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1 Introduction
Reliable information on species’ population sizes, trends, habitat associations,
and distributions is important for conservation and land-use planning, as well
as status assessment and recovery planning for species at risk. However, the
development of such estimates at a national scale is challenged by a variety
of factors, including sparse data coverage in remote regions (Stralberg et
al. 2015), differential habitat selection across large geographies (Crosby et
al. 2019), and variation in survey protocols (Sólymos et al. 2013).

With these factors in mind, we developed a generalized analytical approach
to model species density in relation to environmental covariates, using the
Boreal Avian Modelling Project database of point-count surveys (through
2018) and widely available spatial predictors (Cumming et al. 2010, Barker
et al. 2015). We developed separate models for each geographic region
(bird conservation regions intersected by jurisdiction boundaries) based on
covariates such as tree species biomass (local and landscape scale), forest age,
topography, land use, and climate. We used machine learning to allow for
variable interactions and non-linear responses while avoiding time-consuming
species-by-species parameterization. We applied cross-validation to avoid
overfitting and bootstrap resampling to estimate uncertainty associated with
our density estimates.

1.1 Contact

Please contact us if you have questions or suggestions via these channels:

• borealbirds.ualberta.ca
• Twitter
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• GitHub

1.2 Citing the models

Please cite this document when using the BAM Nationam Model results as:

Boreal Avian Modelling Project, 2020. BAM Generalized National Models
Documentation, Version 4.0. Available at https://borealbirds.github.io/.
DOI: 10.5281/zenodo.4018336.

2 Methods

2.1 Data

2.1.1 Study area

Models were developed based on data from non-arctic portions of Canada.
Sampling effort varied greatly across the study area. In general, north-
ern environmental conditions were underrepresented, and southern boreal
conditions were overrepresented in comparison with the rest of the study
area.

Percentiles of predicted survey effort (number of sites surveyed) based on
~100 environmental covariates and a single boosted regression tree model with
a Poisson distribution. Data represent a subsample (1 million 1-km pixels)

3

https://github.com/borealbirds
https://borealbirds.github.io/
httpd://dx.doi.org/10.5281/zenodo.4018336


of the Canadian study area indicated on the map. Mean number of sites
surveyed per 1-km pixel = 0.03.

Separate models were constructed for each of 16 separate spatial subunits
consisting of bird conservation regions (BCRs) intersected with Canadian
jurisdictional boundaries. Smaller BCR x jurisdiction intersections were
merged to maintain adequate sample sizes.

Model-building units based on a combination of bird conservation regions
and Canadian jurisdiction boundaries.

2.1.2 Avian data and subsampling

Avian data were extracted from the BAM avian dataset (v. 4) and sup-
plemented with automated recording unit (ARU) data from the WildTrax
acoustic database (6,801 surveys between 2012 and 2018). In total, we
sampled data from 296,061 point counts across Canada (across a total of
256,316 site locations and 175 distinct projects). North American Breeding
Bird Survey and provincial Breeding Bird Atlas data were included in this
database, and constitute a significant fraction of available data (30% and
53% respectively).

We present models for 143 landbird species for which density offsets were
available and for which data were sufficient to fit cross-validated BRTs in
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at least one of the 16 regions. Point-count surveys were conducted between
1991 and 2018 (97% of the point counts were from between 1997 and 2014).
We stratified samples by year and geography to produce a more spatially
and temporally balanced dataset. We used a 2.5 km x 2.5 km resolution
spatial grid to define spatial ‘clusters’ of data. We resampled the data set
in each region so that we had a single data point from each cluster/year
combination and fit BRTs to the resampled data set. This subsampling
addressed instances where multiple visits to the same location occurred
within the same year. The subsampling was repeated 32 times.

The list of species is part of the dowloadable Excel file.

2.1.3 Environmental covariates

Model inputs consisted of 219 spatially explicit environmental covariates, as
well as survey year (continuous) and survey type (binary).

