
slave nodes to generate load. All SlaveController instances use the information
that has already been setup by the master core module.

Each SlaveController sends the following informations to the slave node:

• Command-line arguments: SlaveController also forwards the command-
line arguments to the slave node.

• Test-database: Test-database (described in Section 3.1.1) is a collection of
two databases: a user database and a user resource database. It is utilized
during the load generation process. The test database is retrieved by the
master core module and sent to all slaves. Because of that, each slave node
does not have to retrieve the database separately from the SUT, it speeds up
the load initialization phase.

• Test Configuration, Case-study and model files: In order to minimize com-
munication delays as much as possible, all necessary files are packed into
one zip file and send it to slave node. Later on, this zip file is extracted by
the slave node to get the files back.

Once the slave node is initialized, it acknowledges the master node and starts
waiting for the response in an idle state. At this point, the slave could receive

13

either of the following two commands: kill or run command. The master node
sends a kill command to all idle slave nodes to terminate themselves at the end
of each test session. In the later case, the master node sends a run command with
the following parameters: 1) target number of users, 2) number of users generated
by other slaves and 3) test start time. The test start-time is a timestamp when the
first slave node started the load generation process. If this node is the first slave
node started by the master then the test started time value would be zero. Then,
before starting load generation, the slave node sends a message to the master with
test starting time along with the list of all possible actions a user can execute. The
list of actions is trivial in the report generation process and it is only sent by the
first slave, all other slaves only send the starting time of load generation. After
sending that message, the slave node initiates the Resource Monitor module and
enters into load generation phase.

4.2 Load Generation
As load initialization phase is completed on all slave nodes, the user is notified
by the master core that the test environment has been setup and the tool is ready
to start the test session. After getting the confirmation from the user, the master
selects one slave from the pool of idle slave nodes and starts the load generation
on the slave, while all other slave nodes wait in their idle state.

Next, the master remotely invokes the dstat tool on SUT by sending the com-
mand via SSH protocol. This tool monitors the system resources utilization infor-
mation after every specific time interval and appends that information in a log file,
as shown in Figure 6.

During the load generation phase, the slave node performs the following steps
in a loop until the test duration has been completed:

1. It uses the ramp function (described in Section 3.1.1) to calculate the num-
ber of users required at the given moment in time.

2. Then it queries the Resource Monitor module to check whether the resource
utilization level has gone over the given threshold value or not. And if it has
crossed the limit then it stops creating more virtual users and notifies the
master along with the information of how many virtual users that have been
spawned.

3. If the resource load is still under the threshold and the output of the ramp
function suggested for more users to be added, then slave core starts cre-
ating more virtual users by instantiating the UserSimulator module. Each
instance of the UserSimulator module represents an individual virtual user,
capable of generating synthetic workload. Once the UserSimulator module
is initialized with a new user ID, it continues to execute the following steps
until the end of the test session or ramp decrease:

14

(a) In addition to the user models, each case-study defines a so call root
model, which specifies how many user types are used in the load mix
and what is their probabilistic distribution. The UserSimulator module
simulates the root model of the case-study by selecting a type of the
user to simulate. An example of a root model with three user types
will be shown in Figure 12).

(b) Once the UserSimulator module obtains the user type, it starts simu-
lating the corresponding user model.

(c) Whenever a transition is traversed in the user model, a user’s action is
retrieved. The action is sent to the SUT through the Adapter module.

(d) After performing the action, the UserSimulator stores the response
time of the action and status code for the KPI analysis.

(e) The UserSimulator module ends the current simulation of a VU if it
encounters the exit action during the simulation or the test session is
completed. In the first case, it will go back to Step a) and choose a new
type of the user, and in second case it will terminate itself. If neither
of the previous two conditions are true, then it will wait for a specific
period of time (i.e. think time) and go back to Step c).

4. Next, the slave node checks whether the test duration has been completed
or not, if not then it goes back to Step 1, otherwise to the next step.

5. At this step, each user performs the exit operation and dumps all the data
which has been gathered during load generation to a file.

While generating load, the slave nodes monitor the KPIs of the SUT and their
own local resource utilization by using the Resource Monitor module. As the
local resource utilization of the slave node approaches to a given threshold value,
the slave node stops ramping up the number of concurrent users and notifies the
master node. As a response, the master node invokes one of the remaining idle
slaves to start generating load. This mechanism is employed to maintain the given
load generation rate. For example, the resource utilization threshold values is
set to 80% and during load generation a slave discovers that CPU utilization is
crossing the threshold, then instead of saturating the local resources and dropping
the load generation rate, the slave notifies the master which will distribute the load
further to new slaves. The slave node is only marked once as a saturated node and
it cannot be changed afterwards, even if the ramp decreases. The reason is that
the slave node does not terminate the UserSimulator processes when the ramp is
decreasing, it suspends the processes. The processes are resumed if the ramp starts
increasing again. This approach is more beneficial than creating and destroying
the processes, because it requires less processing overhead.

The master node waits for two conditions to happen: 1) the last active slave
node started has reported back that it has been saturated and is unable to generate

15

more users; 2) test duration is completed. In the first case, the master will select
the next idle slave and starts the load generation. In the second case, all running
virtual users on the slave the nodes perform the exit action and the Load Generator
module shuts down itself. The slave nodes report back the KPI values monitored
over the test period to the master. Then, it is the job of the master node to aggregate
the test result data from all active slave nodes and send a kill signal to all idle
slaves. Afterwards, Test Report Creator module at the master node is initiated to
create the test report.

