GNU Astronomy Utilities

Astronomical data manipulation and analysis programs and libraries
for version 0.13, 7 September 2020

Mohammad Akhlaghi

Gnuastro (source code, book and webpage) authors (sorted by number of commits):

Mohammad Akhlaghi (mohammad@akhlaghi.org, 1506)
Mose Giordano (mose@gnu.org, 29)

Vladimir Markelov (vmatroskin@gmail.com, 18)

Sachin Kumar Singh (sachinkumarsingh092@gmail.com, 11)
Boud Roukema (boud@cosmo.torun.pl, 7)

Joseph Putko (josephputko@gmail.com, 2)

Raul Infante-Sainz (infantesainz@Qgmail.com, 2)

Alexey Dokuchaev (danfe@freebsd.org, 1)

Andreas Stieger (astieger@suse.com, 1)

Kartik Ohri (kartikohril3@gmail.com, 1)

Leindert Boogaard (leindertboogaard@gmail.com, 1)
Lucas MacQuarrie (macquarrielucas@gmail.com, 1)
Madhav Bansal (madhavbansal.csel8@itbhu.ac.in, 1)
Miguel de Val-Borro (miguel.deval@gmail.com, 1)
Thérese Godefroy (godef.th@free.fr, 1)

This book documents version 0.13 of the GNU Astronomy Utilities (Gnuastro). Gnuastro
provides various programs and libraries for astronomical data manipulation and analysis.

Copyright (©) 2015-2020, Free Software Foundation, Inc.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

For myself, I am interested in science and in philosophy only because I want to
learn something about the riddle of the world in which we live, and the riddle
of man’s knowledge of that world. And I believe that only a revival of interest
in these riddles can save the sciences and philosophy from narrow specialization
and from an obscurantist faith in the expert’s special skill, and in his personal
knowledge and authority; a faith that so well fits our ‘post-rationalist’ and ‘post-
critical” age, proudly dedicated to the destruction of the tradition of rational
philosophy, and of rational thought itself.
—XKarl Popper. The logic of scientific discovery. 1959.

Short Contents

1 Introduction.oiiiii i 1
2 Tutorials. 16
3 Installation........ e 73
4 Common program behavior............................ 103
5 Datacontainers............ ... 142
6 Data manipulation......... 178
7 Dataanalysis......... ..o i 237
8 Modeling and fitting 318
9 High-level calculations............ 344
10 Library. 357
11 Developing e 500
A Gnuastro programs list i 522
B Other useful software. 524
C GNU Free Doc. License., 529
D GNU Gen. Pub. License v3 537
Index: Macros, structures and functions 548

Table of Contents

1

3

Introduction L. 1
1.1 Quick start 1
1.2 Science and its tools.......... ..o 2
1.3 Your rights 6
1.4 Naming convention, 7
1.5 Version numbering. 7

1.5.1 GNU Astronomy Utilities 1.0 8
1.6 New to GNU/LInux?ooiiiiiiii e 8

1.6.1 Command-line interface............... ... il 9
1.7 Report a bug.......oooiiiii i 11
1.8 Suggest new feature ... 12
1.9 Announcementso 13
1,10 Conventionsttt 13
1.11 Acknowledgmentsot 14

Tutorials 16
2.1 Sufi simulates a detection.......... ... i i 17
2.2 General program usage tutorial L. 24

2.2.1 Calling Gnuastro’s programs............c..cocevueenueennn... 25
2.2.2 Accessing documentationl 25
2.2.3 Setup and data download il 27
2.2.4 Dataset inspection and croppingooin... 27
2.2.5 Angular coverage on the skyl 29
2.2.6 Cosmological coveragecoviiiiiiiiiiiii .. 31
2.2.7 Building custom programs with the library................ 32
2.2.8 Option management and configuration files................ 34
2.2.9 Warping to a new pixel grid i 36
2.2.10 NoiseChisel and Multiextension FITS files 37
2.2.11 NoiseChisel optimization for detection 39
2.2.12 NoiseChisel optimization for storage 43
2.2.13 Segmentation and making a catalog...................... 44
2.2.14 Working with catalogs (estimating colors)................ 46
2.2.15 Aperture photometry i 51
2.2.16 Matching catalogscooiiiiiiiiiiiiiii 52
2.2.17 Finding reddest clumps and visual inspection 53
2.2.18 Writing scripts to automate the steps.................... 55
2.2.19 Citing and acknowledging Gnuastro...................... 61
2.3 Detecting large extended targets............ L. 61
2.3.1 NoiseChisel optimization................. oo, 62
2.3.2 Achieved surface brightness level.......................... 67
Installation 73

3.1 Dependencies.t 73

ii

3.1.1 Mandatory dependencies...............oiiiiiiiiiiii... 74
3.1.1.1 GNU Scientific library, 74
3.1.1.2 CFITSIO ... e 74
3.1.1.3 WOSLIB ... 75

3.1.2 Optional dependencies.............ccooiiiiiiiiiiio... 76

3.1.3 Bootstrapping dependencies ... 78

3.1.4 Dependencies from package managers..................... 80

3.2 Downloading the source ... 83

3.2.1 Release tarball....... oo i 83

3.2.2 Version controlled source.................ooiiiiiiii., 84
3.2.2.1 Bootstrapping 85
3.2.2.2 Synchronizing........... ..o, 86

3.3 Buildandinstall 88

3.3. 1 Configuring.ovuui i e 88
3.3.1.1 Gnuastro configure options........................... 89
3.3.1.2 Imstallation directory.......... ... il 91
3.3.1.3 Executable names............. ...l 95
3.3.1.4 Configure and buildin RAM 96

3.3.2 Separate build and source directories...................... 97

3.3.3 Tests. oot 100

3.3.4 Ad print book 100

3.3.5 Known issues.........oouuuiiii e 101

4 Common program behavior.................. 103
4.1 Command-line 103

4.1.1 Arguments and options.............. ..., 104
4.1.1.1 Argumentst 105
4.1.1.2 OPHIONS vttt 105

4.1.2 Common OptioNSttt 107
4.1.2.1 Input/Output optionscoveiiiiiiiin.. 107
4.1.2.2 Processing options............ooiiiiiiiiiiiian. 110
4.1.2.3 Operating mode optionscoiiiin... 112

4.1.3 Standard input............oiiii 117

4.2 Configuration files........ ... i i 118

4.2.1 Configuration file format............... 119

4.2.2 Configuration file precedence 119

4.2.3 Current directory and User wide......................... 120

4.2.4 System wide..... ..o 121

4.3 Getting help ... 121

431 mmUSAEE . oo 122

4.3.2 m R LD e 122

4.3.3 Man PAZES . ..t 123

4.3.4 Info ... 124

4.3.5 help-gnuastro mailing list oL 124

4.4 Installed SCTIPES ..o vve i 125
4.5 Multi-threaded operations...............cciiiiiiiiiiii.. 126
4.5.1 Amnoteonthreads..............ooiiiii i, 126

4.5.2 How to run simultaneous operations 127

iii

4.6 Numeric data types .. .o 128
4.7 Tables. .. 130
4.7.1 Recognized table formats................... 131
4.7.2 Gnuastro text table format oL 133
4.7.3 Selecting table columns.......... ... i, 135
4.8 Tessellationooiiiiii i e 136
4.9 Automatic output 138
4.10 Output FITS files.o 139
Data containers............................... 142
0 142
5.1.1 Invoking Fits.o 144
5.1.1.1 HDU manipulationcooiiiiiit. 145
5.1.1.2 Keyword manipulation.................... 147

5.2 Sort FITS files by night i 153
5.2.1 Invoking astscript-sort-by-night 154
5.3 ConvertTypeo 156
5.3.1 Recognized file formats............... ... i 157
5.3.2 C0l0r. .ttt 159
5.3.3 Invoking ConvertType.........cooiiiiiiiiiiiii .. 161
5.4 Table ..o 166
5.4.1 Column arithmetic i i 167
5.4.2 Invoking Table i 170
Data manipulation...................... 178
6.1 CrOD - v vttt 178
6.1.1 Cropmodesouiiiii i 178
6.1.2 Crop section Syntaxcoouiuiiiiiiiieniieann.. 181
6.1.3 Blank pixels.......ooo i 181
6.1.4 InvoKing Crop......c.ouvveirieeiiie i, 182
6.1.4.1 Crop optionso.uuiiin i 183
6.1.4.2 Crop output......covinniiiii i 188

6.2 Arithmetic.... ... 189
6.2.1 Reverse polish notation................ ... o 189
6.2.2 Arithmetic operatorscoiiiiiiiiii 190
6.2.3 Invoking Arithmetic.......... ... it 202
6.3 Convolve 206
6.3.1 Spatial domain convolution.................. 207
6.3.1.1 Convolution processc.covvviiiiiinnneenn... 207
6.3.1.2 Edges in the spatial domain......................... 208

6.3.2 Frequency domain and Fourier operations................ 209
6.3.2.1 Fourier series historical background 209
6.3.2.2 Circles and the complex plane 211
6.3.2.3 Fourier Series...........ccooiiiiiiiiiiiiiiiiiia... 212
6.3.2.4 Fourier transform.............. i 214
6.3.2.5 Dirac deltaand comb........... 215

6.3.2.6 Convolution theorem 216

iv

6.3.2.7 Sampling theorem, 218

6.3.2.8 Discrete Fourier transform 221
6.3.2.9 Fourier operations in two dimensions................ 222
6.3.2.10 Edges in the frequency domain..................... 223

6.3.3 Spatial vs. Frequency domain............................ 224
6.3.4 Convolution kernel i, 224
6.3.5 Invoking Convolve........ ... 225
6.4 WaTD . o 228
6.4.1 Warping basicsooviiiii 229
6.4.2 Merging multiple warpings............ ..., 231
6.4.3 Resampling....... ..o 231
6.4.4 Invoking Warp ... 233

7 Dataanalysis.................................. 237
Tl StatiStiCS . oottt 237
7.1.1 Histogram and Cumulative Frequency Plot............... 237
7.1.2 2D HiStOgramsccouuiiimimiiiiiiiii e 238
7.1.3 Sigma clippingooiiiii e 240
714 Skyvalue......ooiiii i 241
7.1.4.1 Sky value definition............ 242
7.1.4.2 Sky value misconceptions 243
7.1.4.3 Quantifying signal ina tile.......................... 244

7.1.5 Invoking Statistics............ccoiiiiiiiiiiiii .. 246
7.2 NoiseChisel 258
7.2.1 Invoking NoiseChisel i, 260
7.2.1.1 NoiseChisel input..........c.oooiiiiiiiiiiiiii.. 262
7.2.1.2 Detection options............ooiviiiiiiiiiiiiii... 264
7.2.1.3 NoiseChisel outputccooiiiiiiiii ... 271

T3 SEGMENb. ...ttt e 273
7.3.1 Invoking Segment i 275
7.3.1.1 Segment input............oiiiiiii 276
7.3.1.2 Segmentation options............. ... o i 279
7.3.1.3 Segment output ... 282

7.4 MakeCatalog.o 284
7.4.1 Detection and catalog production........................ 286
7.4.2 Quantifying measurement limits 287
7.4.3 Measuring elliptical parameters.......................... 291
7.4.4 Adding new columns to MakeCatalog.................... 294
7.4.5 Invoking MakeCatalog..............coiiiiiiii .. 295
7.4.5.1 MakeCatalog inputs and basic settings.............. 296
7.4.5.2 Upper-limit settingsot 300
7.4.5.3 MakeCatalog measurements......................... 302
7.4.5.4 MakeCatalog output......... ... 310

7.5 Match. ..o 311

7.5.1 Invoking Match.......... ... o i i 312

8 Modeling and fitting.......................... 318
8.1 MakeProfiles 318
8.1.1 Modeling basicsccoviiiiiii i 318
8.1.1.1 Defining an ellipse and ellipsoid 318
8.1.1.2 Point spread function............................... 320
8.1.1.3 StarS ..ottt 322
8.1.1.4 Galaxies.......ouuuiiiii i e 322
8.1.1.5 Sampling from a function.................... 322
8.1.1.6 Oversampling............cooiiiiiiiiiiiiiin... 323

8.1.2 If convolving afterwards il 324
8.1.3 Flux Brightness and magnitude.......................... 324
8.1.4 Profile magnitude 325
8.1.5 Invoking MakeProfileso il 326
8.1.5.1 MakeProfiles catalog................ ... i 327
8.1.5.2 MakeProfiles profile settings 330
8.1.5.3 MakeProfiles output dataset 333
8.1.5.4 MakeProfiles log file L 337

8.2 MakeNOISettt 337
8.2.1 NoiSe basiCs . ..ottt 338
8.2.1.1 Photon counting noise i 338
8.2.1.2 Imstrumental noise............ ... L. 339
8.2.1.3 Final noised pixel value............... 340
8.2.1.4 Generating random numbers........................ 340

8.2.2 Invoking MakeNoise 342

9 High-level calculations........................ 344
9.1 CosmicCalculator i 344
9.1.1 Distance on a 2D curved space..........cccovviiiiiinin. 344
9.1.2 Extending distance concepts to 3D........... 349
9.1.3 Invoking CosmicCalculator 349
9.1.3.1 CosmicCalculator input options..................... 350
9.1.3.2 CosmicCalculator basic cosmology calculations...... 353
9.1.3.3 CosmicCalculator spectral line calculations.......... 355

10 Library 357
10.1 Review of library fundamentals.............................. 357
10.1.1 Headersooiiniiii e 358
10.1.2 Linkingooueoiii 361
10.1.3 Summary and example on libraries 364
10.2 BuildProgram.......... ..o 365
10.2.1 Invoking BuildProgram.............. 366
10.3 Guuastro libraryo 369
10.3.1 Configuration information (config.h) 370
10.3.2 Multithreaded programming (threads.h)............... 371
10.3.2.1 Implementation of pthread_barrier............... 372
10.3.2.2 Gnuastro’s thread related functions................ 373

10.3.3 Library data types (type.h).......ccooviiiiiiiiiia... 375

vi

10.3.4 Pointers (pointer.h).......c.ouiuiiiriiiiiiiiininan.... 379
10.3.5 Library blank values (blank.h)......................... 381
10.3.6 Data container (data.h).........c.ooouiuiiiiiiiiiian.... 384
10.3.6.1 Generic data container (gal_data_t) 384
10.3.6.2 Dataset allocation......................... ... 389
10.3.6.3 Arrays of datasets........... ..o 390
10.3.6.4 Copying datasets ...t 391
10.3.7 Dimensions (dimension.h).............oooiiiiiiii.... 392
10.3.8 Linked lists (1ist.h)......ooieiiiiiiiiia 396
10.3.8.1 List of strings ... 397
10.3.8.2 List of int32_t.. ..ot 398
10.3.8.3 Listof size_t....ouinuiii i 400
10.3.8.4 List of floatcovviiiniiin i 401
10.3.8.5 List of double.........c..coiiiiiiiiiiiiia.. 403
10.3.8.6 List of void * i 404
10.3.8.7 Ordered list of size_t........... 405
10.3.8.8 Doubly linked ordered list of size_t............... 406
10.3.8.9 Listofgal_data_t.........ccovviiiinieinieennnnn. 407
10.3.9 Array input output.............. i 409
10.3.10 Table input output (table.h)......................... 410
10.3.11 FITS files (F1£8.0) «ovvnvrseee oo, 414
10.3.11.1 FITS Macros, errors and filenames................ 414
10.3.11.2 CFITSIO and Gnuastro types 415
10.3.11.3 FITSHDUSs.....cooiiiii 416
10.3.11.4 FITS header keywords.................oooiiii.. 417
10.3.11.5 FITS arrays (images)ooovueeiinanain.... 423
10.3.11.6 FITS tables........cooiiii i 425
10.3.12 File input output.........coooiiiiiii 427
10.3.12.1 Text files (txt.h) ...oovvieieiii 427
10.3.12.2 TIFF files (tiff.h) 430
10.3.12.3 JPEG files (jpeg.h)....cvvvuiriiiiiiiii. 431
10.3.12.4 EPSfiles (eps.h)....coiuiiiiiiiiiiiii. 432
10.3.12.5 PDF files (pAf.h) ...ooveeeeeeeeeeeeeeeee 433
10.3.13 World Coordinate System (wes.h)..................... 434
10.3.14 Arithmetic on datasets (arithmetic.h) 438
10.3.15 Tessellation library (tile.h), 444
10.3.15.1 Independent tiles............ ... 445
10.3.15.2 Tile grid ... oovne 450
10.3.16 Bounding box (box.h)...........cooiiiiiii 454
10.3.17 Polygons (polygon.h).......c.vuiiririniniiniiinnnnn.. 455
10.3.18 Qsort functions (gqsort.h).......... ...l 458
10.3.19 K-d tree (kdtree.h)........oviriiiiiiiiiiiiiiii 460
10.3.20 Permutations (permutation.h)........................ 463
10.3.21 Matching (match.h). ... 464
10.3.22 Statistical operations (statistics.h)................. 466
10.3.23 Binary datasets (binary.h)l 473
10.3.24 Labeled datasets (label.h)cooiuiuiiinn.... 476

10.3.25 Convolution functions (convolve.h)................... 481

vii

10.3.26 Interpolation (interpolate.h)..............ouvun.... 482
10.3.27 Git wrappers (git.h)o 486
10.3.28 Unit conversion library (units.h)..................... 486
10.3.29 Spectral lines library (speclines.h)................... 487
10.3.30 Cosmology library (cosmology.h)cov.... 490

10.4 Library demo programsc.ouuueeennuieeennneeennn. 491
10.4.1 Library demo - reading a FITS image................... 491

10.4.2 Library demo - inspecting neighbors.................... 492

10.4.3 Library demo - multi-threaded operation................ 493

10.4.4 Library demo - reading and writing table columns 496

11 Developing 500
11.1 Why C programming language?ccovviiireennnn... 500
11.2 Program design philosophy o i 502
11.3 Coding conventions.couteiiiiininieneennean.. 503
11.4 Program SOUTLCEueettettmnneee e 506
11.4.1 Mandatory source code files L 507

11.4.2 The TEMPLATE programc.cooiiiiiino.... 509

11.5 Documentation.oiiuuuuiiiieeen .. 511
11.6 Building and debugging i i 512
11.7 Test SCTIPtS « o 513
11.8 Developer’s checklist ..., 514
11.9 Gnuastro project webpageooviiiiii i 514
11.10 Developing mailing lists............ ... i, 515
11.11 Contributing to Gnuastro 516
11.11.1 Copyright assignment, 517
11.11.2 Commit guidelinesccooiiiiiiiiiiiiiii . 518
11.11.3 Production workflow 519
11.11.4 Forking tutorial o 520
Appendix A Gnuastro programs list........... 522
Appendix B Other useful software............. 524
Bl SAO ds. .. 524
B.1.1 Viewing multiextension FITS images.................... 524

B.2 PGPLOT ... 527
Appendix C GNU Free Doc. License.......... 529
Appendix D GNU Gen. Pub. License v3..... 537
Index: Macros, structures and functions 548

viii

1 Introduction

GNU Astronomy Utilities (Gnuastro) is an official GNU package consisting of separate
programs and libraries for the manipulation and analysis of astronomical data. All the
programs share the same basic command-line user interface for the comfort of both the users
and developers. Gnuastro is written to comply fully with the GNU coding standards so it
integrates finely with the GNU/Linux operating system. This also enables astronomers to
expect a fully familiar experience in the source code, building, installing and command-line
user interaction that they have seen in all the other GNU software that they use. The official
and always up to date version of this book (or manual) is freely available under Appendix C
[GNU Free Doc. License|, page 529, in various formats (PDF, HTML, plain text, info, and
as its Texinfo source) at http://www.gnu.org/software/gnuastro/manual/.

For users who are new to the GNU /Linux environment, unless otherwise specified most of
the topics in Chapter 3 [Installation|, page 73, and Chapter 4 [Common program behavior],
page 103, are common to all GNU software, for example installation, managing command-
line options or getting help (also see Section 1.6 [New to GNU /Linux?], page 8). So if you
are new to this empowering environment, we encourage you to go through these chapters
carefully. They can be a starting point from which you can continue to learn more from
each program’s own manual and fully benefit from and enjoy this wonderful environment.
Gnuastro also comes with a large set of libraries, so you can write your own programs using
Gnuastro’s building blocks, see Section 10.1 [Review of library fundamentals|, page 357, for
an introduction.

In Gnuastro, no change to any program or library will be committed to its history, before
it has been fully documented here first. As discussed in Section 1.2 [Science and its tools],
page 2, this is a founding principle of the Gnuastro.

1.1 Quick start

The latest official release tarball is always available as gnuastro-latest.tar.gz (http://
ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.gz). For better compression (faster
download), and robust archival features, an Lzip (http://www.nongnu.org/lzip/lzip.
html) compressed tarball is also available at gnuastro-latest.tar.lz (http://ftp.gnu.
org/gnu/gnuastro/gnuastro-latest.tar.1z), see Section 3.2.1 [Release tarball], page 83,
for more details on the tarball release’.

Let’s assume the downloaded tarball is in the TOPGNUASTRO directory. The first two
commands below can be used to decompress the source. If you download tar.lz and your
Tar implementation doesn’t recognize Lzip (the second command fails), run the third and
fourth lines?. Note that lines starting with ## don’t need to be typed.

Go into the download directory.

1 The Gzip library and program are commonly available on most systems. However, Gnuastro recommends
Lzip as described above and the beta-releases are also only distributed in tar.lz. You can download
and install Lzip’s source (in .tar.gz format) from its webpage and follow the same process as below:
Lzip has no dependencies, so simply decompress, then run ./configure, make, sudo make install.

In case Tar doesn’t directly uncompress your .tar.lz tarball, you can merge the separate calls to Lzip
and Tar (shown in the main body of text) into one command by directly piping the output of Lzip into
Tar with a command like this: $ 1zip -cd gnuastro-0.5.tar.1z | tar -xf -

http://www.gnu.org/software/gnuastro/manual/
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.gz
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.gz
http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz
http://ftp.gnu.org/gnu/gnuastro/gnuastro-latest.tar.lz

Chapter 1: Introduction 2

$ cd TOPGNUASTRO

Also works on ‘tar.gz’. GNU Tar recognizes both formats.
$ tar xf gnuastro-latest.tar.lz

Only when previous command fails.
$ 1zip -d gnuastro-latest.tar.lz
$ tar xf gnuastro-latest.tar

Gnuastro has three mandatory dependencies and some optional dependencies for extra
functionality, see Section 3.1 [Dependencies|, page 73, for the full list. In Section 3.1.4
[Dependencies from package managers|, page 80, we have prepared the command to easily
install Gnuastro’s dependencies using the package manager of some operating systems.
When the mandatory dependencies are ready, you can configure, compile, check and install
Gnuastro on your system with the following commands.

$ cd gnuastro-X.X # Replace X.X with version number.
$./configure
$ make -j8 # Replace 8 with no. CPU threads.

$ make check
$ sudo make install

See Section 3.3.5 [Known issues|, page 101, if you confront any complications. For each
program there is an ‘Invoke ProgramName’ sub-section in this book which explains how
the programs should be run on the command-line (for example Section 5.4.2 [Invoking
Table|, page 170). You can read the same section on the command-line by running $ info
astprogname (for example info asttable). The ‘Invoke ProgramName’ sub-section starts
with a few examples of each program and goes on to explain the invocation details. See
Section 4.3 [Getting help], page 121, for all the options you have to get help. In Chapter 2
[Tutorials], page 16, some real life examples of how these programs might be used are given.

1.2 Science and its tools

History of science indicates that there are always inevitably unseen faults, hidden assump-
tions, simplifications and approximations in all our theoretical models, data acquisition and
analysis techniques. It is precisely these that will ultimately allow future generations to
advance the existing experimental and theoretical knowledge through their new solutions
and corrections.

In the past, scientists would gather data and process them individually to achieve an
analysis thus having a much more intricate knowledge of the data and analysis. The theo-
retical models also required little (if any) simulations to compare with the data. Today both
methods are becoming increasingly more dependent on pre-written software. Scientists are
dissociating themselves from the intricacies of reducing raw observational data in experi-
mentation or from bringing the theoretical models to life in simulations. These ‘intricacies’
are precisely those unseen faults, hidden assumptions, simplifications and approximations
that define scientific progress.

Unfortunately, most persons who have recourse to a computer for statistical
analysis of data are not much interested either in computer programming or in
statistical method, being primarily concerned with their own proper business.

Chapter 1: Introduction 3

Hence the common use of library programs and various statistical packages. ...
It’s time that was changed.
—F.J. Anscombe. The American Statistician, Vol. 27, No. 1. 1973

Anscombe’s quartet (http://en.wikipedia.org/wiki/Anscombe’,27s_quartet)
demonstrates how four data sets with widely different shapes (when plotted) give nearly
identical output from standard regression techniques. Anscombe uses this (now famous)
quartet, which was introduced in the paper quoted above, to argue that “Good statistical
analysis is not a purely routine matter, and generally calls for more than one pass through
the computer”. Echoing Anscombe’s concern after 44 years, some of the highly recognized
statisticians of our time (Leek, McShane, Gelman, Colquhoun, Nuijten and Goodman),
wrote in Nature that:

We need to appreciate that data analysis is not purely computational and al-
gorithmic — it is a human behaviour....Researchers who hunt hard enough will
turn up a result that fits statistical criteria — but their discovery will probably
be a false positive.

—Five ways to fix statistics, Nature, 551, Nov 2017.

Users of statistical (scientific) methods (software) are therefore not passive (objective)
agents in their result. Therefore, it is necessary to actually understand the method,
not just use it as a black box. The subjective experience gained by frequently using a
method/software is not sufficient to claim an understanding of how the tool/method works
and how relevant it is to the data and analysis. This kind of subjective experience is prone
to serious misunderstandings about the data, what the software/statistical-method really
does (especially as it gets more complicated), and thus the scientific interpretation of the
result. This attitude is further encouraged through non-free software®, poorly written (or
non-existent) scientific software manuals, and non-reproducible papers*. This approach to
scientific software and methods only helps in producing dogmas and an “obscurantist faith

in the expert’s special skill, and in his personal knowledge and authority”®.

Program or be programmed. Choose the former, and you gain access to the
control panel of civilization. Choose the latter, and it could be the last real
choice you get to make.

—Douglas Rushkoff. Program or be programmed, O/R Books (2010).

It is obviously impractical for any one human being to gain the intricate knowledge
explained above for every step of an analysis. On the other hand, scientific data can
be large and numerous, for example images produced by telescopes in astronomy. This
requires efficient algorithms. To make things worse, natural scientists have generally not
been trained in the advanced software techniques, paradigms and architecture that are
taught in computer science or engineering courses and thus used in most software. The
GNU Astronomy Utilities are an effort to tackle this issue.

3 https://www.gnu.org/philosophy/free-sw.html

4 Where the authors omit many of the analysis/processing “details” from the paper by arguing that they
would make the paper too long/unreadable. However, software engineers have been dealing with such
issues for a long time. There are thus software management solutions that allow us to supplement papers
with all the details necessary to exactly reproduce the result. For example see zenodo.1163746 (https://
doi.org/10.5281/zenodo.1163746) and zenodo.1164774 (https://doi.org/10.5281/zenodo.1164774)
and this general discussion (http://akhlaghi.org/reproducible-science.html).

Karl Popper. The logic of scientific discovery. 1959. Larger quote is given at the start of the PDF (for
print) version of this book.

http://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.gnu.org/philosophy/free-sw.html
https://doi.org/10.5281/zenodo.1163746
https://doi.org/10.5281/zenodo.1163746
https://doi.org/10.5281/zenodo.1164774
 http://akhlaghi.org/reproducible-science.html

Chapter 1: Introduction 4

Gnuastro is not just a software, this book is as important to the idea behind Gnuastro as
the source code (software). This book has tried to learn from the success of the “Numerical
Recipes” book in educating those who are not software engineers and computer scientists
but still heavy users of computational algorithms, like astronomers. There are two major
differences.

The first difference is that Gnuastro’s code and the background information are segre-
gated: the code is moved within the actual Gnuastro software source code and the under-
lying explanations are given here in this book. In the source code, every non-trivial step is
heavily commented and correlated with this book, it follows the same logic of this book, and
all the programs follow a similar internal data, function and file structure, see Section 11.4
[Program source], page 506. Complementing the code, this book focuses on thoroughly
explaining the concepts behind those codes (history, mathematics, science, software and
usage advise when necessary) along with detailed instructions on how to run the programs.
At the expense of frustrating “professionals” or “experts”, this book and the comments in
the code also intentionally avoid jargon and abbreviations. The source code and this book
are thus intimately linked, and when considered as a single entity can be thought of as a
real (an actual software accompanying the algorithms) “Numerical Recipes” for astronomy.

The second major, and arguably more important, difference is that “Numerical Recipes”
does not allow you to distribute any code that you have learned from it. In other words, it
does not allow you to release your software’s source code if you have used their codes, you can
only publicly release binaries (a black box) to the community. Therefore, while it empowers
the privileged individual who has access to it, it exacerbates social ignorance. Exactly at
the opposite end of the spectrum, Gnuastro’s source code is released under the GNU general
public license (GPL) and this book is released under the GNU free documentation license.
You are therefore free to distribute any software you create using parts of Gnuastro’s source
code or text, or figures from this book, see Section 1.3 [Your rights|, page 6.

With these principles in mind, Gnuastro’s developers aim to impose the minimum re-
quirements on you (in computer science, engineering and even the mathematics behind the
tools) to understand and modify any step of Gnuastro if you feel the need to do so, see
Section 11.1 [Why C programming language?], page 500, and Section 11.2 [Program design
philosophy], page 502.

Without prior familiarity and experience with optics, it is hard to imagine how, Galileo
could have come up with the idea of modifying the Dutch military telescope optics to use in
astronomy. Astronomical objects could not be seen with the Dutch military design of the
telescope. In other words, it is unlikely that Galileo could have asked a random optician
to make modifications (not understood by Galileo) to the Dutch design, to do something
no astronomer of the time took seriously. In the paradigm of the day, what could be the
purpose of enlarging geometric spheres (planets) or points (stars)? In that paradigm only
the position and movement of the heavenly bodies was important, and that had already
been accurately studied (recently by Tycho Brahe).

In the beginning of his “The Sidereal Messenger” (published in 1610) he cautions the
readers on this issue and before describing his results/observations, Galileo instructs us on
how to build a suitable instrument. Without a detailed description of how he made his tools
and done his observations, no reasonable person would believe his results. Before he actually

Chapter 1: Introduction 5

saw the moons of Jupiter, the mountains on the Moon or the crescent of Venus, Galileo was
“evasive”® to Kepler. Science is defined by its tools/methods, not its raw results’.

The same is true today: science cannot progress with a black box, or poorly released
code. The source code of a research is the new (abstractified) communication language
in science, understandable by humans and computers. Source code (in any programming
language) is a language/notation designed to express all the details that would be too
tedious/long/frustrating to report in spoken languages like English, similar to mathematic
notation.

Today, the quality of the source code that goes into a scientific result (and the distribution
of that code) is as critical to scientific vitality and integrity, as the quality of its written
language/English used in publishing/distributing its paper. A scientific paper will not
even be reviewed by any respectable journal if its written in a poor language/English. A
similar level of quality assessment is thus increasingly becoming necessary regarding the
codes/methods used to derive the results of a scientific paper.

Bjarne Stroustrup (creator of the C++ language) says: “Without understanding software,
you are reduced to believing in magic”. Ken Thomson (the designer or the Unix operating
system) says “I abhor a system designed for the ‘user’ if that word is a coded pejorative
meaning ‘stupid and unsophisticated’.” Certainly no scientist (user of a scientific software)
would want to be considered a believer in magic, or stupid and unsophisticated.

This can happen when scientists get too distant from the raw data and methods, and are
mainly discussing results. In other words, when they feel they have tamed Nature into their
own high-level (abstract) models (creations), and are mainly concerned with scaling up, or
industrializing those results. Roughly five years before special relativity, and about two
decades before quantum mechanics fundamentally changed Physics, Lord Kelvin is quoted
as saying:

There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.
—William Thomson (Lord Kelvin), 1900

A few years earlier Albert. A. Michelson made the following statement:

The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their
ever being supplanted in consequence of new discoveries is exceedingly remote....
Our future discoveries must be looked for in the sixth place of decimals.

—Albert. A. Michelson, dedication of Ryerson Physics Lab, U. Chicago 1894

If scientists are considered to be more than mere “puzzle” solvers® (simply adding to
the decimals of existing values or observing a feature in 10, 100, or 100000 more galaxies
or stars, as Kelvin and Michelson clearly believed), they cannot just passively sit back and

6 Galileo G. (Translated by Maurice A. Finocchiaro). The essential Galileo.Hackett publishing company,
first edition, 2008.

" For example, take the following two results on the age of the universe: roughly 14 billion years (suggested
by the current consensus of the standard model of cosmology) and less than 10,000 years (suggested from
some interpretations of the Bible). Both these numbers are results. What distinguishes these two results,
is the tools/methods that were used to derive them. Therefore, as the term “Scientific method” also
signifies, a scientific statement it defined by its method, not its result.

