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Abstract—In this paper, we address the problem of detecting
multiple Noise-Like Jammers (NLJs) through a radar system
equipped with an array of sensors. To this end, we develop an
elegant and systematic framework wherein two architectures are
devised to jointly detect an unknown number of NLJs and to
estimate their respective angles of arrival. The followed approach
relies on the likelihood ratio test in conjunction with a cyclic
estimation procedure which incorporates at the design stage a
sparsity promoting prior. As a matter of fact, the problem at
hand owns an inherent sparse nature which is suitably exploited.
This methodological choice is dictated by the fact that, from
a mathematical point of view, classical maximum likelihood ap-
proach leads to intractable optimization problems (at least to the
best of authors’ knowledge) and, hence, a suboptimum approach
represents a viable means to solve them. Performance analysis
is conducted on simulated data and shows the effectiveness of
the proposed architectures in drawing a reliable picture of the
electromagnetic threats illuminating the radar system.

Index Terms—Electronic Counter-Countermeasure, Jamming
Detection, Model Order Selection, Noise-Like Jammer, Radar,
Signal Classification, Sparse Reconstruction.

I. INTRODUCTION

In the last decades, the radar art has made great strides
due to the advances in technology. In fact, the last-generation
processing boards are capable of performing huge amounts
of computations in a very short time leading to flexible
fully-digital architectures. In addition, this abundance of com-
putation power has allowed for the development of radar
systems endowed with more and more sophisticated processing
schemes. A tangible example is represented by search radars
which are primarily concerned with the detection of targets
buried in thermal noise, clutter, and, possibly, intentional inter-
ference, also known as Electronic Countermeasure (ECM) [1]–
[4]. In this context, the open literature is continuously enriched
with novel contributions that lead to enhanced performances at
the price of an increased computational load [5]–[19]. Another
example related to the potentialities provided by fully-digital
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architectures is connected with Adaptive Digital BeamForming
(ADBF) techniques [2], [4], since they can suitably combine
digital samples at the output of each channel according to
the specific requirement. Remarkably, by means of ADBF
techniques, the transmit/receive antenna beam patterns can be
suitably shaped preventing the system engineer from the dupli-
cation of hardware resources. For instance, ADBF can be used
to build up the auxiliary beam used by the SideLobe Blanker
(SLB) [2], [20]–[23] exploiting the entire array without the
need of additional antennas. The SLB is an Electronic Counter-
CounterMeasure (ECCM) against pulsed intentional interfer-
ences (or coherent jammers) entering the antenna sidelobes,
which, in turn, are ECMs. Note that ECCM techniques can
be categorized as antenna-related, transmitter-related, receiver-
related, and signal-processing-related depending on the main
radar subsystem where they take place [24].

Besides coherent jammers, any radar might also be a victim
of noise-like interfering signals, also referred to as Noise-
Like Jammers (NLJs), by an adversary force. This electronic
attack is aimed at preventing detection or denying accurate
measurement of target information (Doppler and/or Range)
[4] by generating nondeceptive interference which blends into
the thermal noise of the radar receiver. As a consequence, the
radar sensitivity is degraded due to the increase of the constant
false alarm rate threshold which adapts to the higher level of
noise [2], [4]. In addition, this increase makes more difficult
to know that jamming is taking place [3], [24]. Under the NLJ
attack, the SLB becomes ineffective since it would inhibit
the detection of true targets for most of the time. In these
situations, the Sidelobe Canceler (SLC) represents a viable
ECCM [2], [25], [26]. As a matter of fact, it exploits an
additional auxiliary1 array of antennas (with suitable gains)
to adaptively estimate the NLJ Angle of Arrival (AoA) and
places nulls in the sidelobes of the main receiver beam along
the estimated AoA. In a fully-digital architecture, the task of
the SLC can be accomplished by applying ADBF techniques
without the use of additional hardware (signal-processing-
related ECCM).

However, the application of ADBF techniques might in-
crease the computational burden of the signal processing unit
since they require the computation and the inversion of a
sample covariance matrix in addition to possible AoA esti-
mation. These operations consume hardware resources which
are shared among the different radar functions and, due to the

1Note that a system with sidelobe canceling capabilities is equipped with
both the main antenna array devoted to target detection and an auxiliary array
used to cancel the NLJs.
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restrictive requirements on radar reaction time, they cannot
occur at every dwell regardless whether or not NLJs are
illuminating the radar. Thus, it would be highly desirable a
preliminary stage capable of detecting NLJs and, possibly,
estimating the relevant NLJ parameters. Once the presence
of NLJs is declared, the estimated parameters are used by
ADBF techniques to contrast the interfering actions. Following
this reasoning, in [27], the authors develop a decision scheme
which decides for the presence of one NLJ by comparing the
spectral properties of reference cells, not affected by jammer
returns, with those of Cells Under Test (CUT); no additional
information about the NLJ is provided. The case of multiple
NLJs is addressed in [28], where the original binary hypothesis
test is transformed into a multiple-hypothesis problem and the
Model Order Selection (MOS) rules [29]–[34] are exploited
to conceive two-stage detection architectures, where the first
stage provides an estimate of the active NLJs number under
the constraint of an upper bound to it, while the second
stage is devoted to the detection of the estimated number of
NLJs allowing for the control of the false jammer detection
probability. However, these two-stage architectures are not
capable of providing any information about either the AoA
or the received power of the detected NLJs.

With the above remarks in mind, in this paper, we address
the same detection problem as in [28] by developing an elegant
and systematic framework for the joint detection of multiple
NLJs and the estimation of the respective relevant parameters,
which include the AoAs and the number of threats2. To this
end, we assume that a set of data free of clutter components
and affected by thermal noise and possible NLJ components
[2], [36], [37] is available at the receiver. As a matter of fact,
it can be collected by noticing that the clutter contribution
is, in general, range-dependent and tied up to the transmitted
waveform. Therefore, it is possible to acquire data free of
clutter components and affected by the thermal noise and
possible jamming signals only. For instance, for a system
employing pulse-to-pulse frequency agility which transmits
one pulse, clutter-free data can be collected before transmitting
the pulse waveform by listening to the environment (see
Figure 1). Another example of practical interest concerns radar
systems transmitting coherent pulse trains with a sufficiently
high pulse repetition interval. In this case, data collected
before transmitting the next pulse and at high ranges (or
after the instrumental range), result free of clutter contribution
(see Figure 2). Now, under these assumptions, the newly
proposed framework exploits a sparse representation of the
problem at hand and resorts to suitable cyclic optimization
procedures [38] to devise two architectures where the AoA
and power estimation is concurrent with the detection without
any subsequent estimation stage or constraint on the number
of NLJs. Following the lead of [39], we assume that NLJ
parameters are random and obey a prior that promotes sparsity.
However, the latter is conceived for the specific case at hand
giving rise to a new optimization problem and, hence, new an-
alytical derivations. Remarkably, the considered sparsity-based

2Recall that in [28] the focus is limited to the interference subspace
detection [35] without providing any side information.