4.3 Test Reporting

The Test Report Creator module gathers the test result data from all the slaves.
It uses a naming convention to the data depending upon the slave from where it
originates. The Test Report Creator module aggregates multiple instances of data
in a way that it can be interpreted as a test result data generated by a single node
with the combined computational power of all participated slave nodes.

In addition to KPI information from slaves, the master has another source of
information, resource utilization log of SUT. The log file is used to compose the
graphs that represent the resources utilizations trends over the test period. These
graphs can be used in a comparison with the KPI graphs to investigate the different
reasons for poor performance. For instance, which resources are extensively being
used and thus cause delays in server response, and how effectively the resources
are being utilized.

After the data assembly, the Test Report Creator module starts rendering a
test report based on the assembled data. In the report, most of the information is
summarized with the help of different visual elements (i.e. tables and graphs), to
enhance the report readability and interpretability.

In addition to the HTML test report, the MBPeT tool produces a trace file
(shown in Listing 3) containing all the traces executed during the load generation.
It sorts the traces in descending order of their number of executions. This is useful
to identify which traces have been executed most frequently.

browse,get_auction:157
browse,get_auction,get_bids:148
search,get_auction,get_bids:115
search,get_auction:114
browse,get_auction,get_bids,bid:73
search,get_auction,get_bids,bid:51
browse:44
browse,browse,get_auction,get_bids:29
browse,get_auction,get_bids,bid,get_bids:25
search,get_auction,get_bids,bid,get_bids:23
browse,browse,get_auction:22
search:20
browse,get_auction,get_bids,browse,get_auction,get_bids:16
browse,browse,get_auction,get_bids,bid:15...

Listing 3: Sample trace file

16

The tool is equipped with an auxiliary script which analyzes the trace file to
provide answer to several questions. The script takes two arguments, the trace file
and a threshold value, and produces a trace analysis report. The analysis report
consists of several sections. One question that the script can solve is ”what is the
distribution of different user actions in the generated load?”. For instance, Listing
4 demonstrates the first section of Trace analysis report, which is generated from
the sample trace file (in Listing 3) with the threshold value equals to 0.23. The
first line of the report (i.e. Total traces executed) indicates the total number of
executions of all the unique traces in the trace file. Further, it shows the total
number of invocations of all the actions and the individual number of invocations
and percentage per action. For example, in Listing 4 get auction action is executed
more than other actions, it is invoked 1380 times out of 4798, which is 28.76 %
of the total number of invocations.
############# original statistics

#############################
Total traces executed: 1263
TOTAL: 4798
browse 1231 25.6565235515 \%
get_auction 1380 28.7619841601 \%
search 548 11.421425594 \%
bid 440 9.17048770321 \%
get_bids 1199 24.9895789912 \%

Listing 4: Trace analysis - Sec 1: Number of Actions

The script can be used to analyze ”which are the most executed traces account-
ing for a given percentage of the load.”. As such, the second section (Listing 5) of
the script estimates the number of actions required according to the given thresh-
old value. It traverses through the list of all traces in descending order, and keep
selecting the traces until the total number of actions in the selected traces becomes
greater or equal to the required number of actions according to the given thresh-
old value. As it is shown in the Listing 5, the top four traces have been selected
because these traces have been executed 534 times and the total number of invo-
cations in these selected traces is equal to 1331 which is close to 1103. The script
also reports the total number of invocations of each action in the selected traces.

############# SELECT TRACES2 #############################
Actions: 4798 threshold 1103.54 0.23
selecting actions....
Total traces: 534
(’browse,get_auction’, 157)
(’browse,get_auction,get_bids’, 148)
(’search,get_auction,get_bids’, 115)
(’search,get_auction’, 114)
Selected traces: 4
create list of actions in traces....

TOTAL: 1331 of 4798 = 27.7407253022 %
browse 305 22.9151014275 \%
get_auction 534 40.1202103681 \%
search 229 17.2051089406 \%
get_bids 263 19.7595792637 \%

Listing 5: Trace analysis - Sec 2: Selecting traces

17

In the third section (Listing 6), the script scales up the selected traces by scal-
ing up the number of times the actions have been executed. First, the script calcu-
lates the scaling factor based on the number of time an action has been executed
in the selected traces and the total number of time all actions have been executed
in all the traces. For example, the total number of actions executed in the selected
traces and in all the traces are 1331 and 4798 respectively, as shown in Listings
5. The number of executions of each action in the selected traces is scaled up by
using the scaling factor and based on the results the number of executions of each
selected traces is amplified, as illustrated in Listing 6. These scaled traces can
be used in the other performance testing tools like JMeter to generate the same
amount of load of all the traces.

############ SCALING UP ACTIONS...same number of actions
executed

scaling_factor 3.60480841473 resulting total: 4798.0
Scaled action list
browse 1099 22.9151014275 %
get_auction 1924 40.1202103681 %
search 825 17.2051089406 %
get_bids 948 19.7595792637 %
TOTAL actions: 4796 Original actions: 4798
Scaled trace list
browse,get_auction : 565
browse,get_auction,get_bids : 533
search,get_auction,get_bids : 414
search,get_auction : 410
TOTAL traces: 1922 Original traces: 1263

Listing 6: Trace analysis - Sec 3: Scaling up traces based on number of actions

The last section (Listing 7) also scaled up the selected traces but in a different
way. Instead of scaling up the number of executions of each action in the selected
traces, it scales up the number of executions of the selected traces. It computes
the scaling factor based on the total number of executions of the selected traces
and of all the traces.

