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Abstract—Sensor radar networks (SRNs) employing ultra-
wideband (UWB) signals are a prominent solution for accurate
localization and tracking in indoor environments. However,
tracking device-free targets via SRNs is challenging, especially
in environments heavily affected by clutter. Clutter character-
ization is vital to derive performance benchmarks as well as
to design inference algorithms for SRNs. Examples of clutter
statistical characterization have been provided in the literature
for conventional SRNs employing narrowband signals in outdoor
scenarios. However, considerably less effort has been devoted
for SRNs employing UWB signals in indoor environments. This
paper proposes an approach to characterize the clutter-plus-noise
component after mitigation filtering in UWB SRNs. In particular,
the statistical properties of the residual clutter-plus-noise are
derived by applying statistical tests on measurements gathered
in an indoor environment via UWB sensor radar networks.

Index terms— Sensor radar network, clutter, UWB, track-
ing, network experimentation.

I. INTRODUCTION

Tracking device-free people or objects via sensor radar
networks (SRNs) is a key enabler for important applications,
including smart cities [1], autonomous vehicles [2], and public
safety [3]. Accurate modeling of the wireless impairments
affecting the SRNs’ operations is essential to design SRNs
capable of achieving satisfactory performance in terms of
localization and tracking accuracy [4]–[8]. Among various
wireless impairments, the clutter, i.e., the unwanted echoes
generated by scatterers not meaningful for the target localiza-
tion process, represents one of the major challenges [9].

The clutter, if not mitigated or properly taken into account,
might lead to noticeable performance degradation [10]. In
particular, an accurate characterization of the clutter is es-
sential to establish performance benchmarks, develop robust
mitigation filters, and design inference algorithms [11]–[14].
However, clutter characterization is a difficult task due to
the heterogeneous operation conditions encountered in real
applications. The ability to distinguish between clutter and
useful echoes (i.e., echoes that carry positional information
about the targets) depends on the specific environment and
application. For example, in synthetic-aperture radars the
echoes determined by the background are essential to obtain an
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accurate image of the environment [15], while in surveillance
radar they deteriorate the detection capability [16]. In general,
the characteristics of the echoes depend on: (i) the environ-
ment (e.g., outdoor, sea, or indoor); (ii) SRN operation (e.g.,
monostatic vs. multistatic); and (iii) the signaling employed
(e.g., continuous wave or impulsive).

The clutter can be modeled as a stochastic process, whose
characteristics vary if observed prior or after clutter mitigation
filtering. Several statistical models have been proposed in the
literature to describe the clutter amplitude or power and its
variability in terms of Doppler spectrum [17]–[21]. Despite
clutter characterization has been largely studied for narrow-
band radars in a variety of frequency bands and operating
conditions, no well-established counterparts exist for SRNs
operating in indoor environments with wideband and ultra-
wideband (UWB) signals. Recently, this type of SRNs is
conveying a lot of interest for tracking device-free objects
in indoor environments thanks to the ranging accuracy, mul-
tipath resolution, and penetration characteristics provided by
UWB signals [22]–[26]. The performance analysis (e.g., the
derivation of theoretical bounds) and the design of algorithms
(e.g. coherent or noncoherent detectors for ranging) for UWB
SRNs rely on the statistics of the clutter-plus-noise component
after clutter mitigation filtering. In particular, the clutter-plus-
noise distribution and its statistical properties in terms of
stationarity and correlation greatly affect the design of the
inference algorithms [27].

In indoor environments, the echoes due to the background
and static objects (static clutter) are typically greater in am-
plitude and exhibit a longer duration compared to the ones
originated by moving scatterers (dynamic clutter). Therefore,
the characterization and mitigation of the clutter component
generated by static scatterers is crucial for UWB SRNs. The
goal of this paper is to propose an approach for the statistical
characterization of the residual clutter-plus-noise after and to
show its application on a real dataset of measurements taken
with a UWB SRNs in an indoor environment. We first collect
the dataset of measurements with a monostatic UWB SRN in
the presence of only static scatterers. Then, the measurements
are processed with different clutter mitigation filters, namely,
empty room (ER) [4], exponential averaging filter (EAF) [28],
and single-delay canceller (SDC) [9]. Finally, the stationarity,
correlation, and distribution of the sample amplitudes are



