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Abstract— Autonomous goal detection and navigation control
of mobile robots in remote environments can help to unload
human operators from simple, monotonous tasks allowing them
to focus on more cognitively stimulating actions. This can result
in better task performances, while creating user-interfaces that
are understandable by non-experts. However, full autonomy
in unpredictable and dynamically changing environments is
still far from becoming a reality. Thus, teleoperated systems
integrating the supervisory role and instantaneous decision-
making capacity of humans are still required for fast and
reliable robotic operations. This work presents a novel shared-
autonomy framework for goal detection and navigation control
of mobile manipulators. The controller exploits human-gaze
information to estimate the desired goal. This is used together
with control-pad data to predict user intention, and to activate
the autonomous control for executing a target task. Using the
control-pad device, a user can react to unexpected disturbances
and halt the autonomous mode at any time. By releasing the
control-pad device (e.g., after avoiding an instantaneous obsta-
cle) the controller smoothly switches back to the autonomous
mode and navigates the robot towards the target. Experiments
for reaching a target goal in the presence of unknown obstacles
are carried out to evaluate the performance of the proposed
shared-autonomy framework over seven subjects. The results
prove the accuracy, time-efficiency, and ease-of-use of the
presented shared-autonomy control framework.

I. INTRODUCTION

In the mid-1940s, Ray Goertz introduced a remotely
controlled manipulator [1] that led to one of the most
promising fields in robotics, called teleoperation. Since then,
several application domains have benefited from this concept
such as medical surgery [2], space exploration [3], and
disaster response [4]. The stability and transparency of such
teleoperation systems [5] have undergone significant progress
in an attempt to ensure safety and interaction efficiency.
However, the intuitiveness-of-use of the teleoperation inter-
faces, another equally important aspect, has received less
attention [6]. This is of particular importance when users
must operate multi-degrees-of-freedom follower systems that
are embedded with dexterous loco-manipulation (simultane-
ous locomotion and manipulation) potential such as mobile
manipulators or humanoids [7]. In fact, in most of the related
developed frameworks (see e.g., [8]), a user, while watching
a graphical user interface (GUI), constantly generates the
desired motions for the follower robot to accomplish the
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Fig. 1. Block diagram of the proposed framework, which consolidates
the advantages of both motion control interface and eye-gaze tracking
system. The mode detection block decides which mode (teleoperation or
autonomous) should be active at each moment based on the signal S received
from the target detection block. As a result, the proper twist commands are
sent to the robot, allowing the user to change mode at any time.

desired task. Nevertheless, full teleoperation of such devices
may be perceived as annoying during prolonged or repetitive
tasks, e.g., for long-distance target reaching operations.

A practical solution could be the use of fully autonomous
systems that can navigate through selected indoor [9] and
outdoor [10] coordinates. However, these systems lack the
flexibility, reactivity, and supervisory skills of human oper-
ators, which can be crucial, e.g., when avoiding unexpected
obstacles. Therefore, the combination of autonomous and
corrective control inputs with human monitory commands
arises as an effective solution to improve the user experi-
ence during the performance of remote robotic tasks. These
combined systems can be categorized as shared-autonomy
teleoperation [11], [12], [13].

A key factor in the shared-autonomy control is the choice
of the appropriate human input sensory data to be used for
the intention detection. In [14], the authors utilized hand-
sketches on a screen to generate a desired path for a mobile
robot to follow and avoid the obstacles. The user has to
look at the screen and sketch the path simultaneously. This
required continuous attention and conscious effort from the
user. To limit this effort, other approaches propose to use
more intuitive data such as gaze tracking [15].

Gaze estimation poses several challenges [16], eye-tracker
inaccuracies, rapid eye movements, eye-blinking, etc. Hence,
while this method is not encouraged to be used indepen-
dently, it is best suited to be employed together with a
motion-intention interface. In [15], the authors developed
a shared-autonomy system, in which pick and place tasks
were remotely performed by utilizing gaze and joystick data.
Moreover, a predictive system based on the gaze information
and the body motion sensors is proposed in [17] and [18],
which improves the maneuverability in the leader-follower



systems in performing the reach and grasp tasks for a fixed-
base manipulator. Although these solutions have made the
remote grasping tasks more intuitive and fast, the proposed
frameworks cannot be applied to mobile robot navigation due
to the different nature of the motions.