############ SCALING UP TRACES...same number of users/
traces executed

scaling_factor 2.36516853933 resulting total actions:
3148.03932584

Total traces (target): 1263
Scaled trace list
browse,get_auction : 371
browse,get_auction,get_bids : 350
search,get_auction,get_bids : 271
search,get_auction : 269
TOTAL traces: 1261 Original traces: 1263
Scaled action list
browse 721 22.9151014275 %
get_auction 1263 40.1202103681 %
search 541 17.2051089406 %
get_bids 622 19.7595792637 %
TOTAL actions: 3147 Original actions: 4798

Listing 7: Trace analysis - Sec 3:Scaling up traces based on number of traces

18

5 Implementation
MBPeT tool has been developed using the Python2 language. Python has many
built-in libraries for network programming which allowed implementing the dis-
tributed architecture seamlessly. Moreover, in order to make our tool more pro-
ductive and autonomous, we have also employed the following third-party li-
braries to carry out the different tasks.

• pydot: This library act as interface between Python and dot models. The
Model Parser and the Model Validator modules utilize this library to parse
the dot model.

• matplotlib: It is a very useful library for plotting 2D graphs and other figures
like histograms, power spectra, bar charts, etc. It requires few parameters
as input to produce quality figures. Test Report Creator module uses this
library to generate figures in the test report.

• psutil: This library provides the real-time information about the system re-
sources utilization. Resource Monitor module uses this library to keep track
local resource load of slave node.

• paramiko: It is an implementation of SSH protocol for Python. It allows
the tool to connect securely with the SUT. After establishing a successful
connection, the tool could send commands to the SUT and transfer files over
an encrypted session.

6 Experiments and Evaluation
In order to demonstrate the efficiency of the tool, we have performed different
experiments. We used our tool to evaluate the performance of an auctioning web
service running on the Apache web server. The host machine features 8-cores
CPU, 16 GB of memory, 1 GB Ethernet, 7200 rpm hard drive and Fedora 16
operating system.

6.1 Case study: YAAS
YAAS is a web application and a web service for creating and participating in
auctions. An auction site is a good example of a service offered as a web appli-
cation. It facilitates a community of users interested in buying or selling diverse
items, where any user including guest user can view all the auctions and all au-
thenticated users, except seller of an item, can bid on the auction against other
users.

2http://www.python.org/

19

The web application is implemented in Python language using the Django3

web-framework. In addition to HTML pages, YAAS also has a RESTful [7] web
service interface. The web service interface has various APIs to support different
operations, including:

Browse API It returns the list of all active auctions.

Search API It allows to search auctions by title.

Get Auction This API returns an auction against the given Auction-ID.

Bids It is used to the get the list of all the bids have been made to a particular
auction.

Make Bid Allows and authenticated user to place a bid on a particular auction.

6.1.1 Test data

The test database of the application is configured with a script to have 1000 users.
Each user has exactly one auction and each auction has one starting bid.

Figure 9: Aggressive User type model

In order to identify the different type of users for the YAAS application, we
have used the AWStats4 tool. This tool analyzes the Apache server access logs
to generate a report on the YAAS application usage. Based on that report, we
discovered three types of users; aggressive, passive and non-bidder. For each user
type a profile model has been created, the aggressive type (Figure 9) of users
describes those users, who make bids more frequently as compared to other types
of users. And the passive users (Figure 10) are less frequent in making bids, see
for instance the locations 14 or 18 in the referred figures. The third type of users
are only interested in browsing and searching the auctions instead of making any

3https://www.djangoproject.com/
4http://awstats.sourceforge.net

20

Figure 10: Passive User type model

Figure 11: Non-bidder User type model

bids, known as non-bidders (Figure 11). The root model of the YAAS application,
shown in Figure 12, describes the distribution of different user types. Based on the
AWStats analysis, we determined that the almost 30% of total users who visited
the YAAS, were very frequently in making bids, whereas rest of 50% users made
bids occasionally. The rest of the users were not interested in making bids at all.
This distribution is depicted by the model in Figure 12.

The models of all these user types were provided to the MBPeT tool to sim-
ulate them as virtual users. For example, the model of an aggressive user type,
shown in Figure 9, shows that the user will start from the location 1, and from
this location the user will select either browse or search action based on a prob-
abilistic choice. Before performing the action, the slave will wait for the think
time corresponding to the selected action. Eventually, the user will reach the final
location (i.e. location 20) by performing the exit action and terminate the current
user session. Similarly, the other models of passive and non-bidder user type have

21

0

1

0.2/ non-bidder_user 0.3/ aggressive_user 0.5/ passive_user

Figure 12: YAAS Root model

the same structure but with different probabilities and distribution of actions.

6.1.2 Test Architecture

A setup of the test architecture can be seen in Figure 13. The server runs as
instance of the YAAS application on top of the Apache web server. All nodes
(master, slaves, and the server) feature an 8-core CPU, 16GB of memory, 1Gb
Ethernet, 7200 rpm hard drive, and Fedora 16 operating system. The nodes were
connected via a 1Gb ethernet over which the data were sent.

A populator script is used to generate input data (i.e., populate the test databases)
on both the client and server side, before each test session. This ensures that the
test data on either sides is consistent and easy to rebuild after each test session.

