
Dead-link checker status (does not actually build guide itself): buildbuild failingfailing

Guide
This is a guide to projects and so�ware development at the Netherlands eScience Center. It both

serves as a source of information for exactly how we work at the eScience Center, and as a basis

for discussions and reaching consensus on this topic.

This Guide is a work in progress

Read this book online here: https://guide.esciencecenter.nl

If you would like to contribute to this book see CONTRIBUTING.md.

To see who is responsible for which part of the guide see chapter_owners.md.

The guide is best read online, but there is a PDF document for o�line reading.

So�ware Development
In this chapter we give an overview of the best practices for so�ware development at the

Netherlands eScience Center, including a rationale.

So�ware checklist
Here we provide a short checklist for so�ware projects, the rest of this chapter elaborates on the

various point in this list.

The bare minimum that every so�ware project should do, from the start, is:

Pick & include an open source license

Use version control

Use a publicly accessible version controlled repository

Add a readme describing the project

We recommend that you also do the following (from the start of the project):

Use code quality tools

Testing

Use standards

Additional steps depend on the goal of the so�ware (zero or more can apply):

I'm publishing a paper

I'm expecting users

I'm expecting contributors

https://travis-ci.org/NLeSC/guide
https://guide.esciencecenter.nl/

I'm publishing a paper
Add a CITATION.c� file

Make your so�ware citable

Cite DOI in paper

I'm expecting users
Release your so�ware

Provide user documentation

Easy installation

Provide issue tracker

I'm expecting contributors
Provide development documentation

Provide a means of communication

Implement and add a code of conduct

Contribution guideline

Version control
Why would you use version control so�ware and hosting (such as GitHub)?

Easier to collaborate Version control makes it easier to work on the same code

simultaneously, while everyone still has a well defined version of the so�ware (in contrast to

a google-docs or shared file system type of system). Moreover, version control hosting

websites such as Github provide way to communicate in a more structed way, such as in

code reviews, about commits and about issues.

Reproducibility By using version control, you never lose previous versions of the so�ware.

This also gives you a log of changes and allows you to understand what happened.

Backup Version control is usually pushed to an external a shared server, which immediately

provides a backup.

Integration Version control so�ware and host makes it more easy to integrate with other

so�ware that support modern so�ware development, such as testing (continuous

integration ,automatically run tests, build documentation, check code style, integration

with bug-tracker, code review infrastructure, comment on code).

GitHub
Netherlands eScience center uses GitHub GitHub for version control. To keep our code

transparent and findable the preferred code hosting platform is GitHub and version

https://www.github.com/

management is git. The repository should preferably be public from the start.

By default an eScience Research Engineer is expected to create a new GitHub organization for

each project and create repositories in there. However a new repository should be made in the

Netherlands eScience Center GitHub organization (https://github.com/NLeSC) when the

repository is used in multiple projects.

Policy

No repositories which the Netherlands eScience Center is paying for should be in personal

accounts, they SHOULD always be in either the Netherlands eScience Center GitHub

organization or in a project based GitHub organization

GitHub supports two-factor authentication. This SHOULD be enabled for your account

Project based GitHub organizations

MUST have at least two owners that are Netherlands eScience center employees

MUST be registered at https://nlesc.github.io/, to keep track of all the project

organizations

Private repositories can be created. Free when GitHub's education discount is requested.

NOTE: The Netherlands eScience Center IP policy applies to any so�ware we

contribute to, so the repository SHOULD become open source at some point. To prevent

private repositories from remaining unnecessarily private forever please add a brief

statement in the README of your repository, clarifying:

Why is this repository private?

On which date can this repository be made public?

Who should be consulted if we would like to make the repository public in the

future?

Netherlands eScience center Github organization (https://github.com/NLeSC)

Only Netherlands eScience center employees are members

All members have permission to create new repositories

Collaborators SHOULD be used to grant access to non-members

A limited number of slots for private repositories is available, but using them is

discouraged

To prevent private repositories from remaining unnecessarily private forever please add

a brief statement in the README of your repository, clarifying:

Why is this repository private?

On which date can this repository be made public?

Who should be consulted if we would like to make the repository public in the

future?

Version control from the beginning of the project
It is highly recommended to start using version control on day one of the project.

https://help.github.com/articles/creating-a-new-organization-account/
https://github.com/NLeSC
https://github.com/NLeSC
https://help.github.com/articles/about-two-factor-authentication/
https://github.com/NLeSC/nlesc.github.io#adding-an-github-organization
https://nlesc.github.io/
https://education.github.com/
https://www.esciencecenter.nl/nlesc_ip_policy_2017.pdf
https://github.com/NLeSC
https://help.github.com/articles/inviting-collaborators-to-a-personal-repository/

Use git as version control system
Other version control systems can be used if the project does not start in the eScience Center

and does not use git, or when the prevailing version control system in the particular community

is not git. Even then, changing version control systems should be considered (especially if

Subversion or another centralised system is used).

Git documentation:

GitHub help: http://help.github.com

Git homepage: http://git-scm.com/

Pro Git Online Book: http://git-scm.com/book

Reference: http://gitref.org/index.html

In depth book: Version Control with Git

for those who know subversion and want to learn git: Git - SVN Crash Course

Choose one branching model
A branching model describes how the project deals with di�erent versions of the codebase, like

releases and various development versions, and how to accept code contributions. Make the

choice explicit in the contribution guidelines, and link to documentation on how to get started

with it. Our default choice is GitHub flow branching model

GitHub flow is a very simple and sane branching model. It supports collaboration and is based

on pull requests, therefore relies heavily on GitHub. The Pro Git book describes in detail the

workflow of collaboration on the project with use of git branches, forks and GitHub in

Contributing to a Project chapter. Other more complicated models could be used if necessary,

but we should strive for simplicity and uniformity within the eScience Center since that will

enhance collaboration between the engineers. Learning a new branching model should not

stand in the way of contributions. You can learn more about those other models from atlasian

page.

Repositories should be public
A public code repository has several benefits:

It makes your code findable.

It is a central point for users and collaborators.

It shows your code to world, allowing (re)use and enables you to get credit for your work.

It is usually not hosted on your laptop, and hence provides an external backup.

Unless code cannot be open (e.g. when working with commercial partners, or when there are

competitiveness issues) it should be in a public online repository. In case the code uses data

http://help.github.com/
http://git-scm.com/
http://git-scm.com/book
http://gitref.org/index.html
http://www.amazon.com/Version-Control-Git-collaborative-development/dp/1449316387/ref=sr_1_1?ie=UTF8&qid=1347950111&sr=8-1&keywords=git
http://git-scm.com/course/svn.html
https://guides.github.com/introduction/flow/
https://git-scm.com/doc
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project
https://www.atlassian.com/git/tutorials/comparing-workflows

that cannot be open, an engineer should try to keep sensitive parts outside of the main

codebase. If you accidentally included copyrighted files in your repository, you need to remove

them from the HEAD as well as from history. There is a gist that explains how.

Meaningful commit messages
Commit messages are the way for other developers to understand changes in the codebase. In

case of using GitHub flow model, commit messages can be very short but pull request

comments should explain all the changes. It is very important to explain the why behind

implementation choices. To learn more about writing good commit messages, read tpope’s

guide and this post

GitHub has some interesting features that allow you to close issues directly from commit

messages.

Code snippets library
Sometimes, we develop small snippets of code that can be directly reused in other projects, but

that are too small to put in a library. We store these code snippets in git, in GitHub Gists.

Code Quality
Ways to improve code quality are in the Code quality chapter on the Turing Way.

There are online so�ware quality improvement tools see the language guides for good options

per language.

Editorconfig
The eScience Center has a shared editor config file

Name spaces
If your language supports namespaces, use nl.esciencecenter or better a namespace based on

the project.

Code reviews
See the Code Reviews section.

https://gist.github.com/jspaaks/df292d42ecbd5e28d4620f011c602b90
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://who-t.blogspot.nl/2009/12/on-commit-messages.html
https://help.github.com/articles/closing-issues-via-commit-messages/
https://gist.github.com/
https://the-turing-way.netlify.app/code_quality/code_quality.html
https://the-turing-way.netlify.app/code_quality/code_quality.html#Online-services-providing-software-quality-checks
https://raw.githubusercontent.com/NLeSC/exemplum/master/.editorconfig

Code reviews

Introduction
At the eScience Center, we value so�ware quality. Higher quality so�ware has fewer defects,

better security, and better performance, which leads to happier users who can work more

e�ectively.

Code reviews are an e�ective method for improving so�ware quality. McConnell (2004) suggests

that unit testing finds approximately 25% of defects, function testing 35%, integration testing

45%, and code review 55-60%. While that means that none of these methods are good enough

on their own, and that they should be combined, clearly code review is an essential tool here.

Code review also improves the development process. By reviewing new additions for quality,

less technical debt is accumulated, which helps long-term maintainability of the code.

Reviewing lets developers learn from each other, and spreads knowledge of the code around the

team. It is also a good means of getting new developers up to speed.

The main downside of code reviews is that they take time and e�ort. In particular, if someone

from outside the project does the reviewing, they'll have to learn the code, which is a significant

investment. Once up to speed, the burden is reduced significantly however, and the returns

include a much smaller amount of time spent debugging later.

Approach
It's important to distinguish between semi-formal code reviews and formal code inspections.

The latter involve "up to six participants and hours of meetings paging through detailed code

printouts" (SMARTBEAR 2016). As this extra formality does not seem to yield better results, we

limit ourselves to light-weight, informal code reviews.

Process
We haven't yet decided on how to integrate code reviews into our working process. While that

gets hashed out, here is some general advice from various sources and experience.

Review everything, nothing is too short or simple

Try to have something else to do, and spread the load throughout your working day. Don't

review full-time.

Don't review for more than an hour at a time, a�er that the success rate drops quite quickly

Don't review more than 400 lines of code (LOC) at a time, less than 200 LOC is better

Take the time, read carefully, don't review more than 500 LOC / hour

Prerequisites
Before handing over a change or a set of code for review, the following items should be there for

the reviewer to work with:

Documentation on what was changed and why (feature, bug, issue #, etc.)

Comments / annotations by the author on the code itself

Test cases

Also, before doing a code review, make sure any tools have run that check the code

automatically, e.g. checkers for coding conventions and static analysis tools, and the test suite.

Ideally, these are run as part of the continuous integration infrastructure.

Review checklist
This section provides two checklists for code reviews, one for the whole program, and one for

individual files or proposed changes.

In all cases, the goal is to use your brain and your programming experience to figure out how to

make the code better. The lists are intended to be a source of inspiration and a description of

what should be best practices in most circumstances. Some items on this list may not apply to

your project or programming language, in which case they should be disregarded.

Excluded from this checklist

The following items are part of a so�ware quality check, but are better done by an automated

tool than by a human. As such, they've been excluded from this checklist. If tools are not

available, they should be checked manually.

Coding conventions (e.g. PEP 8)

Test coverage

Rubric for assessing code quality

All code should be level 3 or 4.

Level 1 2 3 4

Level 1 2 3 4

names

names
appear
unreadable,
meaningless
or
misleading

names
accurately
describe the
intent of the
code, but can
be incomplete,
lengthy,
misspelled or
inconsistent
use of casing

names
accurately
describe the
intent of the
code, and are
complete,
distinctive,
concise,
correctly
spelled and
consistent use
of casing

all names in the
program use a
consistent
vocabulary

headers

headers are
generally
missing or
descriptions
are
redundant
or obsolete;
use mixed
languages
or are
misspelled

header
comments are
generally
present;
summarize the
goal of parts of
the program
and how to use
those; but may
be somewhat
inaccurate or
incomplete

header
comments are
generally
present;
accurately
summarize the
role of parts of
the program
and how to use
those; but may
still be wordy

header
comments are
generally
present;
contain only
essential
explanations,
information
and references

comments

comments
are
generally
missing,
redundant
or obsolete;
use mixed
languages
or are
misspelled

comments
explain code
and potential
problems, but
may be wordy

comments
explain code
and potential
problems, are
concise

comments are
only present
where strictly
needed

layout

old
commented
out code is
present or
lines are
generally
too long to
read

positioning of
elements
within source
files is not
optimized for
readability

positioning of
elements
within source
files is
optimized for
readability

positioning of
elements is
consistent
between files
and in line with
platform
conventions

formatting
formatting
is missing or
misleading

indentation,
line breaks,
spacing and
brackets
highlight the
intended
structure but
erratically

indentation,
line breaks,
spacing and
brackets
consistently
highlight the
intended
structure

formatting
makes similar
parts of code
clearly
identifiable

no need to assess a level that is not relevant to the so�ware

level 2 implies that the features in level 1 are not present, level 4 implies that the features in

level 3 are also present

This rubric is based on:

Stegeman, Barendsen, & Smetsers (2016). Designing a rubric for feedback on code

quality in programming courses. In proceedings of the 16th Koli Calling International

Level 1 2 3 4

flow

there is deep
nesting;
code
performs
more than
one task per
line;
unreachable
code is
present

flow is complex
or contains
many
exceptions or
jumps; parts of
code are
duplicate

flow is simple
and contains
few exceptions
or jumps;
duplication is
very limited

in the case of
exceptions or
jumps, the most
common path
through the
code is clearly
visible

idiom

control
structures
are
customized
in a
misleading
way

choice of
control
structures is
inappropriate

choice of
control
structures is
appropriate;
reuse of library
functionality
may be limited

reuse of library
functionality
and generic
data structures
where possible

expressions

expressions
are repeated
or contain
unnamed
constants

expressions are
complex or
long; data
types are
inappropriate

expressions are
simple; data
types are
appropriate

expressions are
all essential for
control flow

decomposition

most code is
in one or a
few big
routines;
variables
are reused
for di�erent
purposes

most routines
are limited in
length but mix
tasks; routines
share many
variables
instead of
having
parameters

routines
perform a
limited set of
tasks divided
into parts; use
of shared
variables is
limited

routines
perform a very
limited set of
tasks and the
number of
parameters and
shared
variables is
limited

modularization

most code is
in one or a
few large
modules; or
modules are
artificially
separated

modules have
mixed
responsibilities,
contain many
variables or
contain many
routines

modules have
clearly defined
responsibilities,
contain few
variables and a
somewhat
limited amount
of routines

modules are
defined such
that
communication
between them
is limited

https://creativecommons.org/licenses/by-nc/4.0/
http://dl.acm.org/citation.cfm?id=2999555

Conference on Computing Education Research. ACM.

Program level checklist

Here is a list of things to consider when looking at the program as a whole, rather than when

looking at an individual file or change.

Documentation

Documentation is a prerequisite for using, developing and reviewing the program. Here are

some things to check for.

Is there a description of the purpose of the program or library?

Are detailed requirements listed?

Are requirements ranked according to MoSCoW?

Is the use and function of third-party libraries documented?

Is the structure/architecture of the program documented? (see below)

Is there an installation manual?

Is there a user manual?

Is there documentation on how to contribute?

Including how to submit changes

Including how to document your changes

Architecture

These items are mainly important for larger programs, but may still be good to consider for

small ones as well.

Is the program split up into clearly separated modules?

Are these modules as small as they can be?

Is there a clear, hierarchical or layered, dependency structure between these modules?

If not, functionality should be rearranged, or perhaps heavily interdependent modules

should be combined

Can the design be simplified?

Security

If you're making so�ware that is accessible to the outside world (e.g. a web application), then

security becomes important. Security issues are defects, but not all defects are security issues. A

security-conscious design can help mitigate the security impact of defects.

Which modules deal with user input?

Which modules generate output?

Are input and output compartmentalised?

If not, consider making separate modules that manage all input and output, so

validation can happen in one place

In which modules is untrusted data present?

The fewer the better

Is untrusted data compartmentalised?

Ideally, validate in the input module and pass only validated data to other parts

Legal

"I'm an engineer, not a lawyer!" is an o�-overheard phrase, but being an engineer doesn't give

you permission to ignore the legal rights of the creators of the code you're using. Here are some

things to check. When in doubt, ask your licensing person for advice.

Are the licenses of all modules/libraries that are used documented?

Are the requirements set by those licenses fulfilled?

Are the licenses included where needed?

Are copyright statements included in the code where needed?

Are copyright statements included in the documentation where needed?

Are the licenses of all the parts compatible with each other?

Is the project license compatible with all libraries?

File/Change level checklist

When you're checking individual changes (e.g. pull requests) or files, the code itself becomes the

subject of scrutiny. Depending on the language, files may contain interfaces, classes or other

type definitions, and functions. All these should be checked, as well as the file overall:

Does this file contain a logical grouping of functionality?

How big is it? Should it be split up?

Is it easy to understand?

Can any of the code be replaced by library functions?

Interfaces

Is the interface documented?

Does the concept it models make sense?

Can it be split up further? (Interfaces should be as small as possible)

Note that most of the following items assume an object-oriented programming style, which may

not be relevant to the code you're looking at.

Classes and types

Is the class documented?

Does it have a single responsibility? Can it be split?

If it's designed to be extended, can it be?

If it's not designed to be extended, is it protected against that? (e.g. final declarations)

If it's derived from another class, can you substitute an object of this class for one of its

parent class(es)?

Is the class testable?

Are the dependencies clear and explicit?

Does it have a small number of dependencies?

Does it depend on interfaces, rather than on classes?

Function/Method declarations

Are there comments that describe the intent of the function or method?

Are input and output documented? Including units?

Are pre- and postconditions documented?

Are edge cases and unusual things commented?

Function/Method definitions

Are edge cases and unusual things commented?

Is there incomplete code?

Could this function be split up (is it not too long)?

Does it work? Perform intended function, logic correct, ...

Is it easy to understand?

Is there redundant or duplicate code? (DRY)

Do loops have a set length and do they terminate correctly?

Can debugging or logging code be removed?

Can any of the code be replaced by library functions?

Security

If you're using a library, do you check errors it returns?

Are all data inputs checked?

Are output values checked and encoded properly?

Are invalid parameters handled correctly?

Tests

Do unit tests actually test what they are supposed to?

Is bounds checking being done?

Is a test framework and/or library used?

Providing feedback

The main purpose of a code review is to find issues or defects in a piece of code. These issues

then need to be communicated back to the developer who proposed the change, so that they

can be fixed. Doing this badly can quickly spoil everyone's fun.

Perhaps the most important point in this guide therefore is that the goal of a code review is not

to provide criticism of a piece of code, or even worse, the person who wrote it. The goal is to

help create an improved version.

So, when providing feedback, stay positive and constructive. Suggest a better way if possible,

rather than just commenting that the current solution is bad. Ideally, submit a patch rather

than an issue ticket. And always keep in mind that you're not required to find anything, if the

code is fine, it's fine. If it's more than fine, file a compliment!

Most of our projects are hosted on GitHub, so most results will be communicated through pull

requests and issues there. However, if you find something particularly bad or weird, consider

talking in person, where a lengthy, complicated, or politically sensitive explanation is easier to

do.

Communicating results through GitHub

If you are reviewing a pull request on Github, comments should be added in the Files

changed section, so they can be attached to a particular line of code. Make many small

comments this way, rather than a big ball of text with everything in it, so that di�erent issues

can be kept separate. Where relevant, refer to existing Issues and documentation.

If you're reviewing existing code rather than changes, it is still handy to use pull requests. If you

find an issue that has an obvious fix, you can submit a pull request with a patch in the usual

way.

If you don't have a fix, you can add an empty comment to the relevant line, and create a pull

request from that as a patch. The relevant line(s) will then light up in the pull request's Files

changed overview, and you can add your comments there. In this case, either the pull request

is never merged (but the comments processed some other way, or not at all), or the extra

comments are reverted and replaced by an agreed-upon fix.

In all cases, file many small pull requests, not one big one, as GitHub's support for code reviews

is rather limited. Putting too many issues into a single pull request quickly becomes unwieldy.

References
Atwood, Je� (2006) Code Reviews: Just Do It

Burke, Kevin (2011) Why code review beats testing: evidence from decades of programming

research.

http://blog.codinghorror.com/code-reviews-just-do-it/
https://kev.inburke.com/kevin/the-best-ways-to-find-bugs-in-your-code/

McConnell, Steve (2004) Code Complete: A Practical Handbook of So�ware Construction,

Second Edition. Microso� Press. ISBN-13: 978-0735619678

SMARTBEAR (2016) Best practices for code review.

Licensing
Without a license, all rights are at the author of the code or data, and that means nobody else

can use, copy, distribute, or modify it work without consent. A license gives this consent.

So�ware licences
So�ware licenses are explained in The Turing Way chapter.

Apache 2 license
Apache 2 license

The Apache License version 2.0 is the default choice for licensing so�ware developed at the

Netherlands eScience Center. Other licenses can be used in special cases, e.g. when we add to

existing so�ware that already has a di�erent license (see below), or if there are commercial

partners that require di�erent licensing.

The formal text of the licence is here: http://www.apache.org/licenses/LICENSE-2.0.html An

informal explanation of what that means is here: http://www.oss-

watch.ac.uk/resources/apache2

License grant

Each source file in your program or library should start with the following copyright statement

in a comment block at the top (but underneath a shebang line if present, for technical reasons):

The same notice should be somewhere in your README file, which should also contain an

overview of dependencies and which licenses they are under. For <years> , you should list all

years in which changes were published, so if you started in a private repository in 2015, opened

it up in 2016, and did the final commit in 2017, <years> should be 2016, 2017. For our

"standard" projects, the default is to share the copyright between the eScience Center and the

Copyright Netherlands eScience Center and

Licensed under the Apache License, version 2.0. See LICENSE for detai

years< > Legal< entities of

https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/
https://the-turing-way.netlify.app/licensing/01/softwarelicenses.html
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.oss-watch.ac.uk/resources/apache2

PI(s) institutions, but other arrangements may have been made. So check that, and make sure

everyone is represented under <Legal entities of project partners> .