Consequently, the objective of this work is to introduce
a novel shared-autonomy framework for remote navigation
control of mobile platforms. This study proposes a hybrid
interface that merges information from a control-pad device
and human eye-gaze to calculate the intended reaching goal
by the mobile robot. Once a goal is detected, the robot’s
autonomous navigation controller brings the platform to the
target. Still, during this autonomous motion, the framework
keeps a human-in-control approach, in which the user is
given full control over the robot’s motion through the control-
pad device. Our proposed method unloads users from the
low-level control of the robot, allowing them to focus on the
more high-level decision-making commands. For example, in
a logistics environment, the user would be able to command
the final location of the robot without needing to manage its
motion during the full trajectory.

The performance and intuitiveness-of-use of the shared-
autonomy navigation interface are evaluated on 7 users
and compared to the full teleoperation mode where no
autonomous goal detection and navigation are exploited.

II. METHODOLOGY
The schematic of the proposed framework is displayed in

Fig. 1, which incorporates the advantages of motion control
interface and eye-gaze tracking system. The mode detection
block decides which mode (teleoperation or autonomous)
should be active at each moment based on the signal S
received from the target detection block. This block includes
the gaze estimation (Section II-A) and control-pad interface.

As an overview, when a target is established by the
gaze tracker system, if the user starts to navigate the robot
towards this target, a message is shown in the GUI’s window
which indicates the release of the control-pad device. By
doing so, the mode detection resets the corresponding mode
flag and the autonomous controller sends the required twist
commands Va = [va, ωa] to the mobile robot. (the twist
command V is composed of linear velocity v and angular
velocity ω, see Fig. 2.) If the operator starts using the
control-pad device, both at the beginning or in the middle of
the autonomous control, the mode detection block triggers
the mode flag. This activates the teleoperation mode, in
which the mobile robot is controlled by the user through
desired twist commands Vt = [vt, ωt]. Teleoperation is most
effective within the proposed method in case of failures due
to sudden and unpredictable environment changes, giving the
user full control over the robot’s motion. User continuously
receives visual feedback from an RGB camera sensor.

The different components of the shared-autonomy frame-
work are explained in detail hereafter.

A. Target detection
To detect the desired target for autonomous navigation, the

gaze tracker information is enhanced with the inputs coming

from the control-pad and the actual robot’s heading angle,
being the latter updated by the odometry sensors.

Starting with the gaze tracking system, this measures the
gaze coordinates in pixels with respect to (w.r.t.) the top-left
corner of the computer monitor, i.e., frame {T} (Fig. 2-a),
and outputs pT = [uT , vT ]

T where uT and vT are horizontal
and vertical pixel coordinates of {T}, respectively. Since the
origin of the GUI’s coordinates is considered to be located at
frame {S} (Fig. 2-a), pT needs to be first transformed to this
frame by making use of a map-function, fTS(·) : R2 → R2

being the result defined as pS = [uS , vS ]
T :

uS =
Wgui

2
− uT , vS =

Hgui

2
− vT . (1)

Wgui and Hgui are the pixel-based width and height of the
GUI window, respectively. Next, another function fSC(·) :
R2 → R3 is utilized to express pS in camera coordinates
{C} (Fig. 2-b). In this work, a predefined discrete mapping
is employed to convert pixel coordinates pSi = [ui, vi]

T

to the 3D camera coordinates pCi = [xi, yi, zi]
T . Thus,

a set of specific coordinates (with n points) in pixel space
(Suv = {pSi

∈ R2 | i ∈ {1, · · · , n}}) and its representative
set of points in the camera coordinates in the Cartesian
space (Sxyz = {pCi

∈ R3 | i ∈ {1, · · · , n}}) are
considered to be known beforehand. pC is expressed in
the robot’s base frame, {R} (Fig. 2-b), by employing the
constant transformation matrix between camera and robot’s
base frame as

[
pTR, 1

]T
= RTC

[
pTC , 1

]T
.

Based on the nearest neighbor search (NNS) algorithm
[19], at each iteration, the measured gaze information in
{S}, pS , is compared with the stored data in Suv during
gaze fixation time Tfix (time-period in which the eye is kept
aligned around a certain point located at the screen, which
is dependent on the person who carries out the experiment,
and it usually ranges in 2 to 4 seconds [20]). If the shortest
Euclidean distance between pS and a particular suvi ∈ Suv
is lower than a selected threshold (dtsh) during Tfix, suvi
is chosen as the intended pixel-space goal. In the camera’s
coordinates, suvi is expressed as pCi

∈ Sxyz , which is then
converted to pRi by employing RTC. Thus, the fixed-gaze
direction is obtained by: φfix = tan−1

(
pRiy,pRix

)
. This

direction is updated based on the user will, who is allowed
to restart the operation to modify the estimated location.