1 GB

Slave
Node 1

Slave
Node 2Master

Node

Slave
Node N

.

. Monitoring tools

Apache

YAASDB DB

Populator

Ethernet

Server

Dstat

Figure 13: A caption of the test architecture

22

6.2 Experiment 1
The goal of this experiment was to set the target response time for each action and
observe at what point the average response time of the action exceed the target
value. The experiment ran for 20 minutes. The maximum number of concurrent
users was set to 300 and the ramp up value was 0.9 that the tool would increase
the number of concurrent users with the passage of time to achieve the value of
300 concurrent users when the 90% of test duration time has been passed.

The resulting test report has various sections, where each section presents the
different perspective of the results. The first section, shown in Figure 14, contains
the information about the test session including, test started time, test duration,
target number of concurrent of users, etc. The Total number of generated users
in the report describes that the tool had simulated 27536 numbers of virtual users.
The Measured Request rate (MRR) depicts the average number of requests per
second which were made to the SUT during the load generation process. More-
over, it also shows the distribution of total number of user generated which is very
close to what we have defined in the root model (Figure 12). This section is useful
to see the summarized view of the entire test session.

#################### Master Stats #######################

This test was executed at: 2013­07­01 16:54:47
Duration of the test: 20 min
Target number of concurrent users: 300
Total number of generated users: 27536
Measured Request rate (MRR): 27.68 req/s
Number of NON­BIDDER_USER: 6296 (23.0)%
Number of AGGRESSIVE_USER: 9087 (33.0)%
Number of PASSIVE_USER: 12153 (44.0)%
Average number of action per user: 91 actions

Figure 14: Test Report 1 - Section 1: global information

In the second section, we could observe the SUT performance for each action
separately, and identify which actions have responded with more delay than the
others, and which actions should be optimized to increase the performance of the
SUT. As from the table in Figure 15, it appears that the action BID(ID, PRICE,
USERNAME, PASSWORD) has larger average and maximum response time than
the other actions. The non-bidder users do not perform the BID action that is why
we have zero response time in the column of NON-BIDDER USER against the
BID action.

In section three (shown in Figure 16) of the test report presents a comparison
of the SUT’s desired performance against the measured performance. As we had
defined the target response time for each action in the test configuration, in this
section we could actually observe how many concurrent users were active when

23

######## AVERAGE/MAX RESPONSE TIME per METHOD CALL ##########

NON­BIDDER_USER (23.0 %) PASSIVE_USER (44.0 %) AGGRESSIVE_USER (33.0 %)
Method Call Average (sec) Max (sec) Average (sec) Max (sec) Average (sec) Max (sec)
GET_AUCTION(ID) 3.04 23.95 2.85 23.67 2.93 24.71
BROWSE() 5.44 21.25 5.66 21.7 5.68 21.29
GET_BIDS(ID) 3.59 27.37 3.63 25.8 3.65 24.87
BID(ID,PRICE,USERNAME,PASSWORD) 0.0 0.0 8.26 33.44 8.11 36.84
SEARCH(STRING) 3.36 12.86 3.26 15.84 3.47 15.79

Figure 15: Test Report 1 - Section 2: Average and Maximum response time of
SUT per action or method call

the target response time was breached. The table in this section allows us to
estimate the performance of current system’s implementation. For instance, the
target average response time for the GET AUCTION action was breached at 251
seconds for the aggressive type of users, when the number of concurrent users
was 70. Further, this section demonstrates that the SUT can only support up to 84
concurrent users before it breaches the threshold value of 3 seconds for GET BIDS
action for the passive type of users. In summary, all the actions in Figure 16 have
breached the target response time except the BID action in NON-BIDDER USER
column because non-bidder users do not bid.

AVERAGE/MAX RESPONSE TIME THRESHOLD BREACH per METHOD CALL

Action Target Response Time NON­BIDDER_USER PASSIVE_USER AGGRESSIVE_USER Verdict
Average
(secs)

Max
(secs)

Average
users (secs)

Max
users (secs)

Average
users (secs)

Max
users (secs)

Average
users (secs)

Max
users (secs) Pass/Fail

GET_AUCTION(ID) 2.0 4.0 70 (251) 84 (299.0) 70 (251) 95 (341.0) 70 (250) 95 (341.0) Failed
BROWSE() 4.0 8.0 84 (299) 97 (345.0) 84 (299) 113 (403.0) 84 (299) 113 (403.0) Failed
GET_BIDS(ID) 3.0 6.0 84 (298) 112 (402.0) 83 (296) 112 (402.0) 96 (344) 112 (401.0) Failed
BID(ID,PRICE,USERNAME,PASSWORD) 5.0 10 Passed Passed 97 (346) 113 (405.0) 112 (402) 135 (483.0) Failed
SEARCH(STRING) 3.0 6 95 (341) 134 (479.0) 96 (342) 112 (402.0) 83 (296) 133 (476.0) Failed

Figure 16: Test Report 1 - Section 3: Average and Maximum response time of
SUT per action or method call

The fourth section (Figure 17) presents the stress level on the slave nodes
caused by the load generation. This section is useful to observe whether the slave
nodes were saturated during the test session or not. If the nodes were saturated
then it is possible that slave nodes would not have generated the load at the tar-
geted rate.