To capture the influence of changing landscape conditions on avian density,
we used vegetation maps from 2001 and 2011 (Beaudoin et al. 2014) and
associated our survey data with the layer that represented the closest time
period. Surveys conducted in 2005 or earlier were associated with the 2001
dataset, while surveys from 2006 and later were associated with the 2011
dataset. Vegetation variables were derived at a 250-m spatial resolution from
k-nearest-neighbor (kNN) models that used forest sample plots from Canada’s
National Forest Inventory combined with MODIS satellite imagery, as well
as climate and terrain data (Beaudoin et al. 2014). Vegetation variables
included pixel-level and landscape-level biomass of individual tree species
and stand age. Landscape-level covariates were calculated using the focal
function in the raster package for R, and were based on a moving-window
average using a Gaussian weighting of surrounding pixels (one standard
deviation = 750 m).

To capture other sources of landscape variation not represented in vegetation
data, we supplemented the biomass and stand age covariates with several
terrain, land use, and climate variables. Terrain metrics, calculated using
the terrain function in the raster package for R were based on a 100-m
digital elevation model for North America. Land-use and landcover variables
were based on the 2005 MODIS-based 250-m North American landcover
map (Commission for Environmental Cooperation). A binary (0/1) 1-km
road variable (Venter et al. 2016) was used to account for the influence of
roads at a broad scale. Climate variables were based on a 1-km Climate NA
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interpolation of 1981-2010 weather station data (Wang et al. 2016).

We pre-screened the environmental predictor variables to eliminate constant
(no variation in a BCR subunit) or highly correlated (Pearson’s correlation
> 0.9) variables. We also eliminated variables that never entered the cross-
validated BRTs to further narrow the variable set for bootstrap to boost
computing speed.

The list of covariates is part of the dowloadable Excel file.

2.2 Analyses

2.2.1 Density calibration, detectability offsets

We accounted for differences in sampling protocol and covariate effects on
detectability using statistical offsets. This included the effects of time of day
and day of year on the probability of availability given presence, and the
effects of tree cover and land-cover type on the probability of detection given
availability (Sólymos et al. 2013). Offsets were calculated based on removal
and distance-sampling models (Sólymos 2016, Sólymos et al. 2018). These
models were used to predict availability and detectability for each species
given survey-specific covariates. The adjustments appeared as offsets in the
BRTs so that expected values represented species density.

We assumed that ARU detectability is similar to detectability by human
observers (Yip et al. 2017). Nevertheless, we used an indicator variable to
account for possible differences in effective area sampled between human
counts and ARUs following Van Wilgenburg at el. (2017).

2.2.2 Model building

Separate models were constructed for each BCR subunit plus a 100-km
buffer around the Canadian portion of the perimeter. We implemented
boosted regression tree (BRT) models using the gbm.step function in the
dismo R package with a Poisson distribution and 10-fold cross-validation
in a preliminary run to assess the number of boosting iterations required
to avoid over-fitting. We capped the number of iterations (trees) at 10,000
maximum. BRT settings were as recommended by Elith et al. (2008) and
were consistent with Stralberg et al. (2015). We used the number of trees
established based on the cross-validation to run models for each bootstrap
sample using the gbm function in the gbm R package. This yielded 32 BRT
outputs per species and subregions.
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We provide information on variable importance for each species by subunits,
and for Canada as an average across the subunits (see in the downloadable
Excel file). The top ranking variables with respect to variable importance
were year of survey, temperature difference, average summer temperature,
summer and annual heat/moisture index, and the proportion of developed
areas, black spruce, and aspen.

2.2.3 Model validation

We calculated validation metrics using the training data set by making 32
predictions given the bootstrap based BRT outputs. Scale and location
shifts across bootstrap based predictions were evaluated by the overall
concordance correlation coefficient (OCCC; Lin 1980, Barnhart et al. 2002).
OCCC measures the deviation from 1:1 line through the origin, i.e. perfect
agreement between two measures. OCCC is the product of two the overall
precision (how far each observation deviated from the best fit line), and the
overall accuracy (how far the best line deviates from the 1:1 line).

