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Abstract— The objective of this paper is to present a person-
alisable human ergonomics framework that integrates a method
for real-time identification of a human model and an ergonomics
monitoring function. The human model is based on a floating
base structure and on a Statically Equivalent Serial Chain
(SESC) model used for the estimation of the whole-body centre
of Mass (CoM). A recursive linear regression algorithm (i.e.,
Kalman filter) is developed to achieve the online identification of
the SESC parameters. A visual feedback provides a minimum
set of suggested human poses to speed up the identification
process, while enhancing the model accuracy based on a
convergence value. The online ergonomics monitoring function
computes and displays the overloading effects on body joints in
heavy lifting tasks. The overloading joint torques are calculated
based on the displacement of the Center of Pressure (CoP)
between the measured one and the estimated one. Unlike our
previous work, the entire process, from the model identification
(personalisation) to ergonomics monitoring, is performed in
real-time. We evaluated the efficacy of the proposed method
through human experiments during model identification and
load lifting tasks. Results demonstrate the high exploitation
potential of the framework in industrial settings, due to its fast
personalisation and ergonomics monitoring capacity.

I. INTRODUCTION

Today’s manufacturing industries are faced with an in-
creasingly competitive market, which brings productions
lines closer to the customers [1]. To address the mass
customisation needs of the new market, production processes
must constantly adapt to new workflows and manual op-
erations. As a result, industrial workers may be exposed
to greater danger in terms of posture and load, increasing
the already dramatic statistics on Musculoskeletal Disor-
ders (MSDs) [2]. A continuous assessment of the work-
ers’ ergonomics using the traditional pen-and-paper based
approaches is impractical and costly in such dynamically
changing environments [3], [4]. On the other hand, in the
past few years, the development of collaborative robots
(cobots) has become an important trend both in academia
and in the industry worldwide. This aroused the interest
of the European Commission which published a scientific
report emphasizing the potential and the challenges, from
a regulatory point of view, of human-robot collaboration
(HRC) in industrial scenarios. This technology finds its
application in the so-called Industry 5.0, which will bring the
spotlight back on humans, acknowledging their superiority
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Fig. 1: Concept illustration of on-the-fly human model identification
and ergonomics monitoring during work in industrial settings.

over robots in the accomplishment of complex and skill-
demanding industrial tasks [5]. Factories of the future will
have to adapt their work organisation and processes so to
guarantee stimulating and healthy working conditions. In this
perspective, the robot is no more the substituting agent but is
a “smart tool” flanking the workers in their duties, empower-
ing their abilities and enhancing their working conditions [6].

In light of the above, it is of primary importance to
improve the online monitoring of human body postures and
loads to enhance both self-awareness employing real-time
feedback [7] and to trigger the reaction of a responsive
environment (e.g. cobots) [3]. As of today, the only method
available for measuring neuromuscular loads in actual work
is based on surface electromyography (EMG) [8]. However,
this approach presents several issues: first of all, a whole-
body EMG interface is evidently bulky in a workplace;
second, a human or robot pose optimisation based on these
biosignals is cumbersome and costly from a computational
point of view, undermining the real-time functionality.

An attempt towards online ergonomic monitoring has been
made trying to automate the filling of the traditional pen-and-
paper worksheets [10], [11], [12]. However, most of these
methods lack of generality: they address a specific body
district engaged in a limited number of activities. The job
may be the result of a much wider succession of atomic
stages. This arises multiple problems. First of all the choice
of a method to evaluate an elementary task is not always
straightforward. Secondly, the non-homogeneity of the scor-
ing scales makes the comparison among methods impossible.
Therefore, if different methods are used to evaluate different
phases of the activity, no global score (i.e. for the whole
activity) can be computed [4].