In the Local Resource Usage section, report portrays the information that had
been gathered by the Resource Monitor module during the load generation by the
slave nodes. Figure 18 and 19 shows the slave local resource utilization trend
over the test duration. These figures depict that the utilization of all resources
increased as the number of concurrent users increased, however utilization rate

24

#################### System Stats #######################

Total Disk read bytes: 0.00 Bytes
Average Disk read bytes: 0.00 Bytes/s
Total Disk write bytes: 10.06 MB
Average Disk write bytes: 8.59 KB/s
Total Network sent bytes: 50.51 MB
Average Network sent bytes: 43.10 KB/s
Total Network received bytes: 1.93 GB
Average Network received bytes: 1.64 MB/s
Virtual Memory Usage: 0.0 %
Physical Memory Usage: 19.33 %
Slave 0 CPU 0 Usage: 13.2 %
Slave 0 CPU 1 Usage: 3.07 %
Slave 0 CPU 2 Usage: 0.99 %
Slave 0 CPU 3 Usage: 1.93 %
Slave 0 CPU 4 Usage: 0.15 %
Slave 0 CPU 5 Usage: 0.1 %
Slave 0 CPU 6 Usage: 0.14 %
Slave 0 CPU 7 Usage: 0.29 %

Figure 17: Test Report 1 - Section 4: Aggregated resource load statistics of slave
nodes

of some resources grew more rapidly than the others, for example memory usage
increased more steeply than the CPU. Further, the CPU usage remained almost
constant over the test duration whereas the memory utilization increased as the
concurrent number of users ramped up.

Figure 18: Test Report 1 - Slave physical and virtual memory, and CPU utilization

Figures 20 and 21 display the resource load at the SUT during load generation.
These graphs are very useful to identify which resources are being utilized more

25

Figure 19: Test Report 1 - Slave network and disk utilization

than the others and limiting the performance of SUT. For instance, it can be seen
from Figure 20 that after 400 seconds the CPU utilization was almost equal to
100% for the rest of the test session, it means that the target web application is
CPU-intensive, and it might be the reason of large response time.

Figure 20: Test Report 1 - SUT CPU and memory utilization

Figures 22, 23 and 24 illustrate that the response time of each action per user
type increases proportionally to the number of concurrent users. These figures

26

Figure 21: Test Report 1 - SUT network and disk utilization

also point out which actions response time is increasing much faster than the other
actions and requires optimization. For example the response time of BID(ID,
PRICE, USERNAME, PASSWORD) action in aggressive and passive types of
users, increases more rapidly than the other actions. It might be because the BID
action involves a write operation and in order to perform a write operation on the
database file, the SQLite5 database has to deny the all new access requests to the
database and wait until all previous operations (including read and write opera-
tions) have been completed.

Section five of the test report provides miscellaneous information about the
test session. For instance, Error Rate in Figure 25 indicates the average error rate.
It is noticed that the SUT usually returns an error with the status code 500 when
the request rate is high enough for the SUT to respond to all requests correctly.
It might be because if the server receives more requests than it can handle, it
denies the new connection requests with an error response. For example, the
first erroneous response was recorded at 520 seconds (according to Figure 26)
and at that time tool was generating the load at the maximum rate that is 1600
actions/seconds, shown in Figure 27. Similarly, Figure 26 displays that there was
no error until the number of consecutive users exceeded 150, after this point errors
began to appear and increased steeply proportional to the number of consecutive
users.

A further deep analysis of the test report showed that the database could be the
bottleneck. Owning to the fact a sqlite database has been used for this experiment,
the application has to block the entire database before something can be written

5http://www.sqlite.org/

27

Figure 22: Test Report 1 - Response time of aggressive user type per action

Figure 23: Test Report 1 - Response time of passive user type per action

to it. It could explain the larger response time of BID actions compared to other
actions. This is because the web application had to perform a write operation
to the database in order to execute the BID action. Further, before each write
operation, sqlite creates a rollback journal file, an exact copy of original database
file, to preserve the integrity of database [9]. This could also delay the processing
of a write operation and thus cause a larger response time.

28

Figure 24: Test Report 1 - Response time of non-bidder user type per action

#################### Misc #######################

Average request size: 1.56 KB
Average user life time: 38.15 sec
Average user think time: 3
Error Rate: 8.4%
This test run ended at: 2013­07­01 17:14:47

Figure 25: Test Report 1 - Section 5: Miscellaneous information

29

Figure 26: Test Report 1 - Error rate

Figure 27: Test Report 1 - Average number of actions

30

6.3 Experiment 2
In the second experiment, we wanted to verify the hypothesis, which we proposed
in the previous experiment: database could be the performance bottleneck. We
ran the second experiment for 20 minutes with the same test configuration of the
previous experiment. However, we did make one modification in the architecture.
In the previous experiment, the SQLite 3.7 was used as database server, but in this
experiment, it was replaced by the PostgreSQL 9.1 6. The main motivating factor
of using the PostgreSQL database is that it supports the better concurrent access
to the data than the SQLite. The PostgreSQL database uses the Multiversion Con-
currency Control (MVCC) model instead of simple locking. In MVCC, different
locks are acquired for the read and write operations, it means that the both opera-
tions can be performed simultaneously without blocking each other [8].