We used the bootstrap averaged predictions to calculate expected values
under the null model [exp(initial intercept estimate of the BRT + offsets)]
and the final BRT [estimate from all trees combined x exp(offset)]. These
initial and final predictions were used to calculate AUC (initial and final) to
assess classification accuracy (counts treated as detection / non-detection)
and pseudo R2 to quantify the proportion of variance explained (based on
Poisson density based deviance relative to the null and saturated models).

Validation results are part of the dowloadable Excel file.

2.3 Predictive mapping

We used the subregional BRT results to make species and subregion specific
predictions using 1 km2 resolution raster layers as predictors. Our predictions
represent the expected number of male individuals per ha area given off-
road habitat and human observers. We generated 32 predictions for each
species x subregion combination. When the actual bootstrap sample did not
contain any detections of the species we predicted 0. For each species, we
mosaiced together the 16 subregion predictions for a bootstrap run (runs
were independent across regions). We varied the width of the overlap zone
between subregions (0-100 km) to smooth the predictions at the edges of the
subregions and to avoid banded patterns. The random buffer was based on
the cumulative density of the Beta(2, 2) distribution. We then averaged the
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32 mosaiced layers to get the bootstrap mean of the predictions.

3 Results
The results from the BAM National Models are available at boreal-
birds.github.io for each species.

3.1 Species specific results

We walk through the results for Canada Warbler. The same results are
available for all 143 species.

3.1.1 Density map

We developed separate models for each BCR subunit to improve local predic-
tion accuracy and avoid out-of-range prediction. However, this resulted in
some sharp transitions in predictions across certain boundaries that coincide
with large regional differences in density. This variation in density across a
large study area presented challenges for mapping, and we had to balance
mapping detail with aesthetics to produce meaningful national maps. We
emphasize that categorical map legends necessarily introduce subjectivity
into the interpretation of species’ distribution and abundance patterns, and
note that the legend breaks we used may not be the best ones for any partic-
ular mapping need. We encourage users to download the raster predictions
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and develop their own maps for regional applications.

Based on previous work, we started by developing maps that used mean
density (males/ha) within the model-building area (Stralberg et al. 2015) as
a presence/absence threshold, with areas of density below this mean density
(“absence”) represented in light yellow. However, we found that this did
not adequately describe the abundance patterns of all species, especially
those that are widely distributed. So we adjusted the minimum thresholds
according to visual alignment with known range limits. If maps based on
these mean density thresholds resulted in a non-trivial number of occurrence
locations mapped as absence (light yellow), then we sequentially adjusted
these thresholds downward until that was no longer the case (starting with
0.05, then 0.01, then 0.001). 0.001 males/ha was the lowest density that we
allowed to be used for this lower density threshold. Equal-interval legends,
capped at the 99th percentile of predictions, were used to classify remaining
density predictions for mapping.

The trade-off to this mapping approach is that there is perceived “over-
prediction” in non-range areas (usually in the north, and often only in some
BCRs). In some cases this may be related to range map inaccuracies in
northern regions, but it also has to do with the sparsity of data in the north
and the model’s inability to identify covariates that control presence/absence.
Additional data are needed to map northern range limits more accurately.
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We also present the density maps with species’ detections and range map
overlaid.

3.1.2 Land cover associations

We used a post-hoc stratification (‘post-stratification’) approach to estimate
land cover based density estimates (males per ha) for each species and regions
(Canada and subunits). We classified the predictive maps according to the
2005 MODIS-based North American landcover map into major land cover
types (Conifer, Taiga Conifer, Deciduous, Mixedwood, Shrub, Grass, Arctic
Shrub, Arctic Grass, Wetland, Cropland) and calculated the mean of the
pixel level predicted densities. Uncertainty was based on the 5th and 95th
percentiles of the bootstrap distribution.
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3.1.3 Population size

Regional population estimates (millions of male individuals) for each species
and regions (Canada and subunits) were estimated by summing up the
pixel level predictions within the region of interest accounting for the area
difference (ha to km2). Uncertainty around the population estimates was
based on the 5th and 95th percentiles of the bootstrap distribution.
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3.2 Downloadable material

Average density maps for each species are available for download as raster
layers in GeoTIFF format.