For calculating the intended direction at instance k, first,
φfix is updated due to the robot’s movements during the
time interval t0− t1, by making use of the robot’s odometry
data (x − y position of the robot) and the vectors addition
property:

φ?fix(k) = tan−1
(
pRiy − y(k), pRix − x(k)

)
(2)

Second, the average value of the heading angle, measured by
the odometry sensors, over the past N samples is calculated:

θ̄(k) =
1

N

k∑
i=k−N−1

θi. (3)
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Fig. 2. (a) The user observes the environment through a screen, and controls
the robot through the gaze tracker and the control-pad device. (b) Switching
between teleoperation and autonomous modes in the proposed framework.

If |θ̄(k) − φ?fix| < Ψtsh, the user is informed through the
GUI to release the control-pad to activate the autonomous
controller setting θ(k) as the intended direction.

B. Autonomous controller

The autonomous controller designed based on the bicycle
model for differential-drive mobile robots [21]. According to
this model, the platform motion is described as:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω. (4)

v is the linear velocity and ω is the angular velocity. X =
[x, y]

T and θ are the current position and orientation of the
platform, respectively, being the current pose of the platform
defined as p = [X, θ]

T .
The controller is used during two phases: path-following

and pose-correction. The former is in charge of navigating
the robot on the desired generated path (starts in t1 and
ends in the target pose at t4) while the latter contributes
to the realization of the robot’s goal pose. This pose is
considered to be located at a distance of dsafe before the
real goal for safety reasons and avoiding collisions with it
(pg = [xg, yg, θg]

T ).
To assign desired initial and final values for position,

velocity, and acceleration, a 5-th order trajectory (Xd =
[xd, yd]

T ) is generated for the path-following phase, i.e.,

from the instance the user releases the control-pad to the
moment the robot reaches its target position (time interval
t1 − t4 in Fig. 2-b). The robot’s position in the release
and target moments are defined as Xr = [xr, yr]

T and
Xt = [xt, yt]

T , respectively. As a result, Xd is given by:

Xd(τ) = Xr + ∆X
(
6τ5 − 15τ4 + 10τ3

)
. (5)

∆X = Xt−Xr, Ẋr = Ẋt = 0, Ẍr = Ẍt = 0, and τ = t/T
with a total trajectory time T (time interval t1 to t4 in Fig.
2-b). T is derived from T = d/v?, where d = ‖Xt −Xr‖
and v? is chosen based on the maximum linear velocity vmax
allowed for the mobile platform (v? = α vmax, being α the
percentage of the maximum velocity). After releasing the
device, the robot autonomously navigates, on a straight line,
towards the target pose following the next control laws:

v = kp e+ ki

∫
e dt+ kd ė, ω = kh (θ? − θ). (6)

kp, ki, kd, kh > 0, d? is a distance behind the pursuit point,
and e and θ? are defined as [21]:

e =
√

(xd(t)− x(t))2 + (yd(t)− y(t))2 − d?,
θ? = tan−1([yd(t)− y(t)]/[xd(t)− x(t)]).

(7)

During this phase, the user-in-control approach allows the
operator to take full control over the platform. There are
several cases where this can be needed, e.g., when obstacles
are not detectable (glass objects), change of task goal, and
sensor failures. When the user takes control of the robot by
using the control-pad, time t2 in Fig. 2-b, teleoperation mode
is activated triggering the mode variable, and consequently,
the autonomous navigation is put on hold. After bypassing
the obstacle at time t3, the user activates the autonomous
mode simply by releasing the control-pad. Consequently, the
robot resumes the autonomous navigation generating a path
(5) towards the previously detected target pose (pt). The
path-following controller (6) then navigates the robot and it
reaches the goal at time t4 (Fig. 2-b).

After reaching the target pose, the move-to-pose controller
brings the robot to the goal pose pg at time t5 by employing
the following control rules [21]:

v = kρ ρ, ω = kα α− kβ β, ρ =
√

(xg − x)2 + (yg − y)2,

α = tan−1([yg − y]/[xg − x]), β = −θ − α+ θg.
(8)

kρ > 0, kβ < 0, and kα > kρ.