assessed based on the waveforms at the filter’s output. More
specifically, the clutter is considered as a Gaussian process,
where the correlation is tested using the Ljung-Box test (LBT)
[29] and the Gaussianity is tested using the Anderson-Darling
test (ADT) [30]. The key contributions of the paper can be
summarized as follows:
• characterization of the residual clutter-plus-noise com-

ponent in terms of a stochastic process in an indoor
environment; and
• derivation of the main statistical properties based on

statistical tests applied on collected measurements.
Notations: A random variable (RV) and its realization are

denoted by x and x; a continuous stochastic process and its
sample function are denoted by x(t) and x(t); fx(x) denotes
the probability density function (PDF) of a continuous RV x;
Fx(x) denotes the cumulative distribution function (CDF) of
a continuous RV x; bxc denotes the greater integer less then
or equal to x; ln(x) denotes the natural logarithm of x; and
|A| denotes the cardinality of the set A.

II. SYSTEM MODEL & EXPERIMENTATION

This section presents the system model and describes the
received signal as well as the clutter mitigation filters consid-
ered. Then, the measurement campaign is described, on which
the statistical characterization is based.

A. System Model

Consider a SRN in a monostatic or multistatic configuration
(i.e., where the transmitters and the receivers are colocated or
separated, respectively) with sensor using UWB impulse-radio
technologies [31]. The transmitter emits an UWB impulse u(t)
at time instant jTf where j ∈ Z and Tf is the frame time. The
impulse propagates in the environment and is backscattered by
targets and other scatterers (static or dynamic) that are present
in the monitored area. The receivers observe the backscattered
echoes within a fixed observation time To ≤ Tf before the
next impulse is transmitted. The received signal r(t) at the
generic sensor radar (SR) receiver can be written as the
superposition of the backscattered impulses transmitted at time
jTf . Specifically,

r(t) =
+∞∑
j=−∞

r(j)(t) (1)

where r(j)(t) is the signal received in the j-th frame, which
is given by

r(j)(t) = s(j)(t) + c(j)(t) + w(j)(t) (2)

for t ∈ (jTf , jTf + To] and 0 elsewhere. In (2), the process
s(j)(t) encapsulates the informative components for the local-
ization process and contains the signal backscattered from the
targets as well as the undesired multipath propagation involv-
ing reflections on the targets. Due to the targets’ mobility, its
statistical properties vary from frame to frame. The process
c(j)(t) represents the undesired clutter components due to
dynamic and static scatterers whose statistical properties vary

between frames due to the mobility of dynamic scatterers.
Notice that the processes s(j)(t) and c(j)(t) are not inde-
pendent. The targets’ motion affects the signals backscattered
from both static and dynamic scatterers, while the motion of
the dynamic scatterers affects the targets’ multipath. Last, the
process w(j)(t) is a zero-mean additive white Gaussian noise
(AWGN) representing the thermal noise component whose
statistical properties do not vary between frames.

Due to the fine resolution provided by the UWB signals,
single scatterers cannot be considered point reflectors as in
narrowband SRNs and should be treated as range-spread ob-
jects [15]. In this case, reflections are made up by infinitesimal
contributes determined by the illuminated objects surface.
Then, the targets and clutter process cannot be written as a
finite sum of discrete components and in the j-th frame interval
the components related to the targets backscatter is [32]

s(j)(t) =

∫ To

0

u(t− τ)ς(j)(τ)dτ (3)

where ς(j)(τ) is a stochastic process representing the dis-
tributed reflections from the targets. Similarly, the components
related to the clutter is

c(j)(t) =

∫ To

0

u(t− τ)κ(j)(τ)dτ (4)

where κ(j)(τ) is a stochastic processes representing the dis-
tributed reflections from the dynamic and static scatterers.