Fig. 1. Acquisition procedure of clutter free data for spatial processing.

Fig. 2. Acquisition procedure of clutter free data for temporal processing.

estimation allows for an increase of the angular resolution (at
least for high NLJ powers as shown in Section IV). Finally, the
obtained estimates are plugged into a Likelihood Ratio Test
(LRT) aimed at detecting the presence of NLJs. The above
aspects represent the main technical contribution of this work
and, at least to the best of authors’ knowledge, appear for the
first time in this paper.

It is also important to underline that these methodology
choices lead to suboptimum solutions which are dictated by
the fact that the plain Maximum Likelihood Approach (MLA)
exhibits a difficult mathematical tractability. Performance
analysis, conducted on simulated data, points out the effective-
ness of the newly proposed decision schemes from the point
of view of both detection and estimation capabilities also in
comparison with their natural competitors.

The remainder of the paper is organized as follows. Sec-
tion II is devoted to problem formulation and definition of
quantities used in the next derivations, while the design of
the detection architectures and the estimation procedures are
described in Section III. Section IV shows the effectiveness
of the proposed strategies through numerical examples on
simulated data. Finally, Section V contains concluding remarks
and charts a course for future works; some mathematical
derivations and proofs are confined to the appendices.

A. Notation

In the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. The ith entry
of a vector a is represented by a(i) whereas symbols det(·),
Tr (·), (·)T , and (·)† denote the determinant, trace, transpose,
and conjugate transpose, respectively. Symbol ‖·‖ denotes the
Euclidean norm of a vector. As to numerical sets, N is the set
of natural numbers, R is the set of real numbers, RN×M is
the Euclidean space of (N×M)-dimensional real matrices (or
vectors if M = 1), RN×M+ is the set of (N×M)-dimensional
real matrices (or vectors if M = 1) whose entries are greater
than or equal to zero, C is the set of complex numbers,
and CN×M is the Euclidean space of (N ×M)-dimensional
complex matrices (or vectors if M = 1). The modulus of a
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real number x is denoted by |x|. I and 0 stand for the identity
matrix and the null vector or matrix of proper size. Symbol ∝
means that the left-hand side is proportional to the right-hand
side. Given a vector a ∈ CN×1, diag (a) ∈ CN×N indicates
the diagonal matrix whose ith diagonal element is the ith entry
of a. The acronym pdf stands for probability density function
and the conditional pdf of a random variable x given another
random variable y is denoted by f(x|y). Finally, we write
x ∼ CNN (m,M) if x is a complex circular N -dimensional
normal vector with mean m and positive definite covariance
matrix M .

II. PROBLEM FORMULATION AND PRELIMINARY
DEFINITIONS

Consider a radar system equipped with N ≥ 2 spatial
channels which is listening to the environment. The incoming
signal is firstly conditioned by means of a baseband down-
conversion, then, it is pre-processed and properly sampled. The
samples are, then, organized to form N -dimensional vectors
denoted by zk, k = 1, . . . ,K, with K ≥ Nj being the total
number of listening data and Nj ≤ N the number of NLJs.
The detection problem at hand can be formulated as{

H0 : zk ∼ CNN (0,M0), k = 1, . . . ,K,
H1 : zk ∼ CNN (0,M1) , k = 1, . . . ,K,

(1)

where M0 = σ2
nI and

M1 = σ2
nI +

Nj∑
i=1

div(θ̄i)v(θ̄i)
†. (2)

In the last equations, σ2
n ≥ 1 and3 di > 0 are the

powers of thermal noise and the ith jammer, respectively,
θ̄i is the AoA of the ith jammer measured with re-
spect to the array broadside, and v(θ) is the array steer-
ing vector pointed along θ whose expression is v(θ) =

1√
N

[
1, ej2π(d/λ) sin(θ), . . . , ej2π(d/λ)(N−1) sin(θ)

]T
with d the

array interelement spacing and λ the carrier wavelength. More-
over, under each hypothesis, zks are statistically independent.

In order to bring to light the sparse nature of the problem,
let us sample the angular sector under surveillance to form a
discrete and finite set of angles denoted by Θ = {θ1, . . . , θL}
with L � Nj and θ1 ≤ . . . ≤ θL. In addition, we assume
that ∀i = 1, . . . , Nj , θ̄i ∈ Θ. Thus, if we define a vector
d = [d1, . . . , dL]T ∈ RL×1

+ such that

∀k = 1, . . . , L :

{
dk > 0, if θk = θ̄i,

dk = 0, otherwise,
(3)

it follows that d is sparse (since L� Nj) and the ICM under
H1 can be recast as

M1 = σ2
nI + V DV †, (4)

where V = [v(θ1), . . . ,v(θL)] is the dictionary and D =
diag (d). In Figure 3, we show a pictorial representation of

3As explained in Appendix A, the lower bound on the thermal noise power
is required to ensure a good behavior for the prior associated to di that will
be introduced in the next section. From a practical point of view, this lower
bound can be handled by exploiting a suitable numerical representation used
by the signal processing unit.

Fig. 3. A pictorial representation of the hidden sparse nature of model (2)
assuming Nj = 2 � L.

the hidden sparse nature of (2). Thus, the formal structure of
the detection problem at hand can be expressed in terms of
the sparse vector d as follows{

H0 : d = 0,
H1 : d 6= 0 (with nonnegative entries). (5)

Finally, we conclude this section by providing the expression
of the pdf of Z = [z1, . . . ,zK ] under Hi, i = 0, 1, which will
be used in the next developments, namely

fi(Z;σ2
n, id, Hi)=

exp
{
−Tr

[
(σ2
nI + iV DV †)−1ZZ†

]}
[πN det(σ2

nI + iV DV †)]K
.

(6)

III. ARCHITECTURE DESIGNS

As stated in Section I, the MLA for this problem leads to
intractable mathematics and, hence, we resort to a suboptimum
iterative approach. With this remark in mind, in this section,
we derive two decision schemes for problem (5) which differ
in the adaptivity with respect to the thermal noise power.
Specifically, the former estimates d assuming that σ2

n is known
and, then, replaces it with an estimate which is assumed
available at the receiver (a point better explained in the next
subsection). The latter jointly estimates d and σ2

n by means of
a cyclic optimization procedure. In both cases, the structure of
the decision statistic is given by the likelihood ratio and the
decision rule is given by the LRT, whose expression is

Λ(Z;d, σ2
n) =

f1(Z;σ2
n,d, H1)

f0(Z;σ2
n,0, H0)

H1
>
<
H0

η, (7)

where η is threshold4 to be set in order to guarantee the
required Probability of False Jammer Detection (Pfjd).