III. EXPERIMENTS

The performance of the proposed framework is evaluated
in a navigation task in two scenarios, and compared to
the full teleoperation mode. The software architecture is
implemented based on the Robot Operating System (ROS)
and MATLAB software. In the first set of experiments, i.e.
scenario 1, the aim is to analyze the robot motion and
the subjects’ efforts in an obstacle-free environment in two
modes: shared-autonomy and teleoperation. In scenario 2,
we repeat the scenario 1 but in the presence of an obstacle



in the environment and testing more subjects. It should be
noted that in this case, we use a fixed positioned obstacle
to allow a better comparison between users. Still, the same
method is applicable to moving and unpredictable obstacles.

A. Experimental Setup

The experimental set-up is shown in Fig. 3. The mobile
platform used in our experiments (MOCA [8]) is a recent in-
tegration of an Omni-directional base (SUMMIT XL STEEL
from Robotnik), a robotic arm (Franka Emika Panda) and
an under-actuated hand (Pisa/IIT soft hand [22]). As this
work mainly focuses on the remote navigation control of the
mobile platform towards a target goal, the arm and the hand
are controlled to keep a fixed configuration.

During the experiments, the user sits in front of a computer
monitor with a dual-shock SONY PS4 control-pad. Visual-
data is fed-back from the platform’s camera through the
provided MATLAB GUI in Microsoft Windows 10 operating
system (Fig. 3-a). In the shared-autonomy mode the task’s
current state is also shown to the user. The eye-tracker
application is based on Myex, which is specifically developed
for Tobii EyeX system [23] to estimate gaze location. The
resolution of the computer monitor, for which the eye-tracker
is calibrated (Tobii eye-tracking core software), and the
GUI window are 1680×1050 pixels and 640×480 pixels,
respectively. (the robot’s RGB camera resolution is also
640×480 pixels)

The goal is set as one object located on a desk (Fig. 3-d).
Besides, several boxes are placed to enhance the perception
of the final safe pose while the robot approaches the desk
(Fig. 3-c). These boxes are never used for the control of the
platform, but only for the mentioned user perception. For the
second scenario, an obstacle is additionally located along the
way of the platform (Fig. 3-c).

The first scenario is performed by one person who is not
familiar with the shared-autonomy concept (male, 27 years
old, and without eye-glass). He executes five times the task in
each mode. For the second scenario, 6 subjects are selected to
perform the navigation task in each mode while avoiding the
obstacle. Subjects are of different ages (24 to 37), gender (4
males and 2 females), and 5 with glasses and 1 without, and
have little knowledge about the shared-autonomy navigation
but are familiar with teleoperation.

During the teleoperation mode in both scenarios, subjects
are asked to navigate the robot from the start pose (Fig. 3-b)
to the goal pose (Fig. 3-d) while watching the camera data
on the screen. In the shared-autonomy mode, the subjects
are asked to perform the same task with the developed
shared-autonomy framework. Performance of the subjects
during the experiments will be evaluated in terms of task
completion time, and position and orientation errors of the
final platform’s pose. Moreover, the subjective perception
will also be considered through a Likert scale subjective
questionnaire [24].

The controller parameters during the shared-autonomy
mode are selected as: kp = 1.25, ki = 0.05, kd = 0.001,
kh = 2.5, kα = 15, kβ = −4.5, kρ = 5, |v?| = 0.165
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Fig. 3. The experimental setup: a) the user sits in front of a screen which
is equipped with an eye-tracking device to measure gaze information. He is
also provided with a control-pad device. b) The start pose of the platform
and the location of the obstacle. c) The robot deviates from the original
path to avoid the obstacle. d) The robot reaches its final goal pose.

m/sec, |vmax| = 0.20 m/sec, |wmax| = 0.175 rad/sec,
dtsh = 50 pixels, dsafe = 0.40 m, Tfix = 3 sec [20],
N = 30, and Ψtsh = 3 deg. The maximum linear and
angular velocities and controllers’ gains are set to allow the
subjects to react to possible obstacles while being fast enough
not to render the experiments tedious. The values of kh, kα,
kβ , and kρ are chosen to satisfy the conditions of Eq. 8. The
threshold values are chosen empirically based on the previous
experiments and analysis of the processed data. In addition,
WGUI and HGUI are 640 and 480 pixels, respectively. Also,
the transformation matrix RTC is obtained by using the
tf conversion library provided by the mobile robot’s ROS
software package1. Moreover, the goal position and orienta-
tion in the camera coordinates are Xg = [3.1, −0.72]

T m
and θg = 0 deg, respectively, while the corresponding goal
location in the pixel space is [ug, vg]

T
= [220, 200]

T pixel.