8 Thomas S. Kuhn. The Structure of Scientific Revolutions, University of Chicago Press, 1962.

Chapter 1: Introduction 6

uncritically repeat the previous (observational or theoretical) methods/tools on new data.
Today there is a wealth of raw telescope images ready (mostly for free) at the finger tips
of anyone who is interested with a fast enough internet connection to download them. The
only thing lacking is new ways to analyze this data and dig out the treasure that is lying
hidden in them to existing methods and techniques.

New data that we insist on analyzing in terms of old ideas (that is, old models
which are not questioned) cannot lead us out of the old ideas. However many
data we record and analyze, we may just keep repeating the same old errors,
missing the same crucially important things that the experiment was competent
to find.

—Jaynes, Probability theory, the logic of science. Cambridge U. Press (2003).

1.3 Your rights

The paragraphs below, in this section, belong to the GNU Texinfo? manual and are not
written by us! The name “Texinfo” is just changed to “GNU Astronomy Utilities” or
“Gnuastro” because they are released under the same licenses and it is beautifully written
to inform you of your rights.

GNU Astronomy Utilities is “free software”; this means that everyone is free to use it
and free to redistribute it on certain conditions. Gnuastro is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of Gnuastro that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Gnuastro, that you receive the source code or else can get it if you
want it, that you can change these programs or use pieces of them in new free programs,
and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Gnuastro related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Gnuastro. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The full text of the licenses for the Gnuastro book and software can be respectively found
in Appendix D [GNU Gen. Pub. License v3], page 537'° and Appendix C [GNU Free Doc.
License], page 529'*.

9 Texinfo is the GNU documentation system. It is used to create this book in all the various formats.
10" Also available in http://wuw.gnu.org/copyleft/gpl.html
1 Also available in http://wuw.gnu.org/copyleft/fdl.html

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/fdl.html

Chapter 1: Introduction 7

1.4 Naming convention

Gnuastro is a package of independent programs and a collection of libraries, here we are
mainly concerned with the programs. Each program has an official name which consists of
one or two words, describing what they do. The latter are printed with no space, for example
NoiseChisel or Crop. On the command-line, you can run them with their executable names
which start with an ast and might be an abbreviation of the official name, for example
astnoisechisel or astcrop, see Section 3.3.1.3 [Executable names|, page 95.

We will use “ProgramName” for a generic official program name and astprogname for a
generic executable name. In this book, the programs are classified based on what they do
and thoroughly explained. An alphabetical list of the programs that are installed on your
system with this installation are given in Appendix A [Gnuastro programs list], page 522.
That list also contains the executable names and version numbers along with a one line
description.

1.5 Version numbering

Gnuastro can have two formats of version numbers, for official and unofficial releases. Official
Gnuastro releases are announced on the info-gnuastro mailing list, they have a version
control tag in Gnuastro’s development history, and their version numbers are formatted
like “A.B”. A is a major version number, marking a significant planned achievement (for
example see Section 1.5.1 [GNU Astronomy Utilities 1.0], page 8), while B is a minor version
number, see below for more on the distinction. Note that the numbers are not decimals, so
version 2.34 is much more recent than version 2.5, which is not equal to 2.50.

Gnuastro also allows a unique version number for unofficial releases. Unofficial releases
can mark any point in Gnuastro’s development history. This is done to allow astronomers
to easily use any point in the version controlled history for their data-analysis and research
publication. See Section 3.2.2 [Version controlled source], page 84, for a complete introduc-
tion. This section is not just for developers and is intended to straightforward and easy to
read, so please have a look if you are interested in the cutting-edge. This unofficial version
number is a meaningful and easy to read string of characters, unique to that particular
point of history. With this feature, users can easily stay up to date with the most recent
bug fixes and additions that are committed between official releases.

The unofficial version number is formatted like: A.B.C-D. A and B are the most recent
official version number. C is the number of commits that have been made after version A.B.
D is the first 4 or 5 characters of the commit hash number!'?. Therefore, the unofficial version
number ‘3.92.8-29¢8’, corresponds to the 8th commit after the official version 3.92 and
its commit hash begins with 29¢8. The unofficial version number is sort-able (unlike the
raw hash) and as shown above is descriptive of the state of the unofficial release. Of course
an official release is preferred for publication (since its tarballs are easily available and it
has gone through more tests, making it more stable), so if an official release is announced
prior to your publication’s final review, please consider updating to the official release.

The major version number is set by a major goal which is defined by the developers
and user community before hand, for example see Section 1.5.1 [GNU Astronomy Utilities

12 Each point in Gnuastro’s history is uniquely identified with a 40 character long hash which is created
from its contents and previous history for example: 5b17501d8f29ba3cd610673261e6e2229c846d35. So
the string D in the version for this commit could be 5b17, or 5b175.

Chapter 1: Introduction 8

1.0], page 8. The incremental work done in minor releases are commonly small steps in
achieving the major goal. Therefore, there is no limit on the number of minor releases and
the difference between the (hypothetical) versions 2.927 and 3.0 can be a small (negligible
to the user) improvement that finalizes the defined goals.

1.5.1 GNU Astronomy Utilities 1.0

Currently (prior to Gnuastro 1.0), the aim of Gnuastro is to have a complete system for
data manipulation and analysis at least similar to IRAF!3. So an astronomer can take all
the standard data analysis steps (starting from raw data to the final reduced product and
standard post-reduction tools) with the various programs in Gnuastro.

The maintainers of each camera or detector on a telescope can provide a completely
transparent shell script or Makefile to the observer for data analysis. This script can set
configuration files for all the required programs to work with that particular camera. The
script can then run the proper programs in the proper sequence. The user/observer can
easily follow the standard shell script to understand (and modify) each step and the param-
eters used easily. Bash (or other modern GNU/Linux shell scripts) is powerful and made
for this gluing job. This will simultaneously improve performance and transparency. Shell
scripting (or Makefiles) are also basic constructs that are easy to learn and readily available
as part of the Unix-like operating systems. If there is no program to do a desired step,
Gnuastro’s libraries can be used to build specific programs.

The main factor is that all observatories or projects can freely contribute to Gnuastro
and all simultaneously benefit from it (since it doesn’t belong to any particular one of them),
much like how for-profit organizations (for example RedHat, or Intel and many others) are
major contributors to free and open source software for their shared benefit. Gnuastro’s
copyright has been fully awarded to GNU, so it doesn’t belong to any particular astronomer
or astronomical facility or project.

1.6 New to GNU/Linux?

Some astronomers initially install and use a GNU/Linux operating system because their
necessary tools can only be installed in this environment. However, the transition is not nec-
essarily easy. To encourage you in investing the patience and time to make this transition,
and actually enjoy it, we will first start with a basic introduction to GNU/Linux operat-
ing systems. Afterwards, in Section 1.6.1 [Command-line interface|, page 9, we’ll discuss
the wonderful benefits of the command-line interface, how it beautifully complements the
graphic user interface, and why it is worth the (apparently steep) learning curve. Finally
a complete chapter (Chapter 2 [Tutorials], page 16) is devoted to real world scenarios of
using Gnuastro (on the command-line). Therefore if you don’t yet feel comfortable with
the command-line we strongly recommend going through that chapter after finishing this
section.

You might have already noticed that we are not using the name “Linux”, but
“GNU/Linux”. Please take the time to have a look at the following essays and FAQs for a
complete understanding of this very important distinction.

e https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html

13 http://iraf .noao.edu/

https://www.gnu.org/gnu/gnu-users-never-heard-of-gnu.html
http://iraf.noao.edu/

Chapter 1: Introduction 9

e https://www.gnu.org/gnu/linux-and-gnu.html
e https://www.gnu.org/gnu/why-gnu-linux.html
e https://www.gnu.org/gnu/gnu-linux-faq.html

In short, the Linux kernel'* is built using the GNU C library (glibc) and GNU compiler
collection (gcc). The Linux kernel software alone is just a means for other software to access
the hardware resources, it is useless alone: to say “running Linux”, is like saying “driving
your carburetor”.

To have an operating system, you need lower-level (to build the kernel), and higher-level
(to use it) software packages. The majority of such software in most Unix-like operating sys-
tems are GNU software: “the whole system is basically GNU with Linux loaded”. Therefore
to acknowledge GNU’s instrumental role in the creation and usage of the Linux kernel and
the operating systems that use it, we should call these operating systems “GNU/Linux”.

1.6.1 Command-line interface

One aspect of Gnuastro that might be a little troubling to new GNU /Linux users is that
(at least for the time being) it only has a command-line user interface (CLI). This might be
contrary to the mostly graphical user interface (GUI) experience with proprietary operating
systems. Since the various actions available aren’t always on the screen, the command-line
interface can be complicated, intimidating, and frustrating for a first-time user. This is
understandable and also experienced by anyone who started using the computer (from
childhood) in a graphical user interface (this includes most of Gnuastro’s authors). Here
we hope to convince you of the unique benefits of this interface which can greatly enhance
your productivity while complementing your GUI experience.

Through GNOME 3%, most GNU /Linux based operating systems now have an advanced
and useful GUI. Since the GUI was created long after the command-line, some wrongly
consider the command line to be obsolete. Both interfaces are useful for different tasks. For
example you can’t view an image, video, pdf document or web page on the command-line.
On the other hand you can’t reproduce your results easily in the GUI. Therefore they should
not be regarded as rivals but as complementary user interfaces, here we will outline how
the CLI can be useful in scientific programs.

You can think of the GUI as a veneer over the CLI to facilitate a small subset of all
the possible CLI operations. Each click you do on the GUI, can be thought of as internally
running a different CLI command. So asymptotically (if a good designer can design a GUI
which is able to show you all the possibilities to click on) the GUI is only as powerful as
the command-line. In practice, such graphical designers are very hard to find for every
program, so the GUI operations are always a subset of the internal CLI commands. For
programs that are only made for the GUI, this results in not including lots of potentially
useful operations. It also results in ‘interface design’ to be a crucially important part of any
GUI program. Scientists don’t usually have enough resources to hire a graphical designer,
also the complexity of the GUI code is far more than CLI code, which is harmful for a
scientific software, see Section 1.2 [Science and its tools], page 2.

For programs that have a GUI, one action on the GUI (moving and clicking a mouse, or
tapping a touchscreen) might be more efficient and easier than its CLI counterpart (typing

14 In Unix-like operating systems, the kernel connects software and hardware worlds.
15 nttp://www. gnome .org/

https://www.gnu.org/gnu/linux-and-gnu.html
https://www.gnu.org/gnu/why-gnu-linux.html
https://www.gnu.org/gnu/gnu-linux-faq.html
http://www.gnome.org/

Chapter 1: Introduction 10

the program name and your desired configuration). However, if you have to repeat that same
action more than once, the GUI will soon become frustrating and prone to errors. Unless
the designers of a particular program decided to design such a system for a particular GUI
action, there is no general way to run any possible series of actions automatically on the
GUI

On the command-line, you can run any series of of actions which can come from various
CLI capable programs you have decided your self in any possible permutation with one
command!®. This allows for much more creativity and exact reproducibility that is not
possible to a GUI user. For technical and scientific operations, where the same operation
(using various programs) has to be done on a large set of data files, this is crucially im-
portant. It also allows exact reproducibility which is a foundation principle for scientific
results. The most common CLI (which is also known as a shell) in GNU/Linux is GNU
Bash, we strongly encourage you to put aside several hours and go through this beautifully
explained web page: https://flossmanuals.net/command-line/. You don’t need to read
or even fully understand the whole thing, only a general knowledge of the first few chapters
are enough to get you going.

Since the operations in the GUI are limited and they are visible, reading a manual is
not that important in the GUI (most programs don’t even have any!). However, to give
you the creative power explained above, with a CLI program, it is best if you first read the
manual of any program you are using. You don’t need to memorize any details, only an
understanding of the generalities is needed. Once you start working, there are more easier
ways to remember a particular option or operation detail, see Section 4.3 [Getting help],
page 121.

To experience the command-line in its full glory and not in the GUI terminal emulator,
press the following keys together: CTRL+ALT+F4!7 to access the virtual console. To return
back to your GUI, press the same keys above replacing F4 with F7 (or F1, or F2, depending
on your GNU/Linux distribution). In the virtual console, the GUI, with all its distracting
colors and information, is gone. Enabling you to focus entirely on your actual work.

For operations that use a lot of your system’s resources (processing a large number of
large astronomical images for example), the virtual console is the place to run them. This
is because the GUI is not competing with your research work for your system’s RAM and
CPU. Since the virtual consoles are completely independent, you can even log out of your
GUI environment to give even more of your hardware resources to the programs you are
running and thus reduce the operating time.

Since it uses far less system resources, the CLI is also convenient for remote access to
your computer. Using secure shell (SSH) you can log in securely to your system (similar to
the virtual console) from anywhere even if the connection speeds are low. There are apps
for smart phones and tablets which allow you to do this.

16 By writing a shell script and running it, for example see the tutorials in Chapter 2 [Tutorials], page 16.

7 Instead of F4, you can use any of the keys from F1 to F6 for different virtual consoles depending on your
GNU/Linux distribution, try them all out. You can also run a separate GUI from within this console if
you want to.

https://flossmanuals.net/command-line/

Chapter 1: Introduction 11

1.7 Report a bug

According to Wikipedia “a software bug is an error, flaw, failure, or fault in a computer
program or system that causes it to produce an incorrect or unexpected result, or to behave
in unintended ways”. So when you see that a program is crashing, not reading your input
correctly, giving the wrong results, or not writing your output correctly, you have found
a bug. In such cases, it is best if you report the bug to the developers. The programs
will also inform you if known impossible situations occur (which are caused by something
unexpected) and will ask the users to report the bug issue.

Prior to actually filing a bug report, it is best to search previous reports. The issue
might have already been found and even solved. The best place to check if your bug
has already been discussed is the bugs tracker on Section 11.9 [Gnuastro project webpage],
page 514, at https://savannah.gnu.org/bugs/?group=gnuastro. In the top search fields
(under “Display Criteria”) set the “Open/Closed” drop-down menu to “Any” and choose
the respective program or general category of the bug in “Category” and click the “Apply”
button. The results colored green have already been solved and the status of those colored
in red is shown in the table.

Recently corrected bugs are probably not yet publicly released because they are scheduled
for the next Gnuastro stable release. If the bug is solved but not yet released and it is
an urgent issue for you, you can get the version controlled source and compile that, see
Section 3.2.2 [Version controlled source], page 84.

To solve the issue as readily as possible, please follow the following to guidelines in your
bug report. The How to Report Bugs Effectively (http://www.chiark.greenend.org.uk/
“sgtatham/bugs.html) and How To Ask Questions The Smart Way (http://catb.org/
“esr/faqs/smart-questions.html) essays also provide some good generic advice for all
software (don’t contact their authors for Gnuastro’s problems). Mastering the art of giving
good bug reports (like asking good questions) can greatly enhance your experience with
any free and open source software. So investing the time to read through these essays will
greatly reduce your frustration after you see something doesn’t work the way you feel it is
supposed to for a large range of software, not just Gnuastro.

Be descriptive

Please provide as many details as possible and be very descriptive. Explain
what you expected and what the output was: it might be that your expectation
was wrong. Also please clearly state which sections of the Gnuastro book (this
book), or other references you have studied to understand the problem. This
can be useful in correcting the book (adding links to likely places where users
will check). But more importantly, it will be encouraging for the developers,
since you are showing how serious you are about the problem and that you
have actually put some thought into it. “To be able to ask a question clearly
is two-thirds of the way to getting it answered.” — John Ruskin (1819-1900).

Individual and independent bug reports
If you have found multiple bugs, please send them as separate (and independent)
bugs (as much as possible). This will significantly help us in managing and
resolving them sooner.

https://savannah.gnu.org/bugs/?group=gnuastro
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://catb.org/~esr/faqs/smart-questions.html
http://catb.org/~esr/faqs/smart-questions.html

Chapter 1: Introduction 12

Reproducible bug reports

If we cannot exactly reproduce your bug, then it is very hard to resolve it. So
please send us a Minimal working example'® along with the description. For
example in running a program, please send us the full command-line text and
the output with the -P option, see Section 4.1.2.3 [Operating mode options],
page 112. If it is caused only for a certain input, also send us that input file.
In case the input FITS is large, please use Crop to only crop the problematic
section and make it as small as possible so it can easily be uploaded and down-
loaded and not waste the archive’s storage, see Section 6.1 [Crop], page 178.

There are generally two ways to inform us of bugs:

e Send a mail to bug-gnuastro@gnu.org. Any mail you send to this address will be
distributed through the bug-gnuastro mailing list'®. This is the simplest way to send
us bug reports. The developers will then register the bug into the project webpage
(next choice) for you.

e Use the Gnuastro project webpage at https://savannah.gnu.org/projects/
gnuastro/: There are two ways to get to the submission page as listed below. Fill in
the form as described below and submit it (see Section 11.9 [Gnuastro project webpage],
page 514, for more on the project webpage).

e Using the top horizontal menu items, immediately under the top page title. Hov-
ering your mouse on “Support” will open a drop-down list. Select “Submit new”.

e In the main body of the page, under the “Communication tools” section, click on
“Submit new item”.

Once the items have been registered in the mailing list or webpage, the developers will
add it to either the “Bug Tracker” or “Task Manager” trackers of the Gnuastro project
webpage. These two trackers can only be edited by the Gnuastro project developers, but
they can be browsed by anyone, so you can follow the progress on your bug. You are most
welcome to join us in developing Gnuastro and fixing the bug you have found maybe a good
starting point. Gnuastro is designed to be easy for anyone to develop (see Section 1.2 [Sci-
ence and its tools|, page 2) and there is a full chapter devoted to developing it: Chapter 11
[Developing], page 500.

1.8 Suggest new feature

We would always be happy to hear of suggested new features. For every program there
are already lists of features that we are planning to add. You can see the current list
of plans from the Gnuastro project webpage at https://savannah.gnu.org/projects/
gnuastro/ and following “Tasks” —“Browse” on the horizontal menu at the top of the page
immediately under the title, see Section 11.9 [Gnuastro project webpage], page 514. If you
want to request a feature to an existing program, click on the “Display Criteria” above the
list and under “Category”, choose that particular program. Under “Category” you can also
see the existing suggestions for new programs or other cases like installation, documentation
or libraries. Also be sure to set the “Open/Closed” value to “Any”.

18 http://en.wikipedia.org/wiki/Minimal_Working_ Example
19 nttps://lists. gnu.org/mailman/listinfo/bug-gnuastro

https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
https://savannah.gnu.org/projects/gnuastro/
http://en.wikipedia.org/wiki/Minimal_Working_Example
https://lists.gnu.org/mailman/listinfo/bug-gnuastro

Chapter 1: Introduction 13

If the feature you want to suggest is not already listed in the task manager, then follow
the steps that are fully described in Section 1.7 [Report a bug], page 11. Please have in mind
that the developers are all busy with their own astronomical research, and implementing
existing “task”s to add or resolving bugs. Gnuastro is a volunteer effort and none of the
developers are paid for their hard work. So, although we will try our best, please don’t
not expect that your suggested feature be immediately included (with the next release of
Gnuastro).

The best person to apply the exciting new feature you have in mind is you, since you
have the motivation and need. In fact Gnuastro is designed for making it as easy as possible
for you to hack into it (add new features, change existing ones and so on), see Section 1.2
[Science and its tools], page 2. Please have a look at the chapter devoted to developing
(Chapter 11 [Developing], page 500) and start applying your desired feature. Once you
have added it, you can use it for your own work and if you feel you want others to benefit
from your work, you can request for it to become part of Gnuastro. You can then join the
developers and start maintaining your own part of Gnuastro. If you choose to take this
path of action please contact us before hand (Section 1.7 [Report a bug], page 11) so we
can avoid possible duplicate activities and get interested people in contact.

(N
Gnuastro is a collection of low level programs: As described in Section 11.2 [Program design
philosophy], page 502, a founding principle of Gnuastro is that each library or program
should be basic and low-level. High level jobs should be done by running the separate
programs or using separate functions in succession through a shell script or calling the
libraries by higher level functions, see the examples in Chapter 2 [Tutorials], page 16. So
when making the suggestions please consider how your desired job can best be broken into

separate steps and modularized.
N J

1.9 Announcements

Gnuastro has a dedicated mailing list for making announcements (info-gnuastro). Anyone
can subscribe to this mailing list. Anytime there is a new stable or test release, an email
will be circulated there. The email contains a summary of the overall changes along with
a detailed list (from the NEWS file). This mailing list is thus the best way to stay up to
date with new releases, easily learn about the updated/new features, or dependencies (see
Section 3.1 [Dependencies], page 73).

To subscribe to this list, please visit https://lists.gnu.org/mailman/listinfo/
info-gnuastro. Traffic (number of mails per unit time) in this list is designed to be low:
only a handful of mails per year. Previous announcements are available on its archive
(http://lists.gnu.org/archive/html/info-gnuastro/).

1.10 Conventions

In this book we have the following conventions:

e All commands that are to be run on the shell (command-line) prompt as the user start
with a $. In case they must be run as a super-user or system administrator, they will
start with a single #. If the command is in a separate line and next line is also in
the code type face, but doesn’t have any of the $ or # signs, then it is the output of

https://lists.gnu.org/mailman/listinfo/info-gnuastro
https://lists.gnu.org/mailman/listinfo/info-gnuastro
http://lists.gnu.org/archive/html/info-gnuastro/
http://lists.gnu.org/archive/html/info-gnuastro/

Chapter 1: Introduction 14

the command after it is run. As a user, you don’t need to type those lines. A line that
starts with ## is just a comment for explaining the command to a human reader and
must not be typed.

e If the command becomes larger than the page width a \ is inserted in the code. If
you are typing the code by hand on the command-line, you don’t need to use multiple
lines or add the extra space characters, so you can omit them. If you want to copy and
paste these examples (highly discouraged!) then the \ should stay.

The \ character is a shell escape character which is used commonly to make characters
which have special meaning for the shell loose that special place (the shell will not treat
them specially if there is a \ behind them). When it is a last character in a line (the
next character is a new-line character) the new-line character looses its meaning an the
shell sees it as a simple white-space character, enabling you to use multiple lines to
write your commands.

1.11 Acknowledgments

Gnuastro would not have been possible without scholarships and grants from several funding
institutions. We thus ask that if you used Gnuastro in any of your papers/reports, please
add the proper citation and acknowledge the funding agencies/projects. For details of which
papers to cite (may be different for different programs) and get the acknowledgment state-
ment to include in your paper, please run the relevant programs with the common --cite
option like the example commands below (for more on --cite, please see Section 4.1.2.3
[Operating mode options|, page 112).

$ astnoisechisel --cite

$ astmkcatalog --cite

Here, we’ll acknowledge all the institutions (and their grants) along with the people who
helped make Gnuastro possible. The full list of Gnuastro authors is available at the start of
this book and the AUTHORS file in the source code (both are generated automatically from
the version controlled history). The plain text file THANKS, which is also distributed along
with the source code, contains the list of people and institutions who played an indirect role
in Gnuastro (not committed any code in the Gnuastro version controlled history).

The Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
scholarship for Mohammad Akhlaghi’s Masters and PhD degree in Tohoku University As-
tronomical Institute had an instrumental role in the long term learning and planning that
made the idea of Gnuastro possible. The very critical view points of Professor Takashi
Ichikawa (Mohammad’s adviser) were also instrumental in the initial ideas and creation
of Gnuastro. Afterwards, the European Research Council (ERC) advanced grant 339659-
MUSICOS (Principal investigator: Roland Bacon) was vital in the growth and expansion
of Gnuastro. Working with Roland at the Centre de Recherche Astrophysique de Lyon
(CRAL), enabled a thorough re-write of the core functionality of all libraries and programs,
turning Gnuastro into the large collection of generic programs and libraries it is today. Work
on improving Gnuastro and making it mature is now continuing primarily in the Instituto
de Astrofisica de Canarias (IAC) and in particular in collaboration with Johan Knapen and
Ignacio Trujillo.

In general, we would like to gratefully thank the following people for their useful and con-
structive comments and suggestions (in alphabetical order by family name): Valentina Abril-

Chapter 1: Introduction 15

melgarejo, Marjan Akbari, Carlos Allende Prieto, Hamed Altafi, Roland Bacon, Roberto
Baena Gallé, Zahra Bagheri, Karl Berry, Leindert Boogaard, Nicolas Bouché, Stefan Briins,
Fernando Buitrago, Adrian Bunk, Rosa Calvi, Mark Calabretta Nushkia Chamba, Ben-
jamin Clement, Nima Dehdilani, Antonio Diaz Diaz, Alexey Dokuchaev, Pierre-Alain Duc,
Elham Eftekhari, Gaspar Galaz, Thérese Godefroy, Madusha Gunawardhana, Bruno Haible,
Stephen Hamer, Takashi Ichikawa, Radl Infante Sainz, Brandon Invergo, Oryna Ivashtenko,
Aurélien Jarno, Lee Kelvin, Brandon Kelly, Mohammad-Reza Khellat, Johan Knapen, Ge-
offry Krouchi, Floriane Leclercq, Alan Lefor, Sebastian Luna Valero, Guillaume Mahler,
Raphael Morales, Juan Molina Tobar, Francesco Montanari, Dmitrii Oparin, Bertrand Pain,
William Pence, Mamta Pommier, Marcel Popescu, Bob Proulx, Joseph Putko, Samane Raji,
Teymoor Saifollahi, Joanna Sakowska, Elham Saremi, Yahya Sefidbakht, Alejandro Serrano
Borlaff, Zahra Sharbaf, David Shupe Jenny Sorce, Lee Spitler, Richard Stallman, Michael
Stein, Ole Streicher, Alfred M. Szmidt, Michel Tallon, Juan C. Tello, Eric Thiébaut, Ig-
nacio Trujillo, David Valls-Gabaud, Aaron Watkins, Michael H.F. Wilkinson, Christopher
Willmer, Sara Yousefi Taemeh, Johannes Zabl. The GNU French Translation Team is also
managing the French version of the top Gnuastro webpage which we highly appreciate.
Finally we should thank all the (sometimes anonymous) people in various online forums
which patiently answered all our small (but imporant) technical questions.

All work on Gnuastro has been voluntary, but the authors are most grateful to the
following institutions (in chronological order) for hosting/supporting us in our research.
Where necessary, these institutions have disclaimed any ownership of the parts of Gnuas-
tro that were developed there, thus insuring the freedom of Gnuastro for the future (see
Section 11.11.1 [Copyright assignment], page 517). We highly appreciate their support for
free software, and thus free science, and therefore a free society.

Tohoku University Astronomical Institute, Sendai, Japan.
University of Salento, Lecce, Italy.

Centre de Recherche Astrophysique de Lyon (CRAL), Lyon, France.
Instituto de Astrofisica de Canarias (IAC), Tenerife, Spain.

Google Summer of Code 2020

16

2 Tutorials

To help new users have a smooth and easy start with Gnuastro, in this chapter several
thoroughly elaborated tutorials, or cookbooks, are provided. These tutorials demonstrate
the capabilities of different Gnuastro programs and libraries, along with tips and guidelines
for the best practices of using them in various realistic situations.

We strongly recommend going through these tutorials to get a good feeling of how
the programs are related (built in a modular design to be used together in a pipeline),
very similar to the core Unix-based programs that they were modeled on. Therefore these
tutorials will greatly help in optimally using Gnuastro’s programs (and generally, the Unix-
like command-line environment) effectively for your research.

In Section 2.1 [Sufi simulates a detection], page 17, we’ll start with a fictional' tuto-
rial explaining how Abd al-rahman Sufi (903 — 986 A.D., the first recorded description of
“nebulous” objects in the heavens is attributed to him) could have used some of Gnuastro’s
programs for a realistic simulation of his observations and see if his detection of nebulous
objects was trust-able. Because all conditions are under control in a simulated/mock envi-
ronment /dataset, mock datasets can be a valuable tool to inspect the limitations of your
data analysis and processing. But they need to be as realistic as possible, so the first tutorial
is dedicated to this important step of an analysis.

The next two tutorials (Section 2.2 [General program usage tutorial], page 24, and
Section 2.3 [Detecting large extended targets|, page 61) use real input datasets from some
of the deep Hubble Space Telescope (HST) images and the Sloan Digital Sky Survey (SDSS)
respectively. Their aim is to demonstrate some real-world problems that many astronomers
often face and how they can be be solved with Gnuastro’s programs.

The ultimate aim of Section 2.2 [General program usage tutorial], page 24, is to detect
galaxies in a deep HST image, measure their positions and brightness and select those with
the strongest colors. In the process, it takes many detours to introduce you to the useful
capabilities of many of the programs. So please be patient in reading it. If you don’t have
much time and can only try one of the tutorials, we recommend this one.

Section 2.3 [Detecting large extended targets], page 61, deals with a major problem in
astronomy: effectively detecting the faint outer wings of bright (and large) nearby galaxies
to extremely low surface brightness levels (roughly one quarter of the local noise level in the
example discussed). Besides the interesting scientific questions in these low-surface bright-
ness features, failure to properly detect them will bias the measurements of the background
objects and the survey’s noise estimates. This is an important issue, especially in wide
surveys. Because bright/large galaxies and stars®, cover a significant fraction of the survey
area.

! The two historically motivated tutorials (Section 2.1 [Sufi simulates a detection], page 17, is not intended
to be a historical reference (the historical facts of this fictional tutorial used Wikipedia as a reference).
This form of presenting a tutorial was influenced by the PGF/TikZ and Beamer manuals. They are both
packages in in TEX and IATEX, the first is a high-level vector graphic programming environment, while
with the second you can make presentation slides. On a similar topic, there are also some nice words
of wisdom for Unix-like systems called Rootless Root (http://catb.org/esr/writings/unix-koans).
These also have a similar style but they use a mythical figure named Master Foo. If you already have
some experience in Unix-like systems, you will definitely find these Unix Koans entertaining/educative.

Stars also have similarly large and extended wings due to the point spread function, see Section 8.1.1.2
[Point spread function], page 320.

http://catb.org/esr/writings/unix-koans

Chapter 2: Tutorials 17

In these tutorials, we have intentionally avoided too many cross references to make it
more easy to read. For more information about a particular program, you can visit the
section with the same name as the program in this book. Each program section in the sub-
sequent chapters starts by explaining the general concepts behind what it does, for example
see Section 6.3 [Convolve], page 206. If you only want practical information on running
a program, for example its options/configuration, input(s) and output(s), please consult
the subsection titled “Invoking ProgramName”, for example see Section 7.2.1 [Invoking
NoiseChisel], page 260. For an explanation of the conventions we use in the example codes
through the book, please see Section 1.10 [Conventions], page 13.

2.1 Sufi simulates a detection

It is the year 953 A.D. and Abd al-rahman Sufi (903 — 986 A.D.)? is in Shiraz as a guest
astronomer. He had come there to use the advanced 123 centimeter astrolabe for his studies
on the Ecliptic. However, something was bothering him for a long time. While mapping
the constellations, there were several non-stellar objects that he had detected in the sky,
one of them was in the Andromeda constellation. During a trip he had to Yemen, Sufi had
seen another such object in the southern skies looking over the Indian ocean. He wasn’t
sure if such cloud-like non-stellar objects (which he was the first to call ‘Sahabi’ in Arabic
or ‘nebulous’) were real astronomical objects or if they were only the result of some bias in
his observations. Could such diffuse objects actually be detected at all with his detection
technique?

He still had a few hours left until nightfall (when he would continue his studies on
the ecliptic) so he decided to find an answer to this question. He had thoroughly studied
Claudius Ptolemy’s (90 — 168 A.D) Almagest and had made lots of corrections to it, in
particular in measuring the brightness. Using his same experience, he was able to measure
a magnitude for the objects and wanted to simulate his observation to see if a simulated
object with the same brightness and size could be detected in a simulated noise with the
same detection technique. The general outline of the steps he wants to take are:

1. Make some mock profiles in an over-sampled image. The initial mock image has to
be over-sampled prior to convolution or other forms of transformation in the image.
Through his experiences, Sufi knew that this is because the image of heavenly bodies
is actually transformed by the atmosphere or other sources outside the atmosphere
(for example gravitational lenses) prior to being sampled on an image. Since that
transformation occurs on a continuous grid, to best approximate it, he should do all
the work on a finer pixel grid. In the end he can re-sample the result to the initially
desired grid size.

2. Convolve the image with a point spread function (PSF, see Section 8.1.1.2 [Point spread
function], page 320) that is over-sampled to the same resolution as the mock image.
Since he wants to finish in a reasonable time and the PSF kernel will be very large due
to oversampling, he has to use frequency domain convolution which has the side effect
of dimming the edges of the image. So in the first step above he also has to build the

3 In Latin Sufi is known as Azophi. He was an Iranian astronomer. His manuscript “Book of fixed stars”
contains the first recorded observations of the Andromeda galaxy, the Large Magellanic Cloud and seven
other non-stellar or ‘nebulous’ objects.

Chapter 2: Tutorials 18

image to be larger by at least half the width of the PSF convolution kernel on each
edge.

3. With all the transformations complete, the image should be re-sampled to the same
size of the pixels in his detector.

4. He should remove those extra pixels on all edges to remove frequency domain convolu-
tion artifacts in the final product.

5. He should add noise to the (until now, noise-less) mock image. After all, all observations
have noise associated with them.