Result summaries are also available in Microsoft Excel (xlsx) format. Sheets
within the file contain abundance and density estimates and also the list of
species, variables, variable importance and validation metrics.

3.3 Programmatic access

Population size and density estimates are available through the Boreal Birds
JSON API.

Results include static images and data in JSON (JavaScript Object Notation)
format that can be consumed by a wide array of modern programming
languages.

4 Applications
The BAM National Model results are meant to be used in various applications.
We provide some R scripts here to facilitate the use of the results.

4.1 Prerequisites

We will assume that you use R version >= 3.6 with the following packages
installed: raster, sf, jsonlite, readxl, ggplot2, and optionally googledrive.

4.2 Working with the JSON API

The JSON API uses JSON as data exchange format. Let’s define the url for
the BAM v4 API:
library(jsonlite)
api_root <- "https://borealbirds.github.io/api/v4"

4.2.1 Get the list of species

First, we need to get the list of species from the JSON API, so that we know
what species codes to use:
tab <- fromJSON(file.path(api_root, "species"))
str(tab)
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## 'data.frame': 143 obs. of 8 variables:
## $ id : chr "ALFL" "AMCR" "AMGO" "AMPI" ...
## $ idnext : chr "AMCR" "AMGO" "AMPI" "AMRE" ...
## $ idprevious: chr "YTVI" "ALFL" "AMCR" "AMGO" ...
## $ scientific: chr "Empidonax alnorum" "Corvus brachyrhynchos" "Spinus tristis" "Anthus rubescens" ...
## $ english : chr "Alder Flycatcher" "American Crow" "American Goldfinch" "American Pipit" ...
## $ french : chr "Moucherolle des aulnes" "Corneille d'Am&eacute;rique" "Chardonneret jaune" "Pipit d'Am&eacute;rique" ...
## $ family : chr "Tyrannidae" "Corvidae" "Fringillidae" "Motacillidae" ...
## $ show : logi TRUE TRUE TRUE TRUE TRUE TRUE ...
head(tab[,c("id", "english")])

## id english
## 1 ALFL Alder Flycatcher
## 2 AMCR American Crow
## 3 AMGO American Goldfinch
## 4 AMPI American Pipit
## 5 AMRE American Redstart
## 6 AMRO American Robin

4.2.2 Get estimates for a species

We can use the id column if we need to loop over multiple species. Now
we’ll only use one species:
spp <- "CAWA"
results <- fromJSON(file.path(api_root, "species", spp))
results$species$english

## [1] "Canada Warbler"
str(results, max.level=2)

## List of 3
## $ species :List of 8
## ..$ id : chr "CAWA"
## ..$ idnext : chr "CCSP"
## ..$ idprevious: chr "BWWA"
## ..$ scientific: chr "Cardellina canadensis"
## ..$ english : chr "Canada Warbler"
## ..$ french : chr "Paruline du Canada"
## ..$ family : chr "Parulidae"
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## ..$ show : logi TRUE
## $ popsize :'data.frame': 12 obs. of 4 variables:
## ..$ region : chr [1:12] "Canada" "4 Northwestern Interior Forest" "5 Northern Pacific Rainforest" "6 Boreal Taiga Plains" ...
## ..$ abundance:'data.frame': 12 obs. of 3 variables:
## ..$ density :'data.frame': 12 obs. of 3 variables:
## ..$ areakmsq : num [1:12] 6.21 0.546 0.136 1.18 1.49 1.32 0.0552 0.372 0.444 0.373 ...
## $ densplot:'data.frame': 12 obs. of 2 variables:
## ..$ region: chr [1:12] "Canada" "4" "5" "6" ...
## ..$ data :'data.frame': 12 obs. of 4 variables:

The species element in the list contain the species info saw already in the
species table.