LICENSE

The actual license of the code is stored in the LICENSE file. Github can add this file

automatically when you create a new repository, or you can add it via the repositories Github

page.

NOTICE

The NOTICE file is the Apache License' way of dealing with attributions. If you have any

dependencies that are distributed under the Apache License, and you redistribute them (in either

binary or source code form), then you must include the original NOTICE file(s) as well. If you

have any attribution requirements of your own, you can add them in your own NOTICE file. If

you do not distribute the dependencies, but only e.g. list them in a requirements.txt, then you

do not need to include their NOTICE files in your program.

NOTICE should contain the following text, adapted with the product's name and copyright

dates:

If any of the so�ware dependencies has a NOTICE file, its contents shoud be appended below.

Read more in the ASF licensing how-to.

Modifying existing so�ware
If you are modifying a file written by someone else, which already has its own copyright

statement and Open Source license grant (possibly with a di�erent license), then that existing

statement and the grant must be kept. If you've added more than a trivial fix, add the first of the

two lines above to the copyright statement, but keep the existing license grant. In these cases,

we simply release our contributions under the same license the other contributors have chosen,

as this avoids a lot of unnecessary complexity. If the so�ware is proprietary, ask for advice first.

Communication

 [PRODUCT_NAME]

 Copyright [XXXX-XXXX] The Netherlands eScience Center, [PROJECT_PAR

 This product includes software developed at

 The Netherlands eScience Center (https://www.esciencecenter.nl/)

 For the [PROJECT_NAME] project

https://help.github.com/articles/adding-a-license-to-a-repository/
http://www.apache.org/dev/licensing-howto.html

Communication to the outside world is important for visibility of Netherlands eScience Center

projects and for building the user base.

Communication to other developers is a way to build community and contributors. It also

increases our visibility in development world.

Home page
The so�ware should have a homepage with all the necessary introduction information, links to

documentation, source code (github) and latest release download (e.g. github.io pages)

The page should be created at the latest when the so�ware is ready to be seen by the outside

world. It is the place where people will learn about so�ware, so it is important to describe its

goals and functionality. It should be targeted towards non-programming users (unless so�ware

is meant for programers i.e library) but should have pointers for developers to more advanced

resources (README.md)

Discussion list
Github issues, mailing list, not private email, for all project related discussions from the

beginning of the project

There should be no private discussions about the project. Therefore once discussions are started

(in the email), either move them to github issues or if they don’t fit into issues format any more,

create the mailing list.

Demo docker image in dockerhub (with
Dockerfile)
When applies, ususally for services.

If so�ware is the service Docker image should be created at the very early stage. This will allow

for easier testing and platform independent use.

An online demo
Only for web applications

Online demo should be available since first stable release. When the website is the user interface

for researchers, make sure there is a development version running somewhere so that they can

play around with it and give usability feedback.

https://pages.github.com/

Screencast
For most so�ware it should be possible to create a screencast. This is very useful for people to

get a quick impression of what exactly you are doing without diving into the code itself. In case

your so�ware does not have a graphical user interface, even a screencast of a terminal session

can be quite informative. Try to add audio, or at least subtitles, so people know what is going

on in the video.

At the Netherlands eScience Center we gather screencasts in our Youtube Channel.

Testing
Write tests obviously takes time, so why should you do it? Test save time later on, and increase

the quality of the so�ware. More specifically:

Makes you more confident that your so�ware is correct.

It saves time in finding bugs, the tests give an indication where the bug is.

Makes it easier to make changes to the code, the tests will catch changes to way the

so�ware functions.

Tests communicate how so�ware is intended to function.

These points do not apply to prototype / throwaway phase.

unit tests
unit tests

Guide: Writing Testable Code

Continuous integration
To run testing, perform code quality analysis and build artifacts a Continuous Integration server

can be used. The build will be performed every git push and pull request. Using a CI server will

help with it works for me problems. The Netherlands eScience Center uses continuous

integration services as much as possible when creating code.

continuous integration (CI), public on Travis

CI meaning: compile, unit test, integration test, quality analysis etc. Once there is some build

process established and tests set up, CI should be configured too. It will save you a lot of time

on debugging and allow for much quicker problem diagnosis.

Travis-CI

https://www.youtube.com/user/NLeScienceCenter
https://en.wikipedia.org/wiki/Unit_testing
http://misko.hevery.com/code-reviewers-guide/
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/

The Netherlands eScience Center public repositories should be built with Travis-CI. Travis-CI is

free for Open Source projects. A Github repository can be added to Travis-CI by a Github user

with admin right on the repository. At the moment Travis-CI performs builds in Ubuntu and OS X

operating systems.

Getting started with Travis CI

PS. If you want to get mails from Travis-CI then you have to login at https://travis-ci.org

AppVeyor

To build repositories inside the Microso� Windows operation system use AppVeyor. AppVeyor is

free for Open Source projects.

Nightly builds

Most CI builds are triggered by a git push, but sometimes the repository must be build every

night. Possible reasons for nightly builds:

Make sure the repository stays working even if there are no changes pushed to the

repository, but it's dependencies are changing possibly breaking the code in the repository.

The build performs an action that needs to be performed daily like updating a cache.

For triggering nightly builds in Travis-CI Cron jobs can be used.

Polling tools

All major CI services support some form of cctray.xml feed. This feed can be read by polling

tools to automatically keep an eye on your project builds. For instance, BuildNotify, CCMenu

and CCTray give you a tray icon that turns red when a build fails.

Code coverage
Code coverage is a measure which describes how much of the source code is exercised by the

test suite. At the Netherlands eScience Center we require minimum of 70% coverage.

Setting up code coverage for a repository depends on the programming language, see the

language specific guides for setup instructions.

The code coverage should be performed when a test suite is run as part of Continuous

Integration build job. The code coverage results can be published on code coverage and/or

code quality services.

https://travis-ci.org/
http://docs.travis-ci.com/user/getting-started/
https://travis-ci.org/
https://www.appveyor.com/
https://docs.travis-ci.com/user/cron-jobs/
https://bitbucket.org/Anay/buildnotify/wiki/Home
http://ccmenu.org/
http://cruisecontrolnet.org/projects/ccnet/wiki/CCTray_Download_Plugin
https://the-turing-way.netlify.app/code_quality/code_quality.html#Online-services-providing-software-quality-checks

Code coverage services

The publishing of the code coverage can be performed during a Continuous Integration build

job. The code coverage service o�ers a visualization of the coverage and a metric which can be

displayed as a badge/shield icon on the repository website. See the language specific guides

which code coverage services are available and preferred for that language.

Code coverage services support many languages and a usually free for Open Source projects.

Below is a short list of services and their strengths.

Codecov

Shows unified coverage and separate coverage for build matrix e.g. di�erent Python versions.

For example project see https://codecov.io/gh/xenon-middleware/xenon, with a Java 7/8 and

Linux/Windows/OSX OS build matrix.

Coveralls

More popular then Codecov. For example project see https://coveralls.io/r/NLeSC/MAGMa

End2end tests
For (web) user interfaces. example with protractor and angular

Once the web page has any interface, e2e tests should be implemented.

Dependencies tracking
David or other service depending on codebase language.

Checking for dependency updates should be done regularly. It can save a lot of time, avoiding

code dependent on deprecated functionality.

Release
Releases are a way to mark or point to a particular milestone in so�ware development. This is

useful for users and collaborators, e.g. I found a bug running version x. For publications that

refer to so�ware, refering to a specific release enhances the reproducability.

Apache foundation describes their release policy.

Release cycles will depend on the project specifics, but in general we encourage quick agile

development: release early and o�en

https://codecov.io/
https://docs.travis-ci.com/user/customizing-the-build/#Build-Matrix
https://codecov.io/gh/xenon-middleware/xenon
https://coveralls.io/
https://coveralls.io/r/NLeSC/MAGMa
https://angular.github.io/protractor/#/
https://david-dm.org/
http://www.apache.org/
http://www.apache.org/dev/release.html

Semantic versioning

Releases are identified by a version number. Semantic Versioning (semver) is the most

accepted and used way to add numbers to so�ware versions. It is a way of communicating

impact of changes in the so�ware on users.

A version number consists of three numbers: major, minor, and patch, separated by a dot: 2.0.0.

A�er some changes to the code, you would do a new release, and increment the version

number. Increment the:

MAJOR version when you make incompatible API changes,

MINOR version when you add functionality in a backwards-compatible manner, and

PATCH version when you make backwards-compatible bug fixes.

Very o�en package managers depend on semver and will not work as expected otherwise.

Releasing code on github

Github makes it easy to do a release straight from your repositories website. See github

releases for more information.

CHANGELOG.md

A change log is a way to communicate notable changes in a release to the users and

contributors. It is typically a text file at the root of your repository called CHANGELOG.md. Every

release should have relevant entry in change log.

See Keep a CHANGELOG for some best practices.

One command install

To not scare away users and (potential) collaborators, installing the so�ware should be easy, a

one command process. The process itself typically includes installing dependencies, compiling,

testing, and finally actual installation, and can be quite complex. The use of a proper build

system is strongly recommended.

Package in package manager

If your so�ware is useful for a wider audience, create a package that can be installed with a

package manager. Package managers can also be used to install dependencies quickly and

easily.

For Python use pip

For Javascript use npm

http://semver.org/
https://help.github.com/categories/releases/
http://keepachangelog.com/
https://pypi.python.org/pypi/pip
https://www.npmjs.com/package/npm

C, C++, Fortran, ... use packages from your distributions o�icial repository. List your actual

dependencies in the INSTALL.md or README.md

Some standard solutions for building (compiling) code are:

The Autotools: autoconf, automake, and libtool. See the Autotools Documentation, or an

introductionary presentation by Thomas Petazzoni

CMake

Make

Release quick-scan by other engineer

A check by a fellow engineer to see if the documentation is understandable? can the so�ware be

installed? etc.

Think of it as a kind of code review but with focus on mechanics, not code. The reviewer should

check if: (i) there is easily visible or findable documentation, (ii) download works, (iii) there are

instructions on how to (iv) install and (v) start using so�ware, some of the things in this scan

could be automated with continuous integration.

Citeable

Create a DOI for each release see Making so�ware citable.

Dissemination

When you have a first stable release, or a subsequent major releases, let the world know! Inform

your coordinator and our Communications Advisor (Lode) so we can write news item on our

site, add it to the annual report, etc.

Documentation
Developed programs should be documented at multiple levels, from code comments, through

API documentation, to installation and usage documentation. Comments at each level should

take into account di�erent target audience, from experienced developers, to end users with no

programming skills.

Example of good documentation: A Guide to NumPy/SciPy Documentation

Markdown
Markdown is a lightweight markup language that allows you to create webpages, wikis and

user documentation with a minimum of e�ort. Documentation written in markdown looks

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://elinux.org/images/4/43/Petazzoni.pdf
https://cmake.org/
https://www.gnu.org/software/make/
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

exactly like a plain-text document and is perfectly human-readable. In addition, it can also be

automatically converted to HTML, latex, pdf, etc. More information about markdown can be

found here:

http://daringfireball.net/projects/markdown/

http://en.wikipedia.org/wiki/Markdown

Retext is a markdown aware text editor, that can be used to edit markdown files and convert

them into HTML or PDF. It can be found at:

https://github.com/retext-project/retext

Alternatively, 'pandoc' is a command line utility that can convert markdown documents to into

several other formats (including latex):

http://johnmacfarlane.net/pandoc/

An Eclipse plugin for previewing the HTML generated by markdown is available on this page:

https://marketplace.eclipse.org/content/markdown-text-editor

Readme
Clear explanation of the goal of the project with pointers to other documentation resources.

Use GitHub flavoured markdown for, e.g., syntax highlighting. (If reStructuredText or another

format that GitHub renders is idiomatic in your community, use that instead.) README is

targeted towards developers, it is more technical than home page. Keeping basic

documentation in README.md can be even useful for lead developer, to track steps and design

decisions. Therefore it is convenient to create it from the beginning of the project, when

initialising git repository.

StackOverflow on good readme

short gist with README.md template

The art of README from nodejs community

Well defined functionality
Ideally in README.md

Source code documentation

http://daringfireball.net/projects/markdown/
http://en.wikipedia.org/wiki/Markdown
https://github.com/retext-project/retext
http://johnmacfarlane.net/pandoc/
https://marketplace.eclipse.org/content/markdown-text-editor
https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://web.archive.org/web/20170426031931/http://stackoverflow.com:80/questions/2304863/how-to-write-a-good-readme
https://gist.github.com/jxson/1784669
https://github.com/noffle/art-of-readme/blob/master/README.md

Code comments

Code comments, can be block comments or inline comments. They are used to explain what is

the piece of code doing. Those should explain why something is done in the domain language

and not programming language - why instead of what.

API documention

API documentation should explain function arguments and outputs, or the object methods. How

they are formulated will depend on the language.

Usage documentation
User manual (as PDF) in the "doc" directory. This is the real manual, targeted at your users.

Make sure this is readable by domain experts, and not only so�ware developers. Make sure

to include:

Netherlands eScience Center logo.

Examples.

Author name(s).

Versions numbers of the so�ware and documentation.

References to:

The eScience Center web site.

The project web site.

The Github page of the project.

Location of the issue tracker.

More information (e.g. research papers).

Documented development setup
(good example is Getting started with khmer development) It should be made available once

there is more than one developer working on the codebase. If your development setup is very

complicated, please consider providing a Dockerfile and docker image.

Contribution guidelines
Contribution guidelines make it easier for collaborators to contribute, and smooth the process

of collaboration.

Guidelines should be made available once the code is available online and there is a process for

contributions by other people. Good guidelines will save time of both lead developer and

http://khmer.readthedocs.org/en/latest/dev/getting-started.html

contributor since things have to be explained only once. A good CONTRIBUTING.md file

describes at least how to perform the following tasks:

How to install the dependencies

How to run (unit) tests

What code style to use

Reference to code of conduct

When using a git branching model, the choice of branching model

An extensive example is Angular.js's CONTRIBUTING.md. Note that GitHub has built in support

for a CONTRIBUTING.md file.

Code of conduct
A code of conduct is a set of rules outlining the social norms, religious rules and responsibilities

of, and or proper practices for an individual. Such a document is advantagous for collaberation,

for several reasons:

It shows your intent to work together in a positive way with everyone.

It reminds everyone to communicate in a welcoming and inclusive way.

It provides a set of guidelines in case of conflict.

contributor covenant

CofC should be attached from the beginning of the project. There is no gain from having it with

one developer, but it does not cost anything to include it in the project and will be handy when

more developers join.

Documented code style
From the beginning of the project, a decision on the code style has to be made and then should

be documented. Not having a documented code style will highly increase the chance of

inconsistent style across the codebase, even when only one developer writes code. The

Netherlands eScience Center should have a sane suggestion of coding style for each

programming language we use. Coding styles are about consistency and making a choice, and

not so much about the superiority of one style over the other. A sane set of guides can be found

on in google documentation.

How to file a bug report
Describing how to properly report a bug will save a lot of developers's time. It is also useful to

point users to good bug report guide like one from Simon Tatham

https://the-turing-way.netlify.app/code_quality/code_quality.html#Code-style
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
https://github.com/blog/1184-contributing-guidelines
http://contributor-covenant.org/
https://github.com/google/styleguide
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

An example of such a document for Mozilla projects

Other example from Ubuntu Docuementation

Explained meaning of issue labels
Once users start submitting issues labels should be documented.

DOI or PID
making your code citable

Identifiers should be associated with releases and should be created together with first release.

So�ware citation
To get credit for your work, it should be as easy as possible to cite your so�ware.

Your so�ware should contain su�icient information for others to be able to cite your so�ware,

such as: authors, title, version, journal article (if there is one) and DOI (as described in the DOI

section). It is recommended that this information is contained on a single file.

You can use the Citation File Format to provide this information on a human- and machine-

readable format.

Read more in the blog post by Druskat et al..

Print so�ware version
Make it easy to see which version of the so�ware is in use.

if it's a command line tool: print version on the command line

if it's a website: print version within the interface

if the tool generates the output: output file should contain the version of so�ware that

generated the output

Use standards
Standard files and protocols should always be a primary choice. Using standards improves the

interoperability of your so�ware, thereby improving its usefulness.

Exchange formats

https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines
https://help.ubuntu.com/community/ReportingBugs
https://guides.github.com/activities/citable-code/
https://citation-file-format.github.io/
https://software.ac.uk/blog/2017-12-12-standard-format-citation-files

Examples include Unicode W3C, OGN, NetCDF, etc.

Protocols
Examples include HTTP, TCP, TLS, etc.

This chapter provides practical info on each of the main programming languages of the

Netherlands eScience Center.

This info is (on purpose) high level, try to provide "default" options, and mostly link to more

info.

Each chapter should contain:

Intro: philosophy, typical usecases.

Recommended sources of information

Installing compilers and runtimes

Editors and IDEs

Coding style conventions

Building and packaging code

Testing

Code quality analysis tools and services

Debugging and Profiling

Logging

Writing documentation

Recommended additional packages and libraries

Available templates

Preferred Languages
At the Netherlands eScience Center we prefer Java and Python over C++ and Perl, as these

languages in general produce more sustainable code. It is not always possible to choose which

libraries we use, as almost all projects have existing code as a starting point.

(In alphabetical order)

Java

JavaScript (preferably Typescript)

Python

OpenCL and CUDA

R

Selecting tools and libraries

On GitHub there is a concept of an "awesome list", that collects awesome libraries and tools on

some topic. For instance, here is one for Python: https://github.com/vinta/awesome-python

Now, someone has been smart enough to see the pattern, and has created an awesome list of

awesome lists: https://awesome.re/

Highly recommented to get some inspiration on available tools and libraries!

Development Services
To do development in any language you first need infrastructure (code hosting, ci, etc). Luckily

a lot is available for free now.

See this list: https://github.com/ripienaar/free-for-dev

Java code has the big advantage of being very portable.

Recommended sources of information
Javadoc API Documentation

Installing Compilers and Runtimes
Its recommended to use the latest o�icial Oracle version (Java 8) if at all possible. OpenJDK is

usually ok as well, but definitely avoid gcj.

Download Oracle Java

Installing Oracle Java in Ubuntu (via Webupd8)

Editors and IDEs
For Java we normally use the Eclipse IDE.

Coding style conventions
We follow the standard coding style defined by SUN.

Latest version seems to be the Java Coding Style on Scribd.

We have standard code formatting settings for eclipse.

TODO: describe tabs-vs-spaces and indentation size.

https://github.com/vinta/awesome-python
https://awesome.re/
https://github.com/ripienaar/free-for-dev
http://docs.oracle.com/javase/8/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.webupd8.org/2014/03/oracle-java-8-stable-released-install.html
https://www.eclipse.org/
https://www.scribd.com/doc/15884743/Java-Coding-Style-by-Achut-Reddy

code_format_nlesc_v2.xml code_cleanup_nlesc.xml

Automated checking of the code style can be done with PMD and FindBugs.`

TODO: add (a link to) our standard ruleset.

Building and packaging code
As a build system we normally use Gradle. This also determines the project layout, and has

standard features for packaging code.

Testing
The standard unit testing framework in Java is JUnit. Try to use Junit 4 if at all possible.

Use following naming scheme to distinguish unit and integration tests:

Unit tests: */Test.java, */*Test.java, and */*TestCase.java

Integration tests: */IT.java, */*IT.java, and */*ITCase.java

Test coverage can be measured with Jacoco. For running and viewing Jacoco code coverage,

use eclemma

Code quality analysis tools and services

SonarQube

SonarQube is an open platform to manage code quality which can also show code coverage

and count test results over time. SonarQube can analyze Java, C, C++, Python and Javascript.

The analysis can be done in IDE or command line using http://www.sonarlint.org/ For example

project see https://sonarcloud.io/dashboard?id=xenon-middleware_xenon-cli Notifications of

each project must be configured in your own account settings.

Codacy

Code quality and coverage grouped by file. Can setup goals to improve quality or coverage by

file or category. For example project see https://www.codacy.com/app/xenon-

middleware/xenon/dashboard

Codecov

http://gradle.org/
http://junit.org/junit4/
http://eclemma.org/jacoco/
http://www.eclemma.org/
https://about.sonarqube.com/
http://www.sonarlint.org/
https://sonarcloud.io/dashboard?id=xenon-middleware_xenon-cli
https://www.codacy.com/
https://www.codacy.com/app/xenon-middleware/xenon/dashboard
https://codecov.io/

Can show code coverages for many languages including Java, Python and Javascript. Shows

unified coverage and separate coverage for matrix builds. For example project see

https://codecov.io/github/xenon-middleware/xenon

Debugging and Profiling
Use jConsole or jVisualVM.

Logging
For logging, we use the slf4j api. The advantage of slf4j is that it is trivial to change logging

implementations. The API distribution also contains a few simple implementations.

To get logging info into Eclipse, one option is to use logback beagle.

##Writing documentation

Java has the inbuild JavaDoc system for generating API documentation, usually in the form of

HTML. Highly recommended.