#################### Master Stats #######################

This test was executed at: 2013­07­01 17:37:38
Duration of the test: 20 min
Target number of concurrent users: 300
Total number of generated users: 35851
Measured Request rate (MRR): 39.21 req/s
Number of AGGRESSIVE_USER: 11950 (33.0)%
Number of NON­BIDDER_USER: 7697 (21.0)%
Number of PASSIVE_USER: 16204 (45.0)%
Average number of action per user: 119 actions

Figure 28: Test Report 2 - Section 1: global information

In the section 1 of Test report 2 (Figure 28) shows that the Measured Request
Rate (MRR) increased by 42%. Additionally, each user performed averagely 30%
more actions in this experiment.

Similarly in the second section (Figure 30), the average and maximum re-
sponse time of all action decreased by almost 47%. Moreover, the error rate sec-
tion (Figure 29) depicts that there was no error until the number of concurrent
users was below 182, that is 21% more users than the last experiment.

Figure 31 shows that the response time of aggressive type of users is decreased
by 50% approximately in comparison with the previous experiment in Figure 22.
In summary, all of these indicators suggest significant improvement in the perfor-
mance of SUT.

6http://www.postgresql.org

31

Figure 29: Test Report 2 - Error rate

######## AVERAGE/MAX RESPONSE TIME per METHOD CALL ##########

AGGRESSIVE_USER (33.0 %) PASSIVE_USER (45.0 %) NON­BIDDER_USER (21.0 %)
Method Call Average (sec) Max (sec) Average (sec) Max (sec) Average (sec) Max (sec)
GET_AUCTION(ID) 1.18 15.58 1.1 15.95 1.25 15.8
BROWSE() 4.99 23.61 5.13 23.47 5.23 23.6
GET_BIDS(ID) 1.51 15.25 1.54 15.56 1.63 15.02
BID(ID,PRICE,USERNAME,PASSWORD) 3.25 18.65 3.25 18.37 0.0 0.0
SEARCH(STRING) 1.48 14.66 1.54 14.83 1.43 15.43

Figure 30: Test Report 2 - Section 2: Average and Maximum response time of
SUT per action or method call

32

Figure 31: Test Report 2 - Response time of aggressive user type per action

33

6.4 Experiment 3
The primary objective of running this experiment was to discover eventual mem-
ory leaks in the SUT. The experiment ran for 3 hours. The concurrent number of
users was set to 150 because it can be observed from the previous experiment that
the SUT does not return errors as long as the number of concurrent users remains
under 182.

The Figure 32 shows that the response time of all the actions performed by
the aggressive type of users, increased very rapidly during the ramping up period.
Similarly, Figure 33 shows that the CPU consumption was over 90 % at 1900
seconds but as the number of concurrent users stopped ramping up, the response
time and SUT’s resource load started to decline steeply. After 6000 seconds since
the experiment started, the response time of all the actions remained stable for the
rest of the test session. This phenomenon could be explained by considering the
caching feature of the SUT. Once the web server had cached the data which was
mostly accessed by the virtual users, the response time of the actions started to
stabilize.

Figure 32: Test Report 3 - Response time of aggressive user type per action

Moreover, it is noticed that the CPU and the memory utilization at the slave
node does not depend upon the test duration. Figure 34 shows that the resource
load at the slave node increased only during the ramp up period and remained
stable afterwards. For instance, when the slave node was generating the load with
the maximum number of concurrent users (i.e. 150), the memory utilization re-
mained stable at the 20%. The amount of memory used by one VM depends on
three things: First of all the python interpreter itself. The size of an empty python
interpreter draws about 4.5 MB of memory. Second, the amount of libraries im-

34

Figure 33: Test Report 3 - SUT CPU and memory utilization

ported for running the code. This can vary drastically depending on the number
and size of the libraries that are imported. To keep the memory impact at a min-
imum it is recommended that the programmer only import the classes that are
needed and not the library as a whole. The final factor to impact on memory con-
sumption is time. The longer the test takes more memory will be consumed due
to the fact that the python interpreter will be filled up with interpreter objects. The
host machine used in this experiment for the slave node featured with 16 gigabytes
of physical memory and it is calculated that each virtual user instance on the slave
node is consuming almost 21.8 megabytes of the physical memory. Therefore,
it can be estimated that the host machine for the slave node can simulate up to
750 virtual users. In this case the test was run for 3 hours which led to the high
memory impact of the VUs. In other experiment where the adapter code has been
optimized the memory impact has roughly been halved and was around 10 MB
per VU.

6.5 Experiment 4
In order to validate our approach and tool chain, we decided to compare our gen-
erated workload with a similar workload generated by the JMeter [11] tool using
static scripts. We choose JMeter because it is a mature tool and has been available
to users for over 10 years. We wanted to find out if the MBPeT tool is able to the
generate syntectic workload at the same rate as JMeter. We divided the experi-
ment into two different benchmarks. In the first benchmark we ran simple atomic
actions and sequences with both MBPeT as well as with JMeter and compared the
results. In the second benchmark, we ran bit more complex load and compared

35

Figure 34: Test Report 3 - Slave physical and virtual memory, and CPU utilization

the results. Both JMeter and MBPeT were run on the same host configuration and
tested against the same application as mentioned in Section 6.1.

6.5.1 Benchmark 1

In our first benchmark, we ran simple atomic actions and test sequences repeatedly
for 5 min with 100 users running them in parallel. We created a new model for
every single test. Every test was run three times and an average was computed.
Between each action a uniform think time of 3 seconds was used. For example,
for the sequence browse, get auction in Table 1 we would construct a PTA with
only one possible trace and with 3 second think time in between the action. We
would do the same in JMeter. Table 1 shows the result of our comparison. The
table shows that e.g., action browse was executed 4196 times when testing the
YAAS system with JMeter, compared to 4510 times when testing with MBPeT.
This corresponds to a 7,48 percent difference in speed. The column Nr of Traces
refers to how many times a particular trace has been executed. Similarly, Nr of
Actions refer to the number of actions that was executed. If a trace contains only
one action, then the two values are the same.