To respond to these challenges, in this paper, we propose



Fig. 2: Flow diagram that summarizes the overall procedure for estimating the ergonomics indices to reduce the workload employing
human-robot collaboration. The whole method consists of two parts, as graphically suggested by the colours of the scheme. The left part
displays the identification procedure of the subject-specific BSIP parameters through an online SESC parameters estimation. A recursive
approach enables accessing the filter’s variables at each iteration suggesting the best pose using visual feedback to enhance convergence.
The recursive linear regression algorithm needs to be fed with the configuration coming from a motion capture system and the centre of
pressure position collected with a force plate or any other pressure sensor. The second part deals with ergonomic monitoring during task
execution. The algorithm calculates the difference between the SESC driven CoP estimation calculated starting from the configuration
data and it compares it with the actual CoP measured using pressure sensors. An intuitive visual feedback illustrates to the subject the
ergonomic status [9]. A robotic agent may be triggered by the ergonomic evaluation anticipating dangerous behaviours.

a comprehensive framework to fill in the gap between sim-
plistic ergonomics monitoring models of the industry, which
are insufficient and non-scalable, and the complex laboratory
models of humans, which are hardly personalisable and
impractical for industrial settings. We propose a framework
which enables real-time identification (personalisation) of a
dynamic human model, which is then used for the estimation
of the loading effect of external forces on body joints during
movement. Unlike our previous work [13], the entire process
of human detection, model identification, and overloading
torque estimation is executed in real-time, with no need
for any offline processing or calibration stages. The method
is based on the difference between the on-line estimated
CoP of the human body with no external load or contacts
other than those at the feet using SESC technique [14],
and the measured one using an external pressure sensor
system. We believe that the real-time functionality and fast
personalisation features of the proposed framework can sub-
stantially increase its potential in realistic industrial settings,
and contribute to a coherent reduction of MSDs.

The rest of the paper is organized as follows. In Sec. II,
Sec. III and Sec. IV the proposed methodology is discussed.
Sec. V shows an experimental validation of the method.
In Sec. VI, we discuss the results and highlight future
improvements.

II. METHOD OVERVIEW

This study aims to demonstrate the strength of a com-
pletely online and subject-specific ergonomics assessment
tool that fits in a wider ergonomic human-robot collabo-
ration framework [15], [16]. The overall procedure can be
divided into two main parts: a calibration phase (left side
of Fig. 2) and an ergonomics assessment phase during a

robotic collaboration task (right side of Fig. 2). The purpose
of the first phase is to identify the unknown body segment
inertial parameters (BSIPs) of the human body through an
online interface. Combining the equation of motion with the
sensors’ data is possible to obtain the subject-specific BSIP
parameters from the statically equivalent serial chain (SESC)
technique [14]. Subsequently, the real-time ergonomics as-
sessment comes in through a reduced-complexity model
for the estimation of human joint load variations due to
the external interaction forces [15]. By means of a screen,
intuitive warning messages are provided to the subject using
colour-coded spheres on the body joints, whose colours are
proportional to the level of estimated danger. For the sake of
completeness, in Fig. 2 a robotic agent whose action may be
triggered by the ergonomics monitoring tool is shown. This
chance has already been addressed in our previous work [3]
and it will not be discussed in detail in this paper.

As shown in Fig. 3, the human model is represented
by a sequence of rigid links connected by revolute joints.
The pelvis frame is set as the base frame Σ0 attached
to the inertial frame ΣW through six virtual degrees of
freedom (DoFs). Each link has a mass, mi, (with link index
i ∈ [1 · · · ni]) and the total mass M is represented
by the sum of the link masses, i.e., M =

∑
mi. The

position of the base frame 0 is defined as x0 ∈ R3, and
its orientation as θ0 ∈ R3. The position vector of the centre
of mass (CoM) for each link, ci ∈ R3, is represented with
respect to the local reference frame Σi. di ∈ R3 is the link
length vector with respect to the previously connected link
local frame Σi−1. The rigid links are articulated through nj
revolute joints, and the angular position of those joints is
denoted as qh = [q1 . . . qnj

]T ∈ Rnj . The generalized
coordinate of the system is defined by q = [xT

0 θT0 qh].



Fig. 3: A floating-base sagittal skeleton model of the human. The
SESC to determine the CoM position is attached to the torso
and depicted by a red and black dot-dash chain with its SESC
determined CoM. The transformation from the inertial frame ΣW

to the base frame Σ0 is also highlighted.