Fortunately Sufi had heard of GNU Astronomy Utilities from a colleague in Isfahan
(where he worked) and had installed it on his computer a year before. It had tools to do all
the steps above. He had used MakeProfiles before, but wasn’t sure which columns he had
chosen in his user or system wide configuration files for which parameters, see Section 4.2
[Configuration files], page 118. So to start his simulation, Sufi runs MakeProfiles with the
-P option to make sure what columns in a catalog MakeProfiles currently recognizes and
the output image parameters. In particular, Sufi is interested in the recognized columns
(shown below).

$ astmkprof -P

[[[... Truncated lines ... 1]]

Output:

type float32 # Type of output: e.g., intl6, float32, etc...
mergedsize 1000,1000 # Number of pixels along first FITS axis.
oversample 5 # Scale of oversampling (>0 and odd).

[[[... Truncated lines ...]]]

Columns, by info (see ‘--searchin’), or number (starting from 1):

ccol 2 # Center along first FITS axis (horizontal).

ccol 3 # Center along second FITS axis (vertical).
fcol 4 # sersic (1), moffat (2), gaussian (3),

point (4), flat (5), circumference (6).
rcol 5 # Effective radius or FWHM in pixels.
ncol 6 # Sersic index or Moffat beta.
pcol 7 # Position angle.
qcol 8 # Axis ratio.
mcol 9 # Magnitude.
tcol 10 # Truncation in units of radius or pixels.
[[[... Truncated lines ...]]]

In Gnuastro, column counting starts from 1, so the columns are ordered such that the first
column (number 1) can be an ID he specifies for each object (and MakeProfiles ignores),
each subsequent column is used for another property of the profile. It is also possible to use
column names for the values of these options and change these defaults, but Sufi preferred

Chapter 2: Tutorials 19

to stick to the defaults. Fortunately MakeProfiles has the capability to also make the PSF
which is to be used on the mock image and using the —-prepforconv option, he can also
make the mock image to be larger by the correct amount and all the sources to be shifted
by the correct amount.

For his initial check he decides to simulate the nebula in the Andromeda constellation.
The night he was observing, the PSF had roughly a FWHM of about 5 pixels, so as the first
row (profile), he defines the PSF parameters and sets the radius column (rcol above, fifth
column) to 5.000, he also chooses a Moffat function for its functional form. Remembering
how diffuse the nebula in the Andromeda constellation was, he decides to simulate it with
a mock Sérsic index 1.0 profile. He wants the output to be 499 pixels by 499 pixels, so he
can put the center of the mock profile in the central pixel of the image (note that an even
number doesn’t have a central element).

Looking at his drawings of it, he decides a reasonable effective radius for it would be 40
pixels on this image pixel scale, he sets the axis ratio and position angle to approximately
correct values too and finally he sets the total magnitude of the profile to 3.44 which he
had accurately measured. Sufi also decides to truncate both the mock profile and PSF at 5
times the respective radius parameters. In the end he decides to put four stars on the four
corners of the image at very low magnitudes as a visual scale. While he was preparing the
catalog, one of his students approached him and was also following the steps.

Using all the information above, he creates the catalog of mock profiles he wants in a file
named cat.txt (short for catalog) using his favorite text editor and stores it in a directory
named simulationtest in his home directory. [The cat command prints the contents of
a file, short for “concatenation”. So please copy-paste the lines after “cat cat.txt” into
cat.txt when the editor opens in the steps above it, note that there are 7 lines, first one
starting with #. Also be careful when copying from the PDF format, the Info, web, or text
formats shouldn’t have any problem]:

$ mkdir ~/simulationtest

$ cd “/simulationtest

$ pwd

/home/rahman/simulationtest

$ emacs cat.txt

$ 1s

cat.txt

$ cat cat.txt

Column 4: PROFILE_NAME [,str6] Radial profile’s functional name

1 0.0000 0.0000 moffat 5.000 4.765 0.0000 1.000 30.000 5.000
2 250.00 250.00 sersic 40.00 1.000 -25.00 0.400 3.4400 5.000
3 50.000 50.000 point 0.000 0.000 0.0000 0.000 6.0000 0.000
4 450.00 50.000 point 0.000 0.000 0.0000 0.000 6.5000 0.000
5 50.000 450.00 point 0.000 0.000 0.0000 0.000 7.0000 0.000
6 450.00 450.00 point 0.000 0.000 0.0000 0.000 7.5000 0.000

The zero-point magnitude for his observation was 18. Now he has all the necessary param-
eters and runs MakeProfiles with the following command:

$ astmkprof --prepforconv --mergedsize=499,499 --zeropoint=18.0 cat.txt

Chapter 2: Tutorials 20

MakeProfiles started on Sat Oct 6 16:26:56 953

- 6 profiles read from cat.txt

- Random number generator (RNG) type: mt19937

- Using 8 threads.

---— row 2 complete, 5 left to go

-——— row 3 complete, 4 left to go

---—— row 4 complete, 3 left to go

---— row 5 complete, 2 left to go

-——- ./O_cat.fits created.

--—— row O complete, 1 left to go

-——— row 1 complete, 0 left to go

- ./cat.fits created. 0.041651 seconds
MakeProfiles finished in 0.267234 seconds

$1s
O_cat.fits <cat.fits cat.txt

The file O_cat.fits is the PSF Sufi had asked for, and cat.fits is the image containing
the main objects in the catalog. The size of cat.fits was surprising for the student, instead
of 499 by 499 (as we had requested), it was 2615 by 2615 pixels (from the command below):

$ astfits cat.fits -hl | grep NAXIS

So Sufi explained why oversampling is important in modeling, especially for parts of the
image where the flux change is significant over a pixel. Recall that when you oversample
the model (for example by 5 times), for every desired pixel, you get 25 pixels (5 x 5). Sufi
then explained that after convolving (next step below) we will down-sample the image to
get our originally desired size/resolution.

Sufi then opened cat.fits [you can use any FITS viewer, for example, ds9]. After seeing
the image, the student complained that only the large elliptical model for the Andromeda
nebula can be seen in the center. He couldn’t see the four stars that we had also requested
in the catalog. So Sufi had to explain that the stars are there in the image, but the reason
that they aren’t visible when looking at the whole image at once, is that they only cover
a single pixell To prove it, he centered the image around the coordinates 2308 and 2308,
where one of the stars is located in the over-sampled image [you can do this in ds9 by
selecting “Pan” in the “Edit” menu, then clicking around that position]. Sufi then zoomed
in to that region and soon, the star’s non-zero pixel could be clearly seen.

Sufi explained that the stars will take the shape of the PSF (cover an area of more
than one pixel) after convolution. If we didn’t have an atmosphere and we didn’t need an
aperture, then stars would only cover a single pixel with normal CCD resolutions. So Sufi
convolved the image with this command:

$ astconvolve --kernel=0_cat.fits cat.fits
Convolve started on Mon Apr 6 16:35:32 953
- Using 8 CPU threads.
- Input: cat.fits (hdu: 1)
- Kernel: O_cat.fits (hdu: 1)
- Input and Kernel images padded. 0.075541 seconds
- Images converted to frequency domain. 6.728407 seconds

Chapter 2: Tutorials 21

- Multiplied in the frequency domain. 0.040659 seconds
- Converted back to the spatial domain. 3.465344 seconds
- Padded parts removed. 0.016767 seconds

- Output: cat_convolved.fits
Convolve finished in: 10.422161 seconds

$1s
O_cat.fits cat_convolved.fits cat.fits cat.txt

When convolution finished, Sufi opened cat_convolved.fits and the four stars could be
easily seen now. It was interesting for the student that all the flux in that single pixel is now
distributed over so many pixels (the sum of all the pixels in each convolved star is actually
equal to the value of the single pixel before convolution). Sufi explained how a PSF with
a larger FWHM would make the points even wider than this (distributing their flux in a
larger area). With the convolved image ready, they were prepared to re-sample it to the
original pixel scale Sufi had planned [from the $ astmkprof -P command above, recall that
MakeProfiles had over-sampled the image by 5 times]. Sufi explained the basic concepts of
warping the image to his student and ran Warp with the following command:
$ astwarp --scale=1/5 --centeroncorner cat_convolved.fits
Warp started on Mon Apr 6 16:51:59 953
Using 8 CPU threads.
Input: cat_convolved.fits (hdu: 1)

matrix:
0.2000 0.0000 0.4000
0.0000 0.2000 0.4000
0.0000 0.0000 1.0000
$ 1s
O_cat.fits cat_convolved_scaled.fits cat.txt

cat_convolved.fits cat.fits

$ astfits -p cat_convolved_scaled.fits | grep NAXIS
NAXIS = 2 / number of data axes
NAXIS1 523 / length of data axis 1
NAXIS2 523 / length of data axis 2

cat_convolved_scaled.fits now has the correct pixel scale. However, the image is still
larger than what we had wanted, it is 523 (499 + 12 + 12) by 523 pixels. The student is
slightly confused, so Sufi also re-samples the PSF with the same scale by running

$ astwarp --scale=1/5 --centeroncorner O_cat.fits

$ astfits -p O_cat_scaled.fits | grep NAXIS

NAXIS = 2 / number of data axes
NAXIS1 25 / length of data axis 1
NAXIS2 25 / length of data axis 2

Sufi notes that 25 = (2 x 12) + 1 and goes on to explain how frequency space convolution
will dim the edges and that is why he added the --prepforconv option to MakeProfiles, see
Section 8.1.2 [If convolving afterwards], page 324. Now that convolution is done, Sufi can
remove those extra pixels using Crop with the command below. Crop’s --section option

Chapter 2: Tutorials 22

accepts coordinates inclusively and counting from 1 (according to the FITS standard), so
the crop region’s first pixel has to be 13, not 12.

$ astcrop cat_convolved_scaled.fits --section=13:%-12,13:%-12 \
--mode=img --zeroisnotblank
Crop started on Sat Oct 6 17:03:24 953
- Read metadata of 1 image. 0.001304 seconds
---— ...nvolved_scaled_cropped.fits created: 1 input.
Crop finished in: 0.027204 seconds

$1s
O_cat.fits cat_convolved_scaled_cropped.fits cat.fits
cat_convolved.fits cat_convolved_scaled.fits cat.txt

Finally, cat_convolved_scaled_cropped.fits is 499 x 499 pixels and the mock
Andromeda galaxy is centered on the central pixel (open the image in a FITS viewer and
confirm this by zooming into the center, note that an even-width image wouldn’t have a
central pixel). This is the same dimensions as Sufi had desired in the beginning. All this
trouble was certainly worth it because now there is no dimming on the edges of the image
and the profile centers are more accurately sampled.

The final step to simulate a real observation would be to add noise to the image. Sufi
set the zeropoint magnitude to the same value that he set when making the mock profiles
and looking again at his observation log, he had measured the background flux near the
nebula had a magnitude of 7 that night. So using these values he ran MakeNoise:

$ astmknoise --zeropoint=18 --background=7 --output=out.fits \
cat_convolved_scaled_cropped.fits
MakeNoise started on Mon Apr 6 17:05:06 953
- Generator type: ranlxsl
- Generator seed: 1428318100
MakeNoise finished in: 0.033491 (seconds)

$1s
O_cat.fits cat_convolved_scaled_cropped.fits cat.fits out.fits
cat_convolved.fits cat_convolved_scaled.fits cat.txt

The out.fits file now contains the noised image of the mock catalog Sufi had asked for.
Seeing how the --output option allows the user to specify the name of the output file,
the student was confused and wanted to know why Sufi hadn’t used it before? Sufi then
explained to him that for intermediate steps it is best to rely on the automatic output, see
Section 4.9 [Automatic output], page 138. Doing so will give all the intermediate files the
same basic name structure, so in the end you can simply remove them all with the Shell’s
capabilities. So Sufi decided to show this to the student by making a shell script from the
commands he had used before.

The command-line shell has the capability to read all the separate input commands from
a file. This is useful when you want to do the same thing multiple times, with only the
names of the files or minor parameters changing between the different instances. Using the
shell’s history (by pressing the up keyboard key) Sufi reviewed all the commands and then
he retrieved the last 5 commands with the $ history 5 command. He selected all those

Chapter 2: Tutorials 23

lines he had input and put them in a text file named mymock.sh. Then he defined the edge
and base shell variables for easier customization later. Finally, before every command, he
added some comments (lines starting with #) for future readability.

edge=12
base=cat

Stop running next commands if one fails.
set -e

Remove any (possibly) existing output (from previous runs)
before starting.
rm -f out.fits

Run MakeProfiles to create an oversampled FITS image.
astmkprof --prepforconv --mergedsize=499,499 --zeropoint=18.0 \
"$base" . txt

Convolve the created image with the kernel.
astconvolve --kernel=0_"$base".fits "$base".fits

Scale the image back to the intended resolution.
astwarp --scale=1/5 --centeroncorner "$base"_convolved.fits
Crop the edges out (dimmed during convolution). ‘--section’ accepts
inclusive coordinates, so the start of start of the section must be
one pixel larger than its end.
st_edge=$((edge + 1))
astcrop "$base"_convolved_scaled.fits --zeroisnotblank \
--mode=img --section=$st_edge:*-$edge,$st_edge:*-$edge

Add noise to the image.
astmknoise --zeropoint=18 --background=7 --output=out.fits \
"$base" _convolved_scaled_cropped.fits

Remove all the temporary files.
rm Ox.fits "$base"*.fits

He used this chance to remind the student of the importance of comments in code or
shell scripts: when writing the code, you have a good mental picture of what you are doing,
so writing comments might seem superfluous and excessive. However, in one month when
you want to re-use the script, you have lost that mental picture and remembering it can
be time-consuming and frustrating. The importance of comments is further amplified when
you want to share the script with a friend/colleague. So it is good to accompany any
script/code with useful comments while you are writing it (create a good mental picture of
what/why you are doing something).

Sufi then explained to the eager student that you define a variable by giving it a name,
followed by an = sign and the value you want. Then you can reference that variable from

Chapter 2: Tutorials 24

anywhere in the script by calling its name with a $ prefix. So in the script whenever you
see $base, the value we defined for it above is used. If you use advanced editors like GNU
Emacs or even simpler ones like Gedit (part of the GNOME graphical user interface) the
variables will become a different color which can really help in understanding the script.
We have put all the $base variables in double quotation marks (") so the variable name
and the following text do not get mixed, the shell is going to ignore the " after replacing
the variable value. To make the script executable, Sufi ran the following command:

$ chmod +x mymock.sh
Then finally, Sufi ran the script, simply by calling its file name:
$./mymock.sh

After the script finished, the only file remaining is the out.fits file that Sufi had wanted
in the beginning. Sufi then explained to the student how he could run this script anywhere
that he has a catalog if the script is in the same directory. The only thing the student had
to modify in the script was the name of the catalog (the value of the base variable in the
start of the script) and the value to the edge variable if he changed the PSF size. The
student was also happy to hear that he won’t need to make it executable again when he
makes changes later, it will remain executable unless he explicitly changes the executable
flag with chmod.

The student was really excited, since now, through simple shell scripting, he could really
speed up his work and run any command in any fashion he likes allowing him to be much
more creative in his works. Until now he was using the graphical user interface which doesn’t
have such a facility and doing repetitive things on it was really frustrating and some times
he would make mistakes. So he left to go and try scripting on his own computer.

Sufi could now get back to his own work and see if the simulated nebula which resembled
the one in the Andromeda constellation could be detected or not. Although it was extremely
faint*, fortunately it passed his detection tests and he wrote it in the draft manuscript that
would later become “Book of fixed stars”. He still had to check the other nebula he saw
from Yemen and several other such objects, but they could wait until tomorrow (thanks to
the shell script, he only has to define a new catalog). It was nearly sunset and they had to
begin preparing for the night’s measurements on the ecliptic.

2.2 General program usage tutorial

Measuring colors of astronomical objects in broad-band or narrow-band images is one of
the most basic and common steps in astronomical analysis. Here, we will use Gnuastro’s
programs to get a physical scale (area at certain redshifts) of the field we are studying,
detect objects in a Hubble Space Telescope (HST) image, measure their colors and identify
the ones with the strongest colors, do a visual inspection of these objects and inspect spatial
position in the image. After this tutorial, you can also try the Section 2.3 [Detecting large
extended targets], page 61, tutorial which goes into a little more detail on detecting very
low surface brightness signal.

4 The brightness of a diffuse object is added over all its pixels to give its final magnitude, see Section 8.1.3
[Flux Brightness and magnitude], page 324. So although the magnitude 3.44 (of the mock nebula) is
orders of magnitude brighter than 6 (of the stars), the central galaxy is much fainter. Put another way,
the brightness is distributed over a large area in the case of a nebula.

Chapter 2: Tutorials 25

During the tutorial, we will take many detours to explain, and practically demonstrate,
the many capabilities of Gnuastro’s programs. In the end you will see that the things you
learned during this tutorial are much more generic than this particular problem and can be
used in solving a wide variety of problems involving the analysis of data (images or tables).
So please don’t rush, and go through the steps patiently to optimally master Gnuastro.

In this tutorial, we’ll use the HSTeXtreme Deep Field (https://archive.stsci.edu/
prepds/xdf) dataset. Like almost all astronomical surveys, this dataset is free for download
and usable by the public. You will need the following tools in this tutorial: Gnuastro, SAO
DS9°, GNU Wget®, and AWK (most common implementation is GNU AWK").

This tutorial was first prepared for the “Exploring the Ultra-Low Surface Brightness
Universe” workshop (November 2017) at the ISSI in Bern, Switzerland. It was further ex-
tended in the “4th Indo-French Astronomy School” (July 2018) organized by LIO, CRAL
CNRS UMR5574, UCBL, and ITUCAA in Lyon, France. We are very grateful to the orga-
nizers of these workshops and the attendees for the very fruitful discussions and suggestions
that made this tutorial possible.

Write the example commands manually: Try to type the example commands on your
terminal manually and use the history feature of your command-line (by pressing the “up”
button to retrieve previous commands). Don’t simply copy and paste the commands shown
here. This will help simulate future situations when you are processing your own datasets.

2.2.1 Calling Gnuastro’s programs

A handy feature of Gnuastro is that all program names start with ast. This will allow your
command-line processor to easily list and auto-complete Gnuastro’s programs for you. Try
typing the following command (press TAB key when you see <TAB>) to see the list:

$ ast<TAB><TAB>

Any program that starts with ast (including all Gnuastro programs) will be shown. By
choosing the subsequent characters of your desired program and pressing <TAB><TAB> again,
the list will narrow down and the program name will auto-complete once your input charac-
ters are unambiguous. In short, you often don’t need to type the full name of the program
you want to run.

2.2.2 Accessing documentation

Gnuastro contains a large number of programs and it is natural to forget the details of each
program’s options or inputs and outputs. Therefore, before starting the analysis steps of
this tutorial, let’s review how you can access this book to refresh your memory any time
you want, without having to take your hands off the keyboard.

When you install Gnuastro, this book is also installed on your system along with all
the programs and libraries, so you don’t need an internet connection to to access/read it.
Also, by accessing this book as described below, you can be sure that it corresponds to your
installed version of Gnuastro.

5 See Section B.1 [SAO ds9], page 524, available at http://ds9.si.edu/site/Home.html
6 https://www.gnu.org/software/wget
7 https://www.gnu.org/software/gavk

https://archive.stsci.edu/prepds/xdf
https://archive.stsci.edu/prepds/xdf
http://ds9.si.edu/site/Home.html
https://www.gnu.org/software/wget
https://www.gnu.org/software/gawk

Chapter 2: Tutorials 26

GNU Info® is the program in charge of displaying the manual on the command-line
(for more, see Section 4.3.4 [Info], page 124). To see this whole book on your command-
line, please run the following command and press subsequent keys. Info has its own mini-
environment, therefore we’ll show the keys that must be pressed in the mini-environment
after a —=> sign. You can also ignore anything after the # sign in the middle of the line, they
are only for your information.

$ info gnuastro # Open the top of the manual.

-> <SPACE> # A1l the book chapters.

-> <SPACE> # Continue down: show sections.

—-> <SPACE> ... # Keep pressing space to go down.

->q # Quit Info, return to the command-line.

The thing that greatly simplifies navigation in Info is the links (regions with an under-
line). You can immediately go to the next link in the page with the <TAB> key and press
<ENTER> on it to go into that part of the manual. Try the commands above again, but this
time also use <TAB> to go to the links and press <ENTER> on them to go to the respective
section of the book. Then follow a few more links and go deeper into the book. To return to
the previous page, press 1 (small L). If you are searching for a specific phrase in the whole
book (for example an option name), press s and type your search phrase and end it with
an <ENTER>.

You don’t need to start from the top of the manual every time. For example, to get to
Section 7.2.1 [Invoking NoiseChisel], page 260, run the following command. In general, all
programs have such an “Invoking ProgramName” section in this book. These sections are
specifically for the description of inputs, outputs and configuration options of each program.
You can access them directly for each program by giving its executable name to Info.

$ info astnoisechisel

The other sections don’t have such shortcuts. To directly access them from the command-
line, you need to tell Info to look into Gnuastro’s manual, then look for the specific section
(an unambiguous title is necessary). For example, if you only want to review/remember
NoiseChisel’s Section 7.2.1.2 [Detection options|, page 264), just run the following command.
Note how case is irrelevant for Info when calling a title in this manner.

$ info gnuastro "Detection options"

In general, Info is a powerful and convenient way to access this whole book with detailed
information about the programs you are running. If you are not already familiar with it,
please run the following command and just read along and do what it says to learn it. Don’t
stop until you feel sufficiently fluent in it. Please invest the half an hour’s time necessary
to start using Info comfortably. It will greatly improve your productivity and you will start
reaping the rewards of this investment very soon.

$ info info

As a good scientist you need to feel comfortable to play with the features/options and
avoid (be critical to) using default values as much as possible. On the other hand, our
human memory is limited, so it is important to be able to easily access any part of this
book fast and remember the option names, what they do and their acceptable values.

8 GNU Info is already available on almost all Unix-like operating systems.

Chapter 2: Tutorials 27

If you just want the option names and a short description, calling the program with the
--help option might also be a good solution like the first example below. If you know a
few characters of the option name, you can feed the output to grep like the second or third
example commands.

$ astnoisechisel --help
$ astnoisechisel --help | grep quant
$ astnoisechisel --help | grep check

2.2.3 Setup and data download

The first step in the analysis of the tutorial is to download the necessary input datasets.
First, to keep things clean, let’s create a gnuastro-tutorial directory and continue all
future steps in it:

$ mkdir gnuastro-tutorial
$ cd gnuastro-tutorial

We will be using the near infra-red Wide Field Camera (http://www.stsci.edu/hst/
wfc3) dataset. If you already have them in another directory (for example XDFDIR, with
the same FITS file names), you can set the download directory to be a symbolic link to
XDFDIR with a command like this:

$ 1n -s XDFDIR download

Otherwise, when the following images aren’t already present on your system, you can make
a download directory and download them there.

mkdir download

cd download

xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_vl_sci.fits
wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_£125w_v1l_sci.fits
wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vl_sci.fits
$ cd ..

In this tutorial, we’ll just use these three filters. Later, you may need to download more
filters. To do that, you can use the shell’s for loop to download them all in series (one after
the other?) with one command like the one below for the WFC3 filters. Put this command
instead of the three wget commands above. Recall that all the extra spaces, back-slashes
(\), and new lines can be ignored if you are typing on the lines on the terminal.

$ for f in f105w f125w f140w f160w; do \
wget $xdfurl/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_v1_sci.fits; \
done

Hh H P P P PH

2.2.4 Dataset inspection and cropping

First, let’s visually inspect the datasets we downloaded in Section 2.2.3 [Setup and data
download], page 27. Let’s take F160W image as an example. Do the steps below with
the other image(s) too (and later with any dataset that you want to work on). It is very
important to get a good visual feeling of the dataset you intend to use. Also, note how

9 Note that you only have one port to the internet, so downloading in parallel will actually be slower than
downloading in series.

http://www.stsci.edu/hst/wfc3
http://www.stsci.edu/hst/wfc3

Chapter 2: Tutorials 28

SAO DS9 (used here for visual inspection of FITS images) doesn’t follow the GNU style
of options where “long” and “short” options are preceded by -- and - respectively (for
example --width and -w, see Section 4.1.1.2 [Options|, page 105).

Run the command below to see the F160W image with DS9. Ds9’s -zscale scaling is
good to visually highlight the low surface brightness regions, and as the name suggests,
-zoom to fit will fit the whole dataset in the window. If the window is too small, expand
it with your mouse, then press the “zoom” button on the top row of buttons above the
image. Afterwards, in the bottom row of buttons, press “zoom fit”. You can also zoom in
and out by scrolling your mouse or the respective operation on your touch-pad when your
cursor/pointer is over the image.

$ ds9 download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vl_sci.fits \
-zscale -zoom to fit

As you hover your mouse over the image, notice how the “Value” and positional fields
on the top of the ds9 window get updated. The first thing you might notice is that when
you hover the mouse over the regions with no data, they have a value of zero. The next
thing might be that the dataset actually has two “depth”s (see Section 7.4.2 [Quantifying
measurement limits], page 287). Recall that this is a combined/reduced image of many
exposures, and the parts that have more exposures are deeper. In particular, the exposure
time of the deep inner region is larger than 4 times of the outer (more shallower) parts.

To simplify the analysis in this tutorial, we’ll only be working on the deep field, so let’s
crop it out of the full dataset. Fortunately the XDF survey webpage (above) contains the
vertices of the deep flat WFC3-IR field. With Gnuastro’s Crop program'®, you can use
those vertices to cutout this deep region from the larger image. But before that, to keep
things organized, let’s make a directory called flat-ir and keep the flat (single-depth)
regions in that directory (with a ‘xdf-’ suffix for a shorter and easier filename).

$ mkdir flat-ir
$ astcrop --mode=wcs -hO --output=flat-ir/xdf-f105w.fits \
—--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f105w_v1_sci.fits

$ astcrop --mode=wcs -hO --output=flat-ir/xdf-f125w.fits \
--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f125w_v1_sci.fits

$ astcrop --mode=wcs -hO --output=flat-ir/xdf-f160w.fits \
--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_f160w_vi_sci.fits

The only thing varying in the three calls to Gnuastro’s Crop program is the filter name!
Note how everything else is the same. In such cases, you should generally avoid repeating
a command manually, it is prone to many bugs, and as you see, it is very hard to read
(didn’t you suddenly write a 7 as an 87). To simplify the command, and later allow work

10" Tg learn more about the crop program see Section 6.1 [Crop], page 178.

Chapter 2: Tutorials 29

on more filters, we can use the shell’s for loop as shown below. Notice how the place where
the filter names (£105w, £125w and £160w) are used above, have been replaced with $£ (the
shell variable that for will update in every loop) below.
$ rm flat-ir/*.fits
$ for f in f105w f125w f160w; do \
astcrop --mode=wcs -h0 --output=flat-ir/xdf-$f.fits \
--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208" \
download/hlsp_xdf_hst_wfc3ir-60mas_hudf_"$f"_v1_sci.fits; \
done

Please open these images and inspect them with the same ds9 command you used above.
You will see how it is nicely flat now and doesn’t have varying depths. Another important
result of this crop is that regions with no data now have a NaN (Not-a-Number, or a blank
value) value. In the downloaded files, such regions had a value of zero. However, zero is a
number, and is thus meaningful, especially when you later want to NoiseChisel'!. Generally,
when you want to ignore some pixels in a dataset, and avoid higher-level ambiguities or
complications, it is always best to give them blank values (not zero, or some other absurdly
large or small number). Gnuastro has the Arithmetic program for such cases, and we’ll
introduce it later in this tutorial.

2.2.5 Angular coverage on the sky

This is the deepest image we currently have of the sky. The first thing that comes to mind
may be this: “How large is this field on the sky?”. The FITS world coordinate system
(WCS) meta data standard contains the key to answering this question. Run the following
command to see all the FITS keywords (metadata) for one of the images (mostly the same
with the other filters because they were are scaled to the same region of Sky):

astfits flat-ir/xdf-f160w.fits -hil

Look into the keywords grouped under the ‘World Coordinate System (WCS)’ title.
These keywords define how the image relates to the outside world. In particular, the CDELT*
keywords (or CDELT1 and CDELT2 in this 2D image) contain the “Coordinate DELTa” (or
change in coordinate units) with a change in one pixel. But what is the units of each “world”
coordinate? The CUNIT* keywords (for “Coordinate UNIT”) have the answer. In this case,
both CUNIT1 and CUNIT1 have a value of deg, so both “world” coordiantes are in units of
degrees. We can thus conclude that the value of CDELT* is in units of degrees-per-pixel'2.

I Ag you will see below, unlike most other detection algorithms, NoiseChisel detects the objects from
their faintest parts, it doesn’t start with their high signal-to-noise ratio peaks. Since the Sky is already
subtracted in many images and noise fluctuates around zero, zero is commonly higher than the initial
threshold applied. Therefore not ignoring zero-valued pixels in this image, will cause them to part of the
detections!

With the FITS CDELT convention, rotation (PC or CD keywords) and scales (CDELT) are separated. In the
FITS standard the CDELT keywords are optional. When CDELT keywords aren’t present, the PC matrix
is assumed to contain both the coordinate rotation and scales. Note that not all FITS writers use the
CDELT convention. So you might not find the CDELT keywords in the WCS meta data of some FITS files.
However, all Gnuastro programs (which use the default FITS keyword writing format of WCSLIB) write
their output WCS with the CDELT convention, even if the input doesn’t have it. If your dataset doesn’t
use the CDELT convention, you can feed it to any (simple) Gnuastro program (for example Arithmetic)
and the output will have the CDELT keyword. See Section 8 of the FITS standard (https://fits.gsfc.
nasa.gov/standard40/fits_standard40aa-le.pdf) for more

12

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf
https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

Chapter 2: Tutorials 30

With the commands below, we’ll use CDELT (along with the image size) to find the
answer of our initial question: “how much of the sky does this image cover?”. The lines
starting with ## are just comments for you to read and understand each command. Don’t
type them on the terminal. The commands are intentionally repetitive in some places to
better understand each step and also to demonstrate the beauty of command-line features
like history, variables, pipes and loops (which you will commonly use as you master the
command-line).

Use shell history: Don’t forget to make effective use of your shell’s history: you don’t have
to re-type previous command to add something to them. This is especially convenient when
you just want to make a small change to your previous command. Press the “up” key on
your keyboard (possibly multiple times) to see your previous command(s) and modify them
accordingly.

See the general statistics of non-blank pixel values.
$ aststatistics flat-ir/xdf-f160w.fits

We only want the number of non-blank pixels.
$ aststatistics flat-ir/xdf-f160w.fits —-number

Keep the result of the command above in the shell variable ‘n’.
$ n=$(aststatistics flat-ir/xdf-f160w.fits --number)

See what is stored the shell variable ‘n’.
$ echo $n

Show all the FITS keywords of this image.
$ astfits flat-ir/xdf-f160w.fits -hl

The resolution (in degrees/pixel) is in the ‘CDELT’ keywords.
Only show lines that contain these characters, by feeding

the output of the previous command to the ‘grep’ program.

$ astfits flat-ir/xdf-f160w.fits -hl | grep CDELT

Since the resolution of both dimensions is (approximately) equal,
we’ll only use one of them (CDELT1).
$ astfits flat-ir/xdf-f160w.fits -hl | grep CDELT1

To extract the value (third token in the line above), we’ll

feed the output to AWK. Note that the first two tokens are

‘CDELT1’ and ‘=’.

$ astfits flat-ir/xdf-f160w.fits -hl | grep CDELT1 | awk ’{print $3}’

Save it as the shell variable ‘r’.
$ r=$(astfits flat-ir/xdf-f160w.fits -hl | grep CDELT1 \
| awk ’{print $3}’)

Chapter 2: Tutorials 31

Print the values of ‘n’ and ‘r’.
$ echo $n $r

Use the number of pixels (first number passed to AWK) and
length of each pixel’s edge (second number passed to AWK)
to estimate the area of the field in arc-minutes squared.
$ echo $n $r | awk ’{print $1 * ($2°2) * 3600}’

The output of the last command (area of this field) is 4.03817 (or approximately 4.04)
arc-minutes squared. Just for comparison, this is roughly 175 times smaller than the average
moon’s angular area (with a diameter of 30arc-minutes or half a degree).

(N
AWK for table/value processing: As you saw above AWK is a powerful and simple tool

for text processing. You will see it often in shell scripts. GNU AWK (the most common
implementation) comes with a free and wonderful book (https://www.gnu.org/software/
gawk/manual/) in the same format as this book which will allow you to master it nicely. Just
like this manual, you can also access GNU AWK’s manual on the command-line whenever

necessary without taking your hands off the keyboard. Just run info awk.
- J

2.2.6 Cosmological coverage

Having found the angular coverage of the dataset in Section 2.2.5 [Angular coverage on the
sky], page 29, we can now use Gnuastro to answer a more physically motivated question:
“How large is this area at different redshifts?”. To get a feeling of the tangential area that
this field covers at redshift 2, you can use Gnuastro’s CosmicCalcular program (Section 9.1
[CosmicCalculator], page 344). In particular, you need the tangential distance covered by
1 arc-second as raw output. Combined with the field’s area that was measured before, we
can calculate the tangential distance in Mega Parsecs squared (Mpc?).