##Recommended additional packages and libraries

JFreeChart is a Java library that allows to do nice looking charts.

Available Templates
There are currently no Java templates available. See The Xenon repo on GitHub as a (rather

complex) example.

Distribution
We use Bintray to publish packages.

To make the package easy for users to install, the packages can be added to JCenter. JCenter is

the largest repository in the world for Java and Android OSS libraries, packages and

components. In a Gradle build file the JCenter repository can be used by adding:

repositories {

 jcenter()

}

https://codecov.io/github/xenon-middleware/xenon
http://www.slf4j.org/
http://logback.qos.ch/beagle
http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
http://www.jfree.org/jfreechart/
https://github.com/xenon-middleware/xenon
https://bintray.com/howbintrayworks
http://jcenter.bintray.com/

Packages developed at the Netherlands eScience Center can be found in the Bintray NLeSC

repository.

Getting started
To learn about JavaScript, view the presentations by Douglas Crockford:

Crockford on JavaScript

JavaScript: The Good Parts

JavaScript trilogy:

The JavaScript Programming Language (1h50m)

Theory of the DOM (1h18m)

Advanced JavaScript (1h07m)

In this video (47m04s), Nicholas Zakas talks about sustainability aspects, such as how to write

maintainable JavaScript, how to do JavaScript testing, and good programming style (much

needed in JavaScript). Among others, he mentions the following style guides:

Google's style guide for JavaScript;

Crockford's style guide integrates with JSLint, which in turn is available as a plugin for

Eclipse.

Zakas has also written an excellent book on writing maintainable JavaScript, also within

the context of working in teams. The appendix contains a style guide with explanation.

These video tutorials (totaling a couple of hours) are useful if you're just starting with learning

the JavaScript language.

Another source of information for javascript, is the "web standards curriculum" made by the

Web Education Community Group as part of W3C:

http://www.w3.org/community/webed/wiki/Main_Page

In particular, see the page about Javascript best practices

Frameworks
To develop a web application it is no longer enough to sprinkle some JQuery calls on a html

page, a JavaScript based front end web application framework must be used. The are very

many frameworks, popularity is a good way to pick one. Currently the most popular frameworks

are

Angular

React

Vue.js

All these frameworks have a command line utility to generate an application skeleton which

includes the serve, build and test functionality.

https://bintray.com/nlesc
http://en.wikipedia.org/wiki/Douglas_crockford
http://www.youtube.com/playlist?list=PL7664379246A246CB
http://www.youtube.com/watch?v=hQVTIJBZook
http://www.youtube.com/watch?v=v2ifWcnQs6M
http://www.youtube.com/watch?v=Y2Y0U-2qJMs
http://www.youtube.com/watch?v=DwYPG6vreJg
http://www.youtube.com/watch?v=c-kav7Tf834
https://google.github.io/styleguide/javascriptguide.xml
http://javascript.crockford.com/code.html
http://www.jslint.com/
http://shop.oreilly.com/product/0636920025245.do
http://www.youtube.com/watch?v=yQaAGmHNn9s&list=PLA56F6A06883A2AD8
http://www.w3.org/community/webed/wiki/Main_Page
http://www.w3.org/community/webed/wiki/JavaScript_best_practices
https://jquery.com/
https://angular.io/
https://reactjs.org/
https://vuejs.org/

Angular
Angular is a application framework by Google written in TypeScript.

To create a Angular application use Angular CLI.

React
React is a library which can used to create interactive User Interfaces by combining

components. It is developed by Facebook. Where Angular and Vue.js are frameworks, including

all the rendering, routing, state management functonality inside them. React only does

rendering so other libraries must be used for routing and state management. Redux can be used

to let state changes flow through React components. React Router can be used to navigate the

application using URLs.

To create a React application use the Create React App How to develop the bootstrapped app

further is described in the README.md.

TypeScript React Starter is a Typescript version of create react app.

Vue.js
Vue.js is an open-source JavaScript framework for building user interfaces.

To create a Vue.js application use Vue CLI.

TypeScript Vue Starter is a guide to write Vue applications in TypeScript.

JavaScript outside browser
Most JavaScript is run in web browsers, but JavaScript can also be run on outside browsers

with NodeJS.

On Ubuntu (18.04) based systems, you can use the following commands to install NodeJS:

NodeJS comes with a package manager called npm. The package manager uses

https://www.npmjs.com/ as the package repository.

 -sL https://deb.nodesource.com/setup_10.x -E -

 -y nodejs

system packages (Ubuntu/Debian)

curl | sudo bash

sudo apt-get install

shell

https://angular.io/
https://www.typescriptlang.org/
https://cli.angular.io/
https://facebook.github.io/react/
http://redux.js.org/
https://reacttraining.com/react-router/
https://github.com/facebookincubator/create-react-app
https://github.com/Microsoft/TypeScript-React-Starter#typescript-react-starter
https://vuejs.org/
https://cli.vuejs.org/
https://github.com/Microsoft/TypeScript-Vue-Starter#typescript-vue-starter
https://nodejs.org/
https://www.npmjs.com/
https://www.npmjs.com/

Editors and IDEs
These are some good JavaScript editors:

Atom by GitHub

Brackets by Adobe

WebStorm by JetBeans

Visual Studio Code by Microso�

The best JavaScript editors are currently WebStorm and Visual Studio Code. Atom can have

some performance problems, especially with larger files.

Debugging
In web development, debugging is typically done in the browser.

The best debugging tool suite is currently the debugger built into the Google Chrome

webbrowser, and its open-source counterpart, Chromium. It can watch variables, step

through the code, lets you monitor network tra�ic, and much more. Activate the debugger

through the F12 key.

On Firefox, use either the built-in debugging functionality (again accessible through the F12

button) or install the Firebug Addon for some more advanced debugging functionality.

Microso� has a debugging toolset called 'F12' for their Internet Explorer and Edge browsers.

It o�ers similar capability as that of Google Chrome, Chromium, and Firefox.

In Safari on OS X, press ⌘⌥U.

Sometimes the JavaScript code in the browser is not an exact copy of the code you see in your

development environment, for example because the original source code is minified/uglified or

transpiled before it's loaded in the browser. All major browsers can now deal with this through

so-called source maps, which instruct the browser which symbol/line in a javascript file

corresponds to which line in the human-readable source code. Look for the 'create sourcemaps'

option when using minification/uglification/transpiling tools.

Hosting data files
To load data files with JavaScript you can't use any file system URLs due to safety restrictions.

You should use a web server (which may still serve files that are local). A simple webserver can

be started from the directory you want to host files with:

Then open the webbrowser to http://localhost:8000.

python3 -m http.server 8000

bash

http://atom.io/
http://brackets.io/
https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/
https://addons.mozilla.org/en-US/firefox/addon/firebug/

Documentation
JSDoc works similarly to JavaDoc, in that it parses your JavaScript files and automatically

generates HTML documentation. The Tag Dictionary is an overview of the tag names you can

use to document your code.

Testing
Jasmine, a behavior-driven development framework for testing JavaScript code.

Karma, Test runner, runs tests in web browser with code coverage. Use PhantomJS as

headless webbrowser on CI-servers.

Tape, a minimal testing framework that helps remove some of the black-box approach of

some of the other frameworks.

Jest, a test framework from Facebook which is integrated into the Create React App

Web based tests
To interact with web-browsers use Selenium.

Test with

Local web browser

Web browsers hosted by Sauce Labs, it has a matrix of web-browsers and Operating

Systems. Free for open source projects.

Coding style
See general front dev guidelines and Airbnb JavaScript Style Guide.

Use a linter like eslint to detect errors and potential problems.

Showing code examples
Code examples can be stored in Gists in GitHub. bl.ocks.org allows you to view the resulting

page, and serve as a small demo. There's also jsfiddle, which shows you a live preview of your

web page while you fiddle with the underlying HTML, JavaScript and CSS code.

Code quality analysis tools and services
Code climate can analyze Javascript (and Ruby, PHP). For example project see

https://codeclimate.com/github/NLeSC/PattyVis

Codacy can analyze Java, Python, Javascript and Typescript (and CSS, PHP, Scala). The

analysis for Java and Python is not as good as for Javascript. The analysis is quite slow, as

http://usejsdoc.org/
http://usejsdoc.org/#JSDoc3_Tag_Dictionary
http://jasmine.github.io/
http://karma-runner.github.io/
http://phantomjs.org/
https://github.com/substack/tape
https://github.com/facebook/jest
https://github.com/NLeSC/create-react-app
http://docs.seleniumhq.org/
https://saucelabs.com/
https://github.com/bendc/frontend-guidelines
https://github.com/airbnb/javascript
https://eslint.org/
http://bl.ocks.org/
https://jsfiddle.net/
https://codeclimate.com/
https://codeclimate.com/github/NLeSC/PattyVis
https://www.codacy.com/

it analyzes each past commit. For example project see https://www.codacy.com/app/3D-e-

Chem/molviewer-tsx/dashboard

SonarCloud is an open platform to manage code quality which can also show code

coverage and count test results over time. Can analyze Java (best supported), C, C++,

Python, Javascript and Typescript. For example project see

https://sonarcloud.io/dashboard?id=e3dchem%3Amolviewer

TypeScript
http://www.typescriptlang.org

Typescript is a typed superset of JavaScript which compiles to plain JavaScript. Typescript adds

static typing to JavaScript, which makes it easier to scale up in people and lines of code.

At the Netherlands eScience Center we prefer TypeScript over JavaScript as it will lead to more

sustainable so�ware.

Getting Started
To learn about TypeScript the following resources are available:

youtube: tutorials playlist about TypeScript

tutorial from Microso�'s TypeScript website

blog post about how TypeScript can be used with the Google Chrome/Chromium debuggers

(and presumably Firefox, and Internet Explorer) through the use of so-called 'source maps'.

(Follow this link to set up source mapping for Firefox, also useful for debugging minified

JavaScript code).

blog post that supposedly is the definitive guide to TypeScript

TypeScript Language Specification

Quickstart
To install TypeScript compiler run:

Dealing with Types
In TypeScript, variables are typed and these types are checked. This implies that when using

libraries, the types of these libraries need to be installed. More and more libraries ship with type

 -g typescriptnpm install

shell

https://www.codacy.com/app/3D-e-Chem/molviewer-tsx/dashboard
https://sonarcloud.io/
https://sonarcloud.io/dashboard?id=e3dchem%3Amolviewer
http://www.typescriptlang.org/
http://www.youtube.com/playlist?list=PLyJiOytEPs4d9QUQHHSuY3n3nBmkBuqro
http://www.typescriptlang.org/Tutorial
http://www.aaron-powell.com/posts/2012-10-03-typescript-source-maps
http://blog.oio.de/2014/04/04/internet-explorer-11-source-map-based-debugging/
http://www.codeproject.com/Articles/649271/How-to-Enable-Source-Maps-in-Firefox
http://www.sitepen.com/blog/2013/12/31/definitive-guide-to-typescript/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

declarations in them so they can be used directly. These libraries will have a "typings" key in

their package.json. When a library does not ship with type declarations then the libriaries

@types/<library-name> package must be installed using npm:

For example say we want to use the react package which we installed using npm :

To be able to use its functionality in TypeScript we need to install the typings. We can search for

the correct package at http://microso�.github.io/TypeSearch/ .

And install it with:

The --save-dev flag saves this installation to the package.json file as a development

dependency. Do not use --save for types because a production build will have been

transpiled to Javascript and has no use for Typescript types.

Editors and IDEs
These are some good TypeScript editors:

Atom by GitHub, with the atom-typescript Atom package.

Brackets by Adobe

Visual Studio Code by Microso�

WebStorm by JetBeans

The best TypeScript editors is currently Visual Studio Code as Microso� develops both the editor

and Typescript.

Debugging
In web development, debugging is typically done in the browser. Typescript can not be run

directly in web browser so it must be transpiled to Javascript. To map a breakpoint in the

 --save-dev @types/ library-namenpm install < >

shell

 react --savenpm install

shell

 --save-dev @types/reactnpm install

shell

http://microsoft.github.io/TypeSearch/
http://atom.io/
http://brackets.io/?lang=en
https://code.visualstudio.com/
https://www.jetbrains.com/webstorm/

browser to a line in the original Typescript file source maps are required. Most frameworks have

a project build system which generate source maps.

Documentation
It seems that TypeDoc is a good tool to use. Alternative could be TSdoc

Style Guides
TSLint is a good tool to check your codestyle.

For the sim-city-cs project we use this tslint.json file.

Python
Python is the "dynamic language of choice" of the Netherlands eScience Center. We use it for

data analysis and data science projects using the SciPy stack and Jupyter notebooks, and for

many other types of projects: workflow management, visualization, NLP, web-based tools and

much more. It is a good default choice for many kinds of projects due to its generic nature, its

large and broad ecosystem of third-party modules and its compact syntax which allows for

rapid prototyping. It is not the language of maximum performance, although in many cases

performance critical components can be easily replaced by modules written in faster, compiled

languages like C(++) or Cython.

The philosophy of Python is summarized in the Zen of Python. In Python, this text can be

retrieved with the import this command.

Project setup
When starting a new Python project, consider using our Python template. This template

provides a basic project structure, so you can spend less time setting up and configuring your

new Python packages, and comply with the so�ware guide right from the start.

Use Python 3, avoid 2
Python 2 and Python 3 have co-existed for a long time, but starting from 2020, development of

Python 2 is o�icially abandoned, meaning Python 2 will no longer be improved, even in case of

security issues. If you are creating a new package, use Python 3. It is possible to write Python

that is both Python 2 and Python 3 compatible (e.g. using Six), but only do this when you are

100% sure that your package won't be used otherwise. If you need Python 2 because of old,

incompatible Python 2 libraries, strongly consider upgrading those libraries to Python 3 or

https://www.html5rocks.com/en/tutorials/developertools/sourcemaps/
http://typedoc.io/
https://www.npmjs.com/package/tsdoc
https://github.com/palantir/tslint
https://github.com/indodutch/sim-city-cs/
https://github.com/ReGIS-org/regis/blob/develop/tslint.json
https://github.com/NLeSC?language=python
https://www.python.org/dev/peps/pep-0020/
https://github.com/NLeSC/python-template
https://www.python.org/doc/sunset-python-2/
https://pythonhosted.org/six/

replacing them altogether. Building and/or using Python 2 is probably discouraged even more

than, say, using Fortran 77, since at least Fortran 77 compilers are still being maintained.

Things you’re probably not using in Python 3 – but should

Six: Python 2 and 3 Compatibility Library

2to3: Automated Python 2 to 3 code translation

python-modernize: wrapper around 2to3

Learning Python
A popular way to learn Python is by doing it the hard way at

http://learnpythonthehardway.org/

Using pylint and yapf while learning Python is an easy way to get familiar with best

practices and commonly used coding styles

Dependencies and package management
Use pip or conda (note that pip and conda can be used side by side, see also what is the

di�erence between pip and conda?).

If you are planning on distributing your code at a later stage, be aware that your choice of

package management may a�ect your packaging process. See Building and packaging for

more info.

Pip + virtualenv

Create isolated Python environments with virtualenv. Very much recommended for all Python

projects since it:

installs Python modules when you are not root,

contains all Python dependencies so the environment keeps working a�er an upgrade, and

lets you select the Python version per environment, so you can test code compatibility

between Python 2.x and 3.x.

To manage multiple virtualenv environments and reference them only by name, use

virtualenvwrapper. To create a new environment, run mkvirtualenv environment_name ,

to start using it, run workon environment_name and to stop working with it, run

deactivate .

If you are using Python 3 only, you can also make use of the standard library venv module.

Creating a virtual environment with it is as easy as running python3 -m venv

/path/to/environment . Run . /path/to/environment/bin/activate to start using it

and deactivate to deactivate.

https://datawhatnow.com/things-you-are-probably-not-using-in-python-3-but-should/
https://pythonhosted.org/six/
https://docs.python.org/2/library/2to3.html
https://github.com/mitsuhiko/python-modernize
http://learnpythonthehardway.org/
https://www.pylint.org/
https://github.com/google/yapf
http://stackoverflow.com/questions/20994716/what-is-the-difference-between-pip-and-conda
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.org/
https://docs.python.org/3/library/venv.html

With virtualenv and venv, pip is used to install all dependencies. An increasing number of

packages are using wheel , so pip downloads and installs them as binaries. This means they

have no build dependencies and are much faster to install. If the installation of a package fails

because of its native extensions or system library dependencies and you are not root, you have

to revert to Conda (see below).

To keep a log of the packages used by your package, run pip freeze >

requirements.txt in the root of your package. If some of the packages listed in

requirements.txt are needed during testing only, use an editor to move those lines to

test_requirements.txt . Now your package can be installed with

The -e flag will install your package in editable mode, i.e. it will create a symlink to your

package in the installation location instead of copying the package. This is convenient when

developing, because any changes you make to the source code will immediately be available for

use in the installed version.

Conda

Conda can be used instead of virtualenv and pip. It easily installs binary dependencies, like

Python itself or system libraries. Installation of packages that are not using wheel but have a

lot of native code is much faster than pip because Conda does not compile the package, it

only downloads compiled packages. The disadvantage of Conda is that the package needs to

have a Conda build recipe. Many Conda build recipes already exist, but they are less common

than the setup.py that generally all Python packages have.

There are two main distributions of Conda: Anaconda and Miniconda. Anaconda is large and

contains a lot of common packages, like numpy and matplotlib, whereas Miniconda is very

lightweight and only contains Python. If you need more, the conda command acts as a

package manager for Python packages.

Use conda install to install new packages and conda update to keep your system up

to date. The conda command can also be used to create virtual environments.

For environments where you do not have admin rights (e.g. DAS-5) either Anaconda or

Miniconda is highly recommended, since the install is very straightforward. The installation of

packages through Conda seems very robust. If you want to add packages to the (Ana)conda

repositories, please check Build using conda. A possible downside of Anaconda is the fact that

this is o�ered by a commercial supplier, but we don't foresee any vendor lock-in issues.

pip -r requirements.txt

pip -e

install

install .

shell

http://pythonwheels.com/
http://conda.pydata.org/docs/
http://continuum.io/downloads
http://conda.pydata.org/miniconda.html
http://conda.pydata.org/docs/build_tutorials.html

Editors and IDEs
Every major text editor supports Python, either natively or through plugins. At the

Netherlands eScience Center, o�en used editors are atom, Sublime Text and vim.

PyDev is an open source IDE. The source code is available in the PyDev GitHub repository.

It has debugging, unit testing, and reporting(code analysis, code coverage) support.

For those seeking an IDE, JetBrains PyCharm is the Python IDE of choice. PyCharm

Community Edition is open source. The source code is available in the python folder of the

IntelliJ repository. It has visual debugger, unit testing and code coverage support, profiler.

JetBrains provides a list of all tools in PyCharm.

Coding style conventions
The style guide for Python code is PEP8 and for docstrings it is PEP257. We highly recommend

following these conventions, as they are widely agreed upon to improve readability. To make

following them significantly easier, we recommend using a linter.

Many linters exists for Python, prospector is a tool for running a suite of linters, it supports,

among others:

pycodestyle

pydocstyle

pyflakes

pylint

mccabe

pyroma

Make sure to set strictness to veryhigh for best results. prospector has its own

configuration file, like the .prospector.yml default in the Python template, but also supports

configuration files for any of the linters that it runs. Most of the above tools can be integrated in

text editors and IDEs for convenience.

Autoformatting tools like yapf and black can automatically format code for optimal

readability. yapf is configurable to suit your (team's) preferences, whereas black enforces

the style chosen by the black authors. The isort package automatically formats and

groups all imports in a standard, readable way.

Building and packaging code
To create an installable Python package, create a file setup.py and use the setuptools

module. Make sure you only import standard library packages in setup.py , directly or

through importing other modules of your package, or your package will fail to install on

systems that do not have the required dependencies pre-installed. Set up continuous integration

https://atom.io/
https://www.sublimetext.com/
https://realpython.com/blog/python/vim-and-python-a-match-made-in-heaven/
http://www.pydev.org/
https://github.com/fabioz/Pydev
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm
https://github.com/JetBrains/intellij-community/tree/master/python
https://www.jetbrains.com/pycharm/features/tools.html
http://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://github.com/landscapeio/prospector
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pydocstyle
https://pypi.python.org/pypi/pyflakes
https://www.pylint.org/
https://github.com/PyCQA/mccabe
https://github.com/regebro/pyroma
https://github.com/NLeSC/python-template/blob/master/%7B%7Bcookiecutter.project_slug%7D%7D/.prospector.yml
https://github.com/google/yapf
https://black.readthedocs.io/en/stable/index.html
http://timothycrosley.github.io/isort/
https://setuptools.readthedocs.io/

to test your installation script. Use pyroma (can be run as part of prospector) as a linter

for your installation script.

For packaging your code, you can either use pip or conda . Neither of them is better than

the other -- they are di�erent; use the one which is more suitable for your project. pip may

be more suitable for distributing pure python packages, and it provides some support for binary

dependencies using wheels . conda may be more suitable when you have external

dependencies which cannot be packaged in a wheel.

Upload your package to the Python Package Index (PyPI) so it can be installed with pip.

Either do this manually by using twine (tutorial),

Or configure Travis CI or Circle-CI to do it automatically for each release.