Assuming nk contact forces vector, f1 . . . fnk
, applied at

locations vector, p1 . . . pnk
, the Lagrangian based equation

of motion can be written with respect to the inertial frame
as:

M(q)q̈ +C(q, q̇)q̇ + g(q) = ST τ +

nk∑
k=1

Jpk(q)Tfk (1)

where M, C and G represent the inertia matrix, the vector of
centrifugal and Coriolis forces, and the vector of the gravity
force, respectively. S = [0nj×6 Inj×nj ] ∈ Rnj×(nj+6) is
the actuation matrix, τ ∈ Rnj is the vector of applied joint
torques, and Jpk

is the contact Jacobian at the point pk with
respect to ΣW . By employing Eq. 1, given Jpk

and fk, it
is possible to address the overloading effect induced on the
joints of a human which is performing a manipulation task
interacting with a tool or an object [13].

III. ONLINE SESC PARAMETERS ESTIMATION

Even though we are tackling the modelisation problem
using robotic means we cannot change the fact that we are
still dealing with a human body. Especially for the estimation
of the CoM, we cannot rely on detailed project blueprints that
uniquely identify the position of local CoM in every link.
Traditionally, the CoM of the human body is calculated by
means of anthropometric heuristic tables [17] which not only
lack in specificity but require cumbersome measurements.
Therefore we make use of the so-called SESC method
that allows us to provide subject-specific CoM estimation.
Previous work on this method used a batch identification
approach to find the relevant SESC parameters for a subject
[14]. As suggested by [18], the use of a Kalman Filter for
a recursive identification strategy allows to have real-time
access to the parameters and their associated errors. This
not only speeds up the process but makes it much more
applicable in real scenarios.

A. SESC model

In [14], it has been demonstrated that the CoM position
of a generic linked chain is equivalent to the end-effector’s
position of a virtual chain (see Fig. 3). The structure of
the virtual chain, known as the statically equivalent serial
chain (SESC), can be build from the static and geometric
parameters of the original whole body structure as:

φi =
1

M

[
mici +

ni∑(
di+1

L∑
l=i

ml

)]
. (2)

where ni is the number of local reference frame, with L
being the last local reference frame in each branch. As a
result, the CoM, denoted as CM , of the original chain is
represented at the end-effector location through a forward
kinematics operation.

CM = x0 + BΦ, (3)

where matrix B =
[

A0 · · · Ani

]
∈ R3×3(ni+1)

contains the orientation of the original chain, and Φ =[
φT0 · · · φTni

]T ∈ R3(ni+1) includes the SESC param-
eters. To simplify the identification procedure is possibile to
rewrite Eq. 3 in the following way:

0CM = CM − x0 = BΦ, (4)

where 0CM is the CoM represented in the base frame Σ0.

B. Kalman Filter

The identification of the parameter vector Φ in a form
such as the one in Eq.4 can be recognised as a classical
least-squares problem. The classical least squares estimator
exists in two equivalent forms, “batch” and “sequential”. The
Kalman filter may be considered as a generalization of the
least-squares technique to dynamical systems. The equations
of the sequential least squares estimator are the same as of
the Kalman filter, except that the system dynamics matrix is
an identity matrix and the process noise covariance matrix
is equal to zero. Therefore, no prior information regarding
the system dynamics is used for the estimation. The problem
can be reformulated as

Φk = IΦk−1 (5)
0CM,k = BkΦk + ~vk, (6)

where the index k denotes the time step. To estimate the
vector Φk a certain number of 0CM,k measurements are
necessary.

Each measurement is a linear combination of the states and
a zero-mean measurement noise vk with covariance Rk as
shown in Eq. 6. The Kalman filter provides an optimal linear
solution to the problem where the noisy system is defined by
Eq. 5 and Eq. 6. For accurate identification, a certain number
of measurements should be acquired. However, we cannot
access objectively to the subject’s CoM position. In [14], the
authors explain how an estimation of Φk is possible with
partial data. On the other hand, a good solution is offered
by the possibility to measure the CoP which, under certain



circumstances, specifically during static conditions, is a good
approximation of the horizontal projection of the CoM [17].
The criteria to determine if a pose is stable enough to be
considered static consists in a double-check both on the CoP
position and on the standard deviation of the joint angles in
a window of 20 samples. The Kalman filter equations can
then be written as [19]:

P−
k = P+

k−1 + Qk−1 (7)

Kk = P−
k BT

k

(
BkP−

k BT
k + Rk

)−1
(8)

Φ̂k = Φ̂k−1 + Kk

(
0CP,k −BkΦ̂k−1

)
(9)

P+
k = (I−KkBk) P−

k , (10)

where Qk is the noise covariance matrix, I is the identity
matrix and Kk is the filter’s gain. P−

k and P+
k are, respec-

tively, the estimation covariance matrices before and after the
state update. These matrices gives as a first-hand knowledge
of the progress of the estimation because the trace of Pk is
the sum of the mean squared errors.

C. Boost Filter’s Convergence

As shown in Fig. 2, to accelerate the filter’s conver-
gence, hence to reduce the discomfort of the subject in the
model identification/personalisation phase, a pose-suggesting
interface is developed. At each iteration, the values of the
diagonal elements of the covariance matrix Pk, namely Pjj ,
are used as weights to maximise the cosine distance of the
poses performed up to the m-th update of the filter. It is
likely that a poor estimation of one of the links of the
chain structure is associated with a high value of the relative
covariance element in the covariance matrix diagonal. The
choice of the next pose ŷ = [xT

0 θT0 qh] ∈ R(nj+7) is
made among a space of feasible random poses y in the
operational space Ψ collected in a previous one-off stage.
The optimisation problem can be formulated as:

ŷ = arg max
Ψ

 m∑
j=1

√√√√nj+7∑
r=1

wr(xj,r − yr)2

 , (11)

where the previous m poses x are collected in the space χ
and w are the elements of the covariance matrix normalised
by the max of their values. Moreover, a set of linear con-
straints may be set based on the model knowledge. Bilateral
symmetry of the model, as well as the legit assumption of the
CoM position for all limb on the longitudinal axis connecting
two joints, generate a great drop in the number of parameters
to be estimated as explained in [18]. Finally, feeding the filter
with a trustworthy initial state coming from a subject with a
similar body structure can further speed up the convergence
of the filter. To provide the subjects with real-time feedback
about the suggested body postures, we adapted and used a
graphical interface that we recently proposed in [9].

IV. OVERLOADING JOINT TORQUE

In this section, we introduce a dynamic model of the
human body to define the relation between the CoP and

Fig. 4: Schematic block diagram of the estimation procedure.

the interaction forces (applied from the support plane and
the external object/robot) to estimate the overloading human
joint torque. Such a model was first proposed in [13] and it
is based on the displacement of the CoP, computed as the
difference between the estimated one, ĈPwo

, and a measured
one, CPwt , collected using an external sensor system. In
fact, it is possible to achieve ĈPwo with the ground-projected
CoM (using the procedure explained in Sec. III). While ĈPwo

and CPwt
are almost equal if no external forces are applied

on the human body, if an interaction of the human with the
environment (or with an object) occurs, ĈPwo and CPwt

differ and the overloading joint torque can be computed
accordingly. Let us consider fwo and fwt as the vGRF vectors
applied at the CoP without and with the effect of external
forces and fh as the interaction forces that are applied at the
contact points ah. By using ĈPwo

and the vGRF vector fwo,
the overloading torque vector τwo, considering any external
force except the ground reaction force (i.e. the body weight),
can be computed as

ST τwo = τb −
nf∑
i=1

JT
ĈPwoi

fwo,i. (12)

Similarly, by using CPwt
and the vGRF vector fwt the

overlaoding torque vector τwt considering, on the contrary,
the effect of any external force, can be computed as

ST τwt = τb −
nf∑
i=1

JT
CPwti

fwt,i −
nh∑
j=1

JT
ahj

fh,j , (13)

where τb ∈ Rn+6 is equal to M(q)q̈+C (q, q̇) q̇+G(q) ∈
Rn+6, nf is the number of contact forces exchanged with
the ground and nh is the number of contact points where the
external forces are applied.