Various clutter mitigation filters are available in literature
[4], [9], [28]. In particular, we will focus on the ER, EAF,
and SDC, all of which aim to the estimate the clutter response
and subtract it from the received frames. In the case of ER,
the filtered signal after clutter mitigation can be written as

x(j)(t) = r(j)(t)− ĉ(t) (5)

where ĉ(t) =
∑Na

h=1 r
(h)(t)/Na is an estimate of the response

of the wireless environment in absence of targets, i.e., only
clutter. This technique exhibits good performance in static
environments and is suitable for implementation on low com-
plexity devices. The main drawback is represented by the poor
performance in quasi-static or dynamic environments and its
non adaptive nature. The EAF overcomes some of the ER
downsides by iteratively updating the environment response.
The filtered signal is given by

x(j)(t) = r(j)(t)− ĉ(j)(t) (6)

where the clutter response is updated frame by frame as
ĉ(j)(t) = βĉ(j−1)(t)+(1−β)r(j)(t). The parameter β ∈ (0, 1)
weights the clutter signal at the previous frame and the current
received frame to obtain the current clutter estimate. This
mitigation filter rejects the static clutter while being robust to
slow environmental changes. However, echoes originated by
slow moving targets are also attenuated, potentially causing
performance degradation. On the other hand, the SDC filter
estimates the clutter response as the previous received frame,



TABLE I
SR AND MEASUREMENT CAMPAIGN PARAMETERS.

Parameter (Symbol) Value
SR pulse shape Gaussian
SR carrier frequency 7.26 GHz
SR pulse bandwidth 1.4 GHz
SR energy per pulse 2.6 pJ
Repetition interval (Tf ) 40 ms
Observation time (To) 43.4 ns
Sample time (Ts ) 42.8 ps
Number of configurations tested 12
Number of frames recorded per configuration (M ) 250
Number of samples per frame (N ) 1245

i.e. ĉ(j)(t) = r(j−1)(t), and the filtered signal can be written
as

x(j)(t) = r(j)(t)− r(j−1)(t) . (7)

The SDC is particularly suitable for high maneuvering targets
and exhibits good performance even for dynamic environ-
ments, until the per-frame variability of the targets echoes is
greater than the clutter one.

B. Static Clutter

Regardless of the clutter mitigation filter employed, from
(2) the filtered received signal can be rewritten as

x(j)(t) = s̃(j)(t) + n(j)(t) (8)

where s̃(j)(t) represents the filter output when the input is
s(j)(t) and n(j)(t) represents the residual clutter-plus-noise,
which is the filter output when the input is c(j)(t) + w(j)(t).
A statistical characterization of n(j)(t) is required to design
algorithms for detecting s̃(j)(t) or inferring parameters related
to s̃(j)(t). Furthermore, the theoretical analysis of such algo-
rithms (e.g. derivation of the detection probability, false alarm
probability, estimation error, and variance) depends on the
underlying statistical model of the signals [25], [27], [32].

In general, a complete characterization of the process n(j)(t)
based on the filtered signal x(j)(t) is difficult due to the
time-varying nature of the process and the interdependency
between the clutter-plus-noise and targets processes. However,
we can initially consider only the clutter determined by static
scatterers (e.g., ground, walls, and furnitures) in the absence of
targets. In such a scenario, the filtered signal in (8) simplifies
to x(j)(t) = n(j)(t), where only the residual clutter-plus-noise
is observed at the filter’s output. The statistical properties
of n(j)(t) do not depend on the particular frame index j.
Therefore, the process x(j)(t) can be considered as a time shift
of an underlying process x(t). A set of M sample functions
{x(j)(t)}j∈M with frame index set M = {1, 2, . . . ,M} can
be regarded as different realizations of the process x(t). This
allows to determine the statistical properties of x(t) based on
successive received frames {x(j)(t)}j∈M.

Remark: The echoes due to the background and large static
objects are typically greater in amplitude and exhibit a longer
duration compared to the ones originated by moving scatterers.
Moreover, the absence of dynamic scatterers allows to consider

Fig. 1. Measurement campaign environment in the Department of Engineering
at the University of Ferrara.
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Fig. 2. Map of the environment with the different SR spatial configurations.
The spacing between the grid points is approximatively 0.3 m.

approximatively independent the processes s̃(j)(t) and n(j)(t),
with the targets’ motion determining only partial shadowing of
the static reflectors. Therefore, the clutter characterization in
a scenario with no targets and only static scatterers is crucial
for addressing the clutter characterization problem.