Additional guidelines:

Packages should be uploaded to PyPI using your own account

For packages developed in a team or organization, it is recommended that you

create a team or organizational account on PyPI and add that as a collaborator

with the owner rule. This will allow your team or organization to maintain the

package even if individual contributors at some point move on to do other things. At

the Netherlands eScience Center, we are a fairly small organization, so we use a

single backup account (nlesc).

When distributing code through PyPI, non-python files (such as

requirements.txt) will not be packaged automatically, you need to add them

to a MANIFEST.in file.

To test whether your distribution will work correctly before uploading to PyPI, you

can run python setup.py sdist in the root of your repository. Then try

installing your package with pip install dist/<your_package>tar.gz.

Build using conda

If desired, add packages to conda-forge. Use BioConda or custom channels (hosted on

GitHub) as alternatives if need be.

Python wheels are the new standard for distributing Python packages. For pure python

code, without C extensions, use bdist_wheel with a Python 2 and Python 3 setup, or use

bdist_wheel --universal if the code is compatible with both Python 2 and 3. If C

extensions are used, each OS needs to have its own wheel. The manylinux docker images

can be used for building wheels compatible with multiple Linux distributions. See the

manylinux demo for an example. Wheel building can be automated using Travis (for pure

python, Linux and OS X) and Appveyor (for Windows).

Testing
pytest is a full featured Python testing tool. You can use it with unittest . Pytest intro

Using mocks in Python

unittest is a framework available in Python Standard Library. Dr.Dobb's on Unit Testing with

Python

https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/
http://pythonwheels.com/
https://pypi.org/
https://github.com/pypa/twine
http://blog.securem.eu/tips%20and%20tricks/2016/02/29/creating-and-publishing-a-python-module/
https://docs.travis-ci.com/user/deployment/pypi/
https://circleci.com/blog/continuously-deploying-python-packages-to-pypi-with-circleci/
https://pypi.org/account/register
https://stackoverflow.com/questions/1612733/including-non-python-files-with-setup-py
http://conda.pydata.org/docs/build_tutorials.html
https://conda-forge.github.io/
http://pythonwheels.com/
https://packaging.python.org/distributing/#wheels
https://packaging.python.org/distributing/#pure-python-wheels
https://packaging.python.org/distributing/#universal-wheels
https://github.com/pypa/manylinux
https://github.com/pypa/python-manylinux-demo
http://pytest.org/latest/
http://pythontesting.net/framework/pytest/pytest-introduction/
http://www.drdobbs.com/testing/using-mocks-in-python/240168251
https://docs.python.org/3/library/unittest.html
http://www.drdobbs.com/testing/unit-testing-with-python/240165163

doctest searches for pieces of text that look like interactive Python sessions, and then

executes those sessions to verify that they work exactly as shown. Always use this if you

have example code in your documentation to make sure your examples actually work.

Using pytest is preferred over unittest , pytest has a much more concise syntax and

supports many useful features.

Please make sure the command python setup.py test can be used to run your tests.

When using pytest , this can be easily configured as described in the pytest

documentation.

Code coverage

When you have tests it is also a good to see which source code is exercised by the test suite.

Code coverage can be measured with the coverage Python package. The coverage package

can also generate html reports which show which line was covered. Most test runners have have

the coverage package integrated.

The code coverage reports can be published online in code quality service or code coverage

services. Preferred is to use one of the code quality service which also handles code coverage

listed below. If this is not possible or does not fit then use one of the generic code coverage

service list in the so�ware guide.

Code quality analysis tools and services
Code quality service is explained in the The Turing Way. There are multiple code quality

services available for Python. There is not a best one, below is a short list of services with their

di�erent strenghts.

Codacy

Code quality and coverage grouped by file. Can setup goals to improve quality or coverage by

file or category. For example project see https://www.codacy.com/app/3D-e-

Chem/kripodb/dashboard. Note that Codacy does not install your depencencies, which

prevents it from correctly identifying import errors.

Scrutinizer

Code quality and coverage grouped by class and function. For example project see

https://scrutinizer-ci.com/g/NLeSC/eEcology-Annotation-WS/

Landscape

https://docs.python.org/3/library/doctest.html
https://docs.pytest.org/en/latest/goodpractices.html#integrating-with-setuptools-python-setup-py-test-pytest-runner
https://coverage.readthedocs.io/
https://the-turing-way.netlify.app/code_quality/code_quality.html#Online-services-providing-software-quality-checks
https://www.codacy.com/
https://www.codacy.com/app/3D-e-Chem/kripodb/dashboard
https://scrutinizer-ci.com/
https://scrutinizer-ci.com/g/NLeSC/eEcology-Annotation-WS/
https://landscape.io/

Dedicated for Python code quality. Celery, Django and Flask specific behaviors. The Landscape

analysis tool called prospector can be run locally. For example project see

https://landscape.io/github/NLeSC/MAGMa

Debugging and profiling

Debugging

Python has its own debugger called pdb. It is a part of the Python distribution.

pudb is a console-based Python debugger which can easily be installed using pip.

If you are looking for IDE's with debugging capabilities, please check Editors and IDEs

section.

If you are using Windows, Python Tools for Visual Studio adds Python support for Visual

Studio.

If you would like to integrate pdb with vim editor, you can use Pyclewn.

List of other available so�ware can be found on the Python wiki page on debugging tools.

If you are looking for some tutorials to get started:

https://pymotw.com/2/pdb

https://github.com/spiside/pdb-tutorial

https://www.jetbrains.com/help/pycharm/2016.3/debugging.html

https://waterprogramming.wordpress.com/2015/09/10/debugging-in-python-using-

pycharm/

http://www.pydev.org/manual_101_run.html

Profiling

There are a number of available profiling tools that are suitable for di�erent situations.

cProfile measures number of function calls and how much CPU time they take. The output

can be further analyzed using the pstats module.

For more fine-grained, line-by-line CPU time profiling, two modules can be used:

line_profiler provides a function decorator that measures the time spent on each line

inside the function.

pprofile is less intrusive; it simply times entire Python scripts line-by-line. It can give

output in callgrind format, which allows you to study the statistics and call tree in

kcachegrind (o�en used for analyzing c(++) profiles from valgrind).

https://github.com/landscapeio/prospector
https://landscape.io/github/NLeSC/MAGMa
https://docs.python.org/3/library/pdb.html
https://github.com/inducer/pudb
https://github.com/Microsoft/PTVS
https://docs.python.org/3/library/pdb.html
https://sourceforge.net/projects/pyclewn
https://wiki.python.org/moin/PythonDebuggingTools
https://pymotw.com/2/pdb
https://github.com/spiside/pdb-tutorial
https://www.jetbrains.com/help/pycharm/2016.3/debugging.html
https://waterprogramming.wordpress.com/2015/09/10/debugging-in-python-using-pycharm/
http://www.pydev.org/manual_101_run.html
https://docs.python.org/2/library/profile.html
https://github.com/rkern/line_profiler
https://github.com/vpelletier/pprofile

More realistic profiling information can usually be obtained by using statistical or sampling

profilers. The profilers listed below all create nice flame graphs.

vprof

Pyflame

nylas-per�ools

Logging
logging module is the most commonly used tool to track events in Python code.

Tutorials:

O�icial Python Logging Tutorial

http://docs.python-guide.org/en/latest/writing/logging

Python logging best practices

Writing Documentation
Python uses Docstrings for function level documentation. You can read a detailed description of

docstring usage in PEP 257. The default location to put HTML documentation is Read the Docs.

You can connect your account at Read the Docs to your GitHub account and let the HTML be

generated automatically using Sphinx.

Autogenerating the documentation

There are several tools that automatically generate documentation from docstrings. These are

the most used:

pydoc

Sphinx (uses reStructuredText as its markup language)

Sphinx quickstart

Restructured Text (reST) and Sphinx CheatSheet

Instead of using reST, Sphinx can also generate documentation from the more readable

NumPy style or Google style docstrings. The Napoleon extension needs to be enabled.

We recommend using Sphinx and Google documentation style. Sphinx can easily be integrated

with setuptools, so documentation can be built with in the command python setup.py

build_sphinx .

Recommended additional packages and libraries

General scientific

https://github.com/nvdv/vprof
https://github.com/uber/pyflame
https://github.com/nylas/nylas-perftools
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/howto/logging.html#logging-basic-tutorial
http://docs.python-guide.org/en/latest/writing/logging
https://www.datadoghq.com/blog/python-logging-best-practices/
https://www.python.org/dev/peps/pep-0257/
https://readthedocs.org/
https://docs.python.org/2/library/pydoc.html
http://sphinx-doc.org/
http://www.sphinx-doc.org/en/master/usage/quickstart.html
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://google.github.io/styleguide/pyguide.html
http://sphinxcontrib-napoleon.readthedocs.io/
http://www.sphinx-doc.org/en/stable/setuptools.html

NumPy

SciPy

Pandas data analysis toolkit

scikit-learn: machine learning in Python

Cython speed up Python code by using C types and calling C functions

dask larger than memory arrays and parallel execution

IPython and Jupyter notebooks (aka IPython notebooks)

IPython is an interactive Python interpreter -- very much the same as the standard Python

interactive interpreter, but with some extra features (tab completion, shell commands, in-line

help, etc).

Jupyter notebooks (formerly know as IPython notebooks) are browser based interactive Python

enviroments. It incorporates the same features as the IPython console, plus some extras like in-

line plotting. Look at some examples to find out more. Within a notebook you can alternate

code with Markdown comments (and even LaTeX), which is great for reproducible research.

Notebook extensions adds extra functionalities to notebooks. JupyterLab is a web-based

environment with a lot of improvements and integrated tools. JupyterLab is still under

development and may not be suitable if you need a stable tool.

Jupyter notebooks contain data that makes it hard to nicely keep track of code changes using

version control. If you are using git, you can add filters that automatically remove unneeded

noise from your notebooks.

Visualization

Matplotlib has been the standard in scientific visualization. It supports quick-and-dirty

plotting through the pyplot submodule. Its object oriented interface can be somewhat

arcane, but is highly customizable and runs natively on many platforms, making it

compatible with all major OSes and environments. It supports most sources of data,

including native Python objects, Numpy and Pandas.

Seaborn is a Python visualisation library based on Matplotlib and aimed towards

statistical analysis. It supports numpy, pandas, scipy and statmodels.

Web-based:

Bokeh is Interactive Web Plotting for Python.

Plotly is another platform for interactive plotting through a web browser, including in

Jupyter notebooks.

altair is a grammar of graphics style declarative statistical visualization library. It does

not render visualizations itself, but rather outputs Vega-Lite JSON data. This can lead to

a simplified workflow.

ggplot is a plotting library imported from R.

http://www.numpy.org/
https://www.scipy.org/
http://pandas.pydata.org/
http://scikit-learn.org/
http://cython.org/
http://dask.pydata.org/
https://ipython.org/
http://ipython.readthedocs.io/en/stable/interactive/index.html
http://jupyter.org/
https://nbviewer.jupyter.org/github/ipython/ipython/blob/4.0.x/examples/IPython%20Kernel/Index.ipynb
https://github.com/ipython-contrib/jupyter_contrib_nbextensions
https://github.com/jupyterlab/jupyterlab
http://timstaley.co.uk/posts/making-git-and-jupyter-notebooks-play-nice/
http://matplotlib.org/
http://stanford.edu/~mwaskom/software/seaborn/index.html
https://github.com/bokeh/bokeh
https://plot.ly/
https://github.com/ellisonbg/altair
https://github.com/yhat/ggpy

Database Interface

psycopg is an PostgreSQL adapter

cx_Oracle enables access to Oracle databases

monetdb.sql is monetdb Python client

pymongo allows for work with MongoDB database

py-leveldb are thread-safe Python bindings for LevelDb

Parallelisation

CPython (the o�icial and mainstream Python implementation) is not built for parallel

processing due to the global interpreter lock. Note that the GIL only applies to actual Python

code, so compiled modules like e.g. numpy do not su�er from it.

Having said that, there are many ways to run Python code in parallel:

The multiprocessing module is the standard way to do parallel executions in one or

multiple machines, it circumvents the GIL by creating multiple Python processess.

A much simpler alternative in Python 3 is the concurrent.futures module.

IPython / Jupyter notebooks have built-in parallel and distributed computing capabilities

Many modules have parallel capabilities or can be compiled to have them.

At the eScience Center, we have developed the Noodles package for creating computational

workflows and automatically parallelizing it by dispatching independent subtasks to

parallel and/or distributed systems.

Web Frameworks

There are a lot web frameworks for Python that are very easy to run.

flask

cherrypy

Django

bottle (similar to flask, but a bit more light-weight for a JSON-REST service)

We recommend flask .

NLP/text mining

nltk Natural Language Toolkit

Pattern: web/text mining module

gensim: Topic modeling

Creating programs with command line arguments

http://initd.org/psycopg/
http://www.postgresql.org/
http://cx-oracle.sourceforge.net/
https://www.oracle.com/database/index.html
https://www.monetdb.org/Documentation/Manuals/SQLreference/Programming/Python
https://www.monetdb.org/
http://api.mongodb.org/python/current/#
http://www.mongodb.com/
https://code.google.com/p/py-leveldb/
https://github.com/google/leveldb
https://wiki.python.org/moin/GlobalInterpreterLock
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html
https://ipython.org/ipython-doc/3/parallel/
http://nlesc.github.io/noodles/
http://flask.pocoo.org/
http://www.cherrypy.org/
https://www.djangoproject.com/
http://bottlepy.org/
http://www.nltk.org/
http://www.clips.ua.ac.be/pattern
https://radimrehurek.com/gensim/

For run-time configuration via command-line options, the built-in argparse module

usually su�ices.

A more complete solution is ConfigArgParse . This (almost) drop-in replacement for

argparse allows you to not only specify configuration options via command-line

options, but also via (ini or yaml) configuration files and via environment variables.

Other popular libraries are click and fire .

OpenCL & CUDA

Sources for learning
please add university courses and informative videos

Parallel Reduction [Slides]

GPU Memory bootcamp - Tony Scudiero [git repo]

Best Practices [Slides] [Video]

Beyond the Best Practices [Slides] [Video]

Collaborative Access Patterns [Slides] [Video]

CUB: CUDA Collective primitives library [Git] [Slides] [Video]

Best Practices Guide by PRACE [HTML] [PDF]

Documentation
OpenCL specification [1.2] [2.0]

CUDA Toolkit [latest]

CUDA Programming Guide

CUDA Runtime API

Source-to-source translation between CUDA and
OpenCL

vtsynergy (https://github.com/vtsynergy)

This was shown to work on DAS5 a�er copying /usr/include/limits.h to $PWD and

commenting out the lines around # include_next (122-125) :

"cu2cl-tool host_code.cc device_code.cu -- -DGPU_ON -I$PWD:/usr/include -

I/usr/lib/gcc/x86_64-redhat-linux/4.8.2/include".

cutocl (https://github.com/benvanwerkhoven/cutocl)

Overview of libraries

https://docs.python.org/library/argparse.html
https://github.com/bw2/ConfigArgParse
https://click.palletsprojects.com/
https://google.github.io/python-fire/
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
https://github.com/tscudiero/MemBootcamp
https://github.com/tscudiero/MemBootcamp/blob/master/Slides/S5353_Scudiero_Bootcamp1.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5353.html
https://github.com/tscudiero/MemBootcamp/blob/master/Slides/S5376-Scudiero_Bootcamp2.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5376.html
https://github.com/tscudiero/MemBootcamp/blob/master/Slides/S6181-Scudiero_Bootcamp3.pdf
http://on-demand.gputechconf.com/gtc/2016/video/s6181-tony-scudiero-bootcamp-3.mp4
https://github.com/NVlabs/cub
http://on-demand.gputechconf.com/gtc/2015/presentation/S5617-Duane-Merrill.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5617.html
http://www.prace-ri.eu/best-practice-guide-gpgpu-january-2017/#gpu_programming
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-GPGPU-1.pdf
https://www.khronos.org/registry/cl/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://github.com/vtsynergy
https://github.com/benvanwerkhoven/cutocl

OpenCL-based libraries

CLBlast

clFFT

CUDA-based libraries

cuBLAS

NVBLAS

cuFFT

nvGRAPH

cuRAND

cuSPARSE

Foreign Function Interfaces for CUDA and OpenCL
C++: [Cuda], [OpenCL]

Python: [PyCuda], [PyOpenCL]

Java: [JCuda], [JOCL]

Testing
Unit Testing

Example of a unit test for CUDA kernel using the Kernel Tuner

comparing floating-point results

Debugging and Profiling Tools
Nvidia Visual Profiler [User Guide]

CUDA-GDB

CUDA-MEMCHECK

Performance Optimization
Resources:

Better Performance at Lower Occupancy [Slides] [Video]

Maxwell Tuning Guide

Pascal Tuning Guide

Generic Auto Tuners:

Kernel Tuner (Python)

CLTune (C++)

https://github.com/CNugteren/CLBlast
https://github.com/clMathLibraries/clFFT
http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/nvblas/index.html
http://docs.nvidia.com/cuda/cufft/index.html
http://docs.nvidia.com/cuda/nvgraph/index.html
http://docs.nvidia.com/cuda/curand/index.html
http://docs.nvidia.com/cuda/cusparse/index.html
https://github.com/eyalroz/cuda-api-wrappers/
https://github.com/KhronosGroup/OpenCL-CLHPP
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pycuda/
http://www.jcuda.org/
http://www.jocl.org/
https://github.com/benvanwerkhoven/kernel_tuner/blob/master/examples/cuda/test_vector_add.py
http://docs.nvidia.com/cuda/floating-point/index.html
https://developer.nvidia.com/nvidia-visual-profiler
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/cuda-gdb/index.html
http://docs.nvidia.com/cuda/cuda-memcheck/index.html
http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf
http://on-demand.gputechconf.com/gtc/2010/video/S12238-Better-Performance-at-Lower-Occupancy.mp4
http://docs.nvidia.com/cuda/maxwell-tuning-guide
http://docs.nvidia.com/cuda/pascal-tuning-guide
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/CNugteren/CLTune

What is R?
R is a functional programming language and so�ware environment for statistical computing

and graphics: https://www.r-project.org/.

Philosophy and typical use cases
R is particularly popular in the social, health, and biological sciences where it is used for

statistical modeling. R can also be used for signal processing (e.g. FFT), machine learning,

image analyses, and natural language processing. The R syntax is similar in compactness and

readability as python and matlab by which it serves as a good prototyping environment in

science.

One of the strengths of R is the large number of available open source statistical packages,

o�en developed by domain experts. For example, R-package Seewave is specialised in sound

analyses. Packages are typically released on CRAN The Comprehensive R Archive Network.

A few remarks for readers familiar with Python:

Compared with Python, R does not need a notebook to program interactively. In RStudio, an

IDE that is installed separately, the user can run sections of the code by selecting them and

pressing Ctrl+Enter. Consequently the user can quickly transition from working with scripts

to working interactively using the Ctrl+Enter.

Numbering in R starts with 1 and not with 0.

Recommended sources of information

Some R packages have their own google.group. All R functions come with documentation in a

standardized format. To learn R see the following resources:

R for Data Science by Hadley Wickham,

Advanced R by Hadley Wickham,

Writing better R code by Laurent Gatto.

Further, stackoverflow and standard search engines can lead you to answers to issues.

Getting started

Setting up R

To install R check detailed description at CRAN website.

IDE

https://www.r-project.org/
http://rug.mnhn.fr/seewave/
http://cran.r-project.org/
https://www.rstudio.com/
https://r4ds.had.co.nz/
https://adv-r.hadley.nz/
http://www.bioconductor.org/help/course-materials/2013/CSAMA2013/friday/afternoon/R-programming.pdf
http://cran.r-project.org/

R programs can be written in any text editor. R code can be run from the command line or

interactively within R environment, that can be started with R command in the shell. To quit

R environment type q() .

RStudio is a free powerful integrated development environment (IDE) for R. It features editor

with code completion, command line environment, file manager, package manager and history

lookup among others. You will have to install RStudio in addition to installing R. Please note

that updating RStudio does not automatically update R and the other way around.

Within RStudio you can work on ad-hoc code or create a project. Compared with Python an R

project is a bit like a virtual environment as it preserves the workspace and installed packages

for that project. Creating a project is needed to build an R package. A project is created via the

menu at the top of the screen.

Installing compilers and runtimes

Not needed as most functions in R are already compiled in C, nevertheless R has compiling

functionality as described in the R manual. See overview by Hadley Wickham.

Coding style conventions
It is good to follow the R style conventions as posted by Hadley Wickham, which is seems

compatible with the R style convention as posted by Google.

One point in both style conventions that has resulted in some discussion is the '<-' syntax for

variable assignment. In the majority of R tutorials and books you will see that authors use this

syntax, e.g. 'a <- 3' to assign value 3 to object 'a'. Please note that R syntax 'a = 3' will preform

exactly the same operation in 99.9% of situations. The = syntax has less keystrokes and could

therefore be considered more e�icient and readable. Further, the = syntax avoids the risk for

typos like a < -1, which will produce a boolean if 'a' exists, and a <- 1 which will produce an

object 'a' with a numeric value. Further, the = syntax may be more natural for those who

already use it in other computing languages.