4Hereafter, we denote by η any modification of the detection threshold.
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A. Adaptive detector for unknown d

Let us assume that σ2
n is known and, following the lead of

[39], that the entries of d are jointly distributed according to
a sparsity promoting (possibly improper) prior given by5

fd(d;σ2
n, q) ∝

[det(σ2
nI + V DV †)]K−1

L∏
i=1

exp

{
K

q
(dqi − 1)

} (8)

with a (possible) positive constant of proportionality, where
q ∈ Ωq = (0, 1] is a parameter allowing for sparsity control.
In Appendix A, we investigate the behavior of fd(d;σ2

n, q)
with respect to d and q. Thus, the logarithm of the joint pdf
of Z and d under H1 can be written as

log f(Z,d;σ2
n, q) = log f(Z|d;σ2

n, q) + log fd(d;σ2
n, q)

≈ A− log det(σ2
nI + V DV †)− Tr

[
(σ2
nI + V DV †)−1S

]
−

L∑
i=1

K

q
(dqi − 1) = g(d;σ2

n, q), (9)

where A = −KN log π, S = ZZ†, and the proportionality
constant of the prior of d has been neglected. Now, we proceed
by setting to zero the first derivative of g(d;σ2

n, q) with respect
to di [35], namely ∂

∂di

[
g(d;σ2

n, q)
]

= 0, i = 1, . . . , L, which
leads to the following equations

− Tr
[
(σ2
nI + V DV †)−1v(θi)v(θi)

†
]

+ Tr
[
(σ2
nI + V DV †)−1S(σ2

nI + V DV †)−1v(θi)v(θi)
†
]

−K di

d2−q
i

= 0

⇒ di =

{
d2−q
i

K v(θi)
†H(d)v(θi), if v(θi)

†H(d)v(θi) > 0,

0, otherwise,
(10)

i = 1, . . . , L. Observe that when K � N or K > N � 0,
then S ≈ K(σ2

nI+V DV †) and, hence, the following matrix

H(d) =
[
(σ2
nI + V DV †)−1S(σ2

nI + V DV †)−1

− (σ2
nI + V DV †)−1

]
(11)

is positive definite. Equations (10) can be written in matrix
form as

d =
P q

K

max{v(θ1)†H(d)v(θ1), 0}
...

max{v(θL)†H(d)v(θL), 0}

 (12)

with P q = diag (d2−q
1 , . . . , d2−q

L ) and max{·, 0} is used to
guarantee the constraint that the entries of d are nonnegative.
Now, given a preassigned value for q, let us assume that an
initial estimate of d, denoted by d(0)

q , is available, then, it is

5There does not exist a specific criterion to select the prior for the
considered framework. Nevertheless, the choice of this prior raises from an
analysis of the achievable performance.

possible to apply a cyclic optimization [38], [39] whose nth
step is given by

d(n+1)
q =

P (n)
q

K


max

{
v(θ1)†H

(
d(n)
q

)
v(θ1), 0

}
...

max
{
v(θL)†H

(
d(n)
q

)
v(θL), 0

}
 . (13)

It is important to highlight that the described procedure leads
to a nondecreasing sequence of values for the cost function
g(x;σ2

n, q), x ∈ RL×1
+ . As a matter of fact, first note that

g(x;σ2
n, q) is continuous and

lim
‖x‖→0

g(x;σ2
n, q) = C < 0,

lim
‖x‖→+∞

g(x;σ2
n, q) = −∞.

(14)

The above conditions imply that g(x;σ2
n, q) is upper bounded

over RL×1
+ . Moreover, exploiting Lemma 1 and Theorem 2 of

[39] it is not difficult to show that

g(d(n)
q ;σ2

n, q) ≤ g(d(n+1)
q ;σ2

n, q). (15)

It still remains to estimate q. To this end, let us sample Ωq to
come up with a finite set of admissible values for q denoted by
Ω̄q . Now, given q ∈ Ω̄q and the maximum number of jammers
Nj,max, let us denote the number of peaks by h(q) (≤ Nj,max),
in d(n+1)

q as follows

1) sort the entries of d(n+1)
q from the largest to the smallest

and form vector d̃q;
2) select h(q) returning the lowest value of

BICq = 2K log det(σ2
nI + V DqV

†)

+ 2Tr
[
(σ2
nI + V DqV

†)−1S
]

+ h(q) log (2NK) ,

(16)

with6 Dq = diag (d̂q) and d̂q being computed as
described in Appendix B (and summarized in Algorithm
1), where an alternating optimization procedure is ap-
plied by setting to zero the entries of d whose indices are
different from those of {d̃q(1), . . . , d̃q(h(q))} computed
with respect to the element indices of d(n+1)

q .
As a result, we obtain the set {BICq : q ∈ Ω̄q} and the estimate
of q is obtained as

q̂ = arg min
q∈Ω̄q

BICq. (17)

Finally, several stopping criteria can be thought to interrupt
the cycles. For instance, they can rely on a maximum number
of iterations or on the relative variations with respect to the
values returned at the previous iteration. The entire procedure
is outlined in Algorithm 2.

Gathering the above estimates, the adaptive LRT can be
written as

Λ1(Z) =
f1(Z; σ̃2

n,dq̂, H1)

f0(Z; σ̃2
n,0, H0)

H1
>
<
H0

η, (18)

6Note that (16) is reminiscent of the Minimum Description Length criterion
applied in [34].
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Algorithm 1 Cyclic algorithm to refine the estimate of d

Input: d(n+1)
q , q ∈ (0, 1], S, V , σ2

n, and h(q).
Output: d̂q .

1: Set n = 0 and d̄
(0)
q is obtained by setting to zero the

entries of d(n+1)
q different from the first h(q) peaks.

2: Set n = n+ 1 and i = 0.
3: Set i = i+ 1.
4: Compute Ω̄ = {k ∈ N : d̄

(n−1)
q (k) > 0},

A
(n−1)
1:i = σ2

nI+
∑

k∈Ω̄\Ω1:i

d̄
(n−1)
q (k)v(θ(k))v(θ(k))†+C

(n)
i

with C
(n)
i =

∑
h∈Ω1:i\{i}

d̄
(n)
q (h)v(θ(h))v(θ(h))†

and Ω1:i = {k ∈ Ω̄ : k ≤ i}.
5: Compute d̄

(n)
q (i) as in (43).

6: If i < L go to step 3 else go to step 7.
7: If the stopping condition on n is satisfied go to step 8 else

go to 2.
8: Return d̂q = d̄

(n)
q .

Algorithm 2 Cyclic optimization for known σ2
n

Input: d(0)
q , S, V , Ω̄q , and σ2

n

Output: dq̂
1: Set n = 0.
2: Set n = n+ 1.
3: Compute ∀q ∈ Ω̄q

d(n)
q =

P (n−1)
q

K


v(θ1)†H

(
d(n−1)
q

)
v(θ1)

...

v(θL)†H
(
d(n−1)
q

)
v(θL)


with H

(
d(n−1)
q

)
given by (11).