Print general cosmological properties at redshift 2 (for example).
$ astcosmiccal -z2

When given a "Specific calculation" option, CosmicCalculator
will just print that particular calculation. To see all such
calculations, add a ‘--help’ token to the previous command

(under the same title). Note that with ‘--help’, no processing
is done, so you can always simply append it to remember

something without modifying the command you want to run.

$ astcosmiccal -z2 --help

Only print the "Tangential dist. covered by larcsec at z (kpc)".
in units of kpc/arc-seconds.
$ astcosmiccal -z2 --arcsectandist

But its easier to use the short version of this option (which
can be appended to other short options.
$ astcosmiccal -sz2

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/

Chapter 2: Tutorials 32

Convert this distance to kpc”™2/arcmin”2 and save in ‘k’.
$ k=$(astcosmiccal -sz2 | awk ’{print ($1*60)°2}’)

Re-calculate the area of the dataset in arcmin™2.

$ n=$(aststatistics flat-ir/xdf-f160w.fits --number)

$ r=$(astfits flat-ir/xdf-f160w.fits -hl | grep CDELT1 \
| awk ’{print $3}’)

$ a=$(echo $n $r | awk ’{print $1 * ($2°2) =* 3600}’)

Multiply ‘k’> and ‘a’ and divide by 1076 for value in Mpc~2.

$ echo $k $a | awk ’{print $1 * $2 / 1le6}’
At redshift 2, this field therefore covers approximately 1.07 Mpc?. If you would like to see
how this tangential area changes with redshift, you can use a shell loop like below.

$ for z in 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0; do \

k=$(astcosmiccal -sz$z); \

echo $z $k $a | awk ’{print $1, ($2*%60)"2 * $3 / 1le6}’; \
done

Fortunately, the shell has a useful tool/program to print a sequence of numbers that is
nicely called seq. You can use it instead of typing all the different redshifts in this example.
For example the loop below will calculate and print the tangential coverage of this field
across a larger range of redshifts (0.1 to 5) and with finer increments of 0.1.

$ for z in $(seq 0.1 0.1 5); do \

k=$(astcosmiccal -z$z —--arcsectandist); \

echo $z $k $area | awk ’{print $1, ($2*60)°2 * $3 / 1le6}’; \
done

2.2.7 Building custom programs with the library

In Section 2.2.6 [Cosmological coverage], page 31, we repeated a certain calculation/output
of a program multiple times using the shell’s for loop. This simple way repeating a calcula-
tion is great when it is only necessary once. However, if you commonly need this calculation
and possibly for a larger number of redshifts at higher precision, the command above can
be slow (try it out to see).

This slowness of the repeated calls to a generic program (like CosmicCalculator), is
because it can have a lot of overhead on each call. To be generic and easy to operate, it has
to parse the command-line and all configuration files (see Section 2.2.8 [Option management
and configuration files|, page 34) which contain human-readable characters and need a lot of
pre-processing to be ready for processing by the computer. Afterwards, CosmicCalculator
has to check the sanity of its inputs and check which of its many options you have asked
for. All the this pre-processing takes as much time as the high-level calculation you are
requesting, and it has to re-do all of these for every redshift in your loop.

To greatly speed up the processing, you can directly access the core work-horse of Cos-
micCalculator without all that overhead by designing your custom program for this job.
Using Gnuastro’s library, you can write your own tiny program particularly designed for
this exact calculation (and nothing else!). To do that, copy and paste the following C
program in a file called myprogram.c.

Chapter 2: Tutorials 33

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnuastro/cosmology.h>

int

main(void)

{
double area=4.03817; /* Area of field (arcmin~2). */
double z, adist, tandist; /* Temporary variables. x/

/* Constants from Plank 2018 (arXiv:1807.06209, Table 2) */
double HO=67.66, olambda=0.6889, omatter=0.3111, oradiation=0;

/* Do the same thing for all redshifts (z) between 0.1 and 5. */
for(z=0.1; z<5; z+=0.1)
{
/* Calculate the angular diameter distance. */
adist=gal_cosmology_angular_distance(z, HO, olambda,
omatter, oradiation);

/* Calculate the tangential distance of one arcsecond. */
tandist = adist * 1000 * M_PI / 3600 / 180;

/* Print the redshift and area. */
printf ("%-5.2f %g\n", z, pow(tandist * 60,2) * area / 1le6);
}

/* Tell the system that everything finished successfully. */
return EXIT_SUCCESS;
b

Then run the following command to compile your program and run it.
$ astbuildprog myprogram.c

In the command above, you used Gnuastro’s BuildProgram program. Its job is to greatly
simplify the compilation, linking and running of simple C programs that use Gnuastro’s
library (like this one). BuildProgram is designed to manage Gnuastro’s dependencies, com-
pile and link your custom program and then run it.

Did you notice how your custom program was much faster than the repeated calls to
CosmicCalculator in the previous section? You might have noticed that a new file called
myprogran is also created in the directory. This is the compiled program that was created
and run by the command above (its in binary machine code format, not human-readable
any more). You can run it again to get the same results with a command like this:

$./myprogram

The efficiency of your custom myprogram compared to repeated calls to CosmicCalculator
is because in the latter, the requested processing is comparable to the necessary overheads.

Chapter 2: Tutorials 34

For other programs that take large input datasets and do complicated processing on them,
the overhead is usually negligible compared to the processing. In such cases, the libraries
are only useful if you want a different/new processing compared to the functionalities in
Gnuastro’s existing programs.

Gnuastro has a large library which is used extensively by all the programs. In other
words, the library is like the skeleton of Gnuastro. For the full list of available functions
classified by context, please see Section 10.3 [Gnuastro library|, page 369. Gnuastro’s library
and BuildProgram are created to make it easy for you to use these powerful features as you
like. This gives you a high level of creativity, while also providing efficiency and robust-
ness. Several other complete working examples (involving images and tables) of Gnuastro’s
libraries can be see in Section 10.4 [Library demo programs|, page 491.

But for this tutorial, let’s stop discussing the libraries at this point in and get back
to Gnuastro’s already built programs which don’t need any programming. But before
continuing, let’s clean up the files we don’t need any more:

$ rm myprogram*

2.2.8 Option management and configuration files

None of Gnuastro’s programs keep a default value internally within their code. However,
when you ran CosmicCalculator only with the -z2 option (not specifying the cosmological
parameters) in Section 2.2.6 [Cosmological coverage], page 31, it completed its processing
and printed results. Where did the necessary cosmological parameters (like the matter
density, etc) that are necessary for its calculations come from? Fast reply: the values come
from a configuration file (see Section 4.2.2 [Configuration file precedence|, page 119).

CosmicCalculator is a small program with a limited set of parameters/options. There-
fore, let’s use it to discuss configuration files in Gnuastro (for more, you can always see
Section 4.2 [Configuration files], page 118). Configuration files are an important part of all
Gnuastro’s programs, especially the ones with a large number of options, so its important
to understand this part well .

Once you get comfortable with configuration files here, you can make good use of them
in all Gnuastro programs (for example, NoiseChisel). For example, to do optimal detection
on various datasets, you can have configuration files for different noise properties. The
configuration of each program (besides its version) is vital for the reproducibility of your
results, so it is important to manage them properly.

As we saw above, the full list of the options in all Gnuastro programs can be seen with the
—--help option. Try calling it with CosmicCalculator as shown below. Note how options are
grouped by context to make it easier to find your desired option. However, in each group,
options are ordered alphabetically.

$ astcosmiccal --help

The options that need a value have an = sign after their long version and FLT, INT or STR for
floating point numbers, integer numbers, and strings (filenames for example) respectively.
All options have a long format and some have a short format (a single character), for more
see Section 4.1.1.2 [Options|, page 105.

When you are using a program, it is often necessary to check the value the option has just
before the program starts its processing. In other words, after it has parsed the command-
line options and all configuration files. You can see the values of all options that need one

Chapter 2: Tutorials 35

with the --printparams or -P option. --printparams is common to all programs (see
Section 4.1.2 [Common options], page 107). In the command below, try replacing -P with
--printparams to see how both do the same operation.

$ astcosmiccal -P

Let’s say you want a different Hubble constant. Try running the following command
(just adding --HO=70 after the command above) to see how the Hubble constant in the
output of the command above has changed.

$ astcosmiccal -P --HO=70

Afterwards, delete the -P and add a -z2 to see the calculations with the new cosmology (or
configuration).

$ astcosmiccal --HO=70 -z2

From the output of the --help option, note how the option for Hubble constant has
both short (-H) and long (--HO) formats. Onme final note is that the equal (=) sign is
not mandatory. In the short format, the value can stick to the actual option (the short
option name is just one character after-all, thus easily identifiable) and in the long format,
a white-space character is also enough.

$ astcosmiccal -H70 -z2
$ astcosmiccal --HO 70 -z2 --arcsectandist

When an option doesn’t need a value, and has a short format (like -—arcsectandist), you
can easily append it before other short options. So the last command above can also be
written as:

$ astcosmiccal --HO 70 -sz2

Let’s assume that in one project, you want to only use rounded cosmological parameters
(HO of 70km/s/Mpc and matter density of 0.3). You should therefore run CosmicCalculator
like this:

$ astcosmiccal --HO=70 --olambda=0.7 --omatter=0.3 -z2

But having to type these extra options every time you run CosmicCalculator will be
prone to errors (typos in particular), frustrating and slow. Therefore in Gnuastro, you can
put all the options and their values in a “Configuration file” and tell the programs to read
the option values from there.

Let’s create a configuration file... With your favorite text editor, make a file named
my-cosmology.conf (or my-cosmology.txt, the suffix doesn’t matter, but a more descrip-
tive suffix like .conf is recommended). Then put the following lines inside of it. One space
between the option value and name is enough, the values are just under each other to help
in readability. Also note that you can only use long option names in configuration files.

HO 70
olambda 0.7
omatter 0.3

You can now tell CosmicCalculator to read this file for option values immediately using the
--config option as shown below. Do you see how the output of the following command
corresponds to the option values in my-cosmology.conf, and is therefore identical to the
previous command?

$ astcosmiccal --config=my-cosmology.conf -z2

Chapter 2: Tutorials 36

But still, having to type ——config=my-cosmology.conf every time is annoying, isn’t it?
If you need this cosmology every time you are working in a specific directory, you can use
Gnuastro’s default configuration file names and avoid having to type it manually.

The default configuration files (that are checked if they exist) must be placed in the
hidden .gnuastro sub-directory (in the same directory you are running the program).
Their file name (within .gnuastro) must also be the same as the program’s executable
name. So in the case of CosmicCalculator, the default configuration file in a given directory
is .gnuastro/astcosmiccal.conf.

Let’s do this. We'll first make a directory for our custom cosmology, then build a
.gnuastro within it. Finally, we’ll copy the custom configuration file there:

$ mkdir my-cosmology
$ mkdir my-cosmology/.gnuastro
$ mv my-cosmology.conf my-cosmology/.gnuastro/astcosmiccal.conf

Once you run CosmicCalculator within my-cosmology (as shown below), you will see
how your custom cosmology has been implemented without having to type anything extra
on the command-line.

$ cd my-cosmology
$ astcosmiccal -P
$ cd ..

To further simplify the process, you can use the ——setdirconf option. If you are already
in your desired working directory, calling this option with the others will automatically write
the final values (along with descriptions) in .gnuastro/astcosmiccal.conf. For example
try the commands below:

$ mkdir my-cosmology2

cd my-cosmology2

astcosmiccal -P

astcosmiccal --HO 70 --olambda=0.7 --omatter=0.3 --setdirconf
astcosmiccal -P

$ cd ..

Gnuastro’s programs also have default configuration files for a specific user (when run in
any directory). This allows you to set a special behavior every time a program is run by a
specific user. Only the directory and filename differ from the above, the rest of the process
is similar to before. Finally, there are also system-wide configuration files that can be used
to define the option values for all users on a system. See Section 4.2.2 [Configuration file
precedence], page 119, for a more detailed discussion.

€@ H H P

We’ll stop the discussion on configuration files here, but you can always read about them
in Section 4.2 [Configuration files], page 118. Before continuing the tutorial, let’s delete the
two extra directories that we don’t need any more:

$ rm -rf my-cosmology*

2.2.9 Warping to a new pixel grid

We are now ready to start processing the downloaded images. The XDF datasets we are us-
ing here are already aligned to the same pixel grid. However, warping to a different /matched
pixel grid is commonly needed before higher-level analysis when you are using datasets from
different instruments. So let’s have a look at Gnuastro’s features warping features here.

Chapter 2: Tutorials 37

Gnuastro’s Warp program should be used for warping the pixel-grid (see Section 6.4
[Warp], page 228). For example, try rotating one of the images by 20 degrees:

$ astwarp flat-ir/xdf-f160w.fits --rotate=20

Open the output (xdf-f160w_rotated.fits) and see how it is rotated. If your final image
is already aligned with RA and Dec, you can simply use the -—align option and let Warp
calculate the necessary rotation and apply it. For example, try aligning the rotated image
back to the standard orientation (just note that because of the two rotations, the NaN parts
of the image are larger now):

$ astwarp xdf-f160w_rotated.fits --align

Warp can generally be used for many kinds of pixel grid manipulation (warping), not
just rotations. For example the outputs of the commands below will respectively have larger
pixels (new resolution being one quarter the original resolution), get shifted by 2.8 (by sub-
pixel), get a shear of 2, and be tilted (projected). Run each of them and open the output
file to see the effect, they will become handy for you in the future.

$ astwarp flat-ir/xdf-f160w.fits --scale=0.25

$ astwarp flat-ir/xdf-f160w.fits --translate=2.8

$ astwarp flat-ir/xdf-f160w.fits --shear=0.2

$ astwarp flat-ir/xdf-f160w.fits --project=0.001,0.0005

If you need to do multiple warps, you can combine them in one call to Warp. For example
to first rotate the image, then scale it, run this command:

$ astwarp flat-ir/xdf-f160w.fits --rotate=20 --scale=0.25

If you have multiple warps, do them all in one command. Don’t warp them in separate
commands because the correlated noise will become too strong. As you see in the matrix
that is printed when you run Warp, it merges all the warps into a single warping matrix
(see Section 6.4.2 [Merging multiple warpings|, page 231) and simply applies that (mixes the
pixel values) just once. However, if you run Warp multiple times, the pixels will be mixed
multiple times, creating a strong artificial blur/smoothing, or stronger correlated noise.

Recall that the merging of multiple warps is done through matrix multiplication, there-
fore order matters in the separate operations. At a lower level, through Warp’s —-matrix
option, you can directly request your desired final warp and don’t have to break it up into
different warps like above (see Section 6.4.4 [Invoking Warp], page 233).

Fortunately these datasets are already aligned to the same pixel grid, so you don’t
actually need the files that were just generated.You can safely delete them all with the
following command. Here, you see why we put the processed outputs that we need later
into a separate directory. In this way, the top directory can be used for temporary files for
testing that you can simply delete with a generic command like below.

$ rm *.fits

2.2.10 NoiseChisel and Multiextension FITS files

Having completed a review of the basics in the previous sections, we are now ready to
separate the signal (galaxies or stars) from the background noise in the image. We will be
using the results of Section 2.2.4 [Dataset inspection and cropping], page 27, so be sure you
already have them. Gnuastro has NoiseChisel for this job. But NoiseChisel’s output is a
multi-extension FITS file, therefore to better understand how to use NoiseChisel, let’s take
a look at multi-extension FITS files and how you can interact with them.

Chapter 2: Tutorials 38

In the FITS format, each extension contains a separate dataset (image in this case). You
can get basic information about the extensions in a FITS file with Gnuastro’s Fits program
(see Section 5.1 [Fits], page 142). To start with, let’s run NoiseChisel without any options,
then use Gnuastro’s FITS program to inspect the number of extensions in this file.

$ astnoisechisel flat-ir/xdf-f160w.fits
$ astfits xdf-f160w_detected.fits

From the output list, we see that NoiseChisel’s output contains 5 extensions and the
first (counting from zero, with name NOISECHISEL-CONFIG) is empty: it has value of 0 in
the last column (which shows its size). The first extension in all the outputs of Gnuastro’s
programs only contains meta-data: data about/describing the datasets within (all) the
output’s extensions. This is recommended by the FITS standard, see Section 5.1 [Fits],
page 142, for more. In the case of Gnuastro’s programs, this generic zero-th/meta-data
extension (for the whole file) contains all the configuration options of the program that
created the file.

The second extension of NoiseChisel’s output (numbered 1, named INPUT-NO-SKY) is
the Sky-subtracted input that you provided. The third (DETECTIONS) is NoiseChisel’s main
output which is a binary image with only two possible values for all pixels: 0 for noise and
1 for signal. Since it only has two values, to avoid taking too much space on your computer,
its numeric datatype an unsigned 8-bit integer (or uint8)'®. The fourth and fifth (SKY and
SKY_STD) extensions, have the Sky and its standard deviation values for the input on a tile
grid and were calculated over the undetected regions (for more on the importance of the
Sky value, see Section 7.1.4 [Sky value], page 241).

Metadata regarding how the analysis was done (or a dataset was created) is very impor-
tant for higher-level analysis and reproducibility. Therefore, Let’s first take a closer look
at the NOISECHISEL-CONFIG extension. If you specify a special header in the FITS file,
Gnuastro’s Fits program will print the header keywords (metadata) of that extension. You
can either specify the HDU /extension counter (starting from 0), or name. Therefore, the
two commands below are identical for this file:

$ astfits xdf-f160w_detected.fits -hO
$ astfits xdf-f160w_detected.fits -hNOISECHISEL-CONFIG

The first group of FITS header keywords are standard keywords (containing the SIMPLE
and BITPIX keywords the first empty line). They are required by the FITS standard and
must be present in any FITS extension. The second group contains the input file and all
the options with their values in that run of NoiseChisel. Finally, the last group contains
the date and version information of Gnuastro and its dependencies. The “versions and
date” group of keywords are present in all Gnuastro’s FITS extension outputs, for more see
Section 4.10 [Output FITS files|, page 139.

Note that if a keyword name is larger than 8 characters, it is preceded by a HIERARCH
keyword and that all keyword names are in capital letters. Therefore, if you want to see
only one keyword’s value by feeding the output to Grep, you should ask Grep to ignore case
with its —i option (short name for --ignore-case). For example, below we’ll check the
value to the —-snminarea option, note how we don’t need Grep’s -i option when it is fed
with astnoisechisel -P since it is already in small-caps there. The extra white spaces in
the first command are only to help in readability, you can ignore them when typing.

13 To learn more about numeric data types see Section 4.6 [Numeric data types|, page 128.

Chapter 2: Tutorials 39

$ astnoisechisel -P | grep snminarea
$ astfits xdf-f160w_detected.fits -h0 | grep -i snminarea

The metadata (that is stored in the output) can later be used to exactly repro-
duce/understand your result, even if you have lost/forgot the command you used to create
the file. This feature is present in all of Gnuastro’s programs, not just NoiseChisel.

Let’s continue with the extensions in NoiseChisel’s output that contain a dataset by
visually inspecting them (here, we’ll use SAO DS9). Since the file contains multiple related
extensions, the easiest way to view all of them in DS9 is to open the file as a “Multi-extension
data cube” with the -mecube option as shown below!4.

$ ds9 -mecube xdf-f160w_detected.fits -zscale —-zoom to fit

A “cube” window opens along with DS9’s main window. The buttons and horizontal
scroll bar in this small new window can be used to navigate between the extensions. In
this mode, all DS9’s settings (for example zoom or color-bar) will be identical between the
extensions. Try zooming into to one part and flipping through the extensions to see how
the galaxies were detected along with the Sky and Sky standard deviation values for that
region. Just have in mind that NoiseChisel’s job is only detection (separating signal from
noise), We’ll do segmentation on this result later to find the individual galaxies/peaks over
the detected pixels.

Each HDU /extension in a FITS file is an independent dataset (image or table) which you
can delete from the FITS file, or copy/cut to another file. For example, with the command
below, you can copy NoiseChisel’s DETECTIONS HDU /extension to another file:

$ astfits xdf-f160w_detected.fits --copy=DETECTIONS -odetections.fits

There are similar options to conveniently cut (--cut, copy, then remove from the input)
or delete (--remove) HDUs from a FITS file also. See Section 5.1.1.1 [HDU manipulation],
page 145, for more.

2.2.11 NoiseChisel optimization for detection

In Section 2.2.10 [NoiseChisel and Multiextension FITS files|, page 37, we ran NoiseChisel
and reviewed NoiseChisel’s output format. Now that you have a better feeling for multi-
extension FITS files, let’s optimize NoiseChisel for this particular dataset.

One good way to see if you have missed any signal (small galaxies, or the wings of
brighter galaxies) is to mask all the detected pixels and inspect the noise pixels. For this, you
can use Gnuastro’s Arithmetic program (in particular its where operator, see Section 6.2.2
[Arithmetic operators], page 190). The command below will produce mask-det.fits. In it,
all the pixels in the INPUT-NO-SKY extension that are flagged 1 in the DETECTIONS extension
(dominated by signal, not noise) will be set to NaN.

Since the various extensions are in the same file, for each dataset we need the file and
extension name. To make the command easier to read/write/understand, let’s use shell
variables: ‘in’ will be used for the Sky-subtracted input image and ‘det’ will be used for
the detection map. Recall that a shell variable’s value can be retrieved by adding a $ before

14 You can configure your graphic user interface to open DS9 in multi-extension cube mode by default when
using the GUI (double clicking on the file). If your graphic user interface is GNOME (another GNU
software, it is most common in GNU/Linux operating systems), a full description is given in Section B.1.1
[Viewing multiextension FITS images], page 524

Chapter 2: Tutorials 40

its name, also note that the double quotations are necessary when we have white-space
characters in a variable name (like this case).

$ in="xdf-f160w_detected.fits -hINPUT-NO-SKY"
$ det="xdf-f160w_detected.fits -hDETECTIONS"
$ astarithmetic $in $det nan where --output=mask-det.fits

To invert the result (only keep the detected pixels), you can flip the detection map (from 0
to 1 and vice-versa) by adding a ‘not’ after the second $det:

$ astarithmetic $in $det not nan where --output=mask-sky.fits

Looking again at the detected pixels, we see that there are thin connections between
many of the smaller objects or extending from larger objects. This shows that we have dug
in too deep, and that we are following correlated noise.

Correlated noise is created when we warp datasets from individual exposures (that are
each slightly offset compared to each other) into the same pixel grid, then add them to
form the final result. Because it mixes nearby pixel values, correlated noise is a form of
convolution and it smooths the image. In terms of the number of exposures (and thus
correlated noise), the XDF dataset is by no means an ordinary dataset. It is the result
of warping and adding roughly 80 separate exposures which can create strong correlated
noise/smoothing. In common surveys the number of exposures is usually 10 or less.

Let’s tweak NoiseChisel’s configuration a little to get a better result on this dataset.
Don’t forget that “Good statistical analysis is not a purely routine matter, and generally
calls for more than one pass through the computer” (Anscombe 1973, see Section 1.2 [Science
and its tools|, page 2). A good scientist must have a good understanding of her tools to
make a meaningful analysis. So don’t hesitate in playing with the default configuration and
reviewing the manual when you have a new dataset in front of you. Robust data analysis
is an art, therefore a good scientist must first be a good artist.

NoiseChisel can produce “Check images” to help you visualize and inspect how each step
is done. You can see all the check images it can produce with this command.

$ astnoisechisel --help | grep check

Let’s check the overall detection process to get a better feeling of what NoiseChisel is
doing with the following command. To learn the details of NoiseChisel in more detail, please
see Section 7.2 [NoiseChisel|, page 258, Akhlaghi and Ichikawa [2015] (https://arxiv.org/
abs/1505.01664) and Akhlaghi [2019] (https://arxiv.org/abs/1909.11230).

$ astnoisechisel flat-ir/xdf-f160w.fits —--checkdetection

The check images/tables are also multi-extension FITS files. As you saw from the
command above, when check datasets are requested, NoiseChisel won’t go to the end. It will
abort as soon as all the extensions of the check image are ready. Please list the extensions
of the output with astfits and then opening it with ds9 as we done above. If you have
read the paper, you will see why there are so many extensions in the check image.

$ astfits xdf-f160w_detcheck.fits
$ ds9 -mecube xdf-f160w_detcheck.fits -zscale -zoom to fit

In order to understand the parameters and their biases (especially as you are starting
to use Gnuastro, or running it a new dataset), it is strongly encouraged to play with the
different parameters and use the respective check images to see which step is affected by your
changes and how, for example see Section 2.3 [Detecting large extended targets|, page 61.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230

Chapter 2: Tutorials 41

The OPENED_AND_LABELED extension shows the initial detection step of NoiseChisel. We
see these thin connections between smaller points are already present here (a relatively
early stage in the processing). Such connections at the lowest surface brightness limits
usually occur when the dataset is too smoothed. Because of correlated noise, the dataset
is already artificially smoothed, therefore further smoothing it with the default kernel may
be the problem. One solution is thus to use a sharper kernel (NoiseChisel’s first step in its
processing).

By default NoiseChisel uses a Gaussian with full-width-half-maximum (FWHM) of 2
pixels. We can use Gnuastro’s MakeProfiles to build a kernel with FWHM of 1.5 pixel (trun-
cated at 5 times the FWHM, like the default) using the following command. MakeProfiles
is a powerful tool to build any number of mock profiles on one image or independently, to
learn more of its features and capabilities, see Section 8.1 [MakeProfiles], page 318.

$ astmkprof --kernel=gaussian,l1.5,5 --oversample=1

Please open the output kernel.fits and have a look (it is very small and sharp). We can
now tell NoiseChisel to use this instead of the default kernel with the following command
(we’ll keep checking the detection steps)

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \
——checkdetection

Looking at the OPENED_AND_LABELED extension, we see that the thin connections between
smaller peaks has now significantly decreased. Going two extensions/steps ahead (in the
first HOLES-FILLED), you can see that during the process of finding false pseudo-detections,
too many holes have been filled: do you see how the many of the brighter galaxies are
connected? At this stage all holes are filled, irrespective of their size.

Try looking two extensions ahead (in the first PSEUDOS-FOR-SN), you can see that there
aren’t too many pseudo-detections because of all those extended filled holes. If you look
closely, you can see the number of pseudo-detections in the result NoiseChisel prints (around
5000). This is another side-effect of correlated noise. To address it, we should slightly
increase the pseudo-detection threshold (before changing —~-dthresh, run with -P to see the
default value):

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \
—-dthresh=0.1 --checkdetection

Before visually inspecting the check image, you can already see the effect of this change
in NoiseChisel’s command-line output: notice how the number of pseudos has increased
to more than 6000. Open the check image now and have a look, you can see how the
pseudo-detections are distributed much more evenly in the image.

Maximize the number of pseudo-detections: For a new noise-pattern (different instrument),
play with --dthresh until you get a maximal number of pseudo-detections (the total number
of pseudo-detections is printed on the command-line when you run NoiseChisel).

The signal-to-noise ratio of pseudo-detections define NoiseChisel’s reference for removing
false detections, so they are very important to get right. Let’s have a look at their signal-
to-noise distribution with --checksn.

$ astnoisechisel flat-ir/xdf-f160w.fits —--kernel=kernel.fits \
——-dthresh=0.1 --checkdetection --checksn

Chapter 2: Tutorials 42

The output (xdf-f160w_detsn.fits) contains two extensions for the pseudo-detections
over the undetected (sky) regions and those over detections. The first column is the
pseudo-detection label which you can see in the respective!®> PSEUDOS-FOR-SN extension
of xdf-f160w_detcheck.fits. You can see the table columns with the first command
below and get a feeling for its distribution with the second command (the two Table and
Statistics programs will be discussed later in the tutorial)

$ asttable xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN
$ aststatistics xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN -c2

The correlated noise is again visible in this pseudo-detection signal-to-noise distribution:
it is highly skewed. A small change in the quantile will translate into a big change in the
S/N value. For example see the difference between the three 0.99, 0.95 and 0.90 quantiles
with this command:

$ aststatistics xdf-f160w_detsn.fits -hSKY_PSEUDODET_SN -c2 \
--quantile=0.99 --quantile=0.95 --quantile=0.90

If you run NoiseChisel with -P, you'll see the default signal-to-noise quantile --—snquant
is 0.99. In effect with this option you specify the purity level you want (contamination by
false detections). With the aststatistics command above, you see that a small number
of extra false detections (impurity) in the final result causes a big change in completeness
(you can detect more lower signal-to-noise true detections). So let’s loosen-up our desired
purity level, remove the check-image options, and then mask the detected pixels like before
to see if we have missed anything.

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \
--dthresh=0.1 --snquant=0.95

$ in="xdf-f160w_detected.fits -hINPUT-NO-SKY"

$ det="xdf-f160w_detected.fits -hDETECTIONS"

$ astarithmetic $in $det nan where --output=mask-det.fits

Overall it seems good, but if you play a little with the color-bar and look closer in the
noise, you’ll see a few very sharp, but faint, objects that have not been detected. This only
happens for under-sampled datasets like HST (where the pixel size is larger than the point
spread function FWHM). So this won’t happen on ground-based images. Because of this,
sharp and faint objects will be very small and eroded too easily during NoiseChisel’s erosion
step.

To address this problem of sharp objects, we can use NoiseChisel’s --noerodequant
option. All pixels above this quantile will not be eroded, thus allowing us to preserve faint
and sharp objects. Check its default value, then run NoiseChisel like below and make the
mask again. You will see many of those sharp objects are now detected.

$ astnoisechisel flat-ir/xdf-f160w.fits --kernel=kernel.fits \
--noerodequant=0.95 --dthresh=0.1 --snquant=0.95

This seems to be fine and we can continue with our analysis. To avoid having to write
these options on every call to NoiseChisel, we’ll just make a configuration file in a visible
config directory. Then we’ll define the hidden .gnuastro directory (that all Gnuastro’s
programs will look into for configuration files) as a symbolic link to the config directory.

15 The first PSEUDOS-FOR-SN in xdf-f160w_detsn.fits is for the pseudo-detections over the undetected
regions and the second is for those over detected regions.

Chapter 2: Tutorials 43

Finally, we’ll write the finalized values of the options into NoiseChisel’s standard configu-
ration file within that directory. We’ll also put the kernel in a separate directory to keep
the top directory clean of any files we later need.

$ mkdir kernel config

$ In -s config/ .gnuastro

$ mv kernel.fits kernel/noisechisel.fits

$ echo "kernel kernel/noisechisel.fits" > config/astnoisechisel.conf
$ echo "noerodequant 0.95" >> config/astnoisechisel.conf
$ echo "dthresh o0.1" >> config/astnoisechisel.conf
$ echo "snquant 0.95" >> config/astnoisechisel.conf

We are now ready to finally run NoiseChisel on the two filters and keep the output in a
dedicated directory (nc).

$ rm x.fits
mkdir nc
astnoisechisel flat-ir/xdf-f160w.fits --output=nc/xdf-f160w.fits
astnoisechisel flat-ir/xdf-f125w.fits --output=nc/xdf-f12bw.fits
astnoisechisel flat-ir/xdf-f105w.fits --output=nc/xdf-f105w.fits

€@ H H P

2.2.12 NoiseChisel optimization for storage

As we showed before (in Section 2.2.10 [NoiseChisel and Multiextension FITS files|, page 37),
NoiseChisel’s output is a multi-extension FITS file with several images the same size as the
input. As the input datasets get larger this output can become hard to manage and waste
a lot of storage space. Fortunately there is a solution to this problem (which is also useful
for Segment’s outputs).

In this small section we’ll take a short detour to show this feature. Please note that the
outputs generated here are not needed for the rest of the tutorial. But first, let’s have a look
at the contents/HDUs and volume of NoiseChisel’s output from Section 2.2.11 [NoiseChisel
optimization for detection], page 39, (fast answer, its larger than 100 mega-bytes):

$ astfits nc/xdf-f160w.fits
$ 1s -1h nc/xdf-f160w.fits

Two options can drastically decrease NoiseChisel’s output file size: 1) With the
--rawoutput option, NoiseChisel won’t create a Sky-subtracted input. After all, it is
redundant: you can always generate it by subtracting the SKY extension from the input
image (which you have in your database) using the Arithmetic program. 2) With the
-—oneelempertile, you can tell NoiseChisel to store its Sky and Sky standard deviation
results with one pixel per tile (instead of many pixels per tile). So let’s run NoiseChisel
with these options, then have another look at the HDUs and the over-all file size:

$ astnoisechisel flat-ir/xdf-f160w.fits --oneelempertile --rawoutput \
-—output=nc-for-storage.fits

$ astfits nc-for-storage.fits

$ 1s -1h nc-for-storage.fits

See how nc-for-storage.fits has four HDUs, while nc/xdf-f160w.fits had five HDUs?
As explained above, the missing extension is INPUT-NO-SKY. Also, look at the sizes of the
SKY and SKY_STD HDUs, unlike before, they aren’t the same size as DETECTIONS, they only

Chapter 2: Tutorials 44

have one pixel for each tile (group of pixels in raw input). Finally, you see that nc-for-
storage.fits is just under 8 mega byes (while nc/xdf-f160w.fits was 100 mega bytes)!