The di�erence between '<-' and '=' is mainly related to scoping. See the o�icial R definition for

more information. The example below demonstrates the di�erence in behaviour:

Define a simple function named addone to add 1 to the function input:

addone = function(x) return(x + 1)

addone(3)

will produce 4

addone(b=3)

will throw an error message because the function does not know argument b

addone(b<-3)

http://www.rstudio.com/products/RStudio/
https://stat.ethz.ch/R-manual/R-devel/library/compiler/html/compile.html
http://r-pkgs.had.co.nz/src.html
http://adv-r.had.co.nz/Style.html
https://google.github.io/styleguide/Rguide.xml
https://stat.ethz.ch/R-manual/R-devel/library/base/html/assignOps.html

will produce 4 as it will first assign 3 to b and then uses b as value for the first argument

in addone, which happens to be x

addone(x=3)

will produce 4 as it will assign 3 to known function argument x

The <- supporters will argue that this example demonstrates that = should be avoided. However,

it also demonstrates that = syntax can work in the context of function input if = is only used for

assigning values to input arguments that are expected by the function (x in the example above)

and to never introduce new R objects as part of a function call (b in the example above).

From a computer science perspective it is probably best to adhere to the <- convention. From a

domain science perspective it is understandable to use =. The code performs exactly the same

and guarantees that new objects created as part of a function call result in an error. Please note

that it is also possible to develop code with = syntax and to transfer it to <- syntax once the

code is finished, the formatR package o�ers tools for doing this. The CRAN repository for R

packages accepts both forms of syntax.

Recommended additional packages and
libraries

Plotting with basic functions and ggplot2 and
ggvis
For a generic impression of what R can do see: http://www.r-graph-gallery.com/all-graphs/

The basic R installation comes with a wide range of functions to plot data to a window on your

screen or to a file. If you need to quickly inspect your data or create a custom-made static plot

then the basic functions o�er the building blocks to do the job. There is a Statmethods.net

tutorial with some examples of plotting options in R.

However, externally contributed plotting packages may o�er easier syntax or convenient

templates for creating plots. The most popular and powerful contributed graphics package is

ggplot2. Interactive plots can be made with ggvis package and embeded in web application,

and this tutorial.

In summary, it is good to familiarize yourself with both the basic plotting functions as well as

the contributed graphics packages. In theory, the basic plot functions can do everything that

ggplot2 can do, it is mostly a matter of how much you like either syntax and how much freedom

you need to tailor the visualisation to your use case.

Building interactive web applications with shiny

http://www.r-graph-gallery.com/all-graphs/
http://www.statmethods.net/graphs/index.html
http://ggplot2.org/
https://github.com/rstudio/ggvis
http://www.statmethods.net/advgraphs/ggplot2.html

Thanks to shiny.app it is possible to make interactive web application in R without the need to

write javascript or html.

Building reports with knitr
knitr is an R package designed to build dynamic reports in R. It's possible to generate on the fly

new pdf or html documents with results of computations embedded inside.

Preparing data for analysis
There are packages that ease tidying up messy data, e.g. tidyr and reshape2. The idea of tidy

and messy data is explained in a tidy data paper by Hadley Wickham. There is also the google

group manipulatr to discuss topics related to data manipulation in R.

Speeding up code
As in many computing languages loops should be avoided in R. Here is a list of tricks to speed

up your code:

read.table() is sometimes faster than read.csv()

ifelse()

lapply()

sapply()

mapply()

grep()

%in% for testing whether and where values in one object occur in another object

aggregate()

which() for identifying which object indices match a certain condition

table() for getting a frequency table of categorical data

grep()

gsub()

dplyr package, see also

Use ?functionname to access fucntion documentation.

Package development

Building R packages

There is a great tutorial written by Hadley Wickam describing all the nitty gritty of building your

own package in R. It's called R packages.

http://shiny.rstudio.com/
https://yihui.name/knitr/
https://github.com/hadley/tidyr
https://github.com/hadley/reshape
http://vita.had.co.nz/papers/tidy-data.html
https://groups.google.com/forum/#!forum/manipulatr
http://dplyr.tidyverse.org/
http://r-pkgs.had.co.nz/

Package documentation

Read Documentation chapter of Hadleys R packages book for details about documenting R

code.

Customary R uses .Rd files in /man directory for documentation. These files and folders are

automatically created by RStudio when you create a new project from your existing R-function

files.

If you use 'roxygen' function level comments starting with #' are recognised by roxygen

and are used to automatically generate .Rd files. Read more about roxygen syntax on it's

github page. roxygen will also populate NAMESPACE file which is necessary to manage

package level imports.

R function documentation o�ers plenty of space to document the functionality, including code

examples, literature references, and links to related functions. Nevertheless, it can sometimes be

helpful for the user to also have a more generic description of the package with for example

use-cases. You can do this with a vignette . Read more about vignettes in Package

documentation chapter of Hadleys R packages book.

Available templates
http://rapport-package.info/

http://shiny.rstudio.com/articles/templates.html

http://rmarkdown.rstudio.com/developer_document_templates.html

Testing, Checking, Debugging and Profiling

Testing and checking

Testthat is a testing package by Hadley Wickham. Testing chapter of a book R packages

describes in detail testing process in R with use of testthat . Further, testthat: Get Started

with Testing by Whickham may also provide a good starting point.

See also checking and testing R packages. note that within RStudio R package check and R

package test can be done via simple toolbar clicks.

Continuous integration

Continuous integration can be done with for example [Travis], (https://travis-ci.org/), see

Chapter on testing.

Debugging and Profiling

http://r-pkgs.had.co.nz/man.html
http://r-pkgs.had.co.nz/
https://github.com/yihui/roxygen2
http://r-pkgs.had.co.nz/vignettes.html
http://r-pkgs.had.co.nz/
http://rapport-package.info/
http://shiny.rstudio.com/articles/templates.html
http://rmarkdown.rstudio.com/developer_document_templates.html
https://github.com/hadley/testthat
http://r-pkgs.had.co.nz/tests.html
http://r-pkgs.had.co.nz/
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
http://r-pkgs.had.co.nz/check.html
http://r-pkgs.had.co.nz/tests.html
https://travis-ci.org/

Debugging is possible in RStudio, see link. For profiling tips see link

Not in this tutorial yet:
Logging

C and C++
C++ is one of the hardest languages to learn. Entering a project where C++ coding is needed

should not be taken lightly. This guide focusses on tools and documentation for use of C++ in an

open-source environment.

Standards

The latest ratified standard of C++ is C++17. The first standardised version of C++ is from 1998.

The next version of C++ is scheduled for 2020. With these updates (especially the 2011 one) the

preferred style of C++ changed drastically. As a result, a program written in 1998 looks very

di�erent from one from 2018, but it still compiles. There are many videos on Youtube describing

some of these changes and how they can be used to make your code look better (i.e. more

maintainable). This goes with a warning: Don't try to be too smart; other people still have to

understand your code.

Practical use

Compilers

There are two main-stream open-source C++ compilers.

GCC

LLVM - CLANG

Overall, these compilers are more or less similar in terms of features, language support, compile

times and (perhaps most importantly) performance of the generated binaries. The generated

binary performance does di�er for specific algorithms. See for instance this Phoronix

benchmark for a comparison of GCC 9 and Clang 7/8.

MacOS (XCode) has a custom branch of clang , which misses some features like OpenMP

support, and its own libcxx, which misses some standard library things like the very useful

std::filesystem module. It is nevertheless recommended to use it as much as possible to

maintain binary compatibility with the rest of macOS.

If you need every last erg of performance, some cluster environments have the Intel compiler

installed.

https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio
http://adv-r.had.co.nz/Profiling.html
https://gcc.gnu.org/
http://llvm.org/
https://www.phoronix.com/scan.php?page=article&item=gcc9-stage3-skylake

These compilers come with a lot of options. Some basic literacy in GCC and CLANG:

-O changes optimisation levels

-std=c++xx sets the C++ standard used

-I*path* add path to search for include files

-o*file* output file

-c only compile, do not link

-Wall be more verbose with warnings

And linker flags:

-l*library* links to a library

-L*path* add path to search for libraries

-shared make a shared library

-Wl,-z,defs ensures all symbols are accounted for when linking to a shared object

Interpreter

There is a C++ interpreter called Cling. This also comes with a Jupyter notebook kernel.

Build systems

There are several build systems that handle C/C++. Currently, the CMake system is most

popular. It is not actually a build system itself; it generates build files based on (in theory)

platform-independent and compiler-independent configuration files. It can generate Makefiles,

but also Ninja files, which gives much faster build times, NMake files for Windows and more.

Some popular IDEs keep automatic count for CMake, or are even completely built around it

(CLion). The major drawback of CMake is the confusing documentation, but this is generally

made up for in terms of community support. When Googling for ways to write your CMake files,

make sure you look for "modern CMake", which is a style that has been gaining traction in the

last few years and makes everything better (e.g. dependency management, but also just the

CMake files themselves).

Traditionally, the auto-tools suite (AutoConf and AutoMake) was the way to build things on

Unix; you'll probably know the three command salute:

> ./configure --prefix=~/.local

 ...

> make -j4

 ...

> make install

https://rawgit.com/vgvassilev/cling/master/www/index.html
http://jupyter.org/try
https://www.jetbrains.com/research/devecosystem-2018/cpp/
https://ninja-build.org/
http://www.jetbrains.com/clion/

With either one of these two (CMake or Autotools), any moderately experienced user should be

able to compile your code (if it compiles).

There are many other systems. Microso� Visual Studio has its own project model / build system

and a library like Qt also forces its own build system on you. We do not recommend these if you

don't also supply an option for building with CMake or Autotools. Another modern alternative

that has been gaining attention mainly in the GNU/Gnome/Linux world is Meson, which is also

based on Ninja.

Package management

There is no standard package manager like pip , npm or gem for C++. This means that you

will have to choose depending on your particular circumstances what tool to use for installing

libraries and, possibly, packaging the tools you yourself built. Some important factors include:

Whether or not you have root/admin access to your system

What kind of environment/ecosystem you are working in. For instance:

There are many tools targeted specifically at HPC/cluster environments.

Specific communities (e.g. NLP research or bioinformatics) may have gravitated towards

specific tools, so you'll probably want to use those for maximum impact.

Whether so�ware is packaged at all; many C/C++ tools only come in source form, hopefully

with build setup configuration.

Yes root access

If you have root/admin access to your system, the first go-to for libraries may be your OS

package manager. If the target package is not in there, try to see if there is an equivalent library

that is, and see what kind of so�ware uses it.

No root access

A good, cross-platform option nowadays is to use miniconda , which works on Linux, macOS

and Windows. The conda-forge channel especially has a lot of C++ libraries. Specify that

you want to use this channel with command line option -c conda-forge . The bioconda

channel in turn builds upon the conda-forge libraries, hosting a lot of bioinformatics tools.

Managing non-packaged so�ware

If you do have to install a programm, which depends on a specific version of a library which

depends on a specific version of another library, you enter what is called dependency hell. Some

agility in compiling and installing libraries is essential.

You can install libraries in /usr/local or in ${HOME}/.local if you aren't root, but there

you have no package management.

http://mesonbuild.com/
https://ninja-build.org/
https://conda.io/miniconda.html

Many HPC administrations provide environment modules (module avail), which allow you

to easily populate your $PATH and other environment variables to find the respective

package. You can also write your own module files to solve your dependency hell.

A lot of libraries come with a package description for pkg-config . These descriptions are

installed in /usr/lib/pkgconfig . You can point pkg-config to your additional libraries

by setting the PKG_CONFIG_PATH environment variable. This also helps for instance when

trying to automatically locate dependencies from CMake, which has pkg-config support as

a fallback for when libraries don't support CMake's find_package .

If you want to keep things organized on systems where you use multiple versions of the same

so�ware for di�erent projects, a simple solution is to use something like xstow . XStow is a

poor-mans package manager. You install each library in its own directory

(~/.local/pkg/<package> for instance), then running xstow will create symlinks to the

files in the ~/.local directory (one above the XStow package directory). Using XStow in this

way alows you to keep a single additional search path when compiling your next library.

Packaging so�ware

In case you find the manual compilation too cumbersome, or want to conveniently distribute

so�ware (your own or perhaps one of your project's dependencies that the author did not

package themselves), you'll have to build your own package. The above solutions are good

defaults for this, but there are some additional options that are widely used.

For distribution to root/admin users: system package managers (Linux: apt , yum ,

pacman , macOS: Homebrew, Macports)

For distribution to any users: Conda and Conan are cross-platform (Linux, macOS,

Windows)

For distribution to HPC/cluster users: see options below

When choosing which system to build your package for, it is imporant to consider your target

audience. If any of these tools are already widely used in your audience, pick that one. If not, it

is really up to your personal preferences, as all tools have their pros and cons. Some general

guidelines could be:

prefer multi-platform over single platform

prefer widely used over obscure (even if it's technically magnificent, if nobody uses it, it's

useless for distributing your so�ware)

prefer multi-language over single language (especially for C++, because it is so o�en used to

build libraries that power higher level languages)

But, as the state of the package management ecosystem shows, in practice, there will be many

exceptions to these guidelines.

HPC/cluster environments

https://modules.readthedocs.io/en/latest/
http://xstow.sourceforge.net/
https://conda.io/miniconda.html
https://conan.io/

One way around this if the system does use module is to use Easybuild, which makes

installing modules in your home directory quite easy. Many recipes (called Easyblocks) for

building packages or whole toolchains are available online. These are written in Python.

A similar package that is used a lot in the bioinformatics community is guix. With guix, you can

create virtual environments, much like those in Python virtualenv or Conda. You can also

create relocatable binaries to use your binaries on systems that do not have guix installed. This

makes it easy to test your packages on your laptop before deploying to a cluster system.

A package that gains more traction at the moment for HPC environments is spack. Spack allows

you to pick from many compilers. When installing packages, it compiles every package from

scratch. This allows you to be tailor compilation flags and such to take fullest advantage of

your cluster's hardware, which can be essential in HPC situations

Near future: Modules

Note that C++20 will bring Modules, which can be used as an alternative to including

(precompiled) header files. This will allow for easier packaging and will probably cause the

package management landscape to change considerably. For this reason, it may be wise at this

time to keep your options open and keep an eye on developments within the di�erent package

management solutions.

Editors

This is largely a matter of taste, but not always.

In theory, given that there are many good command line tools available for working with C(++)

code, any code editor will do to write C(++). Some people also prefer to avoid relying on IDEs

too much; by helping your memory they can also help you to write less maintainable code.

People of this persuasion would usually recommend any of the following editors:

Vim, recommended plugins:

NERDTree file explorer.

editorconfig

stl.vim adds STL to syntax highlighting

Syntastic

Integrated debugging using Clewn

Emacs:

Has GDB mode for debugging.

More modern editors: Atom / Sublime Text / VS Code

Rich plugin ecosystem

Easier on the eyes... I mean modern OS/GUI integration

In practice, sometimes you run into large/complex existing projects and navigating these can be

really hard, especially when you just start working on the project. In these cases, an IDE can

https://easybuild.readthedocs.io/en/latest/
https://easybuild.readthedocs.io/en/latest/version-specific/Supported_software.html
https://hpc.guix.info/
https://spack.readthedocs.io/en/latest/
https://github.com/scrooloose/nerdtree
https://github.com/editorconfig/editorconfig-vim
https://vim.sourceforge.io/scripts/script.php?script_id=4293
https://github.com/scrooloose/syntastic
http://clewn.sourceforge.net/

really help. Intelligent code suggestions, easy jumping between code segments in di�erent files,

integrated debugging, testing, VCS, etc. can make the learning curve a lot less steep.

Good/popular IDEs are

CLion

Visual Studio (Windows only, but many people swear by it)

Eclipse

Code and program quality analysis

C++ (and C) compilers come with built in linters and tools to check that your program runs

correctly, make sure you use those. In order to find issues, it is probably a good idea to use both

compilers (and maybe the valgrind memcheck tool too), because they tend to detect di�erent

problems.

Automatic Formatting with clang-format

While most IDEs and some editors o�er automatic formatting of files, clang-format is a

standalone tool, which o�ers sensible defaults and a huge range of customisation options.

Integrating it into the CI workflow guarantees that checked in code adheres to formatting

guidelines.

Static code analysis with GCC

To use the GCC linter, use the following set of compiler flags when compiling C++ code:

and these flags when compiling C code:

Use at least optimization level 2 (-O2) to have GCC perform code analysis up to a level where

you get all warnings. Use the -Werror flag to turn warnings into errors, i.e. your code won't

-O2 -Wall -Wextra -Wcast-align -Wcast-qual -Wctor-dtor-privacy -Wdisa

-Winit-self -Wlogical-op -Wmissing-declarations -Wmissing-include-dir

-Woverloaded-virtual -Wredundant-decls -Wshadow -Wsign-conversion -Ws

-Wstrict-overflow=5 -Wswitch-default -Wundef -Wno-unused

-O2 -Wall -Wextra -Wformat-nonliteral -Wcast-align -Wpointer-arith -W

-Wmissing-prototypes -Wstrict-prototypes -Wmissing-declarations -Winl

-Wnested-externs -Wcast-qual -Wshadow -Wwrite-strings -Wno-unused-par

-Wfloat-equal

http://clang.llvm.org/docs/ClangFormat.html

compile if you have warnings. See this post for an explanation of why this is a reasonable

selection of warning flags.

Static code analysis with Clang (LLVM)

Clang has the very convenient flag

A good strategy is probably to start out using this flag and then disable any warnings that you

do not find useful.

Static code analysis with cppcheck

An additional good tool that detects many issues is cppcheck. Most editors/IDEs have plugins to

use it automatically.

Dynamic program analysis using -fsanitize

Both GCC and Clang allow you to compile your code with the -fsanitize= flag , which will

instrument your program to detect various errors quickly. The most useful option is probably

which is a fast memory error detector. There are also other options available like -

fsanitize=thread and -fsanitize=undefined . See the GCC man page or the Clang

online manual for more information.

Dynamic program analysis using the valgrind suite of tools

The valgrind suite of tools has tools similar to what is provided by the -fsanitize compiler

flag as well as various profiling tools. Using the valgrind tool memcheck to detect memory

errors is typically slower than using compiler provided option, so this might be something you

will want to do less o�en. You will probably want to compile your code with debug symbols

enabled (-g) in order to get useful output with memcheck. When using the profilers, keep in

mind that a statistical profiler may give you more realistic results.

Automated code refactoring

-Weverything

-fsanitize=address -O2 -fno-omit-frame-pointer -g

https://stackoverflow.com/questions/5088460/flags-to-enable-thorough-and-verbose-g-warnings
https://clang.llvm.org/docs/index.html
http://valgrind.org/info/tools.html
https://en.wikipedia.org/wiki/Profiling_%28computer_programming%29#Statistical_profilers

Sometimes you have to update large parts of your code base a little bit, like when you move

from one standard to another or you changed a function definition. Although this can be

accomplished with a sed command using regular expressions, this approach is dangerous, if

you use macros, your code is not formatted properly etc.... Clang-tidy can do these things and

many more by using the abstract syntax tree of the compiler instead of the source code files to

refactor your code and thus is much more robust but also powerful.

Debugging

Most of your time programming C(++) will probably be spent on debugging. At some point,

surrounding every line of your code with printf("here %d", i++); will no longer avail

you and you will need a more powerful tool. With a debugger, you can inspect the program

while it is running. You can pause it, either at random points when you feel like it or, more

usually, at so-called breakpoints that you specified in advance, for instance at a certain line in

your code, or when a certain function is called. When paused, you can inspect the current

values of variables, manually step forward in the code line by line (or by function, or to the next

breakpoint) and even change values and continue running. Learning to use these powerful tools

is a very good time investment. There are some really good CppCon videos about debugging on

YouTube.

GDB - the GNU Debugger, many graphical front-ends are based on GDB.

LLDB - the LLVM debugger. This is the go-to GDB alternative for the LLVM toolchain,

especially on macOS where GDB is hard to setup.

DDD - primitive GUI frontend for GDB.

The IDEs mentioned above either have custom built-in debuggers or provide an interface to

GDB or LLDB.

Libraries
Historically, many C and C++ projects have seemed rather hestitant about using external

dependencies (perhaps due to the poor dependency management situation mentioned above).

However, many good (scientific) computing libraries are available today that you should

consider using if applicable. Here follows a list of libraries that we recommend and/or have

experience with. These can typically be installed from a wide range of package managers.

Usual suspects

These scientific libraries are well known, widely used and have a lot of good online

documentation.

GNU Scientific library (GSL)

FFTW: Fastest Fourier Transform in the West

https://clang.llvm.org/extra/clang-tidy/
https://www.gnu.org/software/gsl/doc/html/index.html
http://www.fftw.org/

OpenMPI. Use with caution, since it will strongly define the structure of your code, which

may or may not be desirable.

Boost

This is what the Google style guide has to say about Boost:

Definition: The Boost library collection is a popular collection of peer-reviewed, free,

open-source C++ libraries.

Pros: Boost code is generally very high-quality, is widely portable, and fills many

important gaps in the C++ standard library, such as type traits and better binders.

Cons: Some Boost libraries encourage coding practices which can hamper readability,

such as metaprogramming and other advanced template techniques, and an excessively

"functional" style of programming.

As a general rule, don't use Boost when there is equivalent STL functionality.

xtensor

xtensor is a modern (C++14) N-dimensional tensor (array, matrix, etc) library for numerical work

in the style of Python's NumPy. It aims for maximum performance (and in most cases it

succeeds) and has an active development community. This library features, among other things:

Lazy-evaluation: only calculate when necessary.

Extensible template expressions: automatically optimize many subsequent operations into

one "kernel".