The popsize element contains population sizes, densities, and areas for the
various regions:
(N <- do.call(cbind, results$popsize))

## region abundance.estimate abundance.lower
## 1 Canada 4.8100 4.5900
## 2 4 Northwestern Interior Forest 0.3090 0.2070
## 3 5 Northern Pacific Rainforest 0.0014 0.0009
## 4 6 Boreal Taiga Plains 1.0600 0.9430
## 5 7 Taiga Shield & Hudson Plains 0.2060 0.1560
## 6 8 Boreal Softwood Shield 1.4600 1.3400
## 7 9 Great Basin 0.0002 0.0000
## 8 10 Northern Rockies 0.0353 0.0208
## 9 11 Prairie Potholes 0.1750 0.1440
## 10 12 Boreal Hardwood Transition 1.0400 0.9920
## 11 13 Lower Great Lakes/St. Lawrence Plain 0.0986 0.0919
## 12 14 Atlantic Northern Forest 0.3880 0.3510
## abundance.upper density.estimate density.lower density.upper areakmsq
## 1 5.2100 0.0077 0.0074 0.0084 6.2100
## 2 0.4010 0.0057 0.0038 0.0073 0.5460
## 3 0.0023 0.0001 0.0001 0.0002 0.1360
## 4 1.2700 0.0090 0.0080 0.0107 1.1800
## 5 0.2870 0.0014 0.0010 0.0019 1.4900
## 6 1.7000 0.0111 0.0102 0.0129 1.3200
## 7 0.0011 0.0000 0.0000 0.0002 0.0552
## 8 0.0534 0.0009 0.0006 0.0014 0.3720
## 9 0.2000 0.0040 0.0032 0.0045 0.4440
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## 10 1.1100 0.0280 0.0266 0.0297 0.3730
## 11 0.1030 0.0097 0.0090 0.0101 0.1020
## 12 0.4320 0.0199 0.0180 0.0222 0.1950
library(ggplot2)
ggplot(N[-1,], aes(x=region, y=abundance.estimate)) +

geom_bar(stat="identity", fill="#95B6C1") +
coord_flip() +
geom_errorbar(aes(ymin=abundance.lower, ymax=abundance.upper),

width=0.2, color="#105A73") +
ylab("Abundance (M males)") +
xlab("BCR") +
theme_minimal()

10 Northern Rockies

11 Prairie Potholes

12 Boreal Hardwood Transition

13 Lower Great Lakes/St. Lawrence Plain

14 Atlantic Northern Forest

4 Northwestern Interior Forest

5 Northern Pacific Rainforest

6 Boreal Taiga Plains

7 Taiga Shield & Hudson Plains

8 Boreal Softwood Shield

9 Great Basin

0.0 0.5 1.0 1.5
Abundance (M males)

B
C

R

The densplot element contains the regional landcover specific densities:
## pick a region
results$densplot$region

## [1] "Canada" "4" "5" "6" "7" "8" "9" "10"
## [9] "11" "12" "13" "14"
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region <- 1
results$densplot$region[region]

## [1] "Canada"
## densities for this region
(D <- as.data.frame(lapply(results$densplot$data, "[[", 1)))

## landcover estimate lower upper
## 1 Conifer 0.0066 0.0062 0.0073
## 2 Taiga Conifer 0.0032 0.0021 0.0040
## 3 Deciduous 0.0158 0.0150 0.0167
## 4 Mixedwood 0.0152 0.0146 0.0159
## 5 Shrub 0.0049 0.0043 0.0058
## 6 Grass 0.0050 0.0045 0.0053
## 7 Arctic Shrub 0.0014 0.0009 0.0020
## 8 Arctic Grass 0.0020 0.0014 0.0026
## 9 Wetland 0.0059 0.0051 0.0068
## 10 Cropland 0.0052 0.0044 0.0056
ggplot(D, aes(x=landcover, y=estimate)) +

geom_bar(stat="identity", fill="#95B6C1") +
coord_flip() +
geom_errorbar(aes(ymin=lower, ymax=upper),

width=0.2, color="#105A73") +
ylab("Density (males/ha)") +
xlab("Landcover") +
theme_minimal()
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These results reflect population and density as males only (million males,
males/ha, respectively). To apply a pair adjustment, the numbers have to
be multiplied by 2.