4: Apply Algorithm 1, which returns d̂q , ∀h(q) ∈
{1, . . . , Nj,max}, and compute

d(n)
q = arg min

q∈Ω̄q,h(q)∈{1,...,Nj,max}
BICq(d̂q)

with BICq given by (16).
5: If the stopping condition on n is satisfied go to step 6 else

go to step 2.
6: Return dq̂ = d(n)

q .

where dq̂ = d̂q̂ and σ̃2
n is an estimate of the thermal noise

power available at the receiver. For instance, the value of such
estimate can be an entry of a Lookup Table accounting for
different system operating conditions or alternatively, it can
be periodically computed according to the plan of the system
scheduler by disabling the antenna front-end. Architecture (18)
will be referred to in the following as Sparse Cyclic LRT
(SC-LRT). In the next subsection, we conceive an adaptive
procedure which exploits data under test to jointly estimate σ2

n

and d at the price of an additional computational burden. As a

matter of fact, such new procedure comprises two steps which
are iterated until a stopping criterion is satisfied. Specifically,
the first step is described in the present subsection, whereas
the second step will be devised in what follows. Thus, the
additional computational load is due to both the second step
and the required iterations.

B. Adaptive detector for unknown d and σ2
n

In this case, both σ2
n and d must be estimated from

data. While the Maximum Likelihood Estimate (MLE) of
σ2
n under H0 can be obtained in closed-form, the estimation

of the unknown parameters under H1 is more problematic
and requires elaborate approaches. To this end, let us note
that the estimation procedure for d described in the previous
subsection, which assumes that σ2

n is known, can be viewed
as a step of a cyclic procedure that, when σ2

n is unknown,
repeats the following operations

1) assume that σ2
n is known and estimate d;

2) assume that d is known and estimate σ2
n.

Moreover, the estimates obtained at the previous iteration
replace the quantities assumed known at the current iteration
and so on. Since the first step of this procedure is described
in Subsection III-A, we complete here the procedure by
describing the missing part, namely the estimation of σ2

n.
Thus, let us start assuming that H1 is in force and that an

estimate of d at the kth iteration, d̂
(k)

say, is available. Then,
compute the MLE of σ2

n for d = d̂
(k)

, which is tantamount
to solving

max
σ2
n

L(σ2
n), (19)

where L(σ2
n) = log f1(Z;σ2

n, d̂
(k)
, H1) is the log-likelihood

function for d = d̂
(k)

. Now, note that the L(σ2
n) is a

continuous function such that
lim

σ2
n→0+

L(σ2
n) = A < 0,

lim
σ2
n→+∞

L(σ2
n) = −∞.

(20)

As a consequence, the maximum of L(σ2
n) occurs at either

σn = 0 or the local stationary points. In this case, it can be
found by setting to zero the first derivative of L(σ2

n) with
respect to σ2

n, namely

∂

∂σ2
n

L(σ2
n)

=
∂

∂σ2
n

{
−KN log π −K log det

(
σ2
nI + Λ̂

(k)

d

)
−Tr

[(
σ2
nI + Λ̂

(k)

d

)−1

Sd

]}

= −K
N∑
i=1

1

σ2
n + λ̂

(k)
d,i

+

N∑
i=1

Sd(i, i)(
σ2
n + λ̂

(k)
d,i

)2 = 0

⇒
N∑
i=1

Sd(i, i)−K
(
σ2
n + λ̂

(k)
d,i

)
(
σ2
n + λ̂

(k)
d,i

)2 = 0, (21)
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where Λ̂
(k)

d ∈ RN×N is a diagonal matrix whose nonzero en-

tries are the eigenvalues of V diag
(
d̂

(k)
)
V † denoted by λ̂(k)

d,i

with λ̂
(k)
d,1 ≥ . . . ≥ λ̂

(k)
d,N ≥ 0, whereas Sd =

[
Û

(k)

d

]†
SÛ

(k)

d

with Û
(k)

d a unitary matrix whose columns are the eigenvectors

of V diag
(
d̂

(k)
)
V † corresponding to λ̂

(k)
d,i , i = 1, . . . , N .

Now, by Abel-Ruffini Theorem [40], when N ≥ 3, equation
(21) does not admit solutions in algebraic form. For this
reason, we solve it resorting to numerical routines and choose
the positive solution,

(
σ̂2
n,1

)(n+1)
say, greater than or equal

to 1 and that returns the highest value of L(σ2
n). If such

solution does not exist, we set
(
σ̂2
n,1

)(n+1)
= 1. Once(

σ̂2
n,1

)(n+1)
is available, we exploit the cyclic optimization of

Subsection III-A to compute d̂
(k+1)

where σ2
n is replaced by(

σ̂2
n,1

)(k+1)
. The entire procedure, summarized in Algorithm

3, can terminate after a fixed number of iterations or when a
convergence criterion is satisfied as, for instance,

‖d̂
(k)
− d̂

(k−1)
‖

‖d̂
(k−1)

‖
+
|
(
σ̂2
n,1

)(k) −
(
σ̂2
n,1

)(k−1) |(
σ̂2
n,1

)(k−1)
< ε, (22)

with ε a suitable small positive number.
On the other hand, under H0, it is not difficult to show that

the MLE of σ2
n is given by

σ̂2
n,0 =

1

KN
Tr [S] (23)

and replacing the above estimates in the LRT, we come up
with

Λ2(Z) =
f1(Z; σ̂2

n,1, d̂, H1)

f0(Z; σ̂2
n,0,0, H0)

H1
>
<
H0

η, (24)

where σ̂2
n,1 and d̂ are the final estimates provided by Algorithm

3. In what follows, we refer to the above decision scheme as
Sparse Doubly Cyclic LRT (SDC-LRT).

Before concluding this section and presenting the numerical
examples, we highlight that the estimate of d, d̂ say, can be
used to infer the number of NLJs and their AOAs. However,
d̂ may contain false objects (ghosts) induced by the energy
spillover. In order to mitigate the number of ghosts, we
apply an additional thresholding of the entries of d̂ and we
resort to the same fusion strategy proposed in [41], where
the grid used to sample the angular sector under surveillance
is partitioned into subsets associated to a specific AOA and
the entries of d̂ falling in a subset are merged together.
The interested reader is referred to [41] for further details.
Finally, it is clear that other fusion strategies are possible
leading to better estimation and/or classification performance
especially in the case where the actual AOAs of the NLJs
are in between the points of the sampling grid. For instance,
an interpolation of consecutive nonzero entries of d̂ can be
performed, whereupon the resulting peaks can be selected.
Another approach would consist in increasing the angular
resolution of the grid in the sectors that contain consecutive

Algorithm 3 Cyclic optimization for unknown σ2
n

Input: d(0)
q , S, V , Ω̄q , and (σ2

n,1)(0) .
Output: d̂ and σ̂2

n,1.
1: Set n = 0.
2: Set n = n+ 1.
3: Execute steps 3 and 4 of Algorithm 2 setting σ2

n =
(σ2
n,1)(n−1) to obtain d(n)

q .
4: Compute the eigendecomposition of V diag (d(n)

q )V †.
5: Compute (σ2

n,1)(n) as the solution of

N∑
i=1

Sd(i, i)−K
(
σ2
n + λ̂

(k)
d,i

)
(
σ2
n + λ̂

(k)
d,i

)2 = 0

that maximizes L(σ2
n).