C. Measurement Campaign

The clutter characterization will be based on measurements
obtained with a monostatic UWB SR in an indoor envi-
ronment. Then, we define the discrete version of x(t) as
xi = x(iTs), where i ∈ N = {1, 2, . . . , N}, N is the discrete
index set in which N = bTo/Tsc is total number of sample in
an observation interval, and Ts is the sampling time. Denote
with x

(j)
i the i-th sample of the j-th realization x(j)(t), i.e.

x
(j)
i = x(j)(iTs). The statistical characterization is based on

the samples set {x(j)i }
j∈M
i∈N .

The measurements were carried out within an area of
approximatively 9 m × 4 m, where the presence of a table,
chairs, panels, walls, and other objects leads to a large number
of potential scatterers. A picture of the environment is given
in Fig. 1. The SR employed is based on Novelda’s X4M03
chip. The main parameters of the SR and of the measurement
campaign are summarized in Tab. I. A total of 12 different
spatial configurations (position and orientation) were used, 4
with the SR facing the center of the room as in a possible
displacement for the SRN operation, and 8 where the SR
is placed at center of the area facing 8 different directions.



The configurations are indexed by a number representing
the position and a subscript representing the orientation (see
Fig. 2). The measurements at different configurations are
analyzed separately and composed of M = 250 frames and
N = 1245 samples per frame. The frames cover a range of
approximately 8 m.

III. STATISTICAL CHARACTERIZATION

We now investigate the stationarity, correlation, and distri-
bution of received signal samples x(t) after clutter mitigation
filtering. On the one hand, stationarity and correlation are
properties of the process xi, which depend on the discrete
temporal index i. On the other hand, the process distribution
is defined as the distribution of the RV xi? , where i? is a
fixed time index with i? ∈ N . In our case, stationarity and
correlation are evaluated from the samples {x(j)i }i∈N for each
frame indexed by j, while samples distribution is evaluated
from the samples {x(j)i }j∈M for each sample indexed i.

As a first qualitative test, we use visual plots of the first-
order statistics (e.g., mean and variance) to evaluate the non-
stationarity of the process by determining if such statistics
depend on the sample index i. In particular, the sample mean
is µ̂i =

∑
j∈M x

(j)
i /M , while the sample variance is σ̂2

i =∑
j∈M(x

(j)
i − µ̂i)2/(M − 1). Indeed, if such dependency can

be assessed by visual inspection, i.e., µ̂i 6= µ̂k or σ̂2
i 6= σ̂2

k

for i 6= k and i, k ∈ N , the process xi can be assumed non-
stationary. Otherwise, if such dependency cannot be identified,
quantitative tests are necessary to asses the process stationarity.

As a second quantitative test, we use the LBT for evaluating
the correlation of the process xi. Assume xi as stationary and
denote the discrete autocorrelation function at time lag k (i.e.,
sample index difference) as %k. Formally, the LBT tests the
hypotheses

H0 : ∀k ∈ NL, %k = 0 (9a)
H1 : ∃k ∈ NL, %k 6= 0 (9b)

where NL = {1, 2, . . . , NL}, and NL is the maximum time lag
tested. In our case, we can apply the LBT for each frame index
j on the samples {x(j)i }i∈N . Consider a frame index j and
µ̂i = µ̂ = 0, then the %k can be estimated as %̂(j)k = v̂

(j)
k /v̂

(j)
0

where

v̂
(j)
k =

1

N

N−k∑
h=1

x
(j)
h x

(j)
h+k (10)

is the estimate of the autocovariance function. The test statistic
employed to reject the null hypothesis is based on the esti-
mated autocorrelation function and is given by

q(j) = N(N + 2)
∑
k∈NL

(%̂
(j)
k )2

N − k
. (11)

If the test statistic q(j) exceeds a certain critical value λα, i.e.
q(j) > λα, the hypothesisH0 is rejected with significance level
α (i.e., the samples can be assumed correlated). Otherwise,
the test fails to reject H0 and the samples are considered

uncorrelated. Critical values for different significance levels α
and sample sizes are available [33]. In the asymptotic regime
(NL → +∞) the test statistic q is distributed as a chi-square
distribution with NL degrees of freedom and the critical value
λα is the 1− α quantile of the distribution.