But were are not finished! You can even be more efficient in storage, archival or trans-
ferring NoiseChisel’s output by compressing this file. Try the command below to see how
NoiseChisel’s output has now shrunk to about 250 kilo-byes while keeping all the necessary
information as the original 100 mega-byte output.

$ gzip --best nc-for-storage.fits
$ 1s -1lh nc-for-storage.fits.gz

We can get this wonderful level of compression because NoiseChisel’s output is binary
with only two values: 0 and 1. Compression algorithms are highly optimized in such
scenarios.

You can open nc-for-storage.fits.gz directly in SAO DS9 or feed it to any of
Gnuastro’s programs without having to decompress it. Higher-level programs that take
NoiseChisel’s output (for example Segment or MakeCatalog) can also deal with this com-
pressed image where the Sky and its Standard deviation are one pixel-per-tile. You just
have to give the “values” image as a separate option, for more, see Section 7.3 [Segment],
page 273, and Section 7.4 [MakeCatalog], page 284.

Segment (the program we will introduce in the next section for identifying sub-structure),
also has similar features to optimize its output for storage. Since this file was only created
for a fast detour demonstration, let’s keep our top directory clean and move to the next
step:

rm nc-for-storage.fits.gz

2.2.13 Segmentation and making a catalog

The main output of NoiseChisel is the binary detection map (DETECTIONS extension, see
Section 2.2.11 [NoiseChisel optimization for detection], page 39). which only has two values
of 1 or 0. This is useful when studying the noise, but hardly of any use when you actually
want to study the targets/galaxies in the image, especially in such a deep field where the
detection map of almost everything is connected. To find the galaxies over the detections,
we’ll use Gnuastro’s Section 7.3 [Segment|, page 273, program:

$ mkdir seg

$ astsegment nc/xdf-f160w.fits -oseg/xdf-f160w.fits
$ astsegment nc/xdf-f125w.fits -oseg/xdf-f125w.fits
$ astsegment nc/xdf-f105w.fits -oseg/xdf-f105w.fits

Segment’s operation is very much like NoiseChisel (in fact, prior to version 0.6, it was
part of NoiseChisel). For example the output is a multi-extension FITS file, it has check
images and uses the undetected regions as a reference. Please have a look at Segment’s
multi-extension output with ds9 to get a good feeling of what it has done.

$ ds9 -mecube seg/xdf-f160w.fits -zscale -zoom to fit

Like NoiseChisel, the first extension is the input. The CLUMPS extension shows the true
“clumps” with values that are > 1, and the diffuse regions labeled as —1. In the OBJECTS
extension, we see that the large detections of NoiseChisel (that may have contained many
galaxies) are now broken up into separate labels. See Section 7.3 [Segment|, page 273, for
more. The clumps are not affected by the hard-to-deblend and low signal-to-noise diffuse

Chapter 2: Tutorials 45

regions, they are more robust for calculating the colors (compared to objects). Therefore
from this step onward, we’ll continue with clumps.

Having localized the regions of interest in the dataset, we are ready to do measure-
ments on them with Section 7.4 [MakeCatalog|, page 284. Besides the IDs, we want to
measure (in this order) the Right Ascension (with --ra), Declination (--dec), magni-
tude (--magnitude), and signal-to-noise ratio (--sn) of the objects and clumps. Further-
more, as mentioned above, we also want measurements on clumps, so we also need to call
—--clumpscat. The following command will make these measurements on Segment’s F160W
output and write them in a catalog for each object and clump in a FITS table.

$ mkdir cat
$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
--zeropoint=25.94 --clumpscat --output=cat/xdf-f160w.fits

From the printed statements on the command-line, you see that MakeCatalog read all the
extensions in Segment’s output for the various measurements it needed. To calculate colors,
we also need magnitude measurements on the other filters. So let’s repeat the command
above on them, just changing the file names and zeropoint (which we got from the XDF
survey webpage):
$ astmkcatalog seg/xdf-f125w.fits --ids --ra --dec --magnitude --sn \
--zeropoint=26.23 --clumpscat --output=cat/xdf-f125w.fits

$ astmkcatalog seg/xdf-f105w.fits --ids --ra --dec --magnitude --sn \
—--zeropoint=26.27 --clumpscat --output=cat/xdf-f105w.fits

However, the galaxy properties might differ between the filters (which is the whole
purpose behind observing in different filters!). Also, the noise properties and depth of the
datasets differ. You can see the effect of these factors in the resulting clump catalogs, with
Gnuastro’s Table program. We’ll go deep into working with tables in the next section, but
in summary: the -i option will print information about the columns and number of rows.
To see the column values, just remove the —i option. In the output of each command below,
look at the Number of rows:, and note that they are different.

asttable cat/xdf-f105w.fits -hCLUMPS -i
asttable cat/xdf-f125w.fits -hCLUMPS -i
asttable cat/xdf-f160w.fits -hCLUMPS -i

Matching the catalogs is possible (for example with Section 7.5 [Match]|, page 311).
However, the measurements of each column are also done on different pixels: the clump
labels can/will differ from one filter to another for one object. Please open them and focus
on one object to see for your self. This can bias the result, if you match catalogs.

An accurate color calculation can only be done when magnitudes are measured from the
same pixels on both images. Fortunately in these images, the Point spread function (PSF)
are very similar, allowing us to do this directly!®. You can do this with MakeCatalog and
is one of the reasons that NoiseChisel or Segment don’t generate a catalog at all (to give
you the freedom of selecting the pixels to do catalog measurements on).

The F160W image is deeper, thus providing better detection/segmentation, and redder,
thus observing smaller/older stars and representing more of the mass in the galaxies. We will

16 When the PSFs between two images differ largely, you would have to PSF-match the images before using
the same pixels for measurements.

Chapter 2: Tutorials 46

thus use the F160W filter as a reference and use its segment labels to identify which pixels
to use for which objects/clumps. But we will do the measurements on the sky-subtracted
F105W and F125W images (using MakeCatalog’s —-valuesfile option) as shown below:
Notice how the major difference between this call to MakeCatalog and the call to generate
the F160W catalog (excluding the zeropoint and the output name) is the --valuesfile.

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
--valuesfile=nc/xdf-f125w.fits --zeropoint=26.23 \
--clumpscat --output=cat/xdf-f125w-on-f160w-lab.fits

$ astmkcatalog seg/xdf-f160w.fits --ids --ra --dec --magnitude --sn \
—--valuesfile=nc/xdf-f105w.fits --zeropoint=26.27 \
--clumpscat --output=cat/xdf-f105w-on-f160w-lab.fits
Look into what MakeCatalog printed on the command-line after running the commands
above. You can see that (as requested) the object and clump labels were taken from the
respective extensions in seg/xdf-f160w.fits, while the values and Sky standard deviation
were taken from nc/xdf-f105w.fits. Since we used the same labeled image on both filters,
the number of rows in both catalogs are now identical:
asttable cat/xdf-f105w-on-f160w-lab.fits -hCLUMPS -i
asttable cat/xdf-f125w-on-f160w-lab.fits -hCLUMPS -i
asttable cat/xdf-f160w.fits -hCLUMPS -i

Finally, the comments in MakeCatalog’s output (COMMENT keywords in the FITS headers,
or lines starting with # in plain text) contain some important information about the input
datasets and other useful info (for example pixel area or per-pixel surface brightness limit).
You can see them with this command:

$ astfits cat/xdf-f160w.fits -hl | grep COMMENT

2.2.14 Working with catalogs (estimating colors)

The output of the MakeCatalog command above is a FITS table (see Section 2.2.13 [Segmen-
tation and making a catalog], page 44). The two clump and object catalogs are available
in the two extensions of the single FITS file!”. Let’s see the extensions and their basic
properties with the Fits program:
$ astfits cat/xdf-f160w.fits # Extension information

Now, let’s inspect the table in each extension with Gnuastro’s Table program (see
Section 5.4 [Table], page 166). Note that we could have used -hOBJECTS and -hCLUMPS
instead of -h1 and -h2 respectively.

$ asttable cat/xdf-f160w.fits -hl --info # Objects catalog info.

$ asttable cat/xdf-f160w.fits -hl # Objects catalog columns.
$ asttable cat/xdf-f160w.fits -h2 -i # Clumps catalog info.
$ asttable cat/xdf-f160w.fits -h2 # Clumps catalog columns.

As you see above, when given a specific table (file name and extension), Table will print
the full contents of all the columns. To see the basic metadata about each column (for
example name, units and comments), simply append a --info (or -i) to the command.

17 MakeCatalog can also output plain text tables. However, in the plain text format you can only have
one table per file. Therefore, if you also request measurements on clumps, two plain text tables will be
created (suffixed with _o.txt and _c.txt).

Chapter 2: Tutorials 47

To print the contents of special column(s), just specify the column number(s) (counting
from 1) or the column name(s) (if they have one). For example, if you just want the
magnitude and signal-to-noise ratio of the clumps (in -h2), you can get it with any of the
following commands

$ asttable cat/xdf-f160w.fits -h2 -c5,6

$ asttable cat/xdf-f160w.fits -h2 -c5,SN

$ asttable cat/xdf-f160w.fits -h2 -cb -c6
$ asttable cat/xdf-f160w.fits -h2 -cMAGNITUDE -cSN

Using column names instead of numbers has many advantages: 1) you don’t have to
worry about the order of columns in the table. 2) It acts as a documentation in the script.
Column meta-data (including a name) aren’t just limited to FITS tables and can also be
used in plain text tables, see Section 4.7.2 [Gnuastro text table format], page 133.

Since cat/xdf-f160w.fits and cat/xdf-f105w-on-f160w-lab.fits have exactly the
same number of rows, we can use Table to merge the columns of these two tables, to have
one table with magnitudes in both filters. We do this with the -—catcolumnfile option like
below. You give this option a file name (which is assumed to be a table that has the same
number of rows), and all the table’s columns will be concatenated/appended to the main
table. So please try it out with the commands below. We’ll first look at the metadata of the
first table (only the CLUMPS extension). With the second command, we’ll concatenate the
two tables and write them in, two-in-one.fits and finally, we’ll check the new catalog’s
metadata.

$ asttable cat/xdf-f160w.fits -i -hCLUMPS

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=two-in-one.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
—-catcolumnhdu=CLUMPS

$ asttable two-in-one.fits -i

Looking at the two metadata outputs (called with -i), you may have noticed that both
tables have the same number of rows. But what might have attracted your attention more,
is that both-mags.fits has double the number of columns (as expected, after all, you
merged both tables into one file). In fact you can concatenate any number of other tables
in one command, for example:

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
--catcolumnfile=cat/xdf-f105w-on-f160w-1lab.fits \
—--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS

$ asttable three-in-omne.fits -i

As you see, to avoid confusion in column names, Table has intentionally appended a -1
to the column names of the first concatenated table (so for example we have the original
RA column, and another one called RA-1). Similarly a -2 has been added for the columns
of the second concatenated table.

However, this example clearly shows a problem with this full concatenation: some
columns are identical (for example HOST_0BJ_ID and HOST_0BJ_ID-1), or not needed (for
example RA-1 and DEC-1 which are not necessary here). In such cases, you can use
--catcolumns to only concatenate certain columns, not the whole table, for example this
command:

Chapter 2: Tutorials 48

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=two-in-one-2.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
—-catcolumnhdu=CLUMPS --catcolumns=MAGNITUDE

$ asttable three-in-one-2.fits -i

You see that we have now only appended the MAGNITUDE column of cat/xdf-f125w-
on-f160w-1lab.fits. This is what we needed to be able to later subtract the magnitudes.
Let’s go ahead and add the F105W magnitudes also with the command below. Note how
we need to call ——catcolumnhdu once for every table that should be appended, but we only
call --catcolumn once (assuming all the tables that should be appended have this column).

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one-2.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
——catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \
--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS \
—-catcolumns=MAGNITUDE

$ asttable three-in-one-2.fits -i

But we aren’t finished yet! There is a very big problem: its not clear which one of
MAGNITUDE, MAGNITUDE-1 or MAGNITUDE-2 columns belong to which filter! Right now, you
know this because you just ran this command. But in one hour, you’ll start doubting your
self and will be forced to go through your command history, trying to answer this question.
You should never torture your future-self (or your colleagues) like this! So, let’s rename
these confusing columns in the matched catalog.

Fortunately, with the —-colmetadata option, you can correct the column metadata of
the final table (just before it is written). It takes four values: 1) the column name or
number, 2) the column name, 3) the column unit and 4) the column comments. Since the
comments are usually human-friendly sentences and contain space characters, you should
put them in double quotations like below. For example by adding three calls of this option
to the previous command, we write the filter name in the magnitude column name and
description.

$ asttable cat/xdf-f160w.fits -hCLUMPS --output=three-in-one-3.fits \
--catcolumnfile=cat/xdf-f125w-on-f160w-lab.fits \
--catcolumnfile=cat/xdf-f105w-on-f160w-lab.fits \
--catcolumnhdu=CLUMPS --catcolumnhdu=CLUMPS \
--catcolumns=MAGNITUDE \
--colmetadata=MAGNITUDE,MAG-F160w,log, "Magnitude in F160W." \
--colmetadata=MAGNITUDE-1,MAG-F125w,log, "Magnitude in F125W." \
--colmetadata=MAGNITUDE-2,MAG-F105w,log,"Magnitude in F105W."

$ asttable three-in-one-3.fits -i

We now have both magnitudes in one table and can start doing arithmetic on them (to
estimate colors, which are just a subtraction of magnitudes). To use column arithmetic,
simply call the column selection option (--—column or -c), put the value in single quotations
and start the value with arith (followed by a space) like the example below. Column
arithmetic uses the same notation as the Arithmetic program (see Section 6.2.1 [Reverse
polish notation], page 189), with almost all the same operators (see Section 6.2.2 [Arithmetic
operators|, page 190), and some column-specific operators (that aren’t available for images).
In column-arithmetic, you can identify columns by number (prefixed with a $) or name, for
more see Section 5.4.1 [Column arithmetic|, page 167.

Chapter 2: Tutorials 49

So let’s estimate one color from three-in-one-3.fits using column arithmetic. All the
commands below will produce the same output, try them each and focus on the differences.
Note that column arithmetic can be mixed with other ways to choose output columns (the
-c option).

$ asttable three-in-one-3.fits -ocolor-cat.fits \
-c1,2,RA,DEC,’arith $5 $7 -’

$ asttable three-in-one-3.fits -ocolor-cat.fits \
-c1,2,RA,DEC, ’arith MAG-F125W MAG-F160W -’

$ asttable three-in-one-3.fits -ocolor-cat.fits -c1,2 \
-cRA,DEC --column=’arith MAG-F105W MAG-F160W -’

This example again highlights the important point on column metadata: do you see how
clearly understandable the the last two commands are? On the contrary, do you feel how
cryptic the first one is? When you have column names, please use them. If your table
doesn’t have column names, give them names with the --colmetadata (described above)
as you are creating them. But how about the metadata for the column you just created
with column arithmetic? Have a look at the column metadata of the table produced above:

$ asttable color-cat.fits -i

The name of the column produced by arithmetic column is ARITH_1! This is natural:
Arithmetic has no idea what the modified column is! You could have multiplied two columns,
or done much more complex transformations with many columns. Metadata can’t be set
automatically. To add metadata, you can use —-colmetadata like before:

$ asttable three-in-one-3.fits -ocolor-cat.fits -c1,2,RA,DEC \
--column=’arith MAG-F105W MAG-F160W -’ \
—--colmetadata=ARITH_1,F125W-F160W,log, "Magnitude difference"

We are now ready to make our final table. We want it to have the magnitudes in all
three filters, as well colors. Recall that by convention in astronomy colors are defined by
subtracting the bluer magnitude from the redder magnitude. In this way a larger color
value corresponds to a redder object. So from the three magnitudes, we can produce three
colors (as shown below). Also, because this is the final table we are creating here and want
to use it later, we’ll store it in cat/ and we’ll also give it a clear name and use the --range
option to only print columns with a signal-to-noise ratio (SN column, from the F160W filter)
above 5.

$ asttable three-in-one-3.fits --range=SN,5,inf -c1,2,RA,DEC,SN \
-cMAG-F160W,MAG-F125W,MAG-F105W \
-c’arith MAG-F125W MAG-F160W -’ \
-c’arith MAG-F105W MAG-F125W -’ \
-c’arith MAG-F105W MAG-F160W -’ \
--colmetadata=SN,SN-F160W,ratio,"F160W signal to noise ratio"
--colmetadata=ARITH_1,F125W-F160W,log,"Color F125W and F160W"
--colmetadata=ARITH_2,F105W-F125W,log,"Color F105W and F125W"
--colmetadata=ARITH_3,F105W-F160W,log,"Color F105W and F160W"
--output=cat/mags-with-color.fits

$ asttable cat/mags-with-color.fits -i

Chapter 2: Tutorials 50

The table now has all the columns we need and it has the proper metadata to let us
safely use it later (without frustrating over column orders!) or passing it to colleagues. You
can now inspect the distribution of colors with the Statistics program.

$ aststatistics cat/mags-with-color.fits -cF105W-F125W
$ aststatistics cat/mags-with-color.fits -cF105W-F160W
$ aststatistics cat/mags-with-color.fits -cF125W-F160W

This tiny and cute ASCII histogram (and the general information printed above it)
gives you a crude (but very useful and fast) feeling on the distribution. You can later use
Gnuastro’s Statistics program with the --histogram option to build a much more fine-
grained histogram as a table to feed into your favorite plotting program for a much more
accurate/appealing plot (for example with PGFPlots in KTEX). If you just want a specific
measure, for example the mean, median and standard deviation, you can ask for them
specifically, like below:

$ aststatistics cat/mags-with-color.fits -cF105W-F160W \
--mean --median --std

We won’t go much deeper into the Statistics program here, but there is so much more
you can do with it, please see Section 7.1 [Statistics|, page 237, later.

Let’s finish this section of the tutorial with a useful tip on modifying column metadata.
Above, updating/changing column metadata was done with the -—~colmetadata in the same
command that produced the newly created Table file. But in many situations, the table
is already made and you just want to update the metadata of one column. In such cases
using --colmetadata is over-kill (wasting CPU/RAM energy or time if the table is large)
because it will load the full table data and metadata into memory, just change the metadata
and write it back into a file.

In scenarios when the table’s data doesn’t need to be changed and you just want to set
or update the metadata, it is much more efficient to use basic FITS keyword editing. For
example, in the FITS standard, column names are stored in the TTYPE header keywords, so
let’s have a look:

$ asttable two-in-one.fits -i
$ astfits two-in-one.fits -hl | grep TTYPE

Changing/updating the column names is as easy as updating the values to these key-
words. You don’t need to touch the actual data! With the command below, we’ll just update
the MAGNITUDE and MAGNITUDE-1 columns (which are respectively stored in the TTYPES and
TTYPE11 keywords) by modifying the keyword values and checking the effect by listing the
column metadata again:

$ astfits two-in-omne.fits -hl \
--update=TTYPE5,MAG-F160W \
--update=TTYPE11,MAG-F125W
$ asttable two-in-one.fits -i

You can see that the column names have indeed been changed without touching any
of the data. You can do the same for the column units or comments by modifying the
keywords starting with TUNIT or TCOMM.

Generally, Gnuastro’s table is a very useful program in data analysis and what you have
seen so far is just the tip of the iceberg. But to keep the tutorial short, we’ll stop reviewing

Chapter 2: Tutorials 51

the features here, for more, please see Section 5.4 [Table], page 166. Finally, let’s delete all
the temporary FITS tables we placed in the top project directory:

rm *.fits

2.2.15 Aperture photometry

The colors we calculated in Section 2.2.14 [Working with catalogs (estimating colors)],
page 46, used a different segmentation map for each object. This might not satisfy some
science cases that need the flux within a fixed area/aperture. Fortunately Gnuastro’s mod-
ular programs make it very easy do this type of measurement (photometry). To do this, we
can ignore the labeled images of NoiseChisel of Segment, we can just built our own labeled
image! That labeled image can then be given to MakeCatalog

To generate the apertures catalog we’ll use Gnuastro’s MakeProfiles (see Section 8.1
[MakeProfiles], page 318). But first we need a list of positions (aperture photometry needs
a-priori knowledge of your target positions). So we’ll first read the clump positions from
the F160W catalog, then use AWK to set the other parameters of each profile to be a fixed
circle of radius 5 pixels (recall that we want all apertures to have an identical size/area in
this scenario).

$ rm *.fits *.txt

$ asttable cat/xdf-f160w.fits -hCLUMPS -cRA,DEC \
| awk ’!/"#/{print NR, $1, $2, 5, 5, 0, 0, 1, NR, 1}’ \
> apertures.txt

$ cat apertures.txt

We can now feed this catalog into MakeProfiles using the command below to build
the apertures over the image. The most important option for this particular job is
--mforflatpix, it tells MakeProfiles that the values in the magnitude column should be
used for each pixel of a flat profile. Without it, MakeProfiles would build the profiles such
that the sum of the pixels of each profile would have a magnitude (in log-scale) of the value
given in that column (what you would expect when simulating a galaxy for example). See
Section 8.1.5 [Invoking MakeProfiles|, page 326, for details on the options.

$ astmkprof apertures.txt --background=flat-ir/xdf-f160w.fits \
--clearcanvas --replace --type=intl6 --mforflatpix \
—--mode=wcs

The first thing you might notice in the printed information is that the profiles are
not built in order. This is because MakeProfiles works in parallel, and parallel CPU
operations are asynchronous. You can try running MakeProfiles with one thread (using
--numthreads=1) to see how order is respected in that case, but slower (note that the
multi-threaded run will be much more faster when more mathematically-complicated pro-
files are built, like Séric profiles).

Open apertures.fits with a FITS viewer and look around at the circles placed over
the targets. Also open the input image and Segment’s clumps image and compare them
with the positions of these circles. Where the apertures overlap, you will notice that one
label has replaced the other (because of the --replace option). In the future, MakeCatalog
will be able to work with overlapping labels, but currently it doesn’t. If you are interested,
please join us in completing Gnuastro with added improvements like this (see task 14750'®).

18 https://savannah.gnu.org/task/index.php?14750

https://savannah.gnu.org/task/index.php?14750

Chapter 2: Tutorials 52

We can now feed the apertures.fits labeled image into MakeCatalog instead of Seg-
ment’s output as shown below. In comparison with the previous MakeCatalog call, you will
notice that there is no more --clumpscat option, since there is no more separate “clump”
image now, each aperture is treated as a separate “object”.

$ astmkcatalog apertures.fits -hl --zeropoint=26.27 \
--valuesfile=nc/xdf-f105w.fits \
--ids --ra --dec --magnitude --sn \
--output=cat/xdf-f106w-aper.fits

This catalog has the same number of rows as the catalog produced from clumps in
Section 2.2.14 [Working with catalogs (estimating colors)], page 46. Therefore similar to
how we found colors, you can compare the aperture and clump magnitudes for example.

You can also change the filter name and zeropoint magnitudes and run this command
again to have the fixed aperture magnitude in the F160W filter and measure colors on
apertures.

2.2.16 Matching catalogs

In the example above, we had the luxury to generate the catalogs ourselves, and where
thus able to generate them in a way that the rows match. But this isn’t generally the case.
In many situations, you need to use catalogs from many different telescopes, or catalogs
with high-level calculations that you can’t simply regenerate with the same pixels without
spending a lot of time or using heavy computation. In such cases, when each catalog has
the coordinates of its own objects, you can use the coordinates to match the rows with
Gnuastro’s Match program (see Section 7.5 [Match|, page 311).

As the name suggests, Gnuastro’s Match program will match rows based on distance (or
aperture in 2D) in one, two, or three columns. For this tutorial, let’s try matching the two
catalogs that weren’t created from the same labeled images, recall how each has a different
number of rows:

$ asttable cat/xdf-f105w.fits -hCLUMPS -i
$ asttable cat/xdf-f160w.fits -hCLUMPS -i

You give Match two catalogs (from the two different filters we derived above) as argu-
ment, and the HDUs containing them (if they are FITS files) with the -~hdu and --hdu2
options. The --ccoll and --ccol2 options specify the coordinate-columns which should
be matched with which in the two catalogs. With --aperture you specify the acceptable
error (radius in 2D), in the same units as the columns.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \
—-hdu=CLUMPS —-hdu2=CLUMPS \
--ccol1=RA,DEC --ccol2=RA,DEC \
--aperture=0.5/3600 --log \

--output=matched.fits
$ astfits matched.fits
From the second command, you see that the output has two extensions and that both
have the same number of rows. The rows in each extension correspond with the rows in
the other. You can also see which objects didn’t match with the --notmatched, like below.
Note how each extension now has a different number of rows.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits \

Chapter 2: Tutorials 53

——hdu=CLUMPS ——hdu2=CLUMPS \
--ccol1=RA,DEC --ccol2=RA,DEC \
—--aperture=0.5/3600 --log \
--output=matched.fits --notmatched

$ astfits matched.fits

The --outcols of Match is a very convenient feature: you can use it to specify which
columns from the two catalogs you want in the output (merge two input catalogs into one).
If the first character is an ‘a’, the respective matched column (number or name, similar to
Table above) in the first catalog will be written in the output table. When the first character
is a ‘b’, the respective column from the second catalog will be written in the output. Also,
if the first character is followed by _all, then all the columns from the respective catalog
will be put in the output.

$ astmatch cat/xdf-f160w.fits cat/xdf-f105w.fits
—-hdu=CLUMPS —-hdu2=CLUMPS
—-—-ccol1=RA,DEC —--ccol2=RA,DEC

—-—aperture=0.35/3600 --log
—--outcols=a_all,bMAGNITUDE, bSN
--output=matched.fits

$ astfits matched.fits

P

2.2.17 Finding reddest clumps and visual inspection

As a final step, let’s go back to the original clumps-based color measurement we generated
in Section 2.2.14 [Working with catalogs (estimating colors)], page 46. We'll find the objects
with the strongest color and make a cutout to inspect them visually and finally, we’ll see
how they are located on the image. With the command below, we’ll select the reddest
objects (those with a color larger than 1.5):

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf
You can see how many they are by piping it to wc -1:
$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf | wc -1

Let’s crop the F160W image around each of these objects, but we first need a unique
identifier for them. We’ll define this identifier using the object and clump labels (with an
underscore between them) and feed the output of the command above to AWK to generate
a catalog. Note that since we are making a plain text table, we’ll define the necessary (for
the string-type first column) metadata manually (see Section 4.7.2 [Gnuastro text table
format], page 133).

$ echo "# Column 1: ID [name, str10] Object ID" > reddest.txt

$ asttable cat/mags-with-color.fits --range=F105W-F160W,1.5,inf \
| awk ’{printf("%d_%-10d %f %f\n", $1, $2, $3, $4)}° \
>> reddest.txt

We can now feed reddest.txt into Gnuastro’s Crop program to see what these objects
look like. To keep things clean, we’ll make a directory called crop-red and ask Crop to
save the crops in this directory. We’ll also add a -£160w.fits suffix to the crops (to remind
us which filter they came from). The width of the crops will be 15 arc-seconds (or 15/3600
degrees, which is the units of the WCS).

$ mkdir crop-red

Chapter 2: Tutorials 54

$ astcrop flat-ir/xdf-f160w.fits --mode=wcs --namecol=ID \
--catalog=reddest.txt --width=15/3600,15/3600 \
--suffix=-f160w.fits --output=crop-red

You can see all the cropped FITS files in the crop-red directory. Like the MakeProfiles
command in Section 2.2.15 [Aperture photometry|, page 51, you might notice that the crops
aren’t made in order. This is because each crop is independent of the rest, therefore crops
are done in parallel, and parallel operations are asynchronous. In the command above, you
can change £160w to £105w to make the crops in both filters.

To view the crops more easily (not having to open ds9 for each image), you can convert
the FITS crops into the JPEG format with a shell loop like below.

$ cd crop-red
$ for £ in *.fits; do
astconvertt $f --fluxlow=-0.001 --fluxhigh=0.005 --invert -ojpg;
done
$ cd ..
$ 1s crop-red/

You can now use your general graphic user interface image viewer to flip through the
images more easily, or import them into your papers/reports.

The for loop above to convert the images will do the job in series: each file is converted
only after the previous one is complete. If you have GNU Parallel (https://www.gnu.org/
s/parallel), you can greatly speed up this conversion. GNU Parallel will run the separate
commands simultaneously on different CPU threads in parallel. For more information on
efficiently using your threads, see Section 4.5 [Multi-threaded operations|, page 126. Here
is a replacement for the shell for loop above using GNU Parallel.

$ cd crop-red
$ parallel astconvertt --fluxlow=-0.001 --fluxhigh=0.005 --invert \
-ojpg ::: *x.fits

$ ca ..
Did you notice how much faster this one was? When possible, its always very helpful to do
your analysis in parallel. But the problem is that many operations are not as simple as this.
For such cases, you can use Make (https://en.wikipedia.org/wiki/Make_(software))
which will greatly help designing workflows. But that is beyond the topic here.

As the final action, let’s see how these objects are positioned over the dataset. DS9
has the “Region”s concept for this purpose. You just have to convert your catalog into a
“region file” to feed into DS9. To do that, you can use AWK again as shown below.

$ awk ’BEGIN{print "# Region file format: DS9 version 4.1";
print "global color=green width=2";
print "fk5";}
V/~#/{printf "circle(s,%s,1\") # text={/s}\n",$2,$3,$1;}’
reddest.txt > reddest.reg

~

This region file can be loaded into DS9 with its -regions option to display over any
image (that has world coordinate system). In the example below, we’ll open Segment’s
output and load the regions over all the extensions (to see the image and the respective
clump):

$ ds9 -mecube seg/xdf-f160w.fits -zscale -zoom to fit \

https://www.gnu.org/s/parallel
https://www.gnu.org/s/parallel
https://en.wikipedia.org/wiki/Make_(software)

Chapter 2: Tutorials 55

-regions load all reddest.reg

2.2.18 Writing scripts to automate the steps

In the previous sub-sections, we went through a series of steps like downloading the necessary
datasets (in Section 2.2.3 [Setup and data download], page 27), detecting the objects in the
image, and finally selecting a particular subset of them to inspect visually (in Section 2.2.17
[Finding reddest clumps and visual inspection], page 53). To benefit most effectively from
this subsection, please go through the previous sub-sections, and if you haven’t actually
done them, we recommended to do/run them before continuing here.

Each sub-section/step of the sub-sections above involved several commands on the
command-line. Therefore, if you want to reproduce the previous results (for example to
only change one part, and see its effect), you'll have to go through all the sections above
and read through them again. If you done the commands recently, you may also have them
in the history of your shell (command-line environment). You can see many of your previous
commands on the shell (even if you have closed the terminal) with the history command,
like this:

$ history

Try it in your teminal to see for your self. By default in GNU Bash, it shows the last
500 commands. You can also save this “history” of previous commands to a file using shell
redirection (to have it after your next 500 commands), with this command

$ history > my-previous-commands.txt

This is a good way to temporarily keep track of every single command you ran. But
in the middle of all the useful commands, you will have many extra commands, like tests
that you did before/after the good output of a step (that you decided to continue working
on), or an unrelated job you had to do in the middle of this project. Because of these
impurities, after a few days (that you have forgot the context: tests you didn’t end-up
using, or unrelated jobs) reading this full history will be very frustrating.

Keeping the final commands that were used in each step of an analysis is a common
problem for anyone who is doing something serious with the computer. But simply keeping
the most important commands in a text file is not enough, the small steps in the middle
(like making a directory to keep the outputs of one step) are also important. In other words,
the only way you can be sure that you are under control of your processing (and actually
understand how you produced your final result) is to run the commands automatically.

Fortunately, typing commands interactively with your fingers isn’t the only way to op-
erate the shell. The shell can also take its orders/commands from a plain-text file, which is
called a script. When given a script, the shell will read it line-by-line as if you have actually
typed it manually.

Let’s continue with an example: try typing the commands below in your shell. With these
commands we are making a text file (a.txt) containing a simple 3 x 3 matrix, converting
it to a FITS image and computing its basic statistics. After the first three commands open
a.txt with a text editor to actually see the values we wrote in it, and after the fourth, open
the FITS file to see the matrix as an image. a.txt is created through the shell’s redirection
feature: >’ overwrites the existing contents of a file, and ‘>>’ appends the new contents
after the old contents.

$ echo "1 1 1" > a.txt

Chapter 2: Tutorials 56

$ echo "1 2 1" >> a.txt

$ echo "1 1 1" >> a.txt

$ astconvertt a.txt --output=a.fits
$ aststatistics a.fits

To automate these series of commands, you should put them in a text file. But that text
file must have two special features: 1) It should tell the shell what program should interpret
the script. 2) The operating system should know that the file can be directly executed.

For the first, Unix-like operating systems define the shebang concept (also known as
sha-bang or hashbang). In the shebang convention, the first two characters of a file should
be ‘#!”. When confronted with these characters, the script will be interpretted with the
program that follows them. In this case, we want to write a shell script and the most
common shell program is GNU Bash which is installed in /bin/bash. So the first line of
your script should be ‘#!/bin/bash’™’.