The relationship between the interaction forces fh and



vGRF variation ∆fw,i = fwt,i − fwo,i can be defined as

∆F =

nf∑
i=1

∆fw,i = −
nh∑
j=1

fh,j . (14)

Deriving from (12) and (13) and (14) the overloading joint
torques can be defined as

∆τs = ST (τwt − τwo) (15)

=

nh∑
j=1

JT
ahj
ηj∆F−

nf∑
i=1

(
JT
ĈPwoi

ζi∆F + JT
∆CPi

fwt,i

)
,

with the Jacobian of the CoP displacement defined as
J∆CPi

= JCPwti
−JĈPwoi

. Since the external force effect is
included in ∆τs, τb does not affect the overloading torque
vector ∆τs in any body configuration. By disregarding τb, the
number of human model parameters to be identified can be
considerably reduced [20]. 0 ≤ ζi, ηj ≤ 1 are the distribution
gains for vGRF and interaction forces, respectively, which
can be calculated from the body configuration [21], [22]
(N.B.

∑
i ζi = 1,

∑
j ηj = 1 is a necessary condition).

V. EXPERIMENTAL DEMONSTRATION

This section presents the results to validate the proposed
real-time ergonomics framework that demonstrates the se-
quential and autonomous integration of the identification and
ergonomics monitoring module. We performed an experi-
ment on one healthy male adult subject (age: 25 years; mass:
72 kg; height: 177 cm). The whole experimental procedure
was approved by the ethics committee Azienda Sanitaria
Locale Genovese (ASL) N.3 (Protocol IIT HRII 001).

A. Experimental setup

The human body configuration is monitored using a wear-
able lightweight IMU-based motion-capture suit, the MVN
Biomech suit by Xsens Technologies [23]. This solution
offers indeed a better performance in workplaces as noted
in [11] where the limitations of optical marker-based systems
are enhanced. The CoP and the ground reaction forces mea-
surements are collected using a Kistler force plate instead of
wireless insoles sensors for sake of simplicity. Nevertheless,
as highlighted in Fig. 1, the possibility and the importance of
using wireless, wearable insoles sensors to assure mobility
is crucial when shifting to real task execution scenarios.
The acquisition and synchronization of all the sensor data is
managed using Robot Operating System (ROS) environment.

B. Experimental flow

As explained in Sec. II the procedure is divided into two
phases: the SESC identification phase and the overloading
monitoring phase. During the SESC identification phase,
the subject was asked to perform a sequence of different
body configurations following the guidance of a graphical
interface, depicted in the upper part of Fig. 5. Both the
current human body configuration and the suggested one
were shown at the same time on the screen (see the left
side of Fig. 5). Once a match between the current posture

Fig. 5: Illustration of the experimental setup. In the upper part sit
alongside the visual feedback during the two phases. At first the
actual pose (blue) tries to match the suggested pose (black). Then
the level of the overloading joints torques are highlighted. In the
lower part the pictures of the corresponding instants are depicted.

and the suggested one was achieved, the volunteer was asked
to remain still (typically a couple of seconds were enough)
in order to reduce the accelerations of his CoM enabling
the update of the Kalman filter. A threshold equal to 0.002
was set for the values on the diagonal of the covariance
matrix Pk, namely Pjj , to assume the convergence of such
a filter and thus the fulfilment of the SESC identification.
As soon as the convergence criterion was reached and thus
the overloading monitoring phase started, the visualisation
mode changed highlighting the overloading joint torque (see
the right side of Fig. 5). The latter torques were displayed
in the form of spheres superimposed on the human model
and color-coded to denote a high (red), medium (yellow)
or (green) level of overloading. The 3 levels of overloading
are determined as explained in Table I. The tuning and
personalisation of the maximum joint torque values ∆τi were
established experimentally. Increasing joint torques profiles
were applied on each joint until uncomfort was experienced
by the subjects. The results were then compared with those
present in the literature [24].

To show the effectiveness of the ergonomics assessment,
the subject was asked to lift a 4kg box and to move in
the operational space. Hence, the overloading joint torques
varied consequently.