B. Experimental Evaluation

Quantitative and subjective analyses are carried out for
both scenarios. Quantitatively, the interpretation of quantile-
quantile plots [25] yields that the data does not follow a
normal distribution in both modes and scenarios. Thus, the
following parameters are studied: median (M) and interquar-
tile range (IQR) of the position error ep = ‖Xg − Xf‖,
with Xf being the final position of the platform; and the
orientation error eθ = |θg−θf |, with θf being the platform’s
final heading angle. The final pose of the platform pf =

[Xf , θf ]
T is given by the odometry sensors when the task is

1www.github.com/RobotnikAutomation/



TABLE I
MEDIAN (M) AND INTER-QUARTILE RANGE (IQR) OF THE POSITION

AND ORIENTATION ERRORS. THE ACRONYMS PAR, TELEOP, AND

SHARED STAND FOR PARAMETERS, TELEOPERATION MODE, AND

SHARED-AUTONOMY MODE, RESPECTIVELY.

Scenario 1 Scenario 2
variable par teleop shared teleop shared
position

error [m]
M 0.1568 0.0040 0.2860 0.0275

IQR 0.0372 0.0045 0.3484 0.0159
orientation
error [deg]

M 5.6701 3.8221 10.5721 3.8988
IQR 5.6548 0.1477 8.0674 0.0381

finished. These quantitative results are presented in Table I.
Also, the task completion time is recorded in each trial and
the average values, related to each scenario and mode, are
then calculated. It should be noted that the gaze fixation time
is also included in the shared-autonomy task achievement.

Additionally, statistical tests are invoked to compare both
modes in the sense of position and orientation errors. Due
to the small amount of subjects available during the exper-
iments, it is not possible to prove a particular distribution
type of the data. Therefore, non-parametric tests should
be considered. Also, in each scenario, the experimental
conditions are kept fixed in both modes, and the same person
is compared when executing the trials in mode 1 in and
mode 2, being the experiments defined as paired. Based on
these experimental characteristics, the Wilcoxon signed-rank
test [26] is employed for the statistical evaluation with the
significance level α set to 0.05.

The subjective analysis is done through a Likert scale sub-
jective questionnaire [24] during scenario 2. The answers are
mapped to numerical grades between -1 (strongly disagree)
to +1 (strongly agree). The following statements are asked
in the survey: (Q1) It was physically tiresome to accomplish
the task, (Q2) It was psychologically tiresome to accomplish
the task, (Q3) The GUI accurately detected the intended
location in around 3 seconds, (Q4) I had good control over
the task performance (controlling the robot and obstacle
avoidance), (Q5) It was not intuitive to activate/deactivate the
autonomous motion controllers, (Q6) It was not intuitive to
understand the current action to perform (GUI), (Q7) It was
easy to keep the focus on the task execution (robot motions),
(Q8) I think by using the proposed framework I can repeat
the same task for a longer time and in a better way (more
precisely and faster) than in pure teleoperation, (Q9) I felt
satisfied with the current task. Statements [3-5-6-8] are just
applicable to the shared-autonomy control structure.

C. Experimental Results and Discussion

Table I shows the results of the median and IQR values
of the position and orientation errors, being these greater
in teleoperation than in the shared-autonomy mode in both
scenarios. Moreover, the presence of an obstacle in the
second scenario increases the final position error in both
modes. This is more notable in the teleoperation mode, which
may be due to the loss of perception of the users of the
relative orientation between the platform and the goal after
the obstacle is passed.

As illustrated in Fig. 4, during scenario 1 in teleoperation
mode, the robot deviates from the optimal path in all trials.
Indeed, the robot moves more accurately towards the goal
in the shared-autonomy mode (less position and orientation
error, Table I). Moreover, the average time that the user
commands the robot with the control-pad is, as expected,
higher for the teleoperation (28.80 sec) than for shared-
autonomy (27.80 sec) mode.