Using your favorite text editor, make a new empty file, let’s call it my-first-script.sh.
Write the GNU Bash shebang (above) as its first line After the shebang, copy the series
of commands we ran above. Just note that the ‘$’ sign at the start of every line above is
the prompt of the interactive shell (you never actually typed it, remember?). Therefore,
commands in a shell script should not start with a ‘$’. Once you add the commands, close
the text editor and run the cat command to confirm its contents. It should look like the
example below. Recall that you should only type the line that starts with a ‘$’, the lines
without a ‘$’, are printed automatically on the command-line (they are the contents of your
script).

$ cat my-first-script.sh
#!/bin/bash

echo "1 1 1" > a.txt

echo "1 2 1" >> a.txt

echo "1 1 1" >> a.txt

astconvertt a.txt --output=a.fits
aststatistics a.fits

The script contents are now ready, but to run it, you should activate the script file’s
executable flag. In Unix-like operating systems, every file has three types of flags: read (or
r), write (or w) and ezxecute (or x). To toggle a file’s flags, you should use the chmod (for
“change mode”) command. To activate a flag, you put a ‘+’ before the flag character (for
example +x). To deactivate it, you put a ‘=’ (for example -x). In this case, you want to
activate the script’s executable flag, so you should run

$ chmod +x my-first-script.sh

Your script is now ready to run/execute the series of commands. To run it, you should
call it while specifying its location in the file system. Since you are currently in the same
directory as the script, its easiest to use relative addressing like below (where ./’ means the
current directory). But before running your script, first delete the two a.txt and a.fits
files that were created when you interactively ran the commands.

19 When the script is to be run by the same shell that is calling it (like this script), the shebang is optional.
But it is still recommended, because it ensures that even if the user isn’t using GNU Bash, the script will
be run in GNU Bash: given the differences between various shells, writing truely portable shell scripts,
that can be run by many shell programs/implementations, isn’t easy (sometimes not possible!).

Chapter 2: Tutorials 57

$ rm a.txt a.fits

$ 1s

$./my-first-script.sh
$ 1s

The script immediately prints the statistics while doing all the previous steps in the back-
ground. With the last 1s, you see that it automatically re-built the a.txt and a.fits files,
open them and have a look at their contents.

An extremely useful feature of shell scripts is that the shell will ignore anything after a
‘#’ character. You can thus add descriptions/comments to the commands and make them

much more useful for the future. For example, after adding comments, your script might
look like this:

$ cat my-first-script.sh
#!/bin/bash

This script is my first attempt at learning to write shell scripts.
As a simple series of commands, I am just building a small FITS
image, and calculating its basic statistics.

Write the matrix into a file.
echo "1 1 1" > a.txt
echo "1 2 1" >> a.txt
echo "1 1 1" >> a.txt

Convert the matrix to a FITS image.
astconvertt a.txt --output=a.fits

Calculate the statistics of the FITS image.
aststatistics a.fits

Isn’t this much more easier to read now? Comments help to provide human-friendly context
to the raw commands. At the time you make a script, comments may seem like an extra
effort and slow you down. But in one year, you will forget almost everything about your
script and you will appreciate the effort so much! Think of the comments as an email to
your future-self and always put a well-written description of the context/purpose (most
importantly, things that aren’t directly clear by reading the commands) in your scripts.

The example above was very basic and mostly redundant series of commands, to show
the basic concepts behind scripts. You can put any (arbitrarily long and complex) series
of commands in a script by following the two rules: 1) add a shebang, and 2) enable the
executable flag. Infact, as you continue your own research projects, you will find that any
time you are dealing with more than two or three commands, keeping them in a script (and
modifying that script, and running it) is much more easier, and future-proof, then typing
the commands directly on the command-line and relying on things like history. Here are
some tips that will come in handy when you are writing your scripts:

As a more realistic example, let’s have a look at a script that will do the steps of
Section 2.2.3 [Setup and data download], page 27, and Section 2.2.4 [Dataset inspection and
cropping], page 27. In particular note how often we are using variables to avoid repeating

Chapter 2: Tutorials 58

fixed strings of characters (usually file/directory names). This greatly helps in scaling up
your project, and avoiding hard-to-find bugs that are caused by typos in those fixed strings.

$ cat gnuastro-tutorial-1.sh
#!/bin/bash

Download the input datasets

#

The default file names have this format (where ‘FILTER’ differs for
each filter):

hlsp_xdf_hst_wfc3ir-60mas_hudf_ FILTER_vl_sci.fits

To make the script easier to read, a prefix and suffix variable are
used to sandwich the filter name into one short line.
downloaddir=download

xdfsuffix=_v1_sci.fits

xdfprefix=hlsp_xdf_hst_wfc3ir-60mas_hudf_
xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

The file name and full URLs of the input data.
f105w_in=$xdfprefix"f105w"$xdfsuffix
f160w_in=$xdfprefix"f160w"$xdfsuffix
£105w_full=$xdfurl/$£105w_in
£160w_full=$xdfurl/$£160w_in

Go into the download directory and download the images there,
then come back up to the top running directory.

mkdir $downloaddir

cd $downloaddir

wget $£105w_full

wget $£160w_full

cd ..

Only work on the deep region

To help in readability, each vertice of the deep/flat field is stored
as a separate variable. They are then merged into one variable to

define the polygon.

flatdir=flat-ir

verticel="53.187414,-27.779152"

vertice2="53.159507,-27.759633"

vertice3="53.134517,-27.787144"

vertice4="53.161906,-27.807208"

f105w_flat=$flatdir/xdf-£105w.fits

Chapter 2: Tutorials 59

f160w_flat=$flatdir/xdf-f160w.fits
deep_polygon="8$verticel:$vertice2:$vertice3d:$verticed"

mkdir $flatdir
astcrop --mode=wcs -hO0 --output=$£105w_flat \
--polygon=$deep_polygon $downloaddir/$£f105w_in
astcrop --mode=wcs -h0 --output=$£f160w_flat \
—--polygon=$deep_polygon $downloaddir/$f160w_in
The first thing you may notice is that even if you already have the downloaded input
images, this script will always try to re-download them. Also, if you re-run the script, you
will notice that mkdir prints an error message that the download directory already exists.
Therefore, the script above isn’t too useful and some modifications are necessary to make
it more generally useful. Here are some general tips that are often very useful when writing
scripts:

Stop script if a command crashes
By default, if a command in a script crashes (aborts and fails to do what it was
meant to do), the script will continue onto the next command. In GNU Bash,
you can tell the shell to stop a script in the case of a crash by adding this line
at the start of your script:
set -e

Check if a file/directory exists to avoid re-creating it
Conditionals are a very useful feature in scripts. One common conditional is
to check if a file exists or not. Assuming the file’s name is FILENAME, you can
check its existance (to avoid re-doing the commands that build it) like this:
if [-f FILENAME]; then
echo "FILENAME exists"
else
Some commands to generate the file
echo "done" > FILENAME
fi
To check the existance of a directory instead of a file, use -d instead of -f. To
negate a conditional, use ‘!’ and note that conditionals can be written in one
line also (useful for when its short).
One common scenario that you’ll need to check the existance of directories
is when you are making them: the default mkdir command will crash if the
desired directory already exists. On some systems (including GNU /Linux dis-
tributions), mkdir has options to deal with such cases. But if you want your
script to be portable, its best to check yourself like below:

if ' [-d DIRNAME]; then mkdir DIRNAME; fi

Taking these tips into consideration, we can write a better version of the script above that
includes checks on every step to avoid repeating steps/commands. Please compare this
script with the previous one carefully to spot the differences. These are very important
points that you will definitely encouter during your own research, and knowing them can
greatly help your productiveity, so pay close attention (even in the comments).

$ cat gnuastro-tutorial-2.sh

Chapter 2: Tutorials 60

#!/bin/bash
set -e

Download the input datasets

#

The default file names have this format (where ‘FILTER’ differs for
each filter):

hlsp_xdf_hst_wfc3ir-60Omas_hudf_ FILTER_vl_sci.fits

To make the script easier to read, a prefix and suffix variable are
used to sandwich the filter name into one short line.
downloaddir=download

xdfsuffix=_v1_sci.fits

xdfprefix=hlsp_xdf_hst_wfc3ir-60mas_hudf_
xdfurl=http://archive.stsci.edu/pub/hlsp/xdf

The file name and full URLs of the input data.
f105w_in=$xdfprefix"f105w"$xdfsuffix
f160w_in=$xdfprefix"f160w"$xdfsuffix
£105w_full=$xdfurl/$£f105w_in
f160w_full=$xdfurl/$f160w_in

Go into the download directory and download the images there,
then come back up to the top running directory.

if ' [-d $downloaddir]; then mkdir $downloaddir; fi

cd $downloaddir

if ' [-f $£f105w_in]; then wget $f105w_full; fi

if ' [-f $£f160w_in]; then wget $f160w_full; fi

cd ..

Only work on the deep region

To help in readability, each vertice of the deep/flat field is stored
as a separate variable. They are then merged into one variable to
define the polygon.

flatdir=flat-ir

verticel="53.187414,-27.779152"

vertice2="53.159507,-27.759633"

vertice3="53.134517,-27.787144"

vertice4="53.161906,-27.807208"

f105w_flat=$flatdir/xdf-f105w.fits
f160w_flat=$flatdir/xdf-£f160w.fits
deep_polygon="$verticel:$vertice2:$vertice3:$vertices"

Chapter 2: Tutorials 61

if ' [-d $flatdir]; then mkdir $flatdir; fi
if ! [-f $£f105w_flat]; then
astcrop --mode=wcs -hO0 --output=$£105w_flat \
--polygon=%deep_polygon $downloaddir/$£f105w_in
fi
if ! [-f $f160w_flat]1; then
astcrop —-—mode=wcs -hO --output=$£f160w_flat \
—--polygon=$deep_polygon $downloaddir/$f160w_in
fi

2.2.19 Citing and acknowledging Gnuastro

In conclusion, we hope this extended tutorial has been a good starting point to help in
your exciting research. If this book or any of the programs in Gnuastro have been useful
for your research, please cite the respective papers, and acknowledge the funding agencies
that made all of this possible. Without citations, we won’t be able to secure future funding
to continue working on Gnuastro or improving it, so please take software citation seriously
(for all the scientific software you use, not just Gnuastro).

To help you in this aspect is well, all Gnuastro programs have a --cite option to
facilitate the citation and acknowledgment. Just note that it may be necessary to cite
additional papers for different programs, so please try it out on all the programs that you
used, for example:

$ astmkcatalog --cite
$ astnoisechisel --cite

2.3 Detecting large extended targets

The outer wings of large and extended objects can sink into the noise very gradually and can
have a large variety of shapes (for example due to tidal interactions). Therefore separating
the outer boundaries of the galaxies from the noise can be particularly tricky. Besides
causing an under-estimation in the total estimated brightness of the target, failure to detect
such faint wings will also cause a bias in the noise measurements, thereby hampering the
accuracy of any measurement on the dataset. Therefore even if they don’t constitute a
significant fraction of the target’s light, or aren’t your primary target, these regions must
not be ignored. In this tutorial, we’ll walk you through the strategy of detecting such targets
using Section 7.2 [NoiseChisel], page 258.

(7
Don’t start with this tutorial: If you haven’t already completed Section 2.2 [General pro-
gram usage tutorial], page 24, we strongly recommend going through that tutorial before
starting this one. Basic features like access to this book on the command-line, the config-
uration files of Gnuastro’s programs, benefiting from the modular nature of the programs,
viewing multi-extension FITS files, or using NoiseChisel’s outputs are discussed in more

detail there.
K J

We'll try to detect the faint tidal wings of the beautiful M51 group® in this tutorial.
We'll use a dataset/image from the public Sloan Digital Sky Survey (http://www.sdss.

20 https://en.wikipedia.org/wiki/M51_Group

http://www.sdss.org/
http://www.sdss.org/
https://en.wikipedia.org/wiki/M51_Group

Chapter 2: Tutorials 62

org/), or SDSS. Due to its more peculiar low surface brightness structure/features, we’ll
focus on the dwarf companion galaxy of the group (or NGC 5195). To get the image, you
can use SDSS’s Simple field search (https://dr12.sdss.org/fields) tool. As long as it
is covered by the SDSS, you can find an image containing your desired target either by
providing a standard name (if it has one), or its coordinates. To access the dataset we will
use here, write NGC5195 in the “Object Name” field and press “Submit” button.

Type the example commands: Try to type the example commands on your terminal and
use the history feature of your command-line (by pressing the “up” button to retrieve
previous commands). Don’t simply copy and paste the commands shown here. This will
help simulate future situations when you are processing your own datasets.

You can see the list of available filters under the color image. For this demonstration,
we’ll use the r-band filter image. By clicking on the “r-band FITS” link, you can download
the image. Alternatively, you can just run the following command to download it with
GNU Wget?!. To keep things clean, let’s also put it in a directory called ngc5195. With
the -0 option, we are asking Wget to save the downloaded file with a more manageable
name: r.fits.bz2 (this is an r-band image of NGC 5195, which was the directory name).

mkdir ngc5195

cd ngcb5195
topurl=https://dr12.sdss.org/sas/dr12/boss/photolbj/frames

$ wget $topurl/301/3716/6/frame-r-003716-6-0117.fits.bz2 -0Or.fits.bz2

This server keeps the files in a Bzip2 compressed file format. So we’ll first decompress
it with the following command. By convention, compression programs delete the original
file (compressed when uncompressing, or uncompressed when compressing). To keep the
original file, you can use the —-keep or -k option which is available in most compression
programs for this job. Here, we don’t need the compressed file any more, so we’ll just let
bunzip delete it for us and keep the directory clean.

$ bunzip2 r.fits.bz2

©“ H &L

2.3.1 NoiseChisel optimization

In Section 2.3 [Detecting large extended targets|, page 61, we downloaded the single expo-
sure SDSS image. Let’s see how NoiseChisel operates on it with its default parameters:

$ astnoisechisel r.fits -hO

As described in Section 2.2.10 [NoiseChisel and Multiextension FITS files],

page 37, NoiseChisel’s default output is a multi-extension FITS file. Open the output
r_detected.fits file and have a look at the extensions, the first extension is only
meta-data and contains NoiseChisel’s configuration parameters. The rest are the
Sky-subtracted input, the detection map, Sky values and Sky standard deviation.

$ ds9 -mecube r_detected.fits -zscale -zoom to fit

Flipping through the extensions in a FITS viewer, you will see that the first image (Sky-
subtracted image) looks reasonable: there are no major artifacts due to bad Sky subtraction

21 To make the command easier to view on screen or in a page, we have defined the top URL of the image
as the topurl shell variable. You can just replace the value of this variable with $topurl in the wget
command.

http://www.sdss.org/
http://www.sdss.org/
https://dr12.sdss.org/fields

Chapter 2: Tutorials 63

compared to the input. The second extension also seems reasonable with a large detection
map that covers the whole of NGC5195, but also extends beyond towards the bottom of
the image.

Now try flipping between the DETECTIONS and SKY extensions. In the SKY extension,
you’ll notice that there is still significant signal beyond the detected pixels. You can tell
that this signal belongs to the galaxy because the far-right side of the image is dark and
the brighter tiles are surrounding the detected pixels.

The fact that signal from the galaxy remains in the Sky dataset shows that you haven’t
done a good detection. The SKY extension must not contain any light around the galaxy.
Generally, any time your target is much larger than the tile size and the signal is almost flat
(like this case), this will happen. Therefore, when there are large objects in the dataset,
the best place to check the accuracy of your detection is the estimated Sky image.

When dominated by the background, noise has a symmetric distribution. However, signal
is not symmetric (we don’t have negative signal). Therefore when non-constant signal is
present in a noisy dataset, the distribution will be positively skewed. This skewness is a good
measure of how much signal we have in the distribution. The skewness can be accurately
measured by the difference in the mean and median: assuming no strong outliers, the more
distant they are, the more skewed the dataset is. For more see Section 7.1.4.3 [Quantifying
signal in a tile], page 244.

However, skewness is only a proxy for signal when the signal has structure (varies per
pixel). Therefore, when it is approximately constant over a whole tile, or sub-set of the
image, the signal’s effect is just to shift the symmetric center of the noise distribution to the
positive and there won’t be any skewness (major difference between the mean and median).
This positive?? shift that preserves the symmetric distribution is the Sky value. When there
is a gradient over the dataset, different tiles will have different constant shifts/Sky-values,
for example see Figure 11 of Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/1505.
01664).

To get less scatter in measuring the mean and median (and thus better estimate the
skewness), you will need a larger tile. So let’s play with the tessellation a little to see how
it affects the result. In Gnuastro, you can see the option values (--tilesize in this case)
by adding the -P option to your last command. Try running NoiseChisel with -P to see its
default tile size.

You can clearly see that the default tile size is indeed much smaller than this (huge)
galaxy and its tidal features. As a result, NoiseChisel was unable to identify the skewness
within the tiles under the outer parts of M51 and NGC 5159 and the threshold has been
over-estimated on those tiles. To see which tiles were used for estimating the quantile
threshold (no skewness was measured), you can use NoiseChisel’s -—-checkqthresh option:

$ astnoisechisel r.fits -hO --checkqthresh

Notice how this option doesn’t allow NoiseChisel to finish. NoiseChisel aborted after
finding and applying the quantile thresholds. When you call any of NoiseChisel’s -—check*
options, by default, it will abort as soon as all the check steps have been written in the
check file (a multi-extension FITS file). This allows you to focus on the problem you wanted
to check as soon as possible (you can disable this feature with the --continueaftercheck
option).

22 In processed images, where the Sky value can be over-estimated, this constant shift can be negative.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 2: Tutorials 64

To optimize the threshold-related settings for this image, let’s playing with this quantile
threshold check image a little. Don’t forget that “Good statistical analysis is not a purely
routine matter, and generally calls for more than one pass through the computer” (Anscombe
1973, see Section 1.2 [Science and its tools], page 2). A good scientist must have a good
understanding of her tools to make a meaningful analysis. So don’t hesitate in playing with
the default configuration and reviewing the manual when you have a new dataset in front
of you. Robust data analysis is an art, therefore a good scientist must first be a good artist.

The first extension of r_qthresh.fits (CONVOLVED) is the convolved input image where
the threshold(s) is(are) defined and applied. For more on the effect of convolution and
thresholding, see Sections 3.1.1 and 3.1.2 of Akhlaghi and Ichikawa [2015] (https://arxiv.
org/abs/1505.01664). The second extension (QTHRESH_ERODE) has a blank value for all the
pixels of any tile that was identified as having significant signal. The next two extensions
(QTHRESH_NOERODE and QTHRESH_EXPAND) are the other two quantile thresholds that are
necessary in NoiseChisel’s later steps. Every step in this file is repeated on the three
thresholds.

Play a little with the color bar of the QTHRESH_ERODE extension, you clearly see how the
non-blank tiles around NGC 5195 have a gradient. As one line of attack against discarding
too much signal below the threshold, NoiseChisel rejects outlier tiles. Go forward by three
extensions to VALUE1_NO_OUTLIER and you will see that many of the tiles over the galaxy
have been removed in this step. For more on the outlier rejection algorithm, see the latter
half of Section 7.1.4.3 [Quantifying signal in a tile], page 244.

However, the default outlier rejection parameters weren’t enough, and when you play

with the color-bar, you still see a strong gradient around the outer tidal feature of the
galaxy. You have two strategies for fixing this problem: 1) Increase the tile size to get
more accurate measurements of skewness. 2) Strengthen the outlier rejection parameters
to discard more of the tiles with signal. Fortunately in this image we have a sufficiently
large region on the right of the image that the galaxy doesn’t extend to. So we can use the
more robust first solution. In situations where this doesn’t happen (for example if the field
of view in this image was shifted to have more of M51 and less sky) you are limited to a
combination of the two solutions or just to the second solution.
(7
Skipping convolution for faster tests: The slowest step of NoiseChisel is the convolution of
the input dataset. Therefore when your dataset is large (unlike the one in this test), and
you are not changing the input dataset or kernel in multiple runs (as in the tests of this
tutorial), it is faster to do the convolution separately once (using Section 6.3 [Convolve],
page 206) and use NoiseChisel’s —-convolved option to directly feed the convolved image
and avoid convolution. For more on --convolved, see Section 7.2.1.1 [NoiseChisel input],
page 262.
N

J

To identify the skewness caused by the flat NGC 5195 and Mb51 tidal features on the
tiles under it, we thus have to choose a tile size that is larger than the gradient of the signal.
Let’s try a tile size of 75 by 75 pixels:

$ astnoisechisel r.fits -h0 --tilesize=75,75 --checkqthresh

You can clearly see the effect of this increased tile size: the tiles are much larger and
when you look into VALUE1_NO_OUTLIER, you see that almost all the previous tiles under

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 2: Tutorials 65

the galaxy have been discarded and we only have a few tiles on the edge with a gradient.
So let’s define a more strict condition to keep tiles:

$ astnoisechisel r.fits -hO --tilesize=75,75 --meanmedqdiff=0.001 \
--checkqthresh

After constraining —-meanmedqdiff, NoiseChisel stopped with a different error. Please
read it: at the start, it says that only 6 tiles passed the constraint while you have asked for
9. The r_qthresh.fits image also only has 8 extensions (not the original 15). Take a look
at the initially selected tiles and those after outlier rejection. You can see the place of the
tiles that passed. They seem to be in the good place (very far away from the M51 group
and its tidal feature. Using the 6 nearest neighbors is also not too bad. So let’s decrease
the number of neighboring tiles for interpolation so NoiseChisel can continue:

$ astnoisechisel r.fits -hO --tilesize=75,75 --meanmedqdiff=0.001 \
--interpnumngb=6 --checkqthresh

The next group of extensions (those ending with _INTERP), give a value to all blank tiles
based on the nearest tiles with a measurement. The following group of extensions (ending
with _SMOOTH) have smoothed the interpolated image to avoid sharp cuts on tile edges.
Inspecting THRESH1_SMOOTH, you can see that there is no longer any significant gradient
and no major signature of NGC 5195 exists.

We can now remove --checkqthresh and let NoiseChisel proceed with its detection.
Also, similar to the argument in Section 2.2.11 [NoiseChisel optimization for detection],
page 39, in the command above, we set the pseudo-detection signal-to-noise ratio quantile
(--snquant) to 0.95.

$ rm r_qthresh.fits
$ astnoisechisel r.fits -h0 --tilesize=75,75 --meanmedqdiff=0.001 \
-—interpnumngb=6 --snquant=0.95
Looking at the DETECTIONS extension of NoiseChisel’s output, we see the right-ward

edges in particular have many holes that are fully surrounded by signal and the signal
stretches out in the noise very thinly (the size of the holes increases as we go out). This
suggests that there is still signal that can be detected. You can confirm this guess by looking
at the SKY extension to see that indeed, there is a clear footprint of the M51 group in the
Sky image (which is not good!). Therefore, we should dig deeper into the noise.

With the --detgrowquant option, NoiseChisel will use the detections as seeds and grow
them in to the noise. Its value is the ultimate limit of the growth in units of quantile (between
0 and 1). Therefore --detgrowquant=1 means no growth and --detgrowquant=0.5 means
an ultimate limit of the Sky level (which is usually too much!). Try running the previous
command with various values (from 0.6 to higher values) to see this option’s effect. For this
particularly huge galaxy (with signal that extends very gradually into the noise), we’ll set
it to 0.65:

$ astnoisechisel r.fits -hO --tilesize=75,75 --meanmedqdiff=0.001 \
--interpnumngb=6 --snquant=0.95 --detgrowquant=0.65
Beyond this level (smaller --detgrowquant values), you see the smaller background

galaxies starting to create thin spider-leg-like features, showing that we are following cor-
related noise for too much.

Now, when you look at the DETECTIONS extension, you see the wings of the galaxy being
detected much farther out, But you also see many holes which are clearly just caused by

Chapter 2: Tutorials 66

noise. After growing the objects, NoiseChisel also allows you to fill such holes when they
are smaller than a certain size through the --detgrowmaxholesize option. In this case, a
maximum area/size of 10,000 pixels seems to be good:

$ astnoisechisel r.fits -hO --tilesize=75,75 --meanmedqdiff=0.001 \
--interpnumngb=6 --snquant=0.95 --detgrowquant=0.65 \
--detgrowmaxholesize=10000

The detection looks good now, but when you look in to the SKY extension, you still
clearly still see a footprint of the galaxy. We’ll leave it as an exercise for you to play with
NoiseChisel further and improve the detected pixels.

So, we’ll just stop with one last tool NoiseChisel gives you to get a slightly better
estimation of the Sky: --minskyfrac. On each tile, NoiseChisel will only measure the
Sky-level if the fraction of undetected pixels is larger than the value given to this option.
To avoid the edges of the galaxy, we’ll set it to 0.9. Therefore, tiles that are covered by
detected pixels for more than 10% of their area are ignored.

$ astnoisechisel r.fits -hO --tilesize=75,75 --meanmedqdiff=0.001 \
--interpnumngb=6 --snquant=0.95 --detgrowquant=0.65 \
--detgrowmaxholesize=10000 --minskyfrac=0.9

The footprint of the galaxy still exists in the SKY extension, but it has decreased in
significance now. Let’s calculate the significance of the undetected gradient, in units of
noise. Since the gradient is roughly along the horizontal axis, we’ll collapse the image along
the second (vertical) FITS dimension to have a 1D array (a table column, see its values
with the second command).

$ astarithmetic r_detected.fits 2 collapse-mean -hSKY -ocollapsed.fits
$ asttable collapsed.fits

We can now calculate the minimum and maximum values of this array and define their
difference (in units of noise) as the gradient:

$ grad=$(astarithmetic r_detected.fits 2 collapse-mean set-i \

i maxvalue i minvalue - -hSKY -q)
$ echo $grad
$ std=$(aststatistics r_detected.fits -hSKY_STD --mean)
$ echo $std

$ astarithmetic -q $grad $std /

The undetected gradient (grad above) is thus roughly a quarter of the noise. But don’t
forget that this is per-pixel: individually its small, but it extends over millions of pixels, so
the total flux may still be relevant.

When looking at the raw input shallow image, you don’t see anything so far out of the
galaxy. You might just think that “this is all noise, I have just dug too deep and I'm
following systematics”! If you feel like this, have a look at the deep images of this system
in Watkins et al. [2015] (https://arxiv.org/abs/1501.04599), or a 12 hour deep image
of this system (with a 12-inch telescope): https://i.redd.it/jfqgpqgOhfkil.jpg?*. In
these deeper images you see that the outer edges of the M51 group clearly follow this exact

23 The image is taken from this Reddit discussion: https://www.reddit.com/r/Astronomy/comments/
9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/

https://arxiv.org/abs/1501.04599
https://i.redd.it/jfqgpqg0hfk11.jpg
https://www.reddit.com/r/Astronomy/comments/9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/
https://www.reddit.com/r/Astronomy/comments/9d6x0q/12_hours_of_exposure_on_the_whirlpool_galaxy/

Chapter 2: Tutorials 67

structure, below in Section 2.3.2 [Achieved surface brightness level], page 67, we’ll measure
the exact level.

As the gradient in the SKY extension shows, and the deep images cited above confirm,
the galaxy’s signal extends even beyond this. But this is already far deeper than what
most (if not all) other tools can detect. Therefore, we’ll stop configuring NoiseChisel at this
point in the tutorial and let you play with it a little more while reading more about it in
Section 7.2 [NoiseChisel|, page 258.

After finishing this tutorial please go through the NoiseChisel paper and its options and
play with them to further decrease the gradient. This will greatly help you get a good
feeling of the options. When you do find a better configuration, please send it to us and
we’ll mention your name here with your suggested configuration. Don’t forget that good
data analysis is an art, so like a sculptor, master your chisel for a good result.

(N
This NoiseChisel configuration is NOT GENERIC: Don’t use this configuration blindly on

another image. As you saw above, the reason we chose this particular configuration for
NoiseChisel to detect the wings of the M51 group was strongly influenced by the noise
properties of this particular image. So as long as your image noise has similar properties
(from the same data-reduction step of the same database), you can use this configuration
on any image. For images from other instruments, or higher-level /reduced SDSS products,
please follow a similar logic to what was presented here and find the best configuration

yourself.
N J
(M

Smart NoiseChisel: As you saw during this section, there is a clear logic behind the optimal
parameter value for each dataset. Therefore, we plan to capabilities to (optionally) automate
some of the choices made here based on the actual dataset, please join us in doing this if
you are interested. However, given the many problems in existing “smart” solutions, such
automatic changing of the configuration may cause more problems than they solve. So
even when they are implemented, we would strongly recommend quality checks for a robust

analysis.
- J

2.3.2 Achieved surface brightness level

In Section 2.3.1 [NoiseChisel optimization|, page 62, we showed how to customize
NoiseChisel for a single-exposure SDSS image of the M51 group. Let’s measure how deep
we carved the signal out of noise. For this measurement, we’ll need to estimate the average
flux on the outer edges of the detection. Fortunately all this can be done with a few simple
commands (and no higher-level language mini-environments like Python or IRAF) using
Section 6.2 [Arithmetic|, page 189, and Section 7.4 [MakeCatalog], page 284.
First, let’s separate each detected region, or give a unique label/counter to all the con-
nected pixels of NoiseChisel’s detection map:
$ det="r_detected.fits -hDETECTIONS"
$ astarithmetic $det 2 connected-components -olabeled.fits
You can find the label of the main galaxy visually (by opening the image and hovering
your mouse over the M51 group’s label). But to have a little more fun, lets do this auto-
matically. The M51 group detection is by far the largest detection in this image, this allows

Chapter 2: Tutorials 68

us to find the ID/label that corresponds to it. We’ll first run MakeCatalog to find the area
of all the detections, then we’ll use AWK to find the ID of the largest object and keep it as
a shell variable (id):

$ astmkcatalog labeled.fits --ids --geoarea -hl -ocat.txt
$ id=$(awk ’!/"#/{if ($2>max) {id=$1; max=$2}} END{print id}’ cat.txt)
$ echo $id

To separate the outer edges of the detections, we’ll need to “erode” the M51 group detec-
tion. We'll erode three times (to have more pixels and thus less scatter), using a maximum
connectivity of 2 (8-connected neighbors). We’'ll then save the output in eroded.fits.

$ astarithmetic labeled.fits $id eq 2 erode 2 erode 2 erode \
-oeroded.fits

In labeled.fits, we can now set all the 1-valued pixels of eroded.fits to 0 using Arith-
metic’s where operator added to the previous command. We’ll need the pixels of the M51
group in labeled.fits two times: once to do the erosion, another time to find the outer
pixel layer. To do this (and be efficient and more readable) we’ll use the set-i operator.
In the command below, it will save/set/name the pixels of the M51 group as the ‘i’. In
this way we can use it any number of times afterwards, while only reading it from disk and
finding M51’s pixels once.

$ astarithmetic labeled.fits $id eq set-i i \
1 2 erode 2 erode 2 erode O where -oedge.fits

Open the image and have a look. You’ll see that the detected edge of the M51 group is
now clearly visible. You can use edge.fits to mark (set to blank) this boundary on the
input image and get a visual feeling of how far it extends:

$ astarithmetic r.fits edge.fits nan where -ob-masked.fits -hO

To quantify how deep we have detected the low-surface brightness regions, we’ll use the
command below. In short it just divides all the non-zero pixels of edge.fits in the Sky
subtracted input (first extension of NoiseChisel’s output) by the pixel standard deviation
of the same pixel. This will give us a signal-to-noise ratio image. The mean value of this
image shows the level of surface brightness that we have achieved.

You can also break the command below into multiple calls to Arithmetic and create
temporary files to understand it better. However, if you have a look at Section 6.2.1 [Reverse
polish notation], page 189, and Section 6.2.2 [Arithmetic operators|, page 190, you should
be able to easily understand what your computer does when you run this command?*.

$ edge="edge.fits -h1"

$ skystd="r_detected.fits -hSKY_STD"

$ skysub="r_detected.fits -hINPUT-NO-SKY"

$ astarithmetic $skysub $skystd / $edge not nan where \
meanvalue --quiet

24 edge.fits (extension 1) is a binary (0 or 1 valued) image. Applying the not operator on it, just flips all

its pixels. Through the where operator, we are setting all the newly 1-valued pixels in r_detected.fits
(extension INPUT-NO-SKY) to NaN/blank. In the second line, we are dividing all the non-blank values
by r_detected.fits (extension SKY_STD). This gives the signal-to-noise ratio for each of the pixels on
the boundary. Finally, with the meanvalue operator, we are taking the mean value of all the non-blank
pixels and reporting that as a single number.

Chapter 2: Tutorials 69

We have thus detected the wings of the M51 group down to roughly 1/4th of the noise
level in this image! But the signal-to-noise ratio is a relative measurement. Let’s also
measure the depth of our detection in absolute surface brightness units; or magnitudes per
square arcseconds. To find out, we’ll first need to calculate how many pixels of this image
are in one arcsecond-squared. Fortunately the world coordinate system (or WCS) meta data
of Gnuastro’s output FITS files (in particular the CDELT keywords) give us this information.

$ pixscale=$(astfits r_detected.fits -hil \
| awk ’/CDELT1/ {p=1/($3*3600); print p*pl}’)
$ echo $pixscale
Note that we multiplied the value by 3600 so we work in units of arc-seconds not degrees.
Now, let’s calculate the average sky-subtracted flux in the border region per pixel.