C. Results

The results of the aforementioned experimental demon-
stration are summarized in Fig. 6 and Fig. 7. In accordance
with what has been covered in Sec II, the procedure was
divided in two phases: SESC identification and overloading



Fig. 6: Experimental results of the proposed framework. The upper part shows the kinematic and dynamic status in some peculiar instants
for explanatory purposes. The estimated overloading join torque of hip (H), knee (K), ankle (A), shoulder (S) and elbow (E), are illustrated
in the middle. The bottom plot shows the evolution of the estimated and the measured CoP. Two dashed lines split the different periods
of the procedure.

TABLE I: Stepwise scheme for joint torque overloading level.

Overloading level Control threshold

GREEN 0<∆τi ≤0.3τmaxi
ORANGE 0.3τmaxi<∆τi ≤0.6τmaxi

RED 0.6τmaxi<∆τi ≤ τmaxi

monitoring. This subdivision is clearly highlighted in Fig. 6
by a black dashed line in the graphs. In the upper part of the
plot a 2D stick-model of the human is displayed showing
some peculiar body configurations that the subject adopts
throughout the experiment. We can clearly distinguish when
the ergonomic assessment comes into play, namely when the
color-coded feedback of the overloading torques appears.
A second dashed line in red divides the unloaded stage
from the box lifting task. The overloading joint torques of
the human most significant body joints, hip (H), knee (K),
ankle (A), shoulder (S) and elbow (E) are illustrated in the
middle graph of Fig. 6 while the bottom graph represents the
estimated and measured CoP, ĈPwo

and CPwt
, respectively.

In the first phase, the estimated CoP, ĈPwo
initially presents

considerably erroneous values since the SESC identification
is still at an early stage and the same behaviour occurs
for the overloading joint torques ∆τS . Afterwords, with the
progress of the SESC identification procedure, ĈPwo

and

∆τS are estimated more and more accurately due to the
Kalman filter’s convergence till the end of the first phase,
when their estimation can be finally considered reliable. In
the second phase then, it can be noted that ∆τS is almost
equal to zero in all the body joints during the unloaded
stage (before the red dashed line) while it shows significant
variations during the lifting task (after the red dashed line).
Accordingly, ĈPwo

and CPwt
are very similar during the

unloaded stage (percentage error equal to 16.17 %) while
they tend to differ during the lifting task. In Fig.7 the linear
regression of the SESC parameters Φk and the behaviour
of the values on the diagonal of the covariance matrix Pk,
namely Pjj , throughout the experiment are depicted in the
upper and in the lower graphs, respectively. It can be noted
that Φk varies significantly for all the correspondent body
links in the beginning of the process and then stabilises.
Accordingly, Pjj values initially decrease rapidly and then
the decrement steps are considerably reduced. Only when
all the Pjj values go underneath the convergence criterion
value of 0.002 highlighted in Fig.7 with a black dashed line,
the SESC estimation phase can be terminated triggering the
second phase. In our trial this occured in just 25 poses. The
accuracy of the CoP estimated through the SESC technique
and the capability of the overloading joint torques as a
method to assess human ergonomics and potentially reduce



Fig. 7: Progression of the SESC parameters during the estimation
phase in the upper plot. Below we can appreciate the covariance
value associated to each φi parameter. A threshold of 0.002 was
chosen as convergence criterion.

the worker’s physical load have been extensively validated
in [14] and [13], [15], respectively. Accordingly, a further
validation is not presented in this paper.

VI. CONCLUSION

In this paper, we integrated and showed the potentiality of
a comprehensive method for estimating ergonomic quantities
based on personalised features. The whole procedure has
been designed to satisfy the needs of a realistic industrial sce-
nario where there is no time for dull calibration routines. The
improvement is clear when comparing the results obtained
above with those of our previous work [13]. In the latter
150 static poses where necessary to feed the “batch” linear
regression estimation together with a great post processing
effort. We do furthermore understand the limits of IMU-
based sensorised suits in a workplace, however at this stage
they offer a better performance compared to other vision-
based motion capture system who suffer of occlusions and
privacy problems. In future works, we will investigate the
possibility of reducing the number of IMUs as well as
embedding the sensors in the working clothes.
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