6: If the stopping condition on n is satisfied go to step 7 else
go to step 2.

7: Return d̂ = d(n)
q and σ̂2

n,1 = (σ2
n,1)(n).

nonzero entries of d̂. As a result, the actual AOAs of the NLJs
are very close to the oversampled grid points. The design of
different fusion strategies is out of the scope of the present
paper and represents the current research line.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section, we present some numerical examples aimed
at showing the detection and estimation capabilities of the
SDC-LRT and the SC-LRT for known7 σ2

n. For comparison
purpose, we also assess the performance of the LRT where the
unknown parameters are estimated by means of the SParse It-
erative Covariance-based Estimation (SPICE) algorithm whose
theoretical formulation is laid down in [42] and that is well-
suited to the covariance matrix model at hand given by (4).
This competitor will be denoted by the acronym SPICE-LRT.
Two operating scenarios are considered, which differ in the
number of NLJs. Specifically, the former contains Nj = 3
NLJs, whereas the latter is characterized by the presence
of Nj = 4 NLJs. In both scenarios, NLJs share the same
(nominal) power and are located within an angular sector
under surveillance ranging from −22◦ to 22◦ and uniformly
sampled at 1 degree, 2 degrees, or 3 degrees. The nominal
AOA of the NLJs, measured with respect to the array normal,
are assumed to lie on the sampling grid (“on-grid” case) and
are given by
• θ̄1 = −10◦, θ̄2 = −4◦ and θ̄3 = 8◦ for a spatial sampling

rate of 1 degree, 2 degree, and 3 degree in the scenario
which assumes Nj = 3 NLJs;

• θ̄1 = −10◦, θ̄2 = −4◦, θ̄3 = 8◦, and θ̄4 = 14◦ for a
spatial sampling rate of 1 degree, 2 degree, and 3 degree
in the other scenario which assumes Nj = 4 NLJs.

Besides, we also consider the “off-grid” situation where the
actual AOAs of the NLJs are in between the grid samples
(a point better explained below). Finally, we show that at

7Comparing SC-LRT for known σ2
n with the SDC-LRT allows us to

quantify the loss due to the estimation of σ2
n.
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high NLJ power, the proposed algorithms provide high-quality
estimates of the NLJ parameters.

The Jammer-to-Noise Ratio (JNR) is defined as JNR =
σ2
j

σ2
n

with σ2
n = 2. The analysis relies on the following figures of

merit:

• the Probability of Jammer Detection (Pjd) for a given
Pfjd;

• the Root Mean Square (RMS) value for the number
of missed NLJs, the number of ghost NLJs and
the Hausdorff metric [43] between8 d and dq̂ . The
latter belongs to the family of the multi-object
distances which are able to capture the error between
two sets of vectors and is defined as hd(X,Y) =
max{max

x∈X min
y∈Y d(x, y),max

y∈Y min
x∈X d(x, y)}

with X and Y are the sets of the coordinates of the
nonzero entries of d and dq̂ , respectively (these figures
of merit are computed exploiting the fusion strategy of
[41] with a subset cardinality equal to 3);

• the classification histograms (computed exploiting the fu-
sion strategy of [41] with a subset cardinality equal to 3)
namely the percentages of declaring that n, n = 1, . . . , 6,
NLJs are present when the actual number of NLJs is
either 3 or 4;

• the RMS values for the angular error between the actual
AOA and the estimated direction closest to the former
(off-grid case only).

Due to the lack of closed-form expressions for the above
metrics, we resort to standard Monte Carlo counting tech-
niques. Specifically, the detection thresholds are computed
over 100/Pfjd independent trials with Pfjd = 10−2, whereas
the classification percentages and the RMS values are esti-
mated exploiting 1000 independent trials. In the case of off-
grid NLJ angular positions, at each Monte Carlo trial, the
AOAs are generated as independent random variables uni-
formly distributed in [θ̄i−1, θ̄i+1] or [θ̄i−∆θ/2, θ̄i+∆θ/2]
degrees, i = 1, . . . , 3 or i = 1, . . . , 4, where ∆θ is the
grid sampling interval. It is worth noticing that this off-
grid analysis is aimed at illustrating the behavior of the
newly proposed method in three different situations, namely
an unfavorable case where the grid is sampled at 1 degree
(and, hence, the variation range of the actual direction for each
jammer comprises three grid points), a favorable case where
the grid is sampled at 3 degrees (i.e., the actual direction of
each jammer is very close to a nominal grid point), and an
intermediate situation with a sampling interval of 2 degrees.
From an operating point of view, it would be possible to
bring back to one of the above cases by oversampling the
angular sectors identified by a preliminary application of the
estimation procedure over a rough search grid. Moreover, as
already stated, we perform an additional thresholding of the
entries of dq̂ . To this end, the threshold is set to ensure a
probability of declaring the presence of spurious NLJs equal to
10−3. Finally, all the numerical examples assume N = 32 and

8Note that such figures of merit make sense when the performance are
evaluated on-grid assumption. Conversely, in the case of off-grid angular
positions, another figure of merit must be considered.

K = 64, whereas the estimation procedures terminate when
the convergence criterion in (22) is satisfied with ε = 10−2.

A. First Operating Scenario: 3 NLJs

Let us start the analysis by focusing on the scenario that
contains Nj = 3 NLJs. In Figure 4, we plot the Pjd of the
decision schemes devised in Subsections III-A and III-B along
with that of the SPICE-LRT assuming that the AOAs of the
NLJs belong to the sampling grid. Inspection of the figure
highlights that the performance improves as the sampling
interval grows. This behavior can be motivated by noticing that
a wider sampling interval would decrease the coherence of the
dictionary V leading, as a consequence, to an improvement
of the estimation quality of d [44]. Moreover, the proposed
detectors exhibit a gain of about 2 dB at Pjd = 0.9 with
respect to the SPICE-LRT. It is also worth observing that the
Pjd for SC-LRT and SDC-LRT achieves values greater than
0.9 for JNR values greater than about −2 dB.

In Figure 5, the RMS values for the Hausdorff distance
between the true and estimated d, the number of missed
jammers, and the number of ghosts against the JNR are
plotted for the same parameter values as in Figure 4. Both
the SPICE and the proposed procedure (Algorithm 3) exhibit
excellent performance rates which improve as the JNR in-
creases. However, to be more precise, the proposed procedure
performs slightly better than SPICE for the considered figures
of merit and the parameter setting. As a matter of fact, for
high JNR values the Hausdorff distance provided by SPICE
is biased whereas that related to the proposed procedure
is strictly decreasing as the JNR increases. The differences
observed in the last two subfigures are less evident except
for the RMS number of ghosts when the grid is sampled
at 1 degree. In order to provide a complete picture of the
performance for the on-grid case comprising 3 NLJs, Figure
6 shows the classification histograms assuming JNR = 10 dB
(recall that NLJs transmit very high power) and the nominal
AOA for the NLJs. More precisely, such histograms count
the number of times that the estimation procedures state that
n ∈ {1, . . . , 6} NLJs are present (recall that the ground-truth is
3 NLJs). It turns out that the proposed procedure can guarantee
a percentage of correct estimation for the number of NLJs
greater than 99 % for all the considered sampling intervals,
whereas SPICE exhibits percentage higher than 93 % when
the grid sampling rate is 2 or 3 degrees. For the case of a
grid sampled at 1 degree, the percentage of correct estimation
for SPICE decreases to about 60 % yielding a nonnegligible
overestimation attitude.