Fig. 5 shows the robot’s odometry data after adding an
obstacle to the environment in scenario 2 with the 6 subjects
in both modes. In the presence of an obstacle, the subjects
tend to start deviating from the optimal path sooner, which
may be related to the fear of collision. Additionally, in the
teleoperation mode, the participants perform several forward-
backward motions with the robot, which does not happen in
the shared-autonomy mode. As shown in Table I, again this
reflects in bigger final pose errors. During these experiments
though, the average execution time with the shared-autonomy
mode (47.67 sec) is greater than the teleoperation one (44.65
sec), which can be due to the need of change between modes
during the obstacle avoidance. Moreover, it must be noted
it takes about 3 ± 0.5 sec for goal detection through gaze
and around 1.5 ± 1 sec to estimate the desired path by
comparing the φ?fix and θ̄. Moreover, gaze data during the
goal detection, is shown in Fig. 6. It can be seen that overall,
the data is concentrated around the goal. Present variations
in the data are due to eye-blink, head motions, etc.

Finally, the p-values calculated by the Wilcoxon signed-
rank test confirm that the shared-autonomy mode has sta-
tistically fewer position errors than the teleoperation mode
both in scenario 1 (p = 0.0313) and scenario 2 (p = 0.0156).
However, this test yields p > 0.05 for the orientation errors.
The p-values for the orientation error tests of scenario 1 and
scenario 2 are p = 0.0625 and p = 0.0781, respectively. A
possible reason of the p-values being greater than 0.05 can be
the small sample size of the data, as the obtained p-values are
actually close to the threshold. Specifically, from the individ-
ual data, we could observe how one of the subjects performed
very differently from the rest in terms of orientation error
in the second scenario. Due to the small size of our data
set, this could have a big impact on the overall evaluation,
yielding a p > 0.05. Future works envisage the collection
larger data sets of subjects to minimize the influence of
possible individual deviations. The use of more subjects will
also have an impact on the average execution time, allowing
a better comparison of both modes in completion time.

Regarding the subjective questionnaire, results are illus-
trated in Fig. 7. The participants show less physical and
psychological effort for the navigation execution with the
activated shared-autonomy algorithm than with the teleop-
eration mode (Q1-Q2). Instead, for the motion control and
obstacle avoidance (Q4-Q7), differences are quite low and
the satisfaction level of both modes is almost the same
(Q9). Regarding the developed framework, the participants
are generally satisfied with the GUI; stating in Q3 that it
detects the intended target accurately and in about 3 sec. Plus,
subjects have indicated no problems for understanding the
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Fig. 5. Robot’s position in teleoperation and shared-autonomy modes in the
presence of an obstacle (scenario 2). Each color is assigned to one subject.

current action to perform (Q6) and for activating/deactivating
the autonomous motion controller (Q5). Finally, subjects
show an agreement on the fact that they can repeat the same
task for a longer time and in a more precise and faster way
with the developed interface (Q8).

IV. CONCLUSIONS

In this work, we proposed a shared-autonomy framework
for the navigation control of a mobile robot in remote envi-
ronments. The developed control interface processes the data
from an eye-tracking system and a control-pad device. From
these data, the target goal is quickly identified activating
the autonomous navigation controller. The users can go
back to control robot movements at any time through the
control-pad, e.g., when an obstacle is observed through the
monitor. After releasing the control-pad device, the control
framework smoothly switches back to the autonomous mode
and navigated the mobile platform towards the previously
identified goal.

Experiments with 7 subjects in pure teleoperation and
shared-autonomy control modes revealed the accuracy, time-

Fig. 6. Gaze coordinates (scenario 2). Gaze information is key for the
detection of the goal position (the intersection point of both dashed lines).

Fig. 7. Likert scale-based questionnaire scores for teleoperation and shared-
autonomy tasks. The scores are: -1 (strongly disagree), -0.5 (disagree), 0
(neither agree nor disagree), 0.5 (agree), 1 (strongly agree).

efficiency, and ease-of-use of the proposed shared-autonomy
interface. The latter was evidenced by a reduction in the
physical and cognitive loads thanks to the intelligent goal
detection and robot navigation algorithms developed in this
work.

Future works envisage the addition of an obstacle-
avoidance protocol that will handle easy to detect obstacles,
being the operator’s cognitive skills only required in case of
unexpected events or trajectory corrections.
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