4.2.3 Density map images

The density map images can be accessed as https://borealbirds.github.io/api/v4/species/CAWA/images/mean-pred.png
and https://borealbirds.github.io/api/v4/species/CAWA/images/mean-det.png.
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4.3 Assessing validation results

Accessing the BAMv4-results-2020-02-20.xlsx file gives us the following
tables (sheet names in parenthesis):

• metadata explaining sheets and columns (metadata)
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• list species of species (species)
• list of variables (variables)
• variable importance (importance)
• model validation results (validation)
• population estimates (abundances)
• lend cover based density estimates (densities)

Download the Excel file in a temporary file:
library(readxl)
tmp <- tempfile()
download.file(file.path(api_root, "BAMv4-results-2020-02-20.xlsx"), tmp)

Now we can read in different sheets:
vars <- read_xlsx(tmp, sheet="variables")
str(vars)

## tibble [219 x 4] (S3: tbl_df/tbl/data.frame)
## $ variable : chr [1:219] "YEAR" "ARU" "AHM" "bFFP" ...
## $ definition: chr [1:219] "Year of survey" "ARU (1) or human point count (0)" "Annual heat:moisture" "Beginning of the frost free period" ...
## $ resolution: chr [1:219] NA NA "1 km" "1 km" ...
## $ source : chr [1:219] NA NA "Wang T., Hamann A., Spittlehouse D., & Carroll C. (2016) Locally Downscaled and Spatially Customizable Climate "| __truncated__ "Wang T., Hamann A., Spittlehouse D., & Carroll C. (2016) Locally Downscaled and Spatially Customizable Climate "| __truncated__ ...

Let’s read in all the tables and delete the temp file:
sheets <- c(

"metadata",
"species",
"variables",
"importance",
"validation",
"abundances",
"densities")

tabs <- list()
for (sheet in sheets)

tabs[[sheet]] <- read_xlsx(tmp, sheet)
unlink(tmp)

Here are variable importance results:
i <- tabs$importance
i <- i[i$id == spp & i$region != "Canada",]
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i$BCR <- sapply(strsplit(i$region, " "), "[[", 1)
ii <- stats::xtabs(importance ~ variable + BCR, i)
heatmap(ii, margins = c(5, 10), col=hcl.colors(100, "Teal", rev=TRUE))
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These are validation results for the Canada Warbler:
v <- tabs$validation
v <- v[v$id == spp,]
v[order(v$prevalence, decreasing=TRUE), c(4,5,8:12)]

## # A tibble: 14 x 7
## region prevalence AUC_final pseudo_R2 occc oprec oaccu
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 6-1 Boreal Taiga Plains,~ 0.0215 0.934 0.265 0.596 0.664 0.898
## 2 12 Boreal Hardwood Trans~ 0.0214 0.807 0.0923 0.924 0.934 0.990
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## 3 8-1 Boreal Softwood Shie~ 0.0204 0.770 0.0530 0.632 0.694 0.910
## 4 14 Atlantic Northern For~ 0.0163 0.741 0.0640 0.826 0.862 0.958
## 5 13 Lower Great Lakes/St.~ 0.0137 0.839 0.138 0.915 0.925 0.989
## 6 8-2 Boreal Softwood Shie~ 0.0136 0.823 0.0879 0.598 0.666 0.897
## 7 4 Northwestern Interior ~ 0.0132 0.936 0.253 0.638 0.718 0.890
## 8 6-0 Boreal Taiga Plains,~ 0.0122 0.857 0.165 0.861 0.890 0.967
## 9 Canada 0.0120 0.852 0.136 0.579 0.709 0.779
## 10 8-0 Boreal Softwood Shie~ 0.0104 0.835 0.241 0.152 0.340 0.448
## 11 7-1 Taiga Shield & Hudso~ 0.00505 0.997 -0.0723 0.0289 0.0877 0.330
## 12 11 Prairie Potholes 0.00418 0.872 0.250 0.767 0.801 0.958
## 13 10 Northern Rockies 0.00180 0.982 0.276 0.515 0.635 0.810
## 14 7-0 Taiga Shield & Hudso~ 0.000426 0.0703 0 0.0754 1 0.0754

AUC was used to assess classification accuracy and pseudo R2 to quantify
the proportion of variance explained. OCCC measures correspondence across
bootstrap based predictions. OCCC is the product of two the overall precision
(how far each observation deviated from the best fit line), and the overall
accuracy (how far the best line deviates from the 1:1 line).