The next illustrative example assumes that the NLJs have
not yet transmitted their maximum power level when the radar
is forming the set of data under test. Specifically, for each
nominal JNR value, we generate z1 with a JNR given by
the nominal value minus 5 dB, then the remaining zis, i >
1, are built up increasing the initial JNR by 1 dB until the
nominal value is achieved. Figure 7, where the Pjd is shown
as a function of the JNR for this scenario, confirms the ranking
observed in Figure 4 with a slight performance degradation,
which is, nevertheless, expected since the actual amount of
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collected energy is less than the nominal value. As for the
other figures of merit, results not reported here for brevity are
aligned with what observed in Figures 5 and 6.

Now, we focus on the case where the actual angular
positions of the three NLJs are in between the grid points.
In this case, besides the detection performance, we consider
the classification histograms and RMS value of the angular
difference between the actual position of the NLJs and es-
timated direction which is closest to the former. Note that
the other figures of merit do not make sense in this case.
The detection performance is shown in Figure 8 where an
overall loss of at most 0.5 dB at Pjd = 0.9 and for the curves
related to the sampling intervals of 2 and 3 degrees can be
measured with respect to Figure 4. On the other hand, the
curves representative of the grid sampled at 1 degree remain
unaltered. The figure also confirms that the SC-LRT and SDC-
LRT are superior to the SPICE-LRT with a gain of about
2 dB and, in addition, that a wider sampling interval leads
to slightly better performance. The classification histograms
under the off-grid assumption are shown in Figure 9, where,
as expected, a sampling interval of 3 degrees enhances the
estimation quality for the number of NLJs since it decreases
the energy spillover of the NLJs between consecutive grid
points. In this case, the proposed procedure is slightly superior
to the SPICE algorithm. For a sampling interval of 1 and
2 degrees, both algorithms provide a percentage of correct
classification less than 50 % with the SPICE algorithm being
more inclined to overestimate the number of NLJs than the
proposed procedure. For instance, note that for a sampling
interval of 1 degree, the sum of the occurrences for the SPICE
is less than 1000, because the latter in some Monte Carlo trials
returns a number of NLJs greater than 6. In the Figure 10, we
plot the RMS angular distance between the actual AOA and
the estimated AOA closest to the former versus the JNR. The
figure points out that the considered procedures share the same
performance and, more precisely, for JNR values greater than
2 dB the RMS error is less than 2 degrees. Importantly, a grid
sampled at 3 degrees allows for RMS values less than 1 degree
for JNR≥ 4 dB. Finally, in Figures 11-12, we compute the
detection curves and the classification histograms by assuming
that the actual NLJ angular positions are uniformly distributed
in a window centered on the nominal AoA and of size exactly
equal to the sampling interval. The behavior observed in these
last figures is aligned with that described before confirming
the superiority of the proposed method over SPICE.

The last illustrative example (Figure 13) of this subsection
shows that the estimation quality is high in the case of large
NLJ power values. To this end, we show the returned estimates
for two outcomes of two Monte Carlo trials. Specifically, in
Subplot (a), we plot the interference power estimates as a
function of the angles belonging to the search grid sampled
at 1 degree for three jammers at θ̄1 = −10, θ̄2 = 6,
and θ̄3 = 8 with JNR=30 dB; Subplot (b) shares the same
parameter setting as Subplot (a) but for the NLJ AoAs, which
are θ̄1 = −9.5, θ̄2 = −3.5, and θ̄3 = 8.5. Inspection of
Subplot (a) highlights the enhanced resolution provided by
the sparse approach along with a significant attenuation of
“sidelobe” effects, whereas in Subplot (b), the spillover of
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Fig. 5. RMS value for the Hausdorff distance, number of missed jammers,
and number of ghosts versus JNR assuming Nj = 3 and the nominal AOAs
for the NLJs.

the NLJ power between adjacent grid points can be observed
motivating the need of suitable fusion strategies.

B. Second Operating Scenario: 4 NLJs

In this last subsection, we repeat previous analysis assuming
that Nj = 4 NLJs are present. This analysis is aimed at
investigating the effect of an increase of the NLJ number on
the performance.

The detection performance is shown in Figure 14, that
clearly confirms the hierarchy observed in Figure 4 with
the SC-LRT and SDC-LRT achieving better results than the
SPICE-LRT. Moreover, the presence of an additional NLJ in-
creases the overall JNR and, hence, the detection performance.
Figures 15-16 are related to the classification/estimation per-
formance for the on-grid case and share the same parameters
as Figures 5-6 except for Nj = 4. From the comparisons
with respect to the first operating scenario, it stems that the
estimation performance is preserved when the number of NLJs
changes from 3 to 4. In the last two figures, we plot the
classification histograms as well as the RMS values of the
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error between the actual AOA and the estimated AOA closest
to the former. The histograms, reported in Figure 17, show that
the SPICE is again more inclined than the proposed procedure
to overestimate the number of NLJs especially for a sampling
interval of 1 degree (note that also in this case the sum of
the occurrences returned by SPICE is less than 1000, since it
may estimate a number of jammers greater than 8). Finally,
the comments related to Figure 10 also hold for Figure 18.

V. CONCLUSIONS

In this paper, we have proposed signal-processing-based
radar solutions for the adaptive detection of multiple NLJs.
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Fig. 15. RMS value for the Hausdorff distance, number of missed jammers,
and number of ghosts versus JNR assuming Nj = 4 and the nominal AOAs
for the NLJs.
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Fig. 16. Classification histograms for the number of times that the procedures
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Fig. 18. RMS error between the actual AOA of the NLJs and the estimated
direction closest to the former versus the JNR assuming Nj = 4 and the
AOAs of the NLJs in between the sampling grid points.