NumPy style syntax, including broadcasting.

C++ STL style interfaces for easy integration with STL functionality.

Very low-e�ort integration with today's main data science languages Python, R and Julia.

This all makes xtensor a very interesting choice compared to similar older libraries like

Eigen and Armadillo.

General purpose, I/O

Configuration file reading and writing:

yaml-cpp: A YAML parser and emitter in C++

JSON for Modern C++

Command line argument parsing:

argagg

Clara

fmt: pythonic string formatting

hdf5-cpp: The popular HDF5 binary format C++ interface.

https://www.open-mpi.org/
http://github.com/xtensor-stack/xtensor
https://blog.esciencecenter.nl/irregular-data-in-pandas-using-c-88ce311cb9ef?gi=23ebfce3ae77
https://github.com/jbeder/yaml-cpp
https://nlohmann.github.io/json/
https://github.com/vietjtnguyen/argagg
https://github.com/catchorg/Clara
https://github.com/fmtlib/fmt
https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse

Parallel processing

Intel TBB (Threading Building Blocks): template library for task parallelism

ZeroMQ: lower level flexible communication library with a unified interface for message

passing between threads and processes, but also between separate machines via TCP.

Style

Style guides

Good style is not just about layout and linting on trailing whitespace. It will mean the

di�erence between a blazing fast code and a broken one.

C++ Core Guidelines

Guidelines Support Library

Google Style Guide

Google Style Guide - github Contains the CppLint linter.

Project layout

A C++ project will usually have directories /src for source codes, /doc for Doxygen output,

/test for testing code. Some people like to put header files in /include . In C++ though,

many header files will contain functioning code (templates and inline functions). This makes the

separation between code and interface a bit murky. In this case, it can make more sense to put

headers and implementation in the same tree, but di�erent communities will have di�erent

opinions on this. A third option that is sometimes used is to make separate "template

implementation" header files.

Sustainability

Testing

Use Google Test. It is light-weight, good and is used a lot. Catch2 is also pretty good, well

maintained and has native support in the CLion IDE.

Documentation

Use Doxygen. It is the de-facto standard way of inlining documentation into comment sections

of your code. The output is very ugly. Mini-tutorial: run doxygen -g (preferably inside a

https://www.threadingbuildingblocks.org/
http://zeromq.org/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/Microsoft/GSL
https://google.github.io/styleguide/cppguide.html
https://github.com/google/styleguide
https://github.com/google/googletest
https://github.com/catchorg/Catch2
http://www.doxygen.nl/

doc folder) in a new project to set things up, from then on, run doxygen to (re-)generate

the documentation.

A newer but less mature option is cldoc.

Resources

Online

CppCon videos: Many really good talks recorded at the various CppCon meetings.

CppReference.com

C++ Annotations

CPlusPlus.com

Modern C++, according to Microso�

Books

Bjarne Soustrup - The C++ Language

Scott Meyers - E�ective Modern C++

Fortran
Disclaimer: In general the Netherlands eScience Center does not recommend using Fortran.

However, in some cases it is the only viable option, for instance if a project builds upon

existing code written in this language. This section will be restricted to Fortran90, which

captures majority of Fortran source code.

The second use case may be extremely performance-critical dense numerical compute

workloads, with no existing alternative. In this case it is recommended to keep the Fortran part

of the application minimal, using a high-level language like Python for program control flow,

IO, and user interface.

Recommended sources of information
Fortran90 o�icial documentation

Fortran wiki

Fortran90 handbook

Compilers
gfortran: the o�icial GNU Fortran compiler and part of the gcc compiler suite.

http://jessevdk.github.io/cldoc/
https://www.youtube.com/user/CppCon
http://en.cppreference.com/w/
http://www.icce.rug.nl/documents/cplusplus/
http://www.cplusplus.com/
https://msdn.microsoft.com/en-us/library/hh279654.aspx
http://www.fortran90.org/
http://fortranwiki.org/fortran/show/HomePage
http://micro.ustc.edu.cn/Fortran/Fortran%2090%20Handbook.pdf

ifort: the Intel Fortran compiler, widely used in academia and industry because of its

superior performance, but unfortunately this is commercial so�ware so not recommended.

The same holds for the Portland compiler pgfortran

Debuggers and diagnostic tools
There exist many commercial performance profiling tools by Intel and the Portland Group which

we shall not discuss here. Most important freely available alternatives are

gdb: the GNU debugger, part of the gcc compiler suite. Use the -g option to compile with

debugging symbols.

gprof: the GNU profiler, part of gcc too. Use the -p option to compile with profiling enabled.

valgrind: to detect memory leaks.

Editors and IDEs
Most lightweight editors provide Fortran syntax highlighting. Vim and emacs are most widely

used, but for code completion and refactoring tools one might consider the CBFortran

distribution of Code::Blocks.

Coding style conventions
If working on an existing code base, adopt the existing conventions. Otherwise we recommend

the standard conventions, described in the o�icial documentation and the Fortran company

style guide. We would like to add the following advice:

Use free-form text input style (the default), with a maximal line width well below the 132

characters imposed by the Fortran90 standard.

When a method does not need to alter any data in any module and returns a single value,

use a function for it, otherwise use a subroutine. Minimize the latter to reasonable extent.

Use the intent attributes in subroutine variable declarations as it makes the code much

easier to understand.

Use a performance-driven approach to the architecture, do not use the object-oriented

features of Fortran90 if they slow down execution. Encapsulation by modules is perfectly

acceptable.

Add concise comments to modules and routines, and add comments to less obvious lines of

code.

Provide a test suite with your code, containing both unit and integration tests. Both

automake and cmake provide test suite functionality; if you create your makefile yourself,

add a separate testing target.

Intellectual Property

http://cbfortran.sourceforge.net/
http://www.fortran90.org/src/best-practices.html#fortran-style-guide
http://www.fortran.com/Fortran_Style.pdf

As with anything else in society, some of what you can and cannot do in so�ware development

is determined by the law. Most of the constraints in this particular domain stem from

intellectual property laws: laws that make abstract things like designs, stories, or computer

programs resemble physical objects by allowing them to be owned.

This chapter aims to give a brief summary of relevant intellectual property laws (enough to be

able to read most so�ware licenses), explain Free and open source so�ware licensing, and

explain how combining so�ware from di�erent sources works from a legal perspective. It also

gives some rules we have worked out to deal with common situations.

This is far from an exhaustive resource; only laws that are relevant to our so�ware development

practice (i.e. they come up regularly at the Netherlands eScience Center) are described. If you're

interested in protecting a plant, boat hull, or microprocessor mask, then you should look

elsewhere. Also, there are areas of law beyond intellectual property that o�en show up in

so�ware development practice, like contract law and consumer law; these are also not covered

here.

Of course, we'll begin with a disclaimer: Good legal advice is timely, specific, and given by an

expert; this chapter is none of these. It was written by an engineer, not by a lawyer, and it's a

heavily simplified overview of a very complex field. The intent is to give you an overview of the

basics, so that you will know when to check whether something you want to do has potential

legal ramifications. Don't make any important decisions based solely on the contents of this

chapter.

Executive summary
Intellectual property is a complex subject matter, and we're interested in developing code, not

doing legal analysis. While we cannot always get away from doing some legal analysis in more

complex cases, the majority of things we run into are relatively simple, and can be resolved by

following some simple rules. This section gives such a set of rules, and does so rather

conservatively, i.e. it lists only things that the eScience Center is definitely okay with. If your

particular case is not listed here, then it may still be possible, but only a�er careful

consideration. So in that case, read on and/or ask for help.

I want to publish my source code, not including any of its dependencies, is that ok?

If

you publish your source code (and only your source code) under the Apache License version

2.0,

and you do not include any externally-developed libraries you used,

and all of the externally-developed libraries you used are under a free/open source license

(see below) then you are good to go.

For the purpose of this rule, the following dependency licenses are okay

MIT

BSD 2-clause

BSD 3-clause

Apache License version 2.0

GNU Lesser General Public License v2 or later

and any other licenses, including "for academic use only" and similar statements, are not okay.

I want to use a library with license X, is that ok?

This is certainly no problem if the library has one of the following licenses:

MIT

BSD 2-clause

BSD 3-clause

Apache License version 2.0

These are all permissive licenses that impose very little restrictions on how your program can be

used. So go right ahead.

We try to avoid copyle� licenses, such as the GNU Lesser General Public License (LGPL) and

GNU General Public License (GPL), but if there is no alternative available, then using a library

licensed under the (L)GPL is fine too.

Rationale: The Netherlands eScience Center is a publicly funded institution, and a such we want

to maximise the number of ways in which people and organisations, including commercial

ones, can use the so�ware we develop. Copyle� licenses restrict this somewhat, so we try to

avoid them. However, any Free So�ware can still be used by anyone for any purpose,

redistributed, forked, and commercialised, which is enough freedom that we will not do a lot of

extra work just to avoid copyle�.

I want to publish a data set, is that ok?

If

You or your collaborators collected the data yourselves, as part of the project,

and you all agree that you want to publish it under the Creative Commons CC-BY 4.0 license

then you are good to go.

If the data set contains (possibly processed) data you obtained from elsewhere, then the

licensing situation of that data needs to be evaluated first. If you or our collaborators want to

use a di�erent license, then this should be discussed first.

About the law
Laws are documents that describe what you are allowed to do in a particular jurisdiction. They

are made by (hopefully democratically elected) legislators, and they're written for humans to

interpret. Laws can be very specific on some points, but o�en also leave certain things vague.

Sometimes this is even done on purpose, when the legislators decide that they cannot foresee

all the cases that will develop in the future.

In case of some conflict, either between society and some individual or company in it, or

between companies or individuals, some interpretation of how the law applies to this specific

case has to be made. This is done by a judge. Judges will take into account the text of the law

itself, the (recorded) discussions that took place when it was made, and rulings by other judges

in similar cases. By doing the latter, they try to keep things consistent and therefore fair.

The collected rulings of earlier cases are together known as case law ("jurisprudentie" in Dutch).

Over time, the vague areas in a law are filled in by case law. However, this is a slow process,

and it is always incomplete: if the law is vague and there is no case law yet, or no su�iciently

similar case, then a gray area remains.

As a result, it o�en makes more sense to think about legal issues in terms of probabilities and

risk, rather than in terms of truth. This means that decisions on how to act given the legal

situation always have a policy component to them. How important is what you want to do, and

how much risk are you willing to take?

Of course, there is always an ethical side to these kinds of decisions as well: something may be

strictly speaking legal, but that doesn't automatically make it the right thing to do. While it

may be impossible in some cases to say with absolute certainty whether something we want to

do is legal, we should always make sure that it's the right thing to do.

Trademarks
A trademark is the exclusive right to the use of a sign or design for the purpose of identifying the

manufacturer of a product or supplier of a service. Trademarks are typically words or logos, but

protection may extend to colors and even smells.

Trademarks protect brands and reputations, and serve to avoid confusion in the marketplace.

Because of this, similar or even identical trademarks may coexist, if the corresponding

companies sell di�erent kinds of goods or services, or operate in di�erent areas.

As an example, Apple Records and Apple Computer can co-exist peacefully despite the similar

names, as it is obvious that an Apple laptop comes from Apple Computer, and an Apple CD from

Apple Records. But when Apple Computer added a sound chip to the Apple IIGS, Apple Records

sued them (and later sued them again over the Mac's system sound, and then about iTunes),

because they were now in the same (music) market.

Getting a trademark
Trademarks can be registered with the patent and trademark o�ice, a�er which they're marked

with an ® symbol. In some countries, notably the US, this in not required, and just using it in

practice to identify your products is in principle enough. Non-registered trademarks are marked

with a ™ symbol.

Our Netherlands eScience Center logo is an example of a (non-registered) service mark (℠,

although there is no legal protection for unregistered marks here). Service marks are essentially

the same thing as trademarks, but they don't identify physical products (we don't make any)

but services or intangible products, and as such are applied to equipment and uniforms and

such. The idea is the same however.

Losing a trademark
Trademarks lose their protection if they no longer identify a particular manufacturer, but

become general terms for a category of products. For instance, a walkman is a portable audio

cassette player. Sony® owns a trademark on that word, but in 2002 an Austrian judge ruled that

since the word was in the dictionary as describing any portable audio cassette player, it had

become a general term that is therefore not eligible for trademark protection.

Companies do not want to lose their trademarks, so they're usually quite active about

protecting them. Most companies have a trademark policy that is designed to protect their

trademarks from becoming generic. Google®'s trademark policy for instance says that you

should tell people to "do a Google search" for something rather than "Google it", as the latter

uses the term generically to mean doing a web search. If you infringe on someone's trademark,

you're likely to get a more-or-less friendly letter telling you to quit it or be sued.

Using a trademark
Using trademarked words to refer to the corresponding product or company is generally fine,

just make sure that you use them together with the generic term, as in the example above. If

you use a trademark, you should acknowledge that it is a trademark using one of those

ubiquitous notices like "Sony® is a registered trademark of Sony Corporation". Almost all

companies have rules on what to do exactly, a web search for "<company> trademark

guidelines" will show you the way.

So�ware licenses (even Free So�ware licenses) typically do not give out trademark rights, so

you may have to rename a fork if the origin considers your fork harmful to their brand. See e.g.

Firefox® (a registered trademark of the Mozilla Foundation) and IceWeasel.

Trademark acknowledgements
Apple is a trademark of Apple, Inc., registered in the U.S. and other countries.

Firefox® and Mozilla® are registered trademarks of the Mozilla Foundation.

Google™ is a trademark of Google, Inc.

Sony® is a registered trademark of Sony Corporation.

Trade Secrets
A trade secret is a secret with an economic benefit to the company that holds it. The recipe for

Coca-Cola® is an o�-cited example, the source code for a proprietary so�ware program may be

another.

Trade secrets are protected by Non-Disclosure Agreements: contracts that forbid you from

sharing them with anyone. In The Netherlands, there is no specific law on trade secrets, so these

contracts are all that protect them.

In particular, that means that if someone spills your trade secret, then you can sue that person,

but you can't do anything against the recipient of the secret. In the US, this is di�erent: there it

is a criminal o�ense to make use of a leaked trade secret, and you can go to jail for doing so.

Patents
From a societal point of view, trade secrets can be considered damaging. Progress can be made

much more quickly if competitors can build on each other's inventions, but that is impossible if

everyone keeps their inventions a secret. Patents ("octrooien" in Dutch, "patent" means that

you're looking good) are intended to remedy this situation.

A patent is the exclusive right to make, use and sell an invention, in exchange for publication of

a description of it. Patents have a limited duration, which varies from place to place but is

usually around 20 years. Patents cover devices that are new, inventive, and applicable to some

problem. Discoveries, designs, business models, so�ware and visualizations can not be patented

(but see below).

Getting a patent
Patents are obtained by writing up a description of the patent, with a list of claims that describe

the claimed invention, and submitting that description to the patent o�ice of the country where

you want protection, together with a he�y fee.

The patent o�ice will then do a (o�en very cursory) check to see if the patent meets the

requirements, and grant it. Once you have a patent, you are the only one allowed to use or sell

the claimed invention; anyone else will need to buy a license from you, or prove that the patent

is invalid when you sue them.

So�ware patents
While so�ware cannot be patented because it's not a device, a computer is a device. Some time

ago, clever lawyers (especially in the US) therefore started filing patents for a machine that

performs certain computational steps. While a piece of so�ware or an algorithm therefore

technically cannot be patented, anyone using that so�ware or algorithm would still infringe the

patent.

The main problem with so�ware patents is that there are a huge number of them out there, and

they're written in obfuscated legalese. Many are likely invalid due to not being new, being too

obvious, or being overly broad (the patent o�ice's checks are minimal), but defending against

someone with a lot of patents is very expensive unless it's completely obvious that you're not

infringing anything.

It is therefore quite easy to extort money from people by collecting a pile of patents, and

threatening to sue them. Meanwhile, the benefit to society is long lost, because no one uses

patents to figure out how to solve programming problems.

Unfortunately, there's not much we can do to remedy this situation. In practice, just avoid using

things that you know are patented, and hope for the best.

Trademark acknowledgements
Coca-Cola® is a trademark of The Coca-Cola Company, registered in the U.S. and other

countries.

Database Rights
Database rights are a very new addition to the IP stable, and they exist only in the EU and a few

other countries. Database rights protect the investment made to create a particular collection of

information. According to these laws, whoever invests in the creation of a database gets the

exclusive right to extract or reuse (make available to others) substantial parts of the database,

or repeatedly extract or reuse insubstantial parts of the database.

Getting database rights
So, if you pay someone to collect data and put it into a database, then you own the database

rights on that database for the next 15 years (in the EU at least). If you then o�er access to the

database on a web site, people can query it and use the information they got out of it, but

they're not allowed to download the entire database and share it with others. Also, making

another web site that forwards queries to yours and returns the results is not allowed.

Other protections for databases
The individual data items in a database are not protected by database rights, but they may be

protected by other IP laws.

For instance, if you pay someone to scan a large number of newspaper articles and put them

into a database, then you get to own the database rights to that database (because you paid to

make it). However, each individual article is also protected by copyright, which is owned by the

newspaper. Simple facts cannot be copyrighted however, so e.g. individual measurements in a

database of sensor data are not protected.

A database can also be protected by copyright, if the selection and arrangement of the contents

makes it a creative work. If you manually select newspaper articles and order them in a

particular way so as to tell a story, the resulting database may be eligible for copyright

protection, also in places where database rights do not exist. Furthermore, the data structure of

a database (e.g. the DDL description of an SQL database structure) may be protected by

copyright, just like so�ware is.

Licensing database rights
Permission to extract and reuse substantial parts of a database can be given to others by the

owner of the database rights via a license. Starting with version 4.0, the well-known Creative

Commons (CC) licenses include a grant of database rights, making them suitable for use with

databases. There is also the Open Database License, which predates CC 4.0, and has a more

academic origin.

The default database license at the Netherlands eScience Center is the Creative Commons

Attribution 4.0 license. Putting this license on your database will simultaneously license both

the database rights and the copyright (if any) on the database itself and on its contents all

under the same well-known and widely used terms.

Copyright
Copyright covers original works of authorship (works of art or science, as Dutch law puts it),

like books, plays, films, music and photographs, provided there was some creativity involved in

making them. Copyright also covers collections, like anthologies or co�ee table books with

nicely arranged photographs.

The owner of the copyright in a work has the exclusive right to copy that work, and to make

derivative works.

A derivative work is itself a work, but one that depends on another work. A translation of a book

is an example, because translating is itself a creative act, but the translation also derives from

the original. Subtitles for TV series or a new, updated edition of a textbook are also examples of

derivative works.

Getting copyrights

https://www.creativecommons.org/
https://creativecommons.org/licenses/by/4.0/

In any country that has signed the Berne convention on copyright, all works of authorship are

automatically protected by copyright as soon as they are made. Since 1989, when the US signed

the Berne convention, this goes for all major countries, but before that, there were countries

where it was necessary to explicitly claim copyright on a work, by adding the © symbol or a

phrase like "All rights reserved". Other than in Iraq, Somalia, North Korea and a few other such

countries, this is now no longer needed, and we don't do it.

Copyrights can be transferred, e.g. by selling them or giving them away. In many countries,

including in Europe, there are some rights that always remain with the author however, such as

the right to be recognised as the author and to have your reputation protected with regards to

the work.

A very common way in which copyright ends up in the hands of someone other than the author

is by work for hire: if you make something as part of your employment, your employer gets the

copyright, unless otherwise agreed.

Copyright and so�ware
Copyright predates so�ware, but since so�ware is a work of authorship, it is also protected

(these days most copyright laws mention it explicitly). Copyright on so�ware covers copying of

the program (in whichever form) and making derivative works.

This includes copying from disk to RAM so as to run the program. Dutch law has an explicit

exception for this: if you have a legal copy on disk, then you're allowed to copy it to RAM so as

to run it.

Exactly what constitutes a derivative work of a computer program or library is a gray area, with

little to no case law available. In other words, no one knows for sure what a judge would

decide. On the other hand, there is a kind of common understanding of how it should probably

work, and people operate on those assumptions with few problems so far.

Licensing copyright
If you own the copyright for a work, including a computer program or library, then you can give

others permission to make copies and derivative works by giving them a license (that's actually

specifically mentioned in the law). A license is a specific or general o�er of the right to make

copies.

For example, Dell™ has a license from Microso�® to make copies of Microso� Windows® and

install them on the computers they sell. This is a specific o�er written down in a contract

between the companies. If we put up some code on the web under an open source license, then

we are making a general o�er – to anyone who wants it – to use our code under those terms.

Note that the End User License Agreement that o�en pops up when you install so�ware, is –

despite the name – typically not a copyright license, since it doesn't give you permission to

copy or create derivative works. Instead, it's legally a contract, which is why you have to click

OK to accept it.

There are many so�ware licenses out there, including some common Free and Open Source

So�ware licenses. More on these and how to use them is in the next chapter.

Trademark acknowledgements
Dell™ is a trademark of Dell, Inc.

Microso�® and Microso� Windows® are either registered trademarks or trademarks of Microso�

Corporation in the United States and/or other countries.

So�ware licenses
So�ware licenses are explained in The Turing Way chapter.

Examples
Examples using libraries can be found in the Turing Way so�ware license chapter.

Data sets: Movie review emotion
xtas contains a function that detects emotions in movie reviews. It works by fitting a model to a

set of training data, and then applying the model to the xtas user's data.