$ f=$(astarithmetic r_detected.fits edge.fits not nan where set-i \
i sumvalue i numbervalue / -q -hINPUT-NO-SKY)
$ echo $f

We can just multiply the two to get the average flux on this border in one arcsecond squared.
We also have the r-band SDSS zeropoint magnitude®® to be 24.80. Therefore we can get
the surface brightness of the outer edge (in magnitudes per arcsecond squared) using the
following command. Just note that log in AWK is in base-2 (not 10), and that AWK
doesn’t have a 1og10 operator. So we’ll do an extra division by log(10) to correct for this.

$ z=24.80
$ echo "$pixscale $f $z" | awk ’{print -2.5*log($1*$2)/log(10)+$3}’
--> 28.2989

On a single-exposure SDSS image, we have reached a surface brightness limit fainter
than 28 magnitudes per arcseconds squared!

In interpreting this value, you should just have in mind that NoiseChisel works based on
the contiguity of signal in the pixels. Therefore the larger the object, the deeper NoiseChisel
can carve it out of the noise. In other words, this reported depth, is only for this particular
object and dataset, processed with this particular NoiseChisel configuration: if the M51
group in this image was larger/smaller than this, or if the image was larger/smaller, or if
we had used a different configuration, we would go deeper/shallower.

To avoid typing all these options every time you run NoiseChisel on this image, you can
use Gnuastro’s configuration files, see Section 4.2 [Configuration files|, page 118. For an
applied example of setting/using them, see Section 2.2.8 [Option management and config-
uration files|, page 34.

To continue your analysis of such datasets with extended emission, you can use
Section 7.3 [Segment|, page 273, to identify all the “clumps” over the diffuse regions:
background galaxies and foreground stars.

$ astsegment r_detected.fits

Open the output r_detected_segmented.fits as a multi-extension data cube like be-
fore and flip through the first and second extensions to see the detected clumps (all pixels
with a value larger than 1). To optimize the parameters and make sure you have detected
what you wanted, we recommend to visually inspect the detected clumps on the input
image.

25 From http://classic.sdss. org/dr7/algorithms/fluxcal.html

http://classic.sdss.org/dr7/algorithms/fluxcal.html

Chapter 2: Tutorials 70

For visual inspection, you can make a simple shell script like below. It will first call
MakeCatalog to estimate the positions of the clumps, then make an SAO ds9 region file
and open ds9 with the image and region file. Recall that in a shell script, the numeric
variables (like $1, $2, and $3 in the example below) represent the arguments given to the
script. But when used in the AWK arguments, they refer to column numbers.

To create the shell script, using your favorite text editor, put the contents below into a
file called check-clumps.sh. Recall that everything after a # is just comments to help you
understand the command (so read them!). Also note that if you are copying from the PDF
version of this book, fix the single quotes in the AWK command.

#! /bin/bash
set -e # Stop execution when there is an error.
set -u # Stop execution when a variable is not initialized.

Run MakeCatalog to write the coordinates into a FITS table.
Default output is ‘$1_cat.fits’.
astmkcatalog $1.fits --clumpscat --ids --ra --dec

Use Gnuastro’s Table program to read the RA and Dec columns of the
clumps catalog (in the ‘CLUMPS’ extension). Then pipe the columns
to AWK for saving as a DS9 region file.
asttable $1"_cat.fits" -hCLUMPS -cRA,DEC
| awk ’BEGIN { print "# Region file format: DS9 version 4.1";
print "global color=green width=1";
print "fk5" }
{ printf "circle(¥%s,%s,1\")\n", $1, $2 }’ > $1l.reg

Show the image (with the requested color scale) and the region file.
ds9 -geometry 1800x3000 -mecube $1.fits -zoom to fit
-scale limits $2 $3 -regions load all $1.reg

Clean up (delete intermediate files).
rm $1"_cat.fits" $1.reg

Finally, you just have to activate the script’s executable flag with the command below. This
will enable you to directly/easily call the script as a command.

$ chmod +x check-clumps.sh

This script doesn’t expect the .fits suffix of the input’s filename as the first argument.
Because the script produces intermediate files (a catalog and DS9 region file, which are later
deleted). However, we don’t want multiple instances of the script (on different files in the
same directory) to collide (read/write to the same intermediate files). Therefore, we have
used suffixes added to the input’s name to identify the intermediate files. Note how all the
$1 instances in the commands (not within the AWK command?®®) are followed by a suffix.
If you want to keep the intermediate files, put a # at the start of the last line.

The few, but high-valued, bright pixels in the central parts of the galaxies can hinder easy
visual inspection of the fainter parts of the image. With the second and third arguments

26 1p AWK, $1 refers to the first column, while in the shell script, it refers to the first argument.

\
\
\
\

\

Chapter 2: Tutorials 71

to this script, you can set the numerical values of the color map (first is minimum/black,
second is maximum/white). You can call this script with any?” output of Segment (when
--rawoutput is not used) with a command like this:

$./check-clumps.sh r_detected_segmented -0.1 2

Go ahead and run this command. You will see the intermediate processing being done
and finally it opens SAO DS9 for you with the regions superimposed on all the extensions
of Segment’s output. The script will only finish (and give you control of the command-line)
when you close DS9. If you need your access to the command-line before closing DS9, add
a & after the end of the command above.

While DS9 is open, slide the dynamic range (values for black and white, or mini-
mum/maximum values in different color schemes) and zoom into various regions of the
M51 group to see if you are satisfied with the detected clumps. Don’t forget that through
the “Cube” window that is opened along with DS9, you can flip through the extensions and
see the actual clumps also. The questions you should be asking your self are these: 1) Which
real clumps (as you visually feel) have been missed? In other words, is the completeness
good? 2) Are there any clumps which you feel are false? In other words, is the purity good?

Note that completeness and purity are not independent of each other, they are anti-
correlated: the higher your purity, the lower your completeness and vice-versa. You can see
this by playing with the purity level using the --snquant option. Run Segment as shown
above again with -P and see its default value. Then increase/decrease it for higher/lower
purity and check the result as before. You will see that if you want the best purity, you
have to sacrifice completeness and vice versa.

One interesting region to inspect in this image is the many bright peaks around the
central parts of M51. Zoom into that region and inspect how many of them have actually
been detected as true clumps. Do you have a good balance between completeness and
purity? Also look out far into the wings of the group and inspect the completeness and
purity there.

An easier way to inspect completeness (and only completeness) is to mask all the pixels
detected as clumps and visually inspecting the rest of the pixels. You can do this using
Arithmetic in a command like below. For easy reading of the command, we’ll define the
shell variable i for the image name and save the output in masked.fits.

$ in="r_detected_segmented.fits -hINPUT"
$ clumps="r_detected_segmented.fits -hCLUMPS"
$ astarithmetic $in $clumps O gt nan where -oclumps-masked.fits

Inspecting clumps-masked.fits, you can see some very diffuse peaks that have been
missed, especially as you go farther away from the group center and into the diffuse wings.
This is due to the fact that with this configuration, we have focused more on the sharper
clumps. To put the focus more on diffuse clumps, you can use a wider convolution kernel.
Using a larger kernel can also help in detecting the existing clumps to fainter levels (thus
better separating them from the surrounding diffuse signal).

27 Some modifications are necessary based on the input dataset: depending on the dynamic range, you
have to adjust the second and third arguments. But more importantly, depending on the dataset’s world
coordinate system, you have to change the region width, in the AWK command. Otherwise the circle
regions can be too small/large.

Chapter 2: Tutorials 72

You can make any kernel easily using the --kernel option in Section 8.1 [MakeProfiles],
page 318. But note that a larger kernel is also going to wash-out many of the sharp/small
clumps close to the center of M51 and also some smaller peaks on the wings. Please
continue playing with Segment’s configuration to obtain a more complete result (while
keeping reasonable purity). We’ll finish the discussion on finding true clumps at this point.

The properties of the clumps within M51, or the background objects can then easily
be measured using Section 7.4 [MakeCatalog], page 284. To measure the properties of the
background objects (detected as clumps over the diffuse region), you shouldn’t mask the
diffuse region. When measuring clump properties with Section 7.4 [MakeCatalog], page 284,
and using the --clumpscat, the ambient flux (from the diffuse region) is calculated and
subtracted. If the diffuse region is masked, its effect on the clump brightness cannot be
calculated and subtracted.

To keep this tutorial short, we’ll stop here. See Section 2.2.13 [Segmentation and making
a catalog], page 44, and Section 7.3 [Segment|, page 273, for more on using Segment,
producing catalogs with MakeCatalog and using those catalogs.

73

3 Installation

The latest released version of Gnuastro source code is always available at the following URL:
http://ftpmirror.gnu.org/gnuastro/gnuastro-latest.tar.gz

Section 1.1 [Quick start], page 1, describes the commands necessary to configure, build,
and install Gnuastro on your system. This chapter will be useful in cases where the simple
procedure above is not sufficient, for example your system lacks a mandatory/optional
dependency (in other words, you can’t pass the $./configure step), or you want greater
customization, or you want to build and install Gnuastro from other random points in its
history, or you want a higher level of control on the installation. Thus if you were happy
with downloading the tarball and following Section 1.1 [Quick start], page 1, then you can
safely ignore this chapter and come back to it in the future if you need more customization.

Section 3.1 [Dependencies], page 73, describes the mandatory, optional and bootstrap-
ping dependencies of Gnuastro. Only the first group are required/mandatory when you are
building Gnuastro using a tarball (see Section 3.2.1 [Release tarball], page 83), they are
very basic and low-level tools used in most astronomical software, so you might already
have them installed, if not they are very easy to install as described for each. Section 3.2
[Downloading the source|, page 83, discusses the two methods you can obtain the source
code: as a tarball (a significant snapshot in Gnuastro’s history), or the full history'. The
latter allows you to build Gnuastro at any random point in its history (for example to get
bug fixes or new features that are not released as a tarball yet).

The building and installation of Gnuastro is heavily customizable, to learn more about
them, see Section 3.3 [Build and install], page 88. This section is essentially a thorough
explanation of the steps in Section 1.1 [Quick start], page 1. It discusses ways you can
influence the building and installation. If you encounter any problems in the installation
process, it is probably already explained in Section 3.3.5 [Known issues|, page 101. In
Appendix B [Other useful software], page 524, the installation and usage of some other free
software that are not directly required by Gnuastro but might be useful in conjunction with
it is discussed.

3.1 Dependencies

A minimal set of dependencies are mandatory for building Gnuastro from the standard
tarball release. If they are not present you cannot pass Gnuastro’s configuration step. The
mandatory dependencies are therefore very basic (low-level) tools which are easy to obtain,
build and install, see Section 3.1.1 [Mandatory dependencies], page 74, for a full discussion.

If you have the packages of Section 3.1.2 [Optional dependencies], page 76, Gnuastro will
have additional functionality (for example converting FITS images to JPEG or PDF). If you
are installing from a tarball as explained in Section 1.1 [Quick start], page 1, you can stop
reading after this section. If you are cloning the version controlled source (see Section 3.2.2
[Version controlled source], page 84), an additional bootstrapping step is required before
configuration and its dependencies are explained in Section 3.1.3 [Bootstrapping dependen-
cies], page 78.

1 Section 3.1.3 [Bootstrapping dependencies], page 78, are required if you clone the full history.

http://ftpmirror.gnu.org/gnuastro/gnuastro-latest.tar.gz

Chapter 3: Installation 74

Your operating system’s package manager is an easy and convenient way to down-
load and install the dependencies that are already pre-built for your operating system.
In Section 3.1.4 [Dependencies from package managers|, page 80, we’ll list some common
operating system package manager commands to install the optional and mandatory de-
pendencies.

3.1.1 Mandatory dependencies

The mandatory Gnuastro dependencies are very basic and low-level tools. They all follow
the same basic GNU based build system (like that shown in Section 1.1 [Quick start],
page 1), so even if you don’t have them, installing them should be pretty straightforward.
In this section we explain each program and any specific note that might be necessary in
the installation.

3.1.1.1 GNU Scientific library

The GNU Scientific Library (http://www.gnu.org/software/gsl/), or GSL, is a large
collection of functions that are very useful in scientific applications, for example integra-
tion, random number generation, and Fast Fourier Transform among many others. To
install GSL from source, you can run the following commands after you have downloaded
gsl-latest.tar.gz (http://ftpmirror.gnu.org/gsl/gsl-latest.tar.gz):

$ tar xf gsl-latest.tar.gz

cd gsl-X.X # Replace X.X with version number.
./configure
make -j8 # Replace 8 with no. CPU threads.

make check
sudo make install

3.1.1.2 CFITSIO

CFITSIO (http://heasarc.gsfc.nasa.gov/fitsio/) is the closest you can get to the
pixels in a FITS image while remaining faithful to the FITS standard (http://fits.gsfc.
nasa.gov/fits_standard.html). It is written by William Pence, the principal author of
the FITS standard?, and is regularly updated. Setting the definitions for all other software
packages using FITS images.

€@ €H H H P

Some GNU/Linux distributions have CFITSIO in their package managers, if it is avail-
able and updated, you can use it. One problem that might occur is that CFITSIO might not
be configured with the -—enable-reentrant option by the distribution. This option allows
CFITSIO to open a file in multiple threads, it can thus provide great speed improvements.
If CFITSIO was not configured with this option, any program which needs this capability
will warn you and abort when you ask for multiple threads (see Section 4.5 [Multi-threaded
operations|, page 126).

To install CFITSIO from source, we strongly recommend that you have a look through
Chapter 2 (Creating the CFITSIO library) of the CFITSIO manual and understand the

options you can pass to $./configure (they aren’t too much). This is a very basic package
for most astronomical software and it is best that you configure it nicely with your system.

2 Pence, W.D. et al. Definition of the Flexible Image Transport System (FITS), version 3.0. (2010)
Astronomy and Astrophysics, Volume 524, id.A42, 40 pp.

http://www.gnu.org/software/gsl/
http://ftpmirror.gnu.org/gsl/gsl-latest.tar.gz
http://heasarc.gsfc.nasa.gov/fitsio/
http://fits.gsfc.nasa.gov/fits_standard.html
http://fits.gsfc.nasa.gov/fits_standard.html

Chapter 3: Installation 75

Once you download the source and unpack it, the following configure script should be enough
for most purposes. Don’t forget to read chapter two of the manual though, for example the
second option is only for 64bit systems. The manual also explains how to check if it has
been installed correctly.

CFITSIO comes with two executable files called fpack and funpack. From their manual:
they “are standalone programs for compressing and uncompressing images and tables that
are stored in the FITS (Flexible Image Transport System) data format. They are analogous
to the gzip and gunzip compression programs except that they are optimized for the types
of astronomical images that are often stored in FITS format”. The commands below will
compile and install them on your system along with CFITSIO. They are not essential for
Gnuastro, since they are just wrappers for functions within CFITSIO, but they can come
in handy. The make utils command is only available for versions above 3.39, it will build
these executable files along with several other executable test files which are deleted in the
following commands before the installation (otherwise the test files will also be installed).

The commands necessary to decompress, build and install CFITSIO from source are
described below. Let’s assume you have downloaded cfitsio_latest.tar.gz (http://
heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio_latest.tar.gz) and are in
the same directory:

$ tar xf cfitsio_latest.tar.gz
cd cfitsio-X.XX # Replace X.XX with version
./configure --prefix=/usr/local --enable-sse2 --enable-reentrant
make

make utils

./testprog > testprog.lis

diff testprog.lis testprog.out # Should have no output
cmp testprog.fit testprog.std # Should have no output
rm cookbook fitscopy imcopy smem speed testprog

sudo make install

€ N H P P P P PP

3.1.1.3 WCSLIB

WCSLIB (http://www.atnf.csiro.au/people/mcalabre/WCS/) is written and
maintained by one of the authors of the World Coordinate System (WCS) definition in the
FITS standard (http://fits.gsfc.nasa.gov/fits_standard.html)?, Mark Calabretta.
It might be already built and ready in your distribution’s package management system.
However, here the installation from source is explained, for the advantages of installation
from source please see Section 3.1.1 [Mandatory dependencies|, page 74. To install
WCSLIB you will need to have CFITSIO already installed, see Section 3.1.1.2 [CFITSIO],
page 74.

WCSLIB also has plotting capabilities which use PGPLOT (a plotting library for C). If
you wan to use those capabilities in WCSLIB, Section B.2 [PGPLOT], page 527, provides
the PGPLOT installation instructions. However PGPLOT is old*, so its installation is not
easy, there are also many great modern WCS plotting tools (mostly in written in Python).

3 Greisen E.W., Calabretta M.R. (2002) Representation of world coordinates in FITS. Astronomy and
Astrophysics, 395, 1061-1075.

4 As of early June 2016, its most recent version was uploaded in February 2001.

http://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio_latest.tar.gz
http://heasarc.gsfc.nasa.gov/FTP/software/fitsio/c/cfitsio_latest.tar.gz
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://fits.gsfc.nasa.gov/fits_standard.html

Chapter 3: Installation 76

Hence, if you will not be using those plotting functions in WCSLIB, you can configure it
with the -—without-pgplot option as shown below.

If you have the cURL library® on your system and you installed CFITSIO version 3.42
or later, you will need to also link with the cURL library at configure time (through the
-1lcurl option as shown below). CFITSIO uses the cURL library for its HTTPS (or HTTP
Secure®) support and if it is present on your system, CFITSIO will depend on it. Therefore,
if ./configure command below fails (you don’t have the cURL library), then remove this
option and rerun it.

Let’s assume you have downloaded weslib.tar.bz2 (ftp://ftp.atnf.csiro.au/pub/
software/wcslib/wcslib.tar.bz2) and are in the same directory, to configure, build,
check and install WCSLIB follow the steps below.

$ tar xf wcslib.tar.bz2

In the ‘cd’ command, replace ‘X.X’ with version number.
$ cd weslib-X.X

If ¢./configure’ fails, remove ‘-lcurl’ and run again.

$./configure LIBS="-pthread -lcurl -1lm" --without-pgplot \
--disable-fortran

$ make

$ make check

$ sudo make install

3.1.2 Optional dependencies

The libraries listed here are only used for very specific applications, therefore if you don’t
want these operations, Gnuastro will be built and installed without them and you don’t
have to have the dependencies.

If the ./configure script can’t find these requirements, it will warn you in the end that
they are not present and notify you of the operation(s) you can’t do due to not having them.
If the output you request from a program requires a missing library, that program is going
to warn you and abort. In the case of program dependencies (like GPL GhostScript), if you
install them at a later time, the program will run. This is because if required libraries are
not present at build time, the executables cannot be built, but an executable is called by
the built program at run time so if it becomes available, it will be used. If you do install an
optional library later, you will have to rebuild Gnuastro and reinstall it for it to take effect.

GNU Libtool
Libtool is a program to simplify managing of the libraries to build an executable
(a program). GNU Libtool has some added functionality compared to other im-
plementations. If GNU Libtool isn’t present on your system at configuration
time, a warning will be printed and Section 10.2 [BuildProgram], page 365,
won’t be built or installed. The configure script will look into your search path
(PATH) for GNU Libtool through the following executable names: libtool (ac-

5 https://curl.haxx.se
6 https://en.wikipedia.org/wiki/HTTPS

ftp://ftp.atnf.csiro.au/pub/software/wcslib/wcslib.tar.bz2
ftp://ftp.atnf.csiro.au/pub/software/wcslib/wcslib.tar.bz2
https://curl.haxx.se
https://en.wikipedia.org/wiki/HTTPS

Chapter 3: Installation 77

libgit2

libjpeg

libtiff

ceptable only if it is the GNU implementation) or glibtool. See Section 3.3.1.2
[Installation directory], page 91, for more on PATH.

GNU Libtool (the binary/executable file) is a low-level program that is probably
already present on your system, and if not, is available in your operating system
package manager’. If you want to install GNU Libtool’s latest version from
source, please visit its webpage (https://www.gnu.org/software/libtool/).

Gnuastro’s tarball is shipped with an internal implementation of GNU Libtool.
Even if you have GNU Libtool, Gnuastro’s internal implementation is used for
the building and installation of Gnuastro. As a result, you can still build, install
and use Gnuastro even if you don’t have GNU Libtool installed on your system.
However, this internal Libtool does not get installed. Therefore, after Gnuas-
tro’s installation, if you want to use Section 10.2 [BuildProgram]|, page 365, to
compile and link your own C source code which uses the Section 10.3 [Gnuastro
library], page 369, you need to have GNU Libtool available on your system
(independent of Gnuastro). See Section 10.1 [Review of library fundamentals],
page 357, to learn more about libraries.

Git is one of the most common version control systems (see Section 3.2.2 [Ver-
sion controlled source|, page 84). When libgit2 is present, and Gnuastro’s
programs are run within a version controlled directory, outputs will contain the
version number of the working directory’s repository for future reproducibility.
See the COMMIT keyword header in Section 4.10 [Output FITS files], page 139,
for a discussion.

libjpeg is only used by ConvertType to read from and write to JPEG images,
see Section 5.3.1 [Recognized file formats|, page 157. libjpeg (http://www.ijg.
org/) is a very basic library that provides tools to read and write JPEG im-
ages, most Unix-like graphic programs and libraries use it. Therefore you most
probably already have it installed. libjpeg-turbo (http://libjpeg-turbo.
virtualgl.org/) is an alternative to libjpeg. It uses Single instruction, multi-
ple data (SIMD) instructions for ARM based systems that significantly de-
creases the processing time of JPEG compression and decompression algo-
rithms.

libtiff is used by ConvertType and the libraries to read TIFF images, see
Section 5.3.1 [Recognized file formats|, page 157. libtiff (http://www.
simplesystems.org/libtiff/) is a very basic library that provides tools to
read and write TTFF images, most Unix-like operating system graphic programs
and libraries use it. Therefore even if you don’t have it installed, it must be
easily available in your package manager.

GPL Ghostscript

GPL Ghostscript’s executable (gs) is called by ConvertType to compile a PDF
file from a source PostScript file, see Section 5.3 [ConvertType|, page 156.
Therefore its headers (and libraries) are not needed. With a very high prob-
ability you already have it in your GNU/Linux distribution. Unfortunately it

7 Note that we want the binary/executable Libtool program which can be run on the command-line. In
Debian-based operating systems which separate various parts of a package, you want want libtool-bin,
the 1libtool package won’t contain the executable program.

https://www.gnu.org/software/libtool/
http://www.ijg.org/
http://www.ijg.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://www.simplesystems.org/libtiff/
http://www.simplesystems.org/libtiff/

Chapter 3: Installation 78

does not follow the standard GNU build style so installing it is very hard. It is
best to rely on your distribution’s package managers for this.

3.1.3 Bootstrapping dependencies

Bootstrapping is only necessary if you have decided to obtain the full version controlled his-
tory of Gnuastro, see Section 3.2.2 [Version controlled source], page 84, and Section 3.2.2.1
[Bootstrapping], page 85. Using the version controlled source enables you to always be up
to date with the most recent development work of Gnuastro (bug fixes, new functionalities,
improved algorithms, etc). If you have downloaded a tarball (see Section 3.2 [Downloading
the source], page 83), then you can ignore this subsection.

To successfully run the bootstrapping process, there are some additional dependencies
to those discussed in the previous subsections. These are low level tools that are used by a
large collection of Unix-like operating systems programs, therefore they are most probably
already available in your system. If they are not already installed, you should be able to
easily find them in any GNU/Linux distribution package management system (apt-get,
yum, pacman, etc). The short names in parenthesis in typewriter font after the package
name can be used to search for them in your package manager. For the GNU Portability
Library, GNU Autoconf Archive and TEX Live, it is recommended to use the instructions
here, not your operating system’s package manager.

GNU Portability Library (Gnulib)

To ensure portability for a wider range of operating systems (those that don’t in-
clude GNU C library, namely glibc), Gnuastro depends on the GNU portability
library, or Gnulib. Gnulib keeps a copy of all the functions in glibc, imple-
mented (as much as possible) to be portable to other operating systems. The
bootstrap script can automatically clone Gnulib (as a gnulib/ directory inside
Gnuastro), however, as described in Section 3.2.2.1 [Bootstrapping], page 85,
this is not recommended.

The recommended way to bootstrap Gnuastro is to first clone Gnulib and the
Autoconf archives (see below) into a local directory outside of Gnuastro. Let’s
call it DEVDIR® (which you can set to any directory). Currently in Gnuastro,
both Gnulib and Autoconf archives have to be cloned in the same top directory®
like the case here'?:

$ DEVDIR=/home/yourname/Development

$ cd $DEVDIR

$ git clone git://git.sv.gnu.org/gnulib.git

$ git clone git://git.sv.gnu.org/autoconf-archive.git

8 If you are not a developer in Gnulib or Autoconf archives, DEVDIR can be a directory that you don’t
backup. In this way the large number of files in these projects won’t slow down your backup process or
take bandwidth (if you backup to a remote server).

If you already have the Autoconf archives in a separate directory, or can’t clone it in the same directory
as Gnulib, or you have it with another directory name (not autoconf-archive/), you can follow this
short step. Set AUTOCONFARCHIVES to your desired address. Then define a symbolic link in DEVDIR with
the following command so Gnuastro’s bootstrap script can find it:

$ 1n -s $AUTOCONFARCHIVES $DEVDIR/autoconf-archive.

If your internet connection is active, but Git complains about the network, it might be due to your
network setup not recognizing the git protocol. In that case use the following URL for the HTTP
protocol instead (for Autoconf archives, replace the name): http://git.sv.gnu.org/r/gnulib.git

10

Chapter 3: Installation 79

You now have the full version controlled source of these two repositories in
separate directories. Both these packages are regularly updated, so every once
in a while, you can run $ git pull within them to get any possible updates.

GNU Automake (automake)
GNU Automake will build the Makefile.in files in each sub-directory using the
(hand-written) Makefile.am files. The Makefile.ins are subsequently used to
generate the Makefiles when the user runs ./configure before building.

GNU Autoconf (autoconf)
GNU Autoconf will build the configure script using the configurations we have
defined (hand-written) in configure.ac.

GNU Autoconf Archive
These are a large collection of tests that can be called to run at ./configure
time. See the explanation under GNU Portability Library above for instructions
on obtaining it and keeping it up to date.

GNU Libtool (1ibtool)
GNU Libtool is in charge of building all the libraries in Gnuastro. The libraries
contain functions that are used by more than one program and are installed for
use in other programs. They are thus put in a separate directory (1ib/).

GNU help2man (help2man)
GNU help2man is used to convert the output of the —~help option (Section 4.3.2
[--help], page 122) to the traditional Man page (Section 4.3.3 [Man pages],
page 123).

IXTEX and some TEX packages
Some of the figures in this book are built by IATEX (using the PGF/TikZ pack-

age). The IXTEX source for those figures is version controlled for easy mainte-
nance not the actual figures. So the ./boostrap script will run IMTEX to build
the figures. The best way to install INTEX and all the necessary packages is
through TgX live (https://www.tug.org/texlive/) which is a package man-
ager for TEX related tools that is independent of any operating system. It is
thus preferred to the TEX Live versions distributed by your operating system.

To install TEX Live, go to the webpage and download the appropriate installer
by following the “download” link. Note that by default the full package repos-
itory will be downloaded and installed (around 4 Giga Bytes) which can take
very long to download and to update later. However, most packages are not
needed by everyone, it is easier, faster and better to install only the “Basic
scheme” (consisting of only the most basic TEX and IBTEX packages, which is
less than 200 Mega bytes)*!.

After the installation, be sure to set the environment variables as suggested in
the end of the outputs. Any time you confront (need) a package you don’t have,
simply install it with a command like below (similar to how you install software

' You can also download the DVD iso file at a later time to keep as a backup for when you don’t have
internet connection if you need a package.

https://www.tug.org/texlive/

Chapter 3: Installation 80

from your operating system’s package manager)'?. To install all the necessary
TEX packages for a successful Gnuastro bootstrap, run this command:

$ su

tlmgr install epsf jknapltx caption biblatex biber iftex \
etoolbox logreq xstring xkeyval pgf ms \
xcolor pgfplots times rsfs ps2eps epspdf

ImageMagick (imagemagick)
ImageMagick is a wonderful and robust program for image manipulation on the
command-line. bootstrap uses it to convert the book images into the formats
necessary for the various book formats.

3.1.4 Dependencies from package managers

The most basic way to install a package on your system is to build the packages from source
yourself. Alternatively, you can use your operating system’s package manager to download
pre-compiled files and install them. The latter choice is easier and faster. However, we
recommend that you build the Section 3.1.1 [Mandatory dependencies|, page 74, yourself
from source (all necessary commands and links are given in the respective section). Here
are some basic reasons behind this recommendation.

1. Your distribution’s pre-built package might not be the most recent release.

2. For each package, Gnuastro might preform better (or require) certain configuration
options that your distribution’s package managers didn’t add for you. If present, these
configuration options are explained during the installation of each in the sections below
(for example in Section 3.1.1.2 [CFITSIO], page 74). When the proper configuration
has not been set, the programs should complain and inform you.

3. For the libraries, they might separate the binary file from the header files which can
cause confusion, see Section 3.3.5 [Known issues|, page 101.

4. Like any other tool, the science you derive from Gnuastro’s tools highly depend on
these lower level dependencies, so generally it is much better to have a close connection
with them. By reading their manuals, installing them and staying up to date with
changes/bugs in them, your scientific results and understanding (of what is going on,
and thus how you interpret your scientific results) will also correspondingly improve.

Based on your package manager, you can use any of the following commands to install
the mandatory and optional dependencies. If your package manager isn’t included in the
list below, please send us the respective command, so we add it. Gnuastro itself if also
already packaged in some package managers (for example Debian or Homebrew).

As discussed above, we recommend installing the mandatory dependencies manually from
source (see Section 3.1.1 [Mandatory dependencies]|, page 74). Therefore, in each command
below, first the optional dependencies are given. The mandatory dependencies are included
after an empty line. If you would also like to install the mandatory dependencies with your
package manager, just ignore the empty line.

For better archivability and compression ratios, Gnuastro’s recommended tarball
compression format is with the Lzip (http://1zip.nongnu.org/lzip.html) program, see

12 After running TEX, or IATEX, you might get a warning complaining about a missingfile. Run ‘tlmgr
info missingfile’ to see the package(s) containing that file which you can install.

http://lzip.nongnu.org/lzip.html

Chapter 3: Installation 81

Section 3.2.1 [Release tarball], page 83. Therefore, the package manager commands below
also contain Lzip.

apt-get (Debian-based OSs: Debian, Ubuntu, Linux Mint, etc)

dnf

Debian (https://en.wikipedia.org/wiki/Debian) is one of the oldest
GNU/Linux distributions'®. It thus has a very extended user community
and a robust internal structure and standards. All of it is free software and
based on the work of volunteers around the world. Many distributions are
thus derived from it, for example Ubuntu and Linux Mint. This arguably
makes Debian-based OSs the largest, and most used, class of GNU/Linux
distributions. All of them use Debian’s Advanced Packaging Tool (APT, for
example apt-get) for managing packages.

$ sudo apt-get install ghostscript libtool-bin libjpeg-dev \
libtiff-dev libgit2-dev 1lzip \

\

libgsl0-dev libcfitsio-dev wcslib-dev

Gnuastro is packaged (https://tracker.debian.org/pkg/gnuastro) in De-
bian (and thus some of its derivate operating systems). Just make sure it is the
most recent version.

yum (Red Hat-based OSs: Red Hat, Fedora, CentOS, Scientific Linux, etc)

Red Hat Enterprise Linux (https://en.wikipedia.org/wiki/Red_Hat)
(RHEL) is released by Red Hat Inc. RHEL requires paid subscriptions for
use of its binaries and support. But since it is free software, many other
teams use its code to spin-off their own distributions based on RHEL. Red
Hat-based GNU/Linux distributions initially used the “Yellowdog Updated,
Modifier” (YUM) package manager, which has been replaced by “Dandified
yum” (DNF). If the latter isn’t available on your system, you can use yum
instead of dnf in the command below.

$ sudo dnf install ghostscript libtool libjpeg-devel \
libtiff-devel libgit2-devel 1lzip

- -

gsl-devel cfitsio-devel wcslib-devel

brew (macOS)

macOS (https://en.wikipedia.org/wiki/Mac0S) is the operating system
used on Apple devices. macOS does not come with a package manager
pre-installed, but several widely used, third-party package managers exist,
such as Homebrew or MacPorts. Both are free software. Currently we have
only tested Gnuastro’s installation with Homebrew as described below.

If not already installed, first obtain Homebrew by following the instructions at
https://brew.sh. Homebrew manages packages in different ‘taps’. To install
WCSLIB (discussed in Section 3.1.1 [Mandatory dependencies], page 74) via
Homebrew you will need to tap into brewsci/science first (the tap may change
in the future, but can be found by calling brew search wcslib).