We note that we did not benchmark the bid action separately since it requires
that the user first searches for an auction item, then gets the bids for that particular
auction, and then places a higher bid. We also note that there is a significant
difference in the throughput when the browse action is executed compared to the
search action. This is because the database contained over 1000 auctions, and the
browse action triggered to system to return all actions in the database, while the
search action only returned one result.

36

JMeter MBPeT
Sequence of Actions Nr of Traces Nr of Actions Throughput Request Rate Nr of Traces Nr of Actions Throughput Request Rate Percent
browse 4196 4196 3,7 MB/s 14,0 req/sec 4510 4510 4,0 MB/s 15,3 req/sec 7,48 %
search 9128 9128 17,1 KB/s 30,4 req/sec 9520 9520 26,6 KB/s 33,2 req/sec 4,29 %
get action 9190 9190 17,2 KB/s 30,6 req/sec 9519 9519 28,4 KB/s 33,2 req/sec 3,58 %
get bids 9105 9105 37,2 KB/s 30,4 req/sec 9463 9463 26,4 KB/s 33,0 req/sec 3,93 %
browse,get action 3503 7086 3,1 MB/s 23,6 req/sec 3776 7606 3,5 MB/s 26,4 req/sec 7,79 %
search,get action 4564 9178 25,3 KB/s 30,6 req/sec 4607 9282 110,0 KB/s 32,3 req/sec 0,94 %
browse,get action,get bids 2659 8098 2,4 MB/s 27,0 req/sec 2698 8194 2,5 MB/s 28,3 req/sec 1,47 %
search,get action,get bids 3017 9153 31,0 KB/s 30,5 req/sec 3044 9240 96,1 KB/s 32,2 req/sec 0,89 %
browse,get action,get bids,bid 2003 8162 1,85 MB/s 27,2 req/sec 2077 8308 1,89 MB/s 27,7 req/sec 1,78 %
search,get action,get bids,bid 2229 9062 40,5 KB/s 30,1 req/sec 2340 9352 77,4 KB/s 31,2 req/sec 3,20 %

Table 1: Benchmark 1 with JMeter: Running 100 users in parallel for 5 minutes.
A uniform think time of 3 seconds between actions was used

6.5.2 Benchmark 2

In our second benchmark, we wanted to find out how our approach compares to
JMeter when the workload is more complex. In this experiment, we ran 5 different
test sequences with 100 concurrent users and a test session of 20 minutes with a
ramp-up period of 120 seconds. Between each action a uniform think time of 3
seconds was used. The tests were run three times and an average was computed.
The test sequences used in this experiment was selected based on a previous test
run of the YAAS application, where the top 5 most executed sequences were se-
lected for this experiment. We constructed a model containing the 5 selected trace
in MBPeT and did the same in JMeter. Figure 35 shows a caption of the selected
sequences implemented in JMeter. From the figure one can see that each sequence
has been implemented as a separated Thread Group. As the name implies, a thread
group is controller that controls the number of threads JMeter will use to execute
the tests. For example, the sequence browse, get action contains two containers of
actions (Browse Actions and Get Action). Each action or container contains a http
request, a pre- or post-processor for extracting something from the response, and
a constant timer set on 3 seconds. This sequences is controlled by a thread group
called browse, get action. That tread group was set to run 22 users in parallel and
have a ramp-up period of 120 second.

The test sequences and the distribution between them can be seen in Table 2.
The table shows that the JMeter tested on average a total of 13343 test sequences
while the MBPeT tested on average a total of 13483 test sequences. This corre-
sponds to a 1 percent speed advantage for the MBPeT tool. We note that there
is a difference in the percentages in which test sequences where executed. This
is because the MBPeT tool uses probabilistic models, from which load is gener-
ated, and due to the randomness in the models it is difficult to control the exact
distribution between test sequences.

37

Figure 35: JMeter

Traces JMeter MBPeT
Nr of Traces Percent of Traces Nr of Traces Percent of Traces

browse,get auction 3706 27,77 % 3682 27,31 %
search,get auction 3101 23,24 % 3218 22,87 %
browse,get auction,get bids 2427 18,19 % 2447 18,15 %
search,get auction,get bids 2306 17,28 % 2305 17,10 %
browse,get auction,get bids,bid 1803 13,51 % 1831 13,58 %
total 13343 100% 13483 100%

Table 2: Benchmark 2 with JMeter: Running 5 different traces with 100 users in
parallel for 20 minutes. A uniform think time of 3 seconds between actions was
used

6.6 Experiment 5

In this experiment, we wanted to find out if the randomness in the PTA models
affect the response times all. To be more precise, we wanted to find you if PTA
models can show worse performance compared to static scripts. In this experiment
we excluded JMeter from the experiment since we do not have an exact control
over how JMeter generated the load and only focus on static execution vs random
execution. We decided to run an experiment where we compared the result of
a normal test run with MBPeT when probabilistic execution is turn on with the
result of an other test run where have a more static setup.

To achieve this we ran a simple performance test with 150 parallel users ev-
eryone using the model found in Figure 9 for 30 minutes. We then studied the
most executed traces in the trace file and the average response time of each action.