The training data set it uses is available on the Internet from the website of a European

university, with a note saying that it can be used for academic research purposes only. xtas

automatically downloads this data set the first time the user calls the function.

Since it was created in Europe, the training data set is protected by database rights, which limit

copying substantial parts of it. This means that the xtas user needs permission to have xtas

download the data set, which they only have if they use the data for research purposes.

Since the download happens automatically this may not be obvious, so it is documented in the

function's documentation, and the function will refuse to work unless a named argument

for_academic_research=True is used when calling it.

xtas itself is not a database, and therefore cannot be a derivative work of the data set. The same

goes for the model that is fit to the data.

An alternative way to provide this functionality would be to fit the model once, and then

distribute the model (but not the data set) with xtas. Whether doing so constitutes academic

https://the-turing-way.netlify.app/licensing/01/softwarelicenses.html
https://the-turing-way.netlify.app/licensing/01/softwarelicenses

research is debatable however.

Mixed: Download a car?
For an internal research project, we needed annotated images of cars to train a neural network

on. Such images can be found easily on car trading web sites, and so the question arose

whether we could just grab a big collection of images from such a site.

Dutch database law contains a provision (article 5.b.) that says that retrieval of a substantial

part of the contents of a database for scientific research is allowed, as long as the source is

acknowledged and the use is non-commercial.

Unfortunately, this is not the only barrier. The photos on the site are also copyrighted works,

owned by whoever made them, and making a copy requires their permission.

Furthermore, the web site has a set of general terms and conditions, which forbids retrieving a

substantial portion of the database. These apply to anyone using the web site.

Downloading a car? Bad idea.

Trademarks: Back to the future
We have a research project on using deep learning for time series data called mcfly, named

a�er the main character of the Back to the Future movies. Of course, this is a commercial

franchise, so the question arose whether we can use that name for our project.

A simple name is too short to be a copyrightable work, but names can be trademarked. A

trademark search revealed an English band called McFly, who have trademarked that name for

the class of entertainment services. Since our research project is not in that market, this is no

problem.

There is also a registered trademark for "McFly & Brown", an Amsterdam recruitment company,

and that registration covers the class of "Scientific and technological services and research and

design relating thereto" (even though this company does not seem to do any science or

so�ware development itself).

Of course, "McFly & Brown" is not the same as "mcfly", and the question in this case is whether

the two are confusingly similar.

First, the two names are not actually the same, as we don't have the second part. Second, it

seems unlikely that anyone would assume a highly technical scientific research project would

be associated with a recruitment agency. Third, both names are derived from a well-known

movie, which probably makes people more likely to conclude that the similarity is coincidental.

https://github.com/NLeSC/mcfly

Whether any of that reasoning holds up in court we're not sure of, but it sounded reasonable

enough to name the project "mcfly".

Publishing Scientific Results

Ready-to-go demos
For many projects, we will prepare attractive demos. We want to be able to show a working

demo at any moment in time. Therefore, we want to have special branches in git that contain

fully stand-alone demos, including a slide deck, that can just be checked out and used directly.

Handling datasets and results
Assuming you have only the so�ware in a (private) git repo, you might want to also add and

share with others the data and results related to that so�ware:

Add also the data and figures using git lfs (Git Large File Storage).

If not, make the repo public.

Available archival / preprint servers or services
arXiv (physics, mathematics, computer science, quantitative biology, quantitative finance,

statistics)

bioRxiv (biology)

PeerJ Preprints (biological and medical sciences)

CogPrints (psychology, neuroscience, linguistics, and other fields related to cognition)

figshare (all disciplines)

GitHub (all disciplines)

Social Science Research Network (cognitive sciences, economics, humanities, law and

more)

Data storage and preservation
We strongly advise to store your research data in a secure location where regular back-ups of

the data are made, before you start working with the data. If it is logistically impossible to store

the data in a secure location immediately a�er data collection then here are some tips on how

to improve data preservation in the time window in between data collection and data arrival at

a secure location. For example, you collect data on humans in an environment without (secure)

internet connection and need to temporarily store your data o�line on a laptop before being

able to upload it to a data archive.

https://git-lfs.github.com/
http://arxiv.org/
http://biorxiv.org/
https://peerj.com/archives-preprints/
http://cogprints.org/
https://figshare.com/
https://github.com/
http://www.ssrn.com/en/

Planning data storage

We recommend that you start as early as possible to think how are you managing your data

during and a�er your project. Some questions you should ask yourself are:

What data am I using in my project ? Think about measurements coming from experiments

(performed by you or by third parties), but also interviews, statistical information, etc.

Where is my data coming from ? How is it being collected ?

Where and how is this information being stored ?

Does my data comply with the required standards applicable ? For example think of the FAIR

principles, GDPR, or other ethical restrictions.

These type of considerations should usually be covered by your data management plan, if your

funding agency requires so. And when it is not required by your funding agency, it is probably a

good idea to have a data management plan for yourself. If you are writing a data management

plan, considering using DMPOnline.

Tips for short term storage

Checksum and sign your data archive:

Do a checksum on your files to check preservation of integrity. This means you will need to

store the checksum somewhere, usually they are tiny, so they can be provided along with

the data. In fact, some Linux distributions provide the checksum of the iso image so you can

check your image when you download it. Storing checksums within the filename is not

common practice anymore. A lot of data formats allow storing the checksum in the file; ie.

the metadata part contains the checksum of the data part.

File permissions and location:

If you need to work with your data, but do not plan to change it then set file access

permissions to read only.

Try to avoid processing files that are also being synced with a cloud platform (like dropbox

or onedrive).

Try to make a back-up if possible and store this back-up at a di�erent physical location.

Specific remarks on person identifiable information:

Do not do anything without consulting your privacy consultant.

Tips for long term storage

https://dmponline.dcc.ac.uk/

For long term storage we advise researchers based in The Netherlands to explore the services of

SURFsara website, the Collaborative organization for ICT in Dutch education and research,

including but not exclusively:

Surfdrive for secure data sharing up to 250 GB.

Data archive for long term storage of extremely large datasets.

For researchers outside the Netherlands alternative data storing platforms include:

https://www.re3data.org

https://zenodo.org/

http://rd-alliance.github.io/metadata-directory/standards/

Making so�ware citable
Digital Object Identifiers are globally unique identifiers which can point to any digital object,

such as a version of a paper, a version of so�ware etc. This has the advantage that it is

unambigous and standardized. For papers, using DOIs is commonplace, and a DOI is usually

provided by the publisher. For so�ware, you can make your own DOI with Zenodo:

1. You can tell people how to cite your so�ware by including a CITATION.cff file in the

root of your repository (You can read up on the rationale of CITATION.cff files in this

blog). However, writing CITATION.cff files by hand is a bit tedious and error-prone, so

instead go to https://citation-file-format.github.io/c�-initializer-javascript/ and fill in the

provided web form.

2. Make a Zenodo account and link it with your GitHub account as explained on

guides.github.com/activities/citable-code.

3. You can tell Zenodo what metadata you want to associate with the so�ware by including a

.zenodo.json file in the root of your repository, but writing that file by hand is also

error-prone. Therefore it is advisable to just generate it from the CITATION.cff file. To do

so, you'll need a command line tool cffconvert which you can install from PyPI by:

4. Make sure that your CITATION.cff is valid YAML by copy-pasting the contents to

http://www.yamllint.com/.

5. Make sure that your CITATION.cff is valid CFF, by:

pip --user cffconvertinstall

bash

cffconvert --validate

(in the repository's root directory)

bash

https://userinfo.surfsara.nl/
https://www.surf.nl/en/services-and-products/surfdrive/surfdrive.html
https://userinfo.surfsara.nl/systems/data-archive
https://www.re3data.org/
https://zenodo.org/
http://rd-alliance.github.io/metadata-directory/standards/
https://zenodo.org/
https://www.software.ac.uk/blog/2017-12-12-standard-format-citation-files
https://citation-file-format.github.io/cff-initializer-javascript/
https://zenodo.org/
https://guides.github.com/activities/citable-code/
https://pypi.org/project/cffconvert/
http://www.yamllint.com/

If the command does not return anything, that means the CFF is valid.

6. Generate the .zenodo.json file using cffconvert as follows:

7. On Zenodo, make sure to 'Flip the switch' to the on position on the GitHub repository that

you want to make a release of.

8. Go to your Github repository, use the Create a new release button to create a release on

GitHub.

9. Zenodo should automatically be notified and should make a snapshot copy of the current

state of your repository (just one branch, without any history), and should also assign a

persistent identifier (DOI) to that snapshot.

when things don't work

In case the GitHub-Zenodo integration does not work as expected, there are two places to

go and look for information:

1. On GitHub:

go to https://github.com/<org>/<repo>/

select Settings

select Webhooks

select select the Zenodo webhook (may require GitHub login)

scroll down to Recent deliveries

click on one of the listed deliveries for details on the request, the response, and to

request redelivery.

2. On Zenodo:

go to https://zenodo.org/account/settings/github/

select the repository that you want to see the diagnostic information of

click on one of the releases to see the Payload Zenodo received from GitHub, as well

as the Metadata that Zenodo has associated with your release, or Errors if there

were any.

10. Use the DOI whenever you refer to your so�ware, be it in papers, posters, or even tweets and

blogs.

11. Add the so�ware's Zenodo badge to your repository's README.

#e-Science Conferences, Journals, and Workshops

This is a list of Conferences, Journals, and Workshops related to eScience.

cffconvert --ignore-suspect-keys --outputformat zenodo --outfile

bash

Conferences
The IEEE International Conference on eScience Yearly (computer science) conference on

eScience.

UK Conference of Research So�ware Engineers.

German Conference of Research So�ware Engineers.

The European Geosciences Union General Assembly (EGU) has a track by the Division on

Earth and Space Science Informatics (ESSI).

Free Open Source So�ware for GeoInformatics

International Conference on Computational Science

PASC Conference

There is also a community page with a list of upcoming events on the eScience Center website.

Journals
So�wareX.

Journal of Open Research So�ware.

Journal of Open Source So�ware

See A list at the So�ware Suistainability Institute.

Workshops

Contributing
This Knowledge Base is primarily written by the eScience Research Engineers at the Netherlands

eScience Center. The intended audience is anyone interested in eScience and research so�ware

development in general or how this is done at the eScience Center specifically.

Scope
To make sure the information in this knowledge base stays relevant and up to date it is

intentionally low on technical details. The Knowledge base contains information on the process

we use to do projects and develop so�ware.

https://escience-conference.org/
https://rse.ac.uk/conf2019/
https://www.de-rse.org/en/conf2019/index.html
http://www.egu.eu/
http://www.egu.eu/essi/home/
https://2019.foss4g.org/
https://www.iccs-meeting.org/iccs2019/
https://pasc19.pasc-conference.org/
https://www.esciencecenter.nl/community
http://www.journals.elsevier.com/softwarex/
http://openresearchsoftware.metajnl.com/
https://joss.theoj.org/
http://www.software.ac.uk/resources/guides/which-journals-should-i-publish-my-software

Workflow for making contributions
Contributions by anyone are most welcome.

Please use branches and pull requests to contribute content. If you are not part of the

Netherlands eScience Center organization but would still like to contribute please do by

submitting a pull request from a fork.

Add your new awesome feature, fix bugs, make other changes.

To view changes locally, host the repo with a static file web server.

To view the documentation in a web browser (default address: http://localhost:4000):

To check if there are any broken links using liche in a Docker container:

If everything works as it should, git add , commit and push like normal.

If you have made a significant contribution to the guide, please make sure to add yourself to the

CITATION.cff file so your name can be included in the list of authors of the guide.

Chapter Owners
To see who is responsible for which part of the guide see chapter_owners.md.

Chapter Owners
This is a list of who is responsible for which part of the guide.

Overall Maintainer: Bouwe Andela

Introduction: Jason Maassen

 clone https://github.com/NLeSC/guide.git

 branch newbranch

 checkout newbranch

git

git

git

shell

python3 -m http.server 4000

shell

docker run -v :/docs peterevans/liche:1.1.1 -t -c -d /docs $PWD 60 16

shell

http://localhost:4000/
https://github.com/raviqqe/liche

So�ware Development:

Overall: Jason Maassen

Code Review: Lourens Veen

Language Guides:

Introduction: Jason Maassen

Java: Christiaan Meijer

JavaScript and TypeScript: Jurriaan Spaaks

Python: Patrick Bos

OpenCL and CUDA: Ben van Werkhoven

R: Vincent van Hees

C and C++: Johan Hidding and Patrick Bos

Fortran: Gijs van den Oord

Intellectual Property: Lourens Veen

Publishing Scientific Results: Willem van Hage

Access to e-Infrastructure: Jason Maassen

Projects: Jisk Attema

Contributing to this Guide: Jason Maassen

Access to (Dutch) e-Infrastructure
To successfully run a project and to make sure the project is sustainable a�er it has ended, it is

important to choose the e-Infrastructure carefully. Examples of e-Infrastructure used by eScience

Center projects are High Performance Computing machines (Supercomputers, Grids, Clusters),

Clouds, data storage infrastructure, and web application servers.

In general PI's will already have access to (usually local) e-Infrastructure, and are encouraged

to think about what e-Infrastructure they need in the project proposal. Still, many also request

our help in finding suitable e-Infrastructure during the project.

Which infrastructure is best very much depends on the project, so we will not attempt to

describe the optimal infrastructure here. Instead, we describe what is most commonly used, and

how to gain access to this e-Infrastructure.

Lack of e-Infrastructure should never be a reason for not being able to to a project (well). If you

ever find yourself without proper e-Infrastructure, come talk to the E�icient Computing team.

We should be able to get you going quickly.

SURF

SURF is the most obvious supplier of e-Infrastructure for Netherlands eScience Center projects.

For all e-Infrastructure needs we usually first look to SURF. This does not mean SURF is our

exclusive e-Infrastructure provider. We use whatever infrastructure is best for the project,

provided by SURF or otherwise.

Getting access to SURF infrastructure

In general access to SURFsara resources is free of charge for scientists in The Netherlands. For

most infrastructure gaining access is a matter of filling in a simple web-form, which you can do

yourself on behalf of the scientists in the project. Exceptions are the Cartesius and Lisa, for

which a more involved process is required. For these machines, only the PI of a project can

submit (or anyone else with an NWO Iris account).

The Netherlands eScience Center also has access to the infrastructure provided by SURFnet.

Access is normally done on a per-organization basis, so may vary from one project partner to

the next.

Available systems at SURF

Here we list some of the most likely to be used resources at SURF. See the overview of all SURF

services and products, and detailed information on the SURFsara infrastructure.

SURFsara:

Cartesius: The national supercomputer of The Netherlands. It contains a lot of very high

performance machines, connected through a fast interconnect (about 41000 cores in total,

plus 132 GPUs). It also has a large storage system (7+ Pb). Cartesius is typically designed for

large parallel applications that require thousands of cores at once.

Lisa: National Cluster. Similar machines as the Cartesius, without the interconnect (about

8000 cores in total). Storage also more limited. Lisa is typically designed to run lots of small

(1 to 16 core) applications at the same time.

Grid: Same machines again, now with a Grid Middleware. Not recommended for use in

eScience Center projects.

HPC Cloud: On demand computing infrastructure. Nice if you need longer running services,

or have a lot of special so�ware requirements.

Hadoop: Big Data analytics framework.

BeeHub: Lots of storage with a webDAV interface.

Elvis: Remote rendering cluster. Creates a remote desktop session to a Linux machine with

powerful Nvidia Graphics installed.

Data Archive: Secure, long-term storage of research data on tape. Access to archive

included with Cartesius and Lisa project accounts.

SURFnet:

https://www.surf.nl/en/services-and-products
https://userinfo.surfsara.nl/systems

SURFconext: Federated identity management. Allows scientists to login to services using

their home organization account. Best known example is SURFspot. Can be added to

custom services as well.

SURFdrive: Dropbox-like service hosted by SURF.

Ask questions to: helpdesk@surfsara.nl.

DAS-5
The Netherlands eScience Center participates in the DAS-5 (Distributed ASCI Supercomputer),

a system for experimental computer science. Though not intended for production work, it is

great for developing so�ware on, especially HPC, parallel and/or distributed so�ware.

DAS-5 consists of 6 clusters at 5 di�erent locations in the Netherlands, with a total of about 200

machines, over 3000 cores, and about 800Tb total storage. These clusters are connected with

dedicated lightpaths. Internally, each cluster has a fast interconnect. DAS-5 also contains an

ever increasing amount of accelerators (mostly GPU's).

DAS-5 is explicitly meant as an experimentation platform: any job should be able to run

instantly, long queue times should be avoided. Running long jobs is therefore not allowed

during working hours. During nights and weekends these rules do not apply. See the usage

policy.

Any eScience Center employee can get a DAS-5 account, usually available within a few hours.

Security and convenience when committing code
to GitHub from a cluster
When accessing a cluster, it is generally safer to use a pair of keys than to login using a

username and password. There is a guide on how to setup those keys. Make sure you encrypt

your private key and that it is not automatically decrypted when you login to your local

machine. Make a separate pair of keys to access your GitHub account following GitHub's

instructions. It involves uploading your public key to your GitHub account and testing your

connection.

When committing code from a cluster to GitHub, one needs to store an encrypted private key in

the $HOME/.ssh directory on the cluster. This is inconvenient, because it requires submitting a

password to unlock the private key. This password has to be resubmitted when SSHing to a

local node from the head node. To bypass this inconvenience SSH agent forwarding is

recommended. It is very simple. On your local machine, make a $HOME/.ssh/config file to

contain the following:

mailto:helpdesk@surfsara.nl
http://www.cs.vu.nl/das5
http://www.cs.vu.nl/das5/usage.shtml
https://superuser.com/questions/303358/why-is-ssh-key-authentication-better-than-password-authentication
https://www.cyberciti.biz/faq/how-to-set-up-ssh-keys-on-linux-unix/
https://help.github.com/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent/
https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/
https://help.github.com/articles/testing-your-ssh-connection/
https://developer.github.com/guides/using-ssh-agent-forwarding/

Replace example.com by the head node of your cluster, i.e. the node you use to login to. Next,

Done!

The only remaining problem is that SSH keys cannot be used when git cloning was done using

https instead of SSH, but that can be corrected:

Commercial Clouds
If needed a project can use commercial cloud resources, normally only if all SURF resources do

not meet the requirements. As long as the costs are within limits these can come out of the

eScience Center general project budget, for larger amounts the PI will need to provide funding.

We do not have an o�icial standard commercial cloud provider, but have the most experience

with Amazon AWS.

Procolix
If a more long term infrastructure is needed which cannot be provided by SURF, the default

company we use for managed hosting is Procolix. Procolix hosts our eduroam/surfconext

authentication machines.

In principle the eScience Center will not pay for infrastructure needed by projects. In these cases

the PIs will have to pay the bill.

GitHub Pages
If a project is in need of a website or webapp using only static content (javascript, html, etc), it

is also possible to host this at github. See https://pages.github.com/

Host example.com

 ForwardAgent yes

chmod 600 $HOME/.ssh/config.

git remote set-url origin git@github.com:username/repo.git

http://stackoverflow.com/questions/6565357/git-push-requires-username-and-password
https://www.procolix.com/
https://pages.github.com/

Local Resources
A scientist may have access to locally available infrastructure.

Other
This list does not include any resources from Nikhef, CWI, RUG, Target, etc, as these are (as far

as we know) not open to all scientists.

Avoid if possible
Try to avoid using self-managed resources (the proverbial machine under the Postdoc's desk).

This may seem an easy solution at first, but will most probably require significant e�ort over the

course of the project. It also increases the changes of the infrastructure disappearing at some

random moment a�er the project has finished.

DAS-5
This text gives a couple of practical hints to get you started using the DAS-5 quickly. It is

intended for people with little to no experience using compute clusters.

First of all, and this is the most important point in this text: read the usage policy and make

sure you understand every word of it: http://www.cs.vu.nl/das5/usage.shtml

The DAS-5 consists of multiple cluster sites, the largest one is located at the VU, which you can

reach using by the hostname fs0.das5.cs.vu.nl . The firewall requires that your IP is

whitelisted, which means you will be able to access the DAS from the eScience Center o�ice,

but not directly when you are somewhere else. To use the DAS from anywhere you can use

eduVPN.

When you login in it means you are logged into the headnode, this node should not be used for

any computational work. The cluster uses a reservation system, if you want to use any node

that is not the head node, you must use the reservation system to gain access to a compute

node. The reserveration system on DAS-5 is called Slurm, you can see all running jobs on the

cluster using squeue and cancel any of your running jobs with scancel <jobid> .

The files in your home directory /home/username/ will be backed up automatically, if you

accidently delete an important file you can email the maintainer and kindly request him to put

back an old version of the file. If you have to store large data sets put them under

/var/scratch/username/ , the scratch space is not backed up.

You can use the command module to gain access to a large set of preinstalled so�ware. Use

module list to see what modules are currently loaded and module avail to see all

http://www.cs.vu.nl/das5/usage.shtml

available modules. You can load or unload modules with the 'module load' and module

unload . You may want to add some of the modules you frequently use to your bashrc. Note

that all that these modules do is add or remove stu� from your PATH and

LD_LIBRARY_PATH environment variables. If you need so�ware that is not preinstalled, you

can install it into your home directory. For installing Python packages, you have to use

Anaconda or pip install --user .