Various statistical tests can be employed for determining if
the samples are well-modeled by a Gaussian distribution. In
our case, we want to test for each sample index i if the samples
{x(j)i }j∈M can be considered realizations of a Gaussian RV.
Consider a fixed time index i, formally goodness-of-fit tests
for Gaussian distributions verifies the hypothesis

H0 : {x(j)i }j∈M, fxi(x) ∈ F(x;µ, σ2) (12a)

H1 : {x(j)i }j∈M, fxi(x) /∈ F(x;µ, σ2) (12b)

where F(x;µ, σ2) is a family of Gaussian distributions
parametrized by mean µ and variance σ2. ADT is employed
to test Gaussianity since it exhibits a small probability of
incurring in type-II error compared to other tests and it is able
to detect small departures from the Gaussian distribution in the
tails of the empirical distribution [33]. The ADT quantifies the
square difference between the empirical distribution function
defined as

F̃i,M (x) =
|{x(j)i , j ∈M : x

(j)
i ≤ x}|

M
(13)

and the hypothesized CDF Fxi(x). In case of known mean and
variance, the functional form of the test statistic is given by

ai =M

∫ +∞

−∞

(F̃i,M (x)− Fxi(x))
2

Fxi(x)(1− Fxi(x))
dFxi(x) (14)

where the term at the denominator Fxi(x)(1 − Fxi(x)) can
be seen as a weighting function assigning more weight to the
difference in the distribution tails. Operatively, exploiting the
property that a RV composed with its true CDF is uniformly
distributed, the test statistic ai can be evaluated from the
ordered samples x(1)i ≤ x

(2)
i ≤ . . . ≤ x

(M)
i as

ai = −M −
1

M

∑
j∈M

[
(2j − 1) ln

(
z
(j)
i

)
+ ln

(
z
(M+1−j)
i

)]
(15)

where z
(j)
i = F̃i,M (x

(j)
i )1. The hypothesis H0 is rejected

at significance level α, i.e. the samples are not considered
Gaussian distributed if ai > λα. Similarly to the LBT, λα has
been tabulated for different sample sizes and significance level
α [33]. Differently from the LBT, the asymptotic distribution
of the test statistic a has no closed form and the critical values
have been obtained via Monte Carlo methods.

IV. RESULTS

Consider the experimental setting described in Sec. II-C.
Given a specific spatial configuration of the SR, we define
RC = NC/M as the ratio between the number of frames that

1If the mean and variance are estimated from the samples {x(j)i }j∈M, a
correction factor needs to be multiplied to the test statistic.
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Fig. 3. Sample mean for the configuration 5E with the three different clutter
mitigation filters employed: ER, EAF, and SDC.

exhibit correlation NC, assessed via LBT, and the total number
of frame M in each configuration. Similarly, given a specific
configuration we define RG = NG/M as the ratio between the
number of sample that can be considered Gaussian distributed
NG, assessed via ADT, and the total number of samples N
in each configuration. Both LBT and ADT are conducted at
significance level α = 0.05, with NL = 20 for the LBT. The
weighting parameter for the EAF is β = 0.8.

Fig. 3 shows the sample mean for the configuration 5E
as a function of the sample index i for the different clutter
mitigation filters considered. It can be observed that the mean
estimate exhibits great variability from sample to sample. In
particular, it can be identified a peak of approximatively -100
dB in the first 50 samples for all the mitigation filters. This
can be attributed to the direct path between the transmitter and
receiver antennas. Moreover, other two peaks of approxima-
tively -120 dB and width of several samples can be identified
at i ≈ 400 and i ≈ 600. These can be attributed to large
scatterers, such as the table and the wall. At the same sample
indices, similar peaks can be recognized in Fig. 4, where it is
showed the sample variance for the same configuration as a
function of the sample index i. Similar trends can be observed
for the mean and the variance in the other configurations
recorded, where peaks can be identified in correspondence of
large scattered echoes. Furthermore, these peaks are present
regardless of the mitigation filter considered. Notice that, the
presence of such peaks violate the definition of stationarity and
their width is attributable to the characteristics of the UWB
signals. In fact, due to the fine spatial resolution provided by
UWB signals, the mitigated echoes from static scatterers span
multiple sample indices.