4.4 Working with maps

The 1 km2 resolution GeoTIFF raster files are in this shared Google Drive
folder, anyone can view.

We can access the list of available files and download the files using the
googledrive package:
library(googledrive)

## this should let you authenticate
drive_find(n_max = 30)

## now list files in the shared folder
f <- "https://drive.google.com/drive/folders/1exWa6vfhGo1DNUL4ei2baDz77as7jYzY?usp=sharing"
l <- drive_ls(as_id(f), recursive=TRUE)

## add species codes
l$species_id <- sapply(strsplit(l$name, "-"), "[[", 2)

## download
tmp <- tempfile(fileext = ".tif")
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file_id <- l$id[l$species_id == spp]
tif_file <- drive_download(file_id, tmp)

tif_file <- drive_download(file_id,
path="~/Downloads/pred-CAWA-CAN-Mean.tif",
overwrite=TRUE)

tif_path <- tif_file$local_path

Alternatively, download the file for a species and point to its path:
tif_path <- "~/Downloads/pred-CAWA-CAN-Mean.tif"

Now we can work with the raster:
library(raster)
r <- raster(tif_path)

plot(r, axes=FALSE, box=FALSE, col=hcl.colors(100, "Lajolla"))
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4.4.1 Population size for custom boundary

Next, we read in a custom boundary file. Let’s use the provincial boundary
of ALberta now (stored as a GeoJSON file). We transform the polygon to
match the projection of our raster layer and plot the two together:
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library(sf)

#bound <- st_read("https://raw.githubusercontent.com/ABbiodiversity/cure4insect/master/inst/extdata/OSA_bound.geojson")
bound <- st_read("https://raw.githubusercontent.com/ABbiodiversity/cure4insect/master/inst/extdata/AB_bound.geojson")

## Reading layer `Alberta' from data source `https://raw.githubusercontent.com/ABbiodiversity/cure4insect/master/inst/extdata/AB_bound.geojson' using driver `GeoJSON'
## Simple feature collection with 1 feature and 1 field
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: -120.0016 ymin: 48.99666 xmax: -110.0048 ymax: 60.00046
## epsg (SRID): 4326
## proj4string: +proj=longlat +datum=WGS84 +no_defs
bound <- st_transform(bound, st_crs(r))

plot(r, axes=FALSE, box=FALSE, col=hcl.colors(100, "Lajolla"))
plot(bound$geometry, add=TRUE, border="red", col=NA)

0.00

0.02

0.04

0.06

0.08

0.10

Let’s crop the density map to the extent of Alberta and mask areas outside
of the boundary:
r2 <- crop(r, bound)
r2 <- mask(r2, bound)
plot(r2, axes=FALSE, box=FALSE, col=hcl.colors(100, "Lajolla"))
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We can now sum up the raster cells to get population size (million inds) with
pair adjustment:
(N <- sum(values(r2), na.rm=TRUE) * 100 * 2) / 10^6

## [1] 1.082979

4.4.2 Post-stratified density estimates

Post-hoc stratification (‘post-stratification’) is an approach to estimate land
cover based density estimates (males per ha) for a species based on the
density map and a classification layer.