If you want an interactive login on any of the compute nodes through the reservation system,

you could use: srun -N 1 --pty bash . The srun command is used to run a program on a

compute node, -N specifies the number of nodes, --pty specifies this is an interactive job, bash is

the name of the program being launched. This reservation is only cancelled when you logout of

the interactive session, please observe the rules regarding reservation lengths.

To access the nodes you've reserved quickly it's a good idea to generate an ssh key and add

your own public key to your 'authorized_keys' file. This will allow you to ssh to nodes you have

reserved without password prompts.

To reserve a node with a particular GPU you have to specify to srun what kind of node you

want. I have the following alias in my bashrc, because I use it all the time:

alias gpurun="srun -N 1 -C TitanX --gres=gpu:1"

If you prefix any command with gpurun the command will be executed on one of the

compute nodes with an Nvidia GTX Titan X GPU in them. You can also type gpurun --pty

bash to get an interactive login on such a node.

Running Jupyter Notebooks on DAS-5 nodes
If you have a Jupyter notebook that needs a powerfull GPU it can be useful to run the notebook

not on your laptop, but on a GPU-equipped DAS-5 node instead.

How to set it up

It can be a bit tricky to get this to work. In short, what you need is to install jupyter, for example

using the following command:

And it's recommended that you add this alias to your .bashrc file:

pip install jupyter

`alias notebook-server="srun -N 1 -C TitanX --gres=gpu:1 bash -c 'hos

Now you can start the server with the command notebook-server .

You just need to connect to your jupyter notebook server a�er this. The easiest way to do this is

to start firefox on the headnode (fs0) and connect to the node that was printed by the

notebook-server command. Depending on what node you got from the scheduler you can

go to the address http://node0XX:8888/ . For more details and di�erent ways of

connecting to the server see the longer explanation below.

More detailed explanation

First of all, you need to install jupyter into your DAS-5 account. I recommend using miniconda,

but any Python environment works. If you are using the native Python 2 installation on the DAS

don't forget to add the --user option to the following pip command. You can install Jupyter

using: pip install jupyter .

Now comes the tricky bit, we are going to connect to the headnode of the DAS5 and reserve a

node through the reservation system and start a notebook server on that node. You can use the

following alias for that, I suggest storing it in your .bashrc file:

alias notebook-server="srun -N 1 -C TitanX --gres=gpu:1 bash -c

'hostname; XDG_RUNTIME_DIR= jupyter notebook --ip=* --no-browser'"

Let's first explain what this alias actually does for you. The first part of the command is similar

to the gpurun alias explained above. If you do not require a GPU in your node, please remove

the -C TitanX --gres=gpu:1 part. Now let's take a look at what the rest of this command

is doing.

On the node that we reserve through srun we execute the following bash command:

hostname; XDG_RUNTIME_DIR= jupyter notebook --ip=* --no-browser'

This is actually two commands, the first only prints the name of the host, which is important

because you'll need to connect to that node later. The second command starts with unsetting

the environment variable XDG_RUNTIME_DIR.

On the DAS, we normally do not have access to the default directory pointed to by the

environment variable XDG_RUNTIME_DIR. The Jupyter notebook server wants to use this

directory for storing temporary files, if XDG_RUNTIME_DIR is not set it will just use /tmp or

something for which it does have permission to access.

The notebook server that we start would normally only listen to connections from localhost,

which is the node on which the notebook server is running. That is why we pass the --ip=*

option, to configure the notebook server to listen to incoming connections from the headnode.

Be warned that this is actually highly insecure and should only be used within trusted

environments with strict access control, like the DAS-5 system.

We also need the --no-browser no browser option, because we do not want to run the

browser on the DAS node.

You can type notebook-server now to actually reserve a node and start the jupyter

notebook server.

Now that we have a running Jupyter notebook server, there are 2 di�erent approaches to

connect to our notebook server:

1. run your browser locally and setup a socks proxy to forward your http tra�ic to the

headnode of the DAS

2. starting a browser on the headnode of the DAS and use X-forwarding to access that browser

Approach 1 is very much recommended, but if you can't get it to work, you can defer to option

2.

Using a SOCKS proxy

In this step, we will create an ssh tunnel that we will use to forward our http tra�ic, e�ectively

turning the headnode of the DAS into your private proxy server. Make sure you that you can

connect to the headnode of the DAS, for example using a VPN. The following command is rather

handy, you might want to save it in your bashrc:

alias dasproxy="ssh -fNq -D 8080 <username>@fs0.das5.cs.vu.nl"

Do not forget to replace <username> with your own username on the DAS.

Option -f stands for background mode, which means the process started with this command

will keep running in the background, -N means there is no command to be executed on the

remote host, and -q stands for quiet mode, meaning that most output will be surpressed.

A�er executing the above ssh command, start your local browser and configure your browser to

use the proxyserver. Manually configure the proxy as a "Socks v5" proxy with the address

'localhost' and port 8080.

A�er changing this setting navigate to the page http://node0XX:8888/ , where node0XX

should be replaced with the hostname of the node you are running the notebook server on. Now

in the browser open your notebook and get started using notebooks on a remote server!

Using X-Forwarding

Using another terminal, create an ssh -X connection to the headnode of the DAS-5. Note

that, it is very important that you use ssh -X for the whole chain of connections to node,

including the one used to connect to the headnode of the DAS and any number of intermediate

servers you are using. This also requires that you have an X server on your local machine, if you

are running Windows I recommend installing VirtualBox with a Linux GuestOS.

On the headnode type firefox http://node0XX:8888/ , where node0XX should be

replaced with the hostname of the node you are running the notebook server on. Now in the

browser open your notebook and get started using notebooks on a remote server!

Projects
The Netherlands eScience Center is a projects based organization. Projects are done in

partnership with scientists, usually from a Dutch University.

new Project()
There are several ways a new project gets initiated at the Netherlands eScience Center. In

general, projects are started via one of our project calls. See

https://www.esciencecenter.nl/project-calls for more information.

Kicko� Meeting
Each project starts with a kicko� meeting at the Netherlands eScience Center. At this meeting

the PI, eScience engineer, Coordinator, and an MT-member are present. Other project partners

are welcome.

For this meeting the standard agenda is:

Round of introductions.

Assignment of the eScience engineer(s) and coordinator.

Netherlands eScience Center introduction presentation (by coordinator).

Project introduction (by PI).

Discussion on initial project planning and deliverables.

Any other business.

In the Netherlands eScience Center introduction presentation several important topics are

explained:

How do we work.

What is the role of the eScience engineer and coordinator.

Project life cycle (annual reviews and rapports, payment, project end, etc.).

How to communicate with the Netherlands eScience Center.

Publications.

Intellectual property (IP).

Communication by the Netherlands eScience Center (project page at eScience Center

website, pitches, etc.).

So�ware and so�ware quality.

Role of eStep, knowledge base, etc.

Project Planning

Project Reviews

https://www.esciencecenter.nl/project-calls

For all project longer than a year (typically full projects and alliances), the MT organizes annual

reviews. The details are described in Section 9.4.2 of the protocol document. The annual reviews

are organized and chaired by an MT member, and the PI, eScience engineer(s), eScience

coordinator, and other partners (posdocs, co-PIs, etc) are present.

The goals are as follows:

Progress of project relative to planning.

Innovation, research, deliverables, eStep.

Identify key success stories/messages to share with key opinion formers.

Ensure e�icient use of engineer resources, identify bottlenecks and areas to improve.

Financial status.

Look for ways to extend collaborations.

Consider project legacy and post-funding support.

Potential interaction with other eScience Center projects.

The standard agenda for this 1.5 hour meeting is:

Presentation by the PI (20 minutes)

Presentation eScience Engineer (20 minutes) including description of role and deliverables.

Discussion (40 minutes)

Summary, action points and conclusions.

Communication

Pitch presentation (1 to 3 slides)
Pitch presentation should be prepared, and updated on a regular basis.

End of a Project

End-of-project document
Project proposals are focused on their scientific domain, and are not always clear on the

necessary escience. Also, during a project the escience requirements can change, and its actual

escience component can be di�erent from the originally proposed methods and tools. A final

project report will focus on the scientific domain (published papers) and financial accounting.

All in all, this leaves the escience part of projects a bit undocumented. Therefore, we could use a

small informal document, for internal use, describing the project from the perspective of an

escience engineer. In principle the escience is shared with the engineer and coordinator, and is

discussed during the project reviews. Any reusable so�ware is added to eStep, or to the

knowledgebase. This document can therefore be high-level and short. It is meant to facilitate re-

using tools and techniques for other escience projects, provide (links to) information and

background material for escience presentations / PR, and provide a possible starting point for

continuation of the project.

As this kind of documentation is only valuable if engineers can freely share their opinions and

experiences (also negative ones!), this document itself is not meant for external distribution.

Contents

high-level description of actual escience requirements in the project

what went great, what could have gone better

pointers (URL) to project documentation

motivation for chosen approach,

high-level description of used or developed tools and references to them (github, website,)

eScience presentation for (re-)use in the form of a powerpoint document (so the images,

text, and or slides can be extracted). Check the pitch and project presentations to see if they

are su�icient, ask coordinator.

written by

escience engineer(s) working on the project

target audience

escience engineers

escience coordinators

schedule

should be written during the last weeks of the project

Stored on the internal sharepoint site

Support
The Netherlands eScience Center provides very limited support for so�ware. During a project we

make every e�ort to create low-maintenance code by building on as many standard

components as possible, using so�ware from eStep, and putting a lot of e�ort into documenting

and testing so�ware. Also, by using standard file formats and API's we try to limit the e�ort

required to maintain so�ware, and make it easier to continue development.

A�er a project has finished the eScience Center will in principle not further support the so�ware.

Reported bugs in our own so�ware will of course have a high chance of being looked at, but

this also has its limits. We cannot in any way contribute to the administration of infrastructure

needed a�er a project has ended.

Because of the lack of support a�er projects is is a good idea to start to think about and make

agreements on where so�ware will land and who will maintain infrastructure at the very

beginning of a project. The project proposal should already contain a plan.

For in-house developed eStep so�ware we do provide some support, though even here only

limited time is available for this. See the technology page on the website

(https://www.esciencecenter.nl/technology) for the list of supported so�ware.

So�ware checklist
This section contains a list of items which are required to help so�ware reach a su�icient

quality standard. The following list of items links to explanation in other sections of this

chapter.

The checklist matrix provides an indication of which items are important at di�erent

development stages.

Version control
version control from the beginning of the project

use git as version control system (vcs)

choose one branching model

public vcs repository

meaningful commit messages

Releases
semantic versioning

tagged releases

CHANGELOG.md

one command install

package in package manager

discuss release cycle with coordinator

release quick-scan by other engineer

Dissemination

Licensing
Apache 2 license

compatible license of all libraries

https://www.esciencecenter.nl/technology

NOTICE(.txt|.md)

Communication
home page

discussion list

demo docker image in dockerhub (with Dockerfile)

an online demo

screencast

Code Quality
use editorconfig

code style applied in automated way

Testing
unit tests

continuous integration

continuous code coverage

end2end test

dependencies tracking

Documentation
README.md

well defined functionality

source code documentation

usage documentation

documented development setup

contribution guidelines

code of conduct

documented code style

how to file a bug report

explained meaning of issue labels

DOI or PID

CITATION.c� file

print so�ware version

Standards

https://the-turing-way.netlify.app/code_quality/code_quality.html#Automatic-formatting

Exchange formats

Protocols

Checkmatrix for 'eStep friendly' projects.
This matrix shows what parts of the so�ware sustainability checklist should be taken care of at

(perhaps slightly before) what state of a project.

Though very generic in scope and context, this is an eScience Center specific list. This allows us

to keep the number of "states" low.

Explanation of project states
Prototype phase. The first step in most so�ware development is trying out di�erent things

with no intention in keeping the intermediate results. Signs you could be in this phase:

You switch programming languages.

You throw away all of your code once in a while

You work on the code by yourself

You are waiting with showing other people your code until you "clean it up a bit first".

Pre-release phase. Eventually you get so�ware you intend to keep. Signs you could be in

this phase:

You have multiple developers.

You have external contributors.

You are working up to a release.

Users ask you if the so�ware is done yet.

Maturity phase: So�ware that has reached maturity, has a clear function and scope, and is

used. Signs you could be in this phase:

The so�ware has a release.

The so�ware has users: people actually using your so�ware/code

You have external contributor

The so�ware is actively used and contributed to by so many people that it becomes a

community project rather than an eScience Center project.

These states happen in order and are exclusive.

Version Control

Item / Phase Prototype Pre-
release

Mature

use git as version control system (vcs) X

use GitHub flow branching model (use feature
branches and pull requests)

X

public vcs repository (github) X

https://guides.github.com/introduction/flow/
https://github.com/

Item / Phase Prototype Pre-
release

Mature

meaningful commit messages X

Releases

Item / Phase Prototype Pre-
release

Mature

semantic versioning X

tagged releases (github releases) X

CHANGELOG.md (Keep a CHANGELOG) X

one command install (pip, npm etc) X

package in package manager (pypi, npm etc) X

discuss release cycle with coordinator X

release quick-scan by other engineer (is
documentation understandable, can it be installed,
etc)

X

notify Lode for dissemination (news item on site /
annual report, etc)

X

Licensing

Item / Phase Prototype Pre-
release

Mature

Apache 2 license X

compatible license of all libraries X

NOTICE(.txt or .md) listing licenses, request
citation of paper if applicable

X

Communication

Item / Phase Prototype Pre-
release

Mature

home page with all the necessary introduction
information, links to documenation, source code
(github) and latest release download (eg. github.io
pages)

X

project discussion list (github issues, mailing list, not
private email) for all project related discussions from
the beginning of the project

X

http://semver.org/
https://help.github.com/categories/releases/
http://keepachangelog.com/
https://pypi.python.org/pypi/pip
https://www.npmjs.com/package/npm
https://pypi.python.org/pypi
https://www.npmjs.com/
http://www.apache.org/licenses/LICENSE-2.0
https://pages.github.com/

Item / Phase Prototype Pre-
release

Mature

for services: a demo docker image in dockerhub (with
Dockerfile)

X

for websites: an online demo X

Pitch presentation (1 to 3 slides) X

Few sentences about the project for the technology
pages on our website

X

Testing

Item / Phase Prototype Pre-
release

Mature

unit tests X

build tests X

continuous integration, public on Travis X

continuous code coverage and code quality metrics
public, minimum 70% coverage required

X

end2end test for (web) user interfaces X

track dependencies (with David or other service
depending on codebase language)

X

Documentation

Item / Phase Prototype Pre-
release

Mature

README.md - clear explanation of the goal of the
project with pointers to other documentation
resources. Use GitHub flavored markdown for, e.g.,
syntax highlighting.

X

well defined functionality X

source code documentation X

usage documentation X

documented development setup (good example is
Getting started with khmer development)

X

contribution guidelines egzample X

code of conduct (contributor covenant) X

documented code style X

meaning of issue labels used X

https://www.esciencecenter.nl/technology
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://david-dm.org/
https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
http://contributor-covenant.org/

Item / Phase Prototype Pre-
release

Mature

DOI or PID (making your code citable) X

Development setup

Item / Phase Prototype Pre-
release

Mature

using the eScience Center coding style is required X

editorconfig X

applied code style in automated way if possible (i.e
using linters and code formaters)

X

dev environment docker images in Dockerhub (with
Dockerfile)

X

Use standards

Item / Phase Prototype Pre-
release

Mature

exchange format (Unicode, W3C, OGN, NetCDF,
etc)

X

protocols (HTTP, TCP, TLS, etc) X

Checkmatrix for 'eStep friendly' projects.
Printable check-list -- complete this checklist to ensure your project is eStep-ready. If you can

tick all boxes on this form, your project should be included as an eStep Prototype project.

Version Control
Item / Phase Done

use git as version control system (vcs)

public vcs repository (github)

meaningful commit messages

Licensing
Item / Phase Done

https://guides.github.com/activities/citable-code/
http://editorconfig.org/
https://github.com/

Item / Phase Done

Apache 2 license

compatible license of all libraries

NOTICE(.txt or .md) listing licenses, request citation of paper if applicable

Communication
Item / Phase Done

project discussion list (github issues, mailing list, not private email) for all project
related discussions from the beginning of the project

Documentation
Item / Phase Done

README.md - clear explanation of the goal of the project with pointers to other
documentation resources. Use GitHub flavored markdown for, e.g., syntax
highlighting.

Use standards
Item / Phase Done

exchange format (Unicode, W3C, OGN, NetCDF, etc)

protocols (HTTP, TCP, TLS, etc)

Checkmatrix for 'eStep friendly' projects.
Printable check-list -- complete this checklist to ensure your project is eStep-ready. If you can

tick all boxes on this form, your project should be included as an eStep Pre-release project.

##Version Control

Item / Phase Done

use git as version control system (vcs)

use GitHub flow branching model (use feature branches and pull requests)

public vcs repository (github)

meaningful commit messages

##Releases

http://www.apache.org/licenses/LICENSE-2.0
https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://guides.github.com/introduction/flow/
https://github.com/

Item / Phase DoneItem / Phase Done

discuss release cycle with coordinator

##Licensing

Item / Phase Done

Apache 2 license

compatible license of all libraries

NOTICE(.txt or .md) listing licenses, request citation of paper if applicable

##Communication

Item / Phase Done

project discussion list (github issues, mailing list, not private email) for all project
related discussions from the beginning of the project

Pitch presentation (1 to 3 slides)

##Testing

Item / Phase Done

unit tests

build tests

continuous integration, public on Travis

##Documentation

Item / Phase Done

README.md - clear explanation of the goal of the project with pointers to other
documentation resources. Use GitHub flavored markdown for, e.g., syntax
highlighting.

well defined functionality

source code documentation

usage documentation

documented development setup (good example is Getting started with khmer
development)

contribution guidelines egzample

code of conduct (contributor covenant)

documented code style

meaning of issue labels used

http://www.apache.org/licenses/LICENSE-2.0
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
http://contributor-covenant.org/

Development setup
Item / Phase Done

using the eScience Center coding style is required

editorconfig

applied code style in automated way if possible (i.e using linters and code
formaters)

dev environment docker images in Dockerhub (with Dockerfile)

Use standards
Item / Phase Done

exchange format (Unicode, W3C, OGN, NetCDF, etc)

protocols (HTTP, TCP, TLS, etc)

Checkmatrix for 'eStep friendly' projects.
Printable check-list -- complete this checklist to ensure your project is eStep-ready. If you can

tick all boxes on this form, your project should be included as an eStep Mature project.

Version Control
Item / Phase Done

use git as version control system (vcs)

use GitHub flow branching model (use feature branches and pull requests)

public vcs repository (github)

meaningful commit messages

Releases
Item / Phase Done

semantic versioning

tagged releases (github releases)

CHANGELOG.md (Keep a CHANGELOG)

one command install (pip, npm etc)

package in package manager (pypi, npm etc)

discuss release cycle with coordinator

http://editorconfig.org/
https://guides.github.com/introduction/flow/
https://github.com/
http://semver.org/
https://help.github.com/categories/releases/
http://keepachangelog.com/
https://pypi.python.org/pypi/pip
https://www.npmjs.com/package/npm
https://pypi.python.org/
https://www.npmjs.com/

Item / Phase Done

release quick-scan by other engineer (is documentation understandable, can it be
installed, etc)

notify Lode for dissemination (news item on site / annual report, etc)

Licensing
Item / Phase Done

Apache 2 license

compatible license of all libraries

NOTICE(.txt or .md) listing licenses, request citation of paper if applicable

Communication
Item / Phase Done

home page with all the necessary introduction information, links to documenation,
source code (github) and latest release download (eg. github.io pages)

project discussion list (github issues, mailing list, not private email) for all project
related discussions from the beginning of the project

for services: a demo docker image in dockerhub (with Dockerfile)

for websites: an online demo

Pitch presentation (1 to 3 slides)

Few sentences about the project for the technology pages on our website

Testing
Item / Phase Done

unit tests

build tests

continuous integration, public on Travis

continuous code coverage and code quality metrics public, minimum 70%
coverage required

end2end test for (web) user interfaces

track dependencies (with David or other service depending on codebase language)

Documentation

http://www.apache.org/licenses/LICENSE-2.0
https://pages.github.com/
https://www.esciencecenter.nl/technology
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org/
https://david-dm.org/

Item / Phase Done

README.md - clear explanation of the goal of the project with pointers to other
documentation resources. Use GitHub flavored markdown for, e.g., syntax
highlighting.

well defined functionality

source code documentation

usage documentation

documented development setup (good example is Getting started with khmer
development)

contribution guidelines egzample

code of conduct (contributor covenant)

documented code style

meaning of issue labels used

DOI or PID (making your code citable)

Development setup
Item / Phase Done

using the eScienc Center coding style is required

editorconfig

applied code style in automated way if possible (i.e using linters and code
formaters)

dev environment docker images in Dockerhub (with Dockerfile)

Use standards
Item / Phase Done

exchange format (Unicode, W3C, OGN, NetCDF, etc)

protocols (HTTP, TCP, TLS, etc)

https://help.github.com/categories/writing-on-github
https://help.github.com/articles/creating-and-highlighting-code-blocks
http://khmer.readthedocs.org/en/latest/dev/getting-started.html
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
http://contributor-covenant.org/
https://guides.github.com/activities/citable-code/
http://editorconfig.org/