Specifically, such decision schemes are capable to estimate
the number of NLJs illuminating the radar system and to
return their respective AoAs. As a result, the system can draw
a picture of the electromagnetic threats which are active in
the radar operating scenario. From the design point of view,
since the plain MLA leads to intractable optimization problems
from a mathematical point of view (at least to the best of
authors’ knowledge), we resorted to a suboptimum approach
by developing a systematic framework which relies on cyclic
optimizations and accounts for a sparsity promoting prior at
the design stage due to the inherent sparse nature of the
problem. In this context, two adaptive architectures have been
devised and assessed using simulated data. Specifically, the
analysis has highlighted that such architectures can provide
reliable detection and estimation performance outperforming
their competitor at least for the considered parameter setting.
Future research tracks might include the design of enhanced
fusion strategies aimed at handling the artifacts and improving
the grid resolution or the extension of the above framework
to the case of multiple coherent targets. The former issue is
part of the current research line. Finally, another research line
is related to the application of this approach to the new 5G
context where phased arrays are exploited [45].
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APPENDIX A
PROPERTIES OF THE SPARSITY-PROMOTING PRIOR

In this appendix, we describe the properties of fd(d;σ2
n, q)

defined by (8) in order to show that, through q, it is possible to
tune its behavior in terms of sparsity promotion. For simplicity,
in what follows we neglect the normalization constant. It
is also important to remark that fd(d;σ2

n, q) is a suitable
modification of the prior introduced in [39] for the specific
problem at hand (see also the footnote 3 in Section 2).

Let us start by noticing that, given q = q̄ ∈ (0, 1],
fd(d;σ2

n, q) is continuous and

lim
‖d‖2→0

fd(d;σ2
n, q̄) < +∞, (25)

lim
‖d‖2→+∞

fd(d;σ2
n, q̄) = 0, (26)

where the last equality can be proved by defining Dl = D−
dlele

T
l , where el ∈ RN×1 is the lth vector of the standard

basis of RN×1, and rewriting the numerator of (8) (neglecting,
for simplicity, its power) as follows

det(σ2
nI + V DV †)

= det(σ2
nI + V D1V

† + d1v(θ1)v(θ1)†)

= det(σ2
nI + V D1V

†)[
1 + d1v

†(θ1)(σ2
nI + V D1V

†)−1v(θ1)
]

(27)

= det(σ2
nI + V D1V

†)
{

1 + d1v
†(θ1)[

1

σ2
n

I − 1

(σ2
n)2

V D
1/2
1 (I + D

1/2
1 V †V D

1/2
1 )−1D

1/2
1 V †

]
v(θ1)}

≤ det(σ2
nI + V D1V

†)

{
1 +

d1

σ2
n

v†(θ1)v(θ1)

}
= det(σ2

nI + V D1V
†)

[
1 +

d1

σ2
n

]
, (28)

where the third equality comes from the application of the
Woodbury identity [46] and the last inequality is due to the
fact that D1/2

1 V †V D
1/2
1 is positive semidefinite. Iterating the

above line of reasoning to det(σ2
nI +V D1V

†) and so on by
considering d2, d3, and dL, yields the following inequality

0≤ [det(σ2
nI + V DV †)]K−1

L∏
l=1

exp

{
K

q̄
(dq̄l − 1)

} ≤

[
(σ2
n)N

L∏
l=1

(
1 +

dl
σ2
n

)]K−1

L∏
l=1

exp

{
K

q̄
(dq̄l − 1)

} ,

(29)
which allows to apply the Squeeze Theorem [47] and (26)
follows. The above proof also shows that

∀l = 1, . . . , L : lim
dl→+∞

fd(d;σ2
n, q̄) = 0. (30)

As for the monotonicity of fd(d;σ2
n, q̄) with respect to the

generic di, observe that

fd(d;σ2
n, q̄) ∝

[det(σ2
nI + V DiV

†)]K−1

L∏
l=1
l 6=i

exp

{
K

q̄
(dq̄l − 1)

}
[
1 + div

†(θi)(σ
2
nI + V DiV

†)−1v(θi)
]K−1

exp

{
K

q̄
(dq̄i − 1)

}
︸ ︷︷ ︸

p(di;σ2
n,q̄)

(31)
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and let us study the sign of the first derivative of p(di;σ2
n, q̄),

whose expression is

∂

∂di
p(di;σ

2
n, q̄)

=
A(K − 1)(1 +Adi)

K−2 − (1 +Adi)
K−1Kdq̄−1

i

exp
{
K
q̄ (dq̄i − 1)

} (32)

with A = v†(θ1)(σ2
nI + V DiV

†)−1v(θ1) > 0. Since the
denominator of the above equation is always positive, we focus
on the numerator, which can be recast as

(1 +Adi)
K−2

[
A(K − 1)− (1 +Adi)Kd

q̄−1
i

]
= (1 +Adi)

K−2
[
AK(1− dq̄i )−A−Kd

q̄−1
i

]
. (33)

Now, when di ≥ 1, it turns out that[
AK(1− dq̄i )−A−Kd

q̄−1
i

]
< 0 and hence p(di;σ

2
n, q̄)

is strictly decreasing. This behavior is also observed when
0 ≤ di < 1 and 0 < A ≤ 1. In the case where A > 1, there
exists a local stationary point in the interval (0, 1). However,
the lower bound on σ2

n guarantees that A ≤ 1 and that the
prior is more oriented to sparsity avoiding the local stationary
point between 0 and 1.

Finally, we consider the limit case q → 0, which implies
that

fd(d;σ2
n, q)→ fd(d;σ2

n) ∝

[
det(σ2

nI + V DV †)
]K−1

L∏
l=1

dKl

,

(34)
where we have used the following well-known result
limx→0

ax−1
x = log a. It is straightforward to show that

∀l = 1, . . . , L : limdl→0 fd(d;σ2
n) = +∞. On the other

hand, the limit for large dl can be computed exploiting (27),
which leads to the following inequality[

det(σ2
nI + V DV †)

]K−1

L∏
l=1

dKl

≤

[
det(σ2

nI+V DiV
†)
]
K−1dK−1

i

[
v†(θi)(σ

2
nI+V DiV

†)−1v(θi)
]
K−1 L∏

l=1
l 6=i

dKl

 dKi
.

(35)

Using the above equation in conjunction with the
Squeeze Theorem, we come up with ∀l = 1, . . . , L :
limdl→+∞ fd(d;σ2

n) = 0. As the last remark, it is not
difficult to show that

∀l = 1, . . . , L :
∂

∂dl
fd(d;σ2

n) < 0, dl > 0, (36)

and, hence, that fd(d;σ2
n) is strictly decreasing with respect

to the generic dl.