Tab. II shows RC for the configurations considered and
different clutter mitigation filters. It can be noticed that the
percentage of frames exhibiting correlation exceeds the 80%
for all the configurations and mitigation filters. It can also be
noticed that the filtered samples obtained with the ER exhibit
the larger percentage (greater than 90%) of correlated frames,
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Fig. 4. Sample variance for the configuration 5E with the three different
clutter mitigation filters employed: ER, EAF, and SDC.

while the lowest is obtained employing the SDC. This can be
attributed to the fact that the ER filter does not affect the
statistical properties of the input process, being the output
process a simple location shift of the input process. On the
other hand, the SDC mitigates the clutter and increases the
power of the AWGN which is assumed uncorrelated.

Tab. III shows RG for the configuration considered and
different clutter mitigation filters. It can be noticed that the
percentage of samples well modeled by a Gaussian distribution
exceeds the 90% in the majority of the configurations. In
particular, for EAF and SDC the RG is almost 95% for all the
configuration. In the case of ER, the values of RG is slightly
inferior, with RG greater than 90% in all location, except for
2N where RG ≈ 82%. This can be attributed to minor variation
of the environment between the formation of the ER response
and the actual measurement.

Given the results, the process describing the sample am-
plitudes after clutter mitigation filtering can be considered
Gaussian distributed. Moreover, this process can be assumed
non-stationary in the first-order statistics and exhibits cor-
relation. The non-stationarity can be attributed to the large
number of potential scatterers in indoor environments and
the characteristics of the UWB signals, in particular to their
fine spatial resolution. These are important properties that
must be taken into account for the derivation of performance
benchmarks and the design of robust inference algorithms.

V. FINAL REMARK

This paper has proposed an approach to characterize the
static clutter in indoor environments for sensor radar networks
employing ultra-wideband (UWB) signals. In particular, the
clutter-plus-noise at the output of clutter mitigation filters is
modeled as a stochastic process and its statistical properties
have been derived based on statistical tests applied on real
measurements. Results shows that the sample amplitudes can
be considered as a non-stationary correlated Gaussian process,
where the non-stationarity and correlation are attributable to



TABLE II
RATE OF CORRELATED FRAMES FOR DIFFERENT CONFIGURATIONS AND

CLUTTER MITIGATION FILTERING.

Configuration Rate of Correlated Frames, RC

ER EAF SDC
1E 0.92 0.87 0.80
2N 0.99 0.88 0.85
3W 0.95 0.88 0.86
4S 0.99 0.92 0.81
5E 0.95 0.85 0.80
5NE 0.94 0.86 0.83
5N 0.99 0.88 0.84
5NW 0.96 0.88 0.82
5W 0.92 0.85 0.80
5SW 0.96 0.88 0.85
5S 0.95 0.87 0.81
5SE 0.98 0.85 0.80

TABLE III
RATE OF GAUSSIAN SAMPLES FOR DIFFERENT CONFIGURATIONS AND

CLUTTER MITIGATION FILTERING.

Configuration Rate of Gaussian Samples, RG

ER EAF SDC
1E 0.94 0.96 0.96
2N 0.82 0.94 0.96
3W 0.91 0.94 0.96
4S 0.95 0.96 0.96
5E 0.93 0.95 0.96
5NE 0.93 0.95 0.96
5N 0.93 0.96 0.95
5NW 0.92 0.95 0.95
5W 0.94 0.95 0.96
5SW 0.94 0.95 0.96
5S 0.94 0.94 0.96
5SE 0.91 0.96 0.95

the indoor environment and UWB signal characteristics. The
knowledge of such model represents a first step into the clutter
characterization problem in a more general condition and
it is an essential element for the derivation of performance
benchmarks and the design of tracking algorithms.
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