38

Listing 8 shows a caption of the 12 most executed traces found the trace file.

aggressive_user::
browse,get_auction,get_bids:1351
browse,get_auction:1210
search,get_auction,get_bids:903
search,get_auction:833
browse,get_auction,get_bids,bid:681
search,get_auction,get_bids,bid:467
browse,get_auction,get_bids,bid,get_bids:328
search,get_auction,get_bids,bid,get_bids:225
browse:218
browse,get_auction,get_bids,browse,get_auction:186
browse,get_auction,get_bids,browse,get_auction,get_bids:162
browse,browse,get_auction,get_bids:151
browse,get_auction,get_bids,bid,get_bids,bid:149
browse,get_auction,get_bids,bid,browse,get_auction,get_bids

:147

Listing 8: Caption of the trace file showing the 12 most executed traces

We then selected the 5 most executed traces in the trace file and had the trace
file analysis tool, described in Section 4.3, to scale up the number of traces accord-
ingly to match the initial load put on the system. We then created a PTA model
with the 5 most executed traces with the individual probabilities suggested by the
trace analysis tool and had MBPeT execute the model. Figure 36 shows the PTA
that we constructed. We had MBPeT run the model for 150 parallel users for 30
minutes and we again observed the average response time of individual actions.
Table 3 shows the average response time of the individual actions for each test
run. For example, the average response time of action browse drops from 1,55
seconds to 0,98 when having a more static execution of the PTA model. In both of
the test the same amount of actions was executed. We note that the difference of
0,57 sec might at a first glance not seem as much but the difference in percent is
roughly 58%. The biggest difference was as much as 84%. This test showed that
by adding a bit of randomness to the test sequences and letting the VUs choose
actions based on a probabilistic choice, the average response time can increase
significantly. We believe that this is due to the order of actions being executed.
Certain caching mechanisms of the SUT might be triggered which in turn might
affect the results if static scripts are used and actions are always executed in the
same order.

Test 1 Test 2
Action response time (sec) response time (sec) Increase
browse 1,55 0,98 58,16%
search 0,50 0,34 47,06%
get auction 0,35 0,19 84,21%
get bids 0,52 0,36 44,44%
bid 1,19 0,77 54,55%

Table 3: Differences in average response time between MBPeT in normal mode
and forced mode

39

Figure 36: PTA model of the reduced traces

7 Conclusions
In this document, we have presented our tool, MBPeT. The tool receives PTA
models and Test Configuration from user, generates synthetic workload for the
SUT. The Test configuration defines the test environment and other parameters.
And the models specify the probabilistic distribution of actions and different types
of users. The tool has distributed architecture where one master node controls
several slave nodes in parallel. This makes the tool high scalable and capable of
generating load at high rate. All slave nodes and SUT node monitor their own
local resource load and send the information back to the master. Based on the
information of resource utilization at nodes and test simulation data from slave
nodes, master node renders a graphical test report.

The slave nodes store the values of different KPIs during the test generation
e.g. response time, error rate. Later from these KPIs, we could observe the per-
formance of SUT under the given load and the level of the load at that particular
moment when KPIs crossed the target threshold.

For future development, we have planned several features to incorporate in
our tool. By allowing the user to add more information in the model, so that the
tool can generate synthetic workload closer to the real workload. In addition to
defining a target KPIs value for an action, user would also be able to specify the
target KPIs value for a particular action sequence. Further, the load generation
process can be further optimized, so that the slave node can generate workload
at high rate while not consuming lot of resources. Moreover, instead of having
a command line interface, we are planning to provide a fully featured GUI dash-
board to the user. The advantage of having a GUI interface is that it provides a
standard and convenient method for performing a given task rather than creating
a set of commands for each operation. It would also allow the user to monitor the

40

status of different slave nodes during load generation process.

References
[1] Ashlish Jolly. Historical Perspective in Optimising Software Testing

Efforts. http://www.indianmba.com/Faculty Column/FC139/fc139.html,
February 2013.

[2] E. Gansner, E. Koutsofios, and S. North. Drawing draphs with dot. Docu-
mentation, January 2006.

[3] Hewlett-Packard. httperf. http://www.hpl.hp.com/research/linux/httperf/httperf-
man-0.9.txt. retrieved: October, 2012.

[4] HP. HP LoadRunner. http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1175451#.URz7wqWou8E, February
2013.

[5] ITEA 2. ITEA 2 D-mint project result leaflet:
Model-based testing cuts development costs.
http://www.itea2.org/project/result/download/result/5519?file=06014 D MINT
Project Leaflet results oct 10.pdf, February 2013.

[6] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance anal-
ysis of probabilistic timed automata using digital clocks. Formal Methods in
System Design, 29:33–78, 2006.

[7] L. Richardson and S. Ruby. RESTful web services. O’Reilly Media, May
2007.

[8] PostgreSQL. Concurrency control. http://www.postgresql.org/docs/9.1/static/mvcc-
intro.html. retrieved: March, 2013.

[9] SQLite. File locking and concurrency in sqlite version 3.
http://www.sqlite.org/lockingv3.html. retrieved: March, 2013.

[10] Sun. Faban Harness and Benchmark Framework.
http://java.net/projects/faban/, February 2013.

[11] The Apache Software Foundation. Apache JMeter. http://jmeter.apache.org/.
Retrieved: October, 2012.

41

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2847-6
ISSN 1239-1891