APPENDIX B
CYCLIC OPTIMIZATION TO COMPUTE d̂q

Let us consider a preassigned value of h(q) ∈
{1, . . . , Nj,max} and denote by t the vector of integers repre-
senting the indices of the elements of d̃q with respect to d(n+1)

q

(recall that the former is an ordered copy of the latter). Now,
we form a vector d̄q ∈ RL×1 such that{

d̄q(i) = d(n+1)
q (i), ∀k ≤ h(q) : t(k) = i,

d̄q(i) = 0, otherwise,
(37)

namely, the entries of d, that do not correspond to the selected
h(q) peaks, are set to zero. Assume that an estimate d̄

(n−1)
q at

the (n−1)th iteration of the procedure in question is available,
then, starting from the logarithm of the pdf of Z under H1

(namely, the logarithm of (6) under H1), ∀i ∈ Ω̄ = {k ∈
N : d̄q(k) > 0}, we can define the following function to be
optimized

gd(d̄q(i);A
(n−1)
1:i )

= −KN log π −K log det
[
A

(n−1)
1:i + d̄q(i)v(θ(i))v(θ(i))†

]
− Tr

[(
A

(n−1)
1:i + d̄q(i)v(θ(i))v(θ(i))†

)−1

S

]
, (38)

where

A
(n−1)
1:i = σ2

nI +
∑

k∈Ω̄\Ω1:i

d̄
(n−1)
q (k)v(θ(k))v(θ(k))† + C

(n)
i

with C
(n)
i =

∑
h∈Ω1:i\{i}

d̄
(n)
q (h)v(θ(h))v(θ(h))† and Ω1:i =

{k ∈ Ω̄ : k ≤ i}. Note that A(n−1)
1:i is positive definite and can

be decomposed as A
(n−1)
1:i = [A

(n−1)
1:i ]1/2[A

(n−1)
1:i ]1/2. Thus,

applying the Woodbury identity [48] and the equality

det(I + B1B2) = det(I + B2B1), (39)

where B1 ∈ CN×M and B2 ∈ CM×N , equation (38) becomes

(38) =−KN log π −K log det(A
(n−1)
1:i )

−K log
[
1 + d̄q(i)v(θ(i))†[A

(n−1)
1:i ]−1v(θ(i))

]
− Tr

[(
[A

(n−1)
1:i ]−1

−d̄q(i)
[A

(n−1)
1:i ]−1v(θ(i))v(θ(i))†[A

(n−1)
1:i ]−1

1 + d̄q(i)v(θ(i))†[A
(n−1)
1:i ]−1v(θ(i))

)
S

]
=−KN log π −K log det(A

(n−1)
1:i )

−K log
[
1 + d̄q(i)v(θ(i))†[A

(n−1)
1:i ]−1v(θ(i))

]
− Tr

{
[A

(n−1)
1:i ]−1S

}
+ d̄q(i)

v(θ(i))†[A
(n−1)
1:i ]−1S[A

(n−1)
1:i ]−1v(θ(i))

1 + d̄q(i)v(θ(i))†[A
(n−1)
1:i ]−1v(θ(i))

.

(40)
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Setting to zero the first derivative of gd(d̄q(i);A
(n−1)
1:i ) with

respect to d̄q(i) leads to the following equation
d

dd̄q(i)
[gd(d̄q(i);A

(n−1)
1:i )]

= −K v(θ(i))†[A
(n−1)
1:i ]−1v(θ(i))

1 + d̄q(i)v(θ(i))†[A
(n−1)
1:i ]−1v(θ(i))

+
v(θ(i))†[A

(n−1)
1:i ]−1S[A

(n−1)
1:i ]−1v(θ(i))

(1 + d̄q(i)v(θ(i))†[A
(n−1)
1:i ]−1v(θ(i)))2

= 0

⇒ −Kv(θ(i))†[A
(n−1)
1:i ]−1v(θ(i))

−Kd̄q(i)
[
v(θ(i))†[A

(n−1)
1:i ]−1v(θ(i))

]2
+ v(θ(i))†[A

(n−1)
1:i ]−1S[A

(n−1)
1:i ]−1v(θ(i)) = 0, (41)

⇒ ̂̄dq(i) =
v(θ(i))†[A

(n−1)
1:i ]−1S[A

(n−1)
1:i ]−1v(θ(i))−Kv(θ(i))†[A

(n−1)
1:i ]−1v(θ(i))

K
[
v(θ(i))†[A

(n−1)
1:i ]−1v(θ(i))

]2 . (42)

∀i ∈ Ω̄ : d̄
(n)
q (i) = max


v(θ(i))†

[
A

(n−1)
1:i

]−1

S
[
A

(n−1)
1:i

]−1

v(θ(i))−Kv(θ(i))†
[
A

(n−1)
1:i

]−1

v(θ(i))

K

{
v(θ(i))†

[
A

(n−1)
1:i

]−1

v(θ(i))

}2 , 0

 . (43)

Thus, initializing the procedure with d̄
(0)
q obtained using d̃q

and d(n+1)
q , we can estimate d̄q through the following update

rule (43).
Before concluding this appendix an important remark on the

convergence of the procedure is in order. Specifically, observe
that gd(d̄q(i);A

(n−1)
1:i ) is continuous, increasing when 0 ≤

d̄q(i) ≤ ̂̄dq(i), decreasing when d̄q(i) >
̂̄dq(i), and

lim
d̄q(i)→0+

gd(d̄q(i);A
(n−1)
1:i ) = C < 0,

lim
d̄q(i)→+∞

gd(d̄q(i);A
(n−1)
1:i ) = −∞.

(44)

It follows that there exists a unique global maximum of
gd(d̄q(i);A

(n−1)
1:i ) with respect to d̄q(i) and the iterative

procedure gives rise to the following increasing sequence

gd

(
d̄

(0)
q

)
≤ gd

(
d̄

(1)
q

)
≤ . . . ≤ gd

(
d̄

(n)
q

)
≤ . . . , (45)

where

gd

(
d̄

(n)
q

)
= gd

(
d̄

(n)
q (i1);A

(n)
1:i1

)
and

i1 ≤ i2 ≤ . . . ≤ ih(q) ∈ Ω̄. (46)

In order to prove (45), let us note that, by construction, the
following inequalities hold

gd(d̄
(0)
q (i1);A

(0)
1:i1

) ≤ gd(d̄
(1)
q (i1);A

(0)
1:i1

)

= gd(d̄
(0)
q (i2);A

(0)
1:i2

) ≤ gd(d̄
(1)
q (i2);A

(0)
1:i2

)

= gd(d̄
(0)
q (i3);A

(0)
1:i3

) ≤ . . . ≤ gd(d̄
(1)
q (ih(q));A

(0)
1:ih(q)

)

= gd(d̄
(1)
q (i1);A

(1)
1:i1

) ≤ gd(d̄
(2)
q (i1);A

(1)
1:i1

)

≤ . . . ≤ gd(d̄
(n)
q (ih(q));A

(n−1)
1:ih(q)

) = gd(d̄
(n)
q (i1);A

(n)
1:i1

) ≤ . . .
(47)

Now, observe that since the function

gd(d̄q) = −KN log π −K log det(σ2
nI + V diag (d̄q)V

†)

− Tr
[
(σ2
nI + V diag (d̄q)V

†)−1S
]
, d̄q ∈ RL×1

+ (48)

is continuous and such that
lim
‖d̄q‖→0

gd(d̄q) = C < 0,

lim
‖d̄q(i)‖→+∞

gd(d̄q) = −∞,
(49)

namely gd(d̄q) is upper bounded, sequence (45) does not
diverge. The cyclic optimization, sketched in Algorithm 1,
terminates according to a suitable stopping condition based
upon the maximum number of iterations or the estimate
variations with respect to the values at the previous iteration.
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