Let’s use the 2005 MODIS-based North American landcover map as an
example within the Alberta boundary. We calculate the mean of the pixel
level predicted densities (PS).
## read in raster
lc <- raster("https://raw.githubusercontent.com/ABbiodiversity/recurring/master/offset/data/lcc.tif")

## crop and mask to boundary
lc <- mask(crop(lc, bound), bound)

## extract cell values
LC <- data.frame(

lc=values(lc), # land cover classes, integer
density=values(r2), # males / ha
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area=1) # km^2
## remove NA values (cells outside of boundary but inside bounding box)
LC <- LC[!is.na(LC$density),]

## land cover classes
labs <- c(

"Conifer"=1,
"Taiga Conifer"=2,
"Deciduous"=5,
"Mixedwood"=6,
"Shrub"=8,
"Grass"=10,
"Arctic Shrub"=11,
"Arctic Grass"=12,
"Wetland"=14,
"Cropland"=15)

LC$label <- names(labs)[match(LC$lc, labs)]

head(LC)

## lc density area label
## 1045 6 0.006929385 1 Mixedwood
## 1046 6 0.006855813 1 Mixedwood
## 1047 6 0.006849375 1 Mixedwood
## 1825 6 0.007014129 1 Mixedwood
## 1826 6 0.006815174 1 Mixedwood
## 1827 1 0.006703767 1 Conifer
## aggregate density by land cover
(PS <- aggregate(list(density=LC$density), list(landcover=LC$label), mean))

## landcover density
## 1 Arctic Grass 0.003469213
## 2 Conifer 0.006983323
## 3 Cropland 0.004930945
## 4 Deciduous 0.019037611
## 5 Grass 0.004553917
## 6 Mixedwood 0.013687571
## 7 Shrub 0.006586476
## 8 Taiga Conifer 0.007123922

25



## 9 Wetland 0.008748280

Here are the post stratified density values:
ggplot(PS, aes(x=landcover, y=density)) +

geom_bar(stat="identity", fill="#95B6C1") +
coord_flip() +
ylab("Density (males/ha)") +
xlab("Landcover") +
labs(title=paste(results$species$english, "in Alberta"),

caption="Based on post-stratification") +
theme_minimal()
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These results can be used in region specific analyses that require density
values as inputs, for example landcover based scenario analyses.

5 Source Code

5.1 Generating results

The code for the BAM Generalized National Models (GNM) is
hosted in the borealbirds/GNM GitHub (git) repository.
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The code in the /R folder of the repository includes R scripts for processing
the data (observations, offsets, and predictors) and mosaicing together the
regional predictive map pieces.

The code in the /graham folder contains code to run on Compute Canada’s
Graham cluster. The code includes regional boosted regression models and
predictions.

The /www folder of the repository includes scripts to summarize the outputs
and organize the results into a presentable format hosted as part of the API
repository.

5.2 Storing the results

The results from the BAM Generalized National Models (GNM)
are hosted in the borealbirds/api GitHub (git) repository.

Assets are served from the /docs folder of the git master branch via GitHub
pages.

Benefits of hosting these results via GitHub pages include security (serving
assets over https, protection against certain cyber attachs) and speed (via
the use of content delivery network). The data can be consumed by other
computers because GitHub pages responses have cross-origin resource sharing
headers.

The species mean density raster layers are available in GeoTIFF format from
this Google Drive folder.

5.3 Presenting the results

The results from the BAM Generalized National Models
(GNM) are presented via GitHub pages based on the boreal-
birds/borealbirds.github.io GitHub (git) repository.

The website’s features include:

• Uses Vue and Gridsome
• Tailwind CSS v1 (with PurgeCSS)
• Based on this Gridsome template with light/dark theme.
• Search among species with Fuse.js and vue-fuse
• 404 Page
• RSS Feed
• Sitemap in XML
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• Google search crawling is allowed
• Comments via Disqus
• Bird images from Unsplash for the 404 page

To install the tools to build the website, follow these steps:

# Install Gridsome CLI tool
npm install --global @gridsome/cli

# Clone the repo
git clone -b dev https://github.com/borealbirds/borealbirds.github.io
cd borealbirds.github.io

# Install dependencies
npm install

# Run development server with hot reloading
gridsome develop

## now look at http://localhost:8080

To locally build and deploy, use the _build.sh script (you will need write
access to the GitHub repository).

Automatic build & deployment enabled via GitHub Actions, see setup in the
.github/workflows/build.yml file.
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