13 https://en.wikipedia.org/wiki/List_of_Linux_distributions#Debian-based

https://en.wikipedia.org/wiki/Debian
https://tracker.debian.org/pkg/gnuastro
https://en.wikipedia.org/wiki/Red_Hat
https://en.wikipedia.org/wiki/MacOS
https://brew.sh
https://en.wikipedia.org/wiki/List_of_Linux_distributions#Debian-based

Chapter 3: Installation 82

$ brew install ghostscript libtool libjpeg libtiff \
libgit2 1zip \
\

gsl cfitsio
$ brew tap brewsci/science
$ brew install wcslib

pacman (Arch Linux)
Arch Linux (https://en.wikipedia.org/wiki/Arch_Linux) is a smaller
GNU/Linux distribution, which follows the KISS principle (“keep it simple,
stupid”) as a general guideline. It “focuses on elegance, code correctness,
minimalism and simplicity, and expects the user to be willing to make some
effort to understand the system’s operation”. Arch Linux uses “Package
manager” (Pacman) to manage its packages/components.

$ sudo pacman -S ghostscript libtool libjpeg libtiff \
libgit2 lzip \
\

gsl cfitsio wcslib

zypper (openSUSE and SUSE Linux Enterprise Server)
SUSE Linux Enterprise Server'* (SLES) is the commercial offering which shares
code and tools. Many additional packages are offered in the Build Service!s.
openSUSE and SLES use zypper (cli) and YaST (GUI) for managing reposito-
ries and packages.

$ sudo zypper install ghostscript_any libtool pkgconfig \
cfitsio-devel gsl-devel libcurl-devel \
libgit2-devel libjpeg62-devel libtiff-devel \
wcslib-devel
When building Gnuastro, run the configure script with the following CPPFLAGS
environment variable:

$./configure CPPFLAGS="-I/usr/include/cfitsio"

Usually, when libraries are installed by operating system package managers, there should

be no problems when configuring and building other programs from source (that depend on
the libraries: Gnuastro in this case). However, in some special conditions, problems may
pop-up during the configuration, building, or checking/running any of Gnuastro’s programs.
The most common of such problems and their solution are discussed below.
(N
Not finding library during configuration: If a library is installed, but during Gnuastro’s
configure step the library isn’t found, then configure Gnuastro like the command below
(correcting /path/to/1ib). For more, see Section 3.3.5 [Known issues], page 101, and
Section 3.3.1.2 [Installation directory], page 91.

$./configure LDFLAGS="-L/path/to/1ib"
N\ J

14 https://www.suse.com/products/server
15 https://build.opensuse.org

https://en.wikipedia.org/wiki/Arch_Linux
https://www.suse.com/products/server
https://build.opensuse.org

Chapter 3: Installation 83

(M
Not finding header (.h) files while building: If a library is installed, but during Gnuastro’s

make step, the library’s header (file with a .h suffix) isn’t found, then configure Gnuastro like
the command below (correcting /path/to/include). For more, see Section 3.3.5 [Known
issues|, page 101, and Section 3.3.1.2 [Installation directory], page 91.

$./configure CPPFLAGS="-I/path/to/include"
-)

(7
Gnuastro’s programs don’t run during check or after install: If a library is installed, but the

programs don’t run due to linking problems, set the LD_LIBRARY_PATH variable like below
(assuming Gnuastro is installed in /path/to/installed). For more, see Section 3.3.5
[Known issues|, page 101, and Section 3.3.1.2 [Installation directory], page 91.

$ export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/path/to/installed/lib"
N J

3.2 Downloading the source

Gnuastro’s source code can be downloaded in two ways. As a tarball, ready to be con-
figured and installed on your system (as described in Section 1.1 [Quick start], page 1),
see Section 3.2.1 [Release tarball], page 83. If you want official releases of stable versions
this is the best, easiest and most common option. Alternatively, you can clone the version
controlled history of Gnuastro, run one extra bootstrapping step and then follow the same
steps as the tarball. This will give you access to all the most recent work that will be
included in the next release along with the full project history. The process is thoroughly
introduced in Section 3.2.2 [Version controlled source], page 84.

3.2.1 Release tarball

A release tarball (commonly compressed) is the most common way of obtaining free and
open source software. A tarball is a snapshot of one particular moment in the Gnuastro
development history along with all the necessary files to configure, build, and install Gnu-
astro easily (see Section 1.1 [Quick start], page 1). It is very straightforward and needs the
least set of dependencies (see Section 3.1.1 [Mandatory dependencies]|, page 74). Gnuastro
has tarballs for official stable releases and pre-releases for testing. See Section 1.5 [Version
numbering], page 7, for more on the two types of releases and the formats of the version
numbers. The URLs for each type of release are given below.

Official stable releases (http://ftp.gnu.org/gnu/gnuastro):
This URL hosts the official stable releases of Gnuastro. Always use the most
recent version (see Section 1.5 [Version numbering], page 7). By clicking on
the “Last modified” title of the second column, the files will be sorted by their
date which you can also use to find the latest version. It is recommended to
use a mirror to download these tarballs, please visit http://ftpmirror.gnu.
org/gnuastro/ and see below.

Pre-release tar-balls (http://alpha.gnu.org/gnu/gnuastro):
This URL contains unofficial pre-release versions of Gnuastro. The pre-release
versions of Gnuastro here are for enthusiasts to try out before an official release.
If there are problems, or bugs then the testers will inform the developers to fix
before the next official release. See Section 1.5 [Version numbering], page 7,
to understand how the version numbers here are formatted. If you want to re-

http://ftp.gnu.org/gnu/gnuastro
http://ftpmirror.gnu.org/gnuastro/
http://ftpmirror.gnu.org/gnuastro/
http://alpha.gnu.org/gnu/gnuastro

Chapter 3: Installation 84

main even more up-to-date with the developing activities, please clone the ver-
sion controlled source as described in Section 3.2.2 [Version controlled source],
page 84.

Gnuastro’s official /stable tarball is released with two formats: Gzip (with suffix .tar.gz)
and Lzip (with suffix .tar.1z). The pre-release tarballs (after version 0.3) are released only
as an Lzip tarball. Gzip is a very well-known and widely used compression program created
by GNU and available in most systems. However, Lzip provides a better compression ratio
and more robust archival capacity. For example Gnuastro 0.3’s tarball was 2.9MB and
4.3MB with Lzip and Gzip respectively, see the Lzip webpage (http://www.nongnu.org/
1zip/lzip.html) for more. Lzip might not be pre-installed in your operating system, if so,
installing it from your operating system’s package manager or from source is very easy and
fast (it is a very small program).

The GNU FTP server is mirrored (has backups) in various locations on the globe
(http://www.gnu.org/order/ftp.html). You can use the closest mirror to your loca-
tion for a more faster download. Note that only some mirrors keep track of the pre-release
(alpha) tarballs. Also note that if you want to download immediately after and announce-
ment (see Section 1.9 [Announcements|, page 13), the mirrors might need some time to
synchronize with the main GNU FTP server.

3.2.2 Version controlled source

The publicly distributed Gnuastro tar-ball (for example gnuastro-X.X.tar.gz) does not
contain the revision history, it is only a snapshot of the source code at one significant instant
of Gnuastro’s history (specified by the version number, see Section 1.5 [Version numbering],
page 7), ready to be configured and built. To be able to develop successfully, the revision
history of the code can be very useful to track when something was added or changed, also
some updates that are not yet officially released might be in it.

We use Git for the version control of Gnuastro. For those who are not familiar with
it, we recommend the ProGit book (https://git-scm.com/book/en). The whole book is
publicly available for online reading and downloading and does a wonderful job at explaining
the concepts and best practices.

Let’s assume you want to keep Gnuastro in the TOPGNUASTRO directory (can be any
directory, change the value below). The full version controlled history of Gnuastro can be
cloned in TOPGNUASTRO/gnuastro by running the following commands®®:

$ TOPGNUASTRO=/home/yourname/Research/projects/

$ cd $TOPGNUASTRO

$ git clone git://git.sv.gnu.org/gnuastro.git
The $TOPGNUASTRO/gnuastro directory will contain hand-written (version controlled)
source code for Gnuastro’s programs, libraries, this book and the tests. All are divided
into sub-directories with standard and very descriptive names. The version controlled files
in the top cloned directory are either mainly in capital letters (for example THANKS and
README) or mainly written in small-caps (for example configure.ac and Makefile.am).
The former are non-programming, standard writing for human readers containing

16 1f your internet connection is active, but Git complains about the network, it might be due to your
network setup not recognizing the Git protocol. In that case use the following URL which uses the
HTTP protocol instead: http://git.sv.gnu.org/r/gnuastro.git

http://www.nongnu.org/lzip/lzip.html
http://www.nongnu.org/lzip/lzip.html
http://www.gnu.org/order/ftp.html
https://git-scm.com/book/en

Chapter 3: Installation 85

high-level information about the whole package. The latter are instructions to customize
the GNU build system for Gnuastro. For more on Gnuastro’s source code structure, please
see Chapter 11 [Developing], page 500. We won’t go any deeper here.

The cloned Gnuastro source cannot immediately be configured, compiled, or installed
since it only contains hand-written files, not automatically generated or imported files which
do all the hard work of the build process. See Section 3.2.2.1 [Bootstrapping], page 85, for
the process of generating and importing those files (its not too hard!). Once you have
bootstrapped Gnuastro, you can run the standard procedures (in Section 1.1 [Quick start],
page 1). Very soon after you have cloned it, Gnuastro’s main master branch will be updated
on the main repository (since the developers are actively working on Gnuastro), for the best
practices in keeping your local history in sync with the main repository see Section 3.2.2.2
[Synchronizing|, page 86.

3.2.2.1 Bootstrapping

The version controlled source code lacks the source files that we have not written or are
automatically built. These automatically generated files are included in the distributed
tar ball for each distribution (for example gnuastro-X.X.tar.gz, see Section 1.5 [Version
numbering], page 7) and make it easy to immediately configure, build, and install Gnuastro.
However from the perspective of version control, they are just bloatware and sources of
confusion (since they are not changed by Gnuastro developers).

The process of automatically building and importing necessary files into the cloned
directory is known as bootstrapping. All the instructions for an automatic bootstrapping
are available in bootstrap and configured using bootstrap.conf. bootstrap and COPYING
(which contains the software copyright notice) are the only files not written by Gnuastro
developers but under version control to enable simple bootstrapping and legal information
on usage immediately after cloning. bootstrap.conf is maintained by the GNU Portability
Library (Gnulib) and this file is an identical copy, so do not make any changes in this
file since it will be replaced when Gnulib releases an update. Make all your changes in
bootstrap.conf.

The bootstrapping process has its own separate set of dependencies, the full list is given in
Section 3.1.3 [Bootstrapping dependencies], page 78. They are generally very low-level and
used by a very large set of commonly used programs, so they are probably already installed
on your system. The simplest way to bootstrap Gnuastro is to simply run the bootstrap
script within your cloned Gnuastro directory as shown below. However, please read the
next paragraph before doing so (see Section 3.2.2 [Version controlled source], page 84, for
TOPGNUASTRO).

$ cd TOPGNUASTRO/gnuastro
$./bootstrap # Requires internet connection

Without any options, bootstrap will clone Gnulib within your cloned Gnuastro directory
(TOPGNUASTRO/gnuastro/gnulib) and download the necessary Autoconf archives macros.
So if you run bootstrap like this, you will need an internet connection every time you decide
to bootstrap. Also, Gnulib is a large package and cloning it can be slow. It will also keep the
full Gnulib repository within your Gnuastro repository, so if another one of your projects
also needs Gnulib, and you insist on running bootstrap like this, you will have two copies.
In case you regularly backup your important files, Gnulib will also slow down the backup

Chapter 3: Installation 86

process. Therefore while the simple invocation above can be used with no problem, it is
not recommended. To do better, see the next paragraph.

The recommended way to get these two packages is thoroughly discussed in Section 3.1.3
[Bootstrapping dependencies|, page 78, (in short: clone them in the separate DEVDIR/
directory). The following commands will take you into the cloned Gnuastro directory and
run the bootstrap script, while telling it to copy some files (instead of making symbolic
links, with the —-copy option, this is not mandatory!”) and where to look for Gnulib (with
the --gnulib-srcdir option). Please note that the address given to -—gnulib-srcdir has
to be an absolute address (so don’t use ~ or ../ for example).

$ cd $TOPGNUASTRO/gnuastro
$./bootstrap --copy --gnulib-srcdir=$DEVDIR/gnulib

Since Gnulib and Autoconf archives are now available in your local directories, you don’t
need an internet connection every time you decide to remove all untracked files and redo the
bootstrap (see box below). You can also use the same command on any other project that
uses Gnulib. All the necessary GNU C library functions, Autoconf macros and Automake
inputs are now available along with the book figures. The standard GNU build system
(Section 1.1 [Quick start], page 1) will do the rest of the job.

e N
Undoing the bootstrap: During the development, it might happen that you want to remove
all the automatically generated and imported files. In other words, you might want to
reverse the bootstrap process. Fortunately Git has a good program for this job: git clean.
Run the following command and every file that is not version controlled will be removed.

git clean -fxd

It is best to commit any recent change before running this command. You might have
created new files since the last commit and if they haven’t been committed, they will all be
gone forever (using rm). To get a list of the non-version controlled files instead of deleting

them, add the n option to git clean, so it becomes -fxdn.
k J

Besides the bootstrap and bootstrap.conf, the bootstrapped/ directory and
README-hacking file are also related to the bootstrapping process. The former hosts all
the imported (bootstrapped) directories. Thus, in the version controlled source, it only
contains a REAME file, but in the distributed tar-ball it also contains sub-directories filled
with all bootstrapped files. README-hacking contains a summary of the bootstrapping
process discussed in this section. It is a necessary reference when you haven’t built this
book yet. It is thus not distributed in the Gnuastro tarball.

3.2.2.2 Synchronizing

The bootstrapping script (see Section 3.2.2.1 [Bootstrapping], page 85) is not regularly
needed: you mainly need it after you have cloned Gnuastro (once) and whenever you want
to re-import the files from Gnulib, or Autoconf archives'® (not too common). However,
Gnuastro developers are constantly working on Gnuastro and are pushing their changes

7 The --copy option is recommended because some backup systems might do strange things with symbolic
links.

18 https://savannah.gnu.org/task/index.php?13993 is defined for you to check if significant (for Gnu-
astro) updates are made in these repositories, since the last time you pulled from them.

https://savannah.gnu.org/task/index.php?13993

Chapter 3: Installation 87

to the official repository. Therefore, your local Gnuastro clone will soon be out-dated.
Gnuastro has two mailing lists dedicated to its developing activities (see Section 11.10
[Developing mailing lists], page 515). Subscribing to them can help you decide when to
synchronize with the official repository.

To pull all the most recent work in Gnuastro, run the following command from the top
Gnuastro directory. If you don’t already have a built system, ignore make distclean. The
separate steps are described in detail afterwards.

$ make distclean && git pull && autoreconf -f
You can also run the commands separately:

$ make distclean
$ git pull
$ autoreconf -f

If Gnuastro was already built in this directory, you don’t want some outputs from the
previous version being mixed with outputs from the newly pulled work. Therefore, the first
step is to clean/delete all the built files with make distclean. Fortunately the GNU build
system allows the separation of source and built files (in separate directories). This is a
great feature to keep your source directory clean and you can use it to avoid the cleaning
step. Gnuastro comes with a script with some useful options for this job. It is useful if
you regularly pull recent changes, see Section 3.3.2 [Separate build and source directories],
page 97.

After the pull, we must re-configure Gnuastro with autoreconf -f (part of GNU Auto-
conf). It will update the ./configure script and all the Makefile.in'’ files based on the
hand-written configurations (in configure.ac and the Makefile.am files). After running
autoreconf -f, a warning about TEXI2DVI might show up, you can ignore that.

The most important reason for re-building Gnuastro’s build system is to generate/update
the version number for your updated Gnuastro snapshot. This generated version number
will include the commit information (see Section 1.5 [Version numbering], page 7). The
version number is included in nearly all outputs of Gnuastro’s programs, therefore it is vital
for reproducing an old result.

As a summary, be sure to run ‘autoreconf -f’ after every change in the Git history. This
includes synchronization with the main server or even a commit you have made yourself.

If you would like to see what has changed since you last synchronized your local clone,
you can take the following steps instead of the simple command above (don’t type anything
after #):

$ git checkout master # Confirm if you are on master.

$ git fetch origin # Fetch all new commits from server.
$ git log master..origin/master # See all the new commit messages.
$ git merge origin/master # Update your master branch.

$ autoreconf -f # Update the build system.

By default git log prints the most recent commit first, add the —-reverse option to see
the changes chronologically. To see exactly what has been changed in the source code along
with the commit message, add a —p option to the git log.

19 In the GNU build system, ./configure will use the Makefile.in files to create the necessary Makefile
files that are later read by make to build the package.

Chapter 3: Installation 88

If you want to make changes in the code, have a look at Chapter 11 [Developing],
page 500, to get started easily. Be sure to commit your changes in a separate branch (keep
your master branch to follow the official repository) and re-run autoreconf -f after the
commit. If you intend to send your work to us, you can safely use your commit since
it will be ultimately recorded in Gnuastro’s official history. If not, please upload your
separate branch to a public hosting service, for example GitLab (https://gitlab.com),
and link to it in your report/paper. Alternatively, run make distcheck and upload the
output gnuastro-X.X.X.XXXX.tar.gz to a publicly accessible webpage so your results can
be considered scientific (reproducible) later.

3.3 Build and install

This section is basically a longer explanation to the sequence of commands given in
Section 1.1 [Quick start], page 1. If you didn’t have any problems during the Section 1.1
[Quick start], page 1, steps, you want to have all the programs of Gnuastro installed in
your system, you don’t want to change the executable names during or after installation,
you have root access to install the programs in the default system wide directory, the
Letter paper size of the print book is fine for you or as a summary you don’t feel like going
into the details when everything is working, you can safely skip this section.

If you have any of the above problems or you want to understand the details for a better
control over your build and install, read along. The dependencies which you will need prior
to configuring, building and installing Gnuastro are explained in Section 3.1 [Dependencies],
page 73. The first three steps in Section 1.1 [Quick start], page 1, need no extra explanation,
so we will skip them and start with an explanation of Gnuastro specific configuration options
and a discussion on the installation directory in Section 3.3.1 [Configuring], page 88, followed
by some smaller subsections: Section 3.3.3 [Tests|, page 100, Section 3.3.4 [A4 print book],
page 100, and Section 3.3.5 [Known issues], page 101, which explains the solutions to known
problems you might encounter in the installation steps and ways you can solve them.

3.3.1 Configuring

The $./configure step is the most important step in the build and install process. All
the required packages, libraries, headers and environment variables are checked in this step.
The behaviors of make and make install can also be set through command line options to
this command.

The configure script accepts various arguments and options which enable the final user
to highly customize whatever she is building. The options to configure are generally very
similar to normal program options explained in Section 4.1.1 [Arguments and options],
page 104. Similar to all GNU programs, you can get a full list of the options along with a
short explanation by running

$./configure --help

A complete explanation is also included in the INSTALL file. Note that this file was written by
the authors of GNU Autoconf (which builds the configure script), therefore it is common
for all programs which use the $./configure script for building and installing, not just
Gnuastro. Here we only discuss cases where you don’t have super-user access to the system
and if you want to change the executable names. But before that, a review of the options
to configure that are particular to Gnuastro are discussed.

https://gitlab.com

Chapter 3: Installation 89

3.3.1.1 Gnuastro configure options

Most of the options to configure (which are to do with building) are similar for every program
which uses this script. Here the options that are particular to Gnuastro are discussed. The
next topics explain the usage of other configure options which can be applied to any program
using the GNU build system (through the configure script).

-—-enable-debug
Compile/build Gnuastro with debugging information, no optimization and
without shared libraries.

In order to allow more efficient programs when using Gnuastro (after the in-
stallation), by default Gnuastro is built with a 3rd level (a very high level)
optimization and no debugging information. By default, libraries are also built
for static and shared linking (see Section 10.1.2 [Linking], page 361). However,
when there are crashes or unexpected behavior, these three features can hinder
the process of localizing the problem. This configuration option is identical to
manually calling the configuration script with CFLAGS="-g -00" --disable-
shared.

In the (rare) situations where you need to do your debugging on the shared
libraries, don’t use this option. Instead run the configure script by explicitly
setting CFLAGS like this:

$./configure CFLAGS="-g -00"

--enable-check-with-valgrind
Do the make check tests through Valgrind. Therefore, if any crashes or
memory-related issues (segmentation faults in particular) occur in the tests,
the output of Valgrind will also be put in the tests/test-suite.log file
without having to manually modify the check scripts. This option will also
activate Gnuastro’s debug mode (see the --enable-debug configure-time
option described above).

Valgrind is free software. It is a program for easy checking of memory-related
issues in programs. It runs a program within its own controlled environment
and can thus identify the exact line-number in the program’s source where a
memory-related issue occurs. However, it can significantly slow-down the tests.
So this option is only useful when a segmentation fault is found during make
check.

--enable-progname
Only build and install progname along with any other program that is enabled
in this fashion. progname is the name of the executable without the ast, for
example crop for Crop (with the executable name of astcrop).

Note that by default all the programs will be installed. This option (and the
--disable-progname options) are only relevant when you don’t want to install
all the programs. Therefore, if this option is called for any of the programs
in Gnuastro, any program which is not explicitly enabled will not be built or
installed.

Chapter 3: Installation 90

--disable-progname

--enable-progname=no
Do not build or install the program named progname. This is very similar to the
--enable-progname, but will build and install all the other programs except
this one.

Note: If some programs are enabled and some are disabled, it is equivalent
to simply enabling those that were enabled. Listing the disabled programs is
redundant.

—--enable-gnulibcheck

Enable checks on the GNU Portability Library (Gnulib). Gnulib is used by
Gnuastro to enable users of non-GNU based operating systems (that don’t use
GNU C library or glibc) to compile and use the advanced features that this
library provides. We make extensive use of such functions. If you give this
option to $./configure, when you run $ make check, first the functions in
Gnulib will be tested, then the Gnuastro executables. If your operating system
does not support glibc or has an older version of it and you have problems in the
build process ($ make), you can give this flag to configure to see if the problem
is caused by Gnulib not supporting your operating system or Gnuastro, see
Section 3.3.5 [Known issues], page 101.

--disable-guide-message

--enable-guide-message=no
Do not print a guiding message during the GNU Build process of Section 1.1
[Quick start], page 1. By default, after each step, a message is printed guiding
the user what the next command should be. Therefore, after ./configure, it
will suggest running make. After make, it will suggest running make check and
so on. If Gnuastro is configured with this option, for example

$./configure --disable-guide-message

Then these messages will not be printed after any step (like most programs).
For people who are not yet fully accustomed to this build system, these guide-
lines can be very useful and encouraging. However, if you find those messages
annoying, use this option.

—-without-1libgit2
Build Gnuastro without libgit2 (for including Git commit hashes in output
files), see Section 3.1.2 [Optional dependencies|, page 76. libgit2 is an optional
dependency, with this option, Gnuastro will ignore any possibly existing libgit2
that may already be on the system.

--without-libjpeg
Build Gnuastro without libjpeg (for reading/writing to JPEG files), see
Section 3.1.2 [Optional dependencies]|, page 76. libjpeg is an optional
dependency, with this option, Gnuastro will ignore any possibly existing
libjpeg that may already be on the system.

Chapter 3: Installation 91

--without-1ibtiff
Build Gnuastro without libtiff (for reading/writing to TIFF files), see
Section 3.1.2 [Optional dependencies], page 76. libtiff is an optional
dependency, with this option, Gnuastro will ignore any possibly existing libtiff
that may already be on the system.

The tests of some programs might depend on the outputs of the tests of other programs.
For example MakeProfiles is one the first programs to be tested when you run $ make check.
MakeProfiles’ test outputs (FITS images) are inputs to many other programs (which in turn
provide inputs for other programs). Therefore, if you don’t install MakeProfiles for example,
the tests for many the other programs will be skipped. To avoid this, in one run, you can
install all the programs and run the tests but not install. If everything is working correctly,
you can run configure again with only the programs you want. However, don’t run the tests
and directly install after building.

3.3.1.2 Installation directory

One of the most commonly used options to ./configure is ——-prefix, it is used to define
the directory that will host all the installed files (or the “prefix” in their final absolute file
name). For example, when you are using a server and you don’t have administrator or root
access. In this example scenario, if you don’t use the ——-prefix option, you won’t be able
to install the built files and thus access them from anywhere without having to worry about
where they are installed. However, once you prepare your startup file to look into the proper
place (as discussed thoroughly below), you will be able to easily use this option and benefit
from any software you want to install without having to ask the system administrators or
install and use a different version of a software that is already installed on the server.

The most basic way to run an executable is to explicitly write its full file name (including
all the directory information) and run it. One example is running the configuration script
with the $./configure command (see Section 1.1 [Quick start], page 1). By giving a
specific directory (the current directory or ./), we are explicitly telling the shell to look
in the current directory for an executable file named ‘configure’. Directly specifying the
directory is thus useful for executables in the current (or nearby) directories. However,
when the program (an executable file) is to be used a lot, specifying all those directories
will become a significant burden. For example, the 1s executable lists the contents in a given
directory and it is (usually) installed in the /usr/bin/ directory by the operating system
maintainers. Therefore, if using the full address was the only way to access an executable,
each time you wanted a listing of a directory, you would have to run the following command
(which is very inconvenient, both in writing and in remembering the various directories).

$ /usr/bin/1ls

To address this problem, we have the PATH environment variable. To understand it
better, we will start with a short introduction to the shell variables. Shell variable values
are basically treated as strings of characters. For example, it doesn’t matter if the value
is a name (string of alphabetic characters), or a number (string of numeric characters), or
both. You can define a variable and a value for it by running

$ myvariablel=a_test_value
$ myvariable2="a test value"

Chapter 3: Installation 92

As you see above, if the value contains white space characters, you have to put the whole
value (including white space characters) in double quotes ("). You can see the value it
represents by running

$ echo $myvariablel
$ echo $myvariable?2

If a variable has no value or it wasn’t defined, the last command will only print an empty
line. A variable defined like this will be known as long as this shell or terminal is running.
Other terminals will have no idea it existed. The main advantage of shell variables is that
if they are exported?’, subsequent programs that are run within that shell can access their
value. So by changing their value, you can change the “environment” of a program which
uses them. The shell variables which are accessed by programs are therefore known as
“environment variables”?!. You can see the full list of exported variables that your shell
recognizes by running:

$ printenv

HOME is one commonly used environment variable, it is any user’s (the one that is logged
in) top directory. Try finding it in the command above. It is used so often that the shell
has a special expansion (alternative) for it: ‘~’. Whenever you see file names starting with
the tilde sign, it actually represents the value to the HOME environment variable, so ~/doc
is the same as $HOME/doc.

Another one of the most commonly used environment variables is PATH, it is a list of
directories to search for executable names. Its value is a list of directories (separated by a
colon, or ‘:”). When the address of the executable is not explicitly given (like ./configure
above), the system will look for the executable in the directories specified by PATH. If you
have a computer nearby, try running the following command to see which directories your
system will look into when it is searching for executable (binary) files, one example is printed
here (notice how /usr/bin, in the 1s example above, is one of the directories in PATH):

$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/bin

By default PATH usually contains system-wide directories, which are readable (but not
writable) by all users, like the above example. Therefore if you don’t have root (or admin-
istrator) access, you need to add another directory to PATH which you actually have write
access to. The standard directory where you can keep installed files (not just executables)
for your own user is the “/.local/ directory. The names of hidden files start with a .’
(dot), so it will not show up in your common command-line listings, or on the graphical
user interface. You can use any other directory, but this is the most recognized.

The top installation directory will be used to keep all the package’s components: pro-
grams (executables), libraries, include (header) files, shared data (like manuals), or configu-
ration files (see Section 10.1 [Review of library fundamentals], page 357, for a thorough in-
troduction to headers and linking). So it commonly has some of the following sub-directories
for each class of installed components respectively: bin/, 1ib/, include/ man/, share/,
etc/. Since the PATH variable is only used for executables, you can add the “/.local/bin

20 By running $ export myvariable=a_test_value instead of the simpler case in the text

2L You can use shell variables for other actions too, for example to temporarily keep some names or run
loops on some files.

Chapter 3: Installation 93

directory (which keeps the executables/programs or more generally, “binary” files) to PATH
with the following command. As defined below, first the existing value of PATH is used, then
your given directory is added to its end and the combined value is put back in PATH (run
‘$ echo $PATH’ afterwards to check if it was added).

$ PATH=$PATH:~/.local/bin

Any executable that you installed in ~/.local/bin will now be usable without having
to remember and write its full address. However, as soon as you leave/close your current
terminal session, this modified PATH variable will be forgotten. Adding the directories which
contain executables to the PATH environment variable each time you start a terminal is also
very inconvenient and prone to errors. Fortunately, there are standard ‘startup files’ defined
by your shell precisely for this (and other) purposes. There is a special startup file for every
significant starting step:

/etc/profile and everything in /etc/profile.d/
These startup scripts are called when your whole system starts (for example
after you turn on your computer). Therefore you need administrator or root
privileges to access or modify them.

~/.bash_profile
If you are using (GNU) Bash as your shell, the commands in this file are run,
when you log in to your account through Bash. Most commonly when you login
through the virtual console (where there is no graphic user interface).

~/.bashrc
If you are using (GNU) Bash as your shell, the commands here will be run each
time you start a terminal and are already logged in. For example, when you
open your terminal emulator in the graphic user interface.

For security reasons, it is highly recommended to directly type in your HOME directory
value by hand in startup files instead of using variables. So in the following, let’s assume
your user name is ‘name’ (so ~ may be replaced with /home/name). To add ~/.local/bin
to your PATH automatically on any startup file, you have to “export” the new value of PATH
in the startup file that is most relevant to you by adding this line:

export PATH=$PATH:/home/name/.local/bin

Now that you know your system will look into ~/.local/bin for executables, you can
tell Gnuastro’s configure script to install everything in the top ~/.local directory using the
—--prefix option. When you subsequently run $ make install, all the install-able files will
be put in their respective directory under ~/.local/ (the executables in “/.local/bin, the
compiled library files in ~/.local/1ib, the library header files in “/.local/include and
so on, to learn more about these different files, please see Section 10.1 [Review of library
fundamentals|, page 357). Note that tilde (‘’) expansion will not happen if you put a
‘=" between --prefix and ~/.local??, so we have avoided the = character here which is
optional in GNU-style options, see Section 4.1.1.2 [Options]|, page 105.

$./configure --prefix ~/.local

You can install everything (including libraries like GSL, CFITSIO, or WCSLIB which are
Gnuastro’s mandatory dependencies, see Section 3.1.1 [Mandatory dependencies|, page 74)

22 ¢ you insist on using ‘=’, you can use —--prefix=$HOME/.local.

Chapter 3: Installation 94

locally by configuring them as above. However, recall that PATH is only for executable files,
not libraries and that libraries can also depend on other libraries. For example WCSLIB
depends on CFITSIO and Gnuastro needs both. Therefore, when you installed a library in
a non-recognized directory, you have to guide the program that depends on them to look
into the necessary library and header file directories. To do that, you have to define the
LDFLAGS and CPPFLAGS environment variables respectively. This can be done while calling
./configure as shown below:

$./configure LDFLAGS=-L/home/name/.local/lib \
CPPFLAGS=-I/home/name/.local/include \
--prefix ~/.local

It can be annoying/buggy to do this when configuring every software that depends on
such libraries. Hence, you can define these two variables in the most relevant startup
file (discussed above). The convention on using these variables doesn’t include a colon to
separate values (as PATH-like variables do), they use white space characters and each value is
prefixed with a compiler option?*: note the -L and -I above (see Section 4.1.1.2 [Options],
page 105), for -I see Section 10.1.1 [Headers|, page 358, and for -L, see Section 10.1.2
[Linking], page 361. Therefore we have to keep the value in double quotation signs to keep
the white space characters and adding the following two lines to the startup file of choice:

export LDFLAGS="$LDFLAGS -L/home/name/.local/lib"
export CPPFLAGS="$CPPFLAGS -I/home/name/.local/include"

Dynamic libraries are linked to the executable every time you run a program that depends
on them (see Section 10.1.2 [Linking], page 361, to fully understand this important concept).
Hence dynamic libraries also require a special path variable called LD_LIBRARY_PATH (same
formatting as PATH). To use programs that depend on these libraries, you need to add
~/.local/lib to your LD_LIBRARY_PATH environment variable by adding the following line
to the relevant start-up file:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/name/.local/lib

If you also want to access the Info (see Section 4.3.4 [Info], page 124) and man pages
(see Section 4.3.3 [Man pages]|, page 123) documentations add ~/.local/share/info and
~/.local/share/man to your INFOPATH?* and MANPATH environment variables respectively.

A final note is that order matters in the directories that are searched for all the variables
discussed above. In the examples above, the new directory was added after the system
specified directories. So if the program, library or manuals are found in the system wide
directories, the user directory is no longer searched. If you want to search your local
installation first, put the new directory before the already existing list, like the example
below.

export LD_LIBRARY_PATH=/home/name/.local/lib:$LD_LIBRARY_PATH

23 These variables are ultimately used as options while building the programs, so every value has be an
option name followed be a value as discussed in Section 4.1.1.2 [Options], page 105.

Info has the following convention: “If the value of INFOPATH ends with a colon [or it isn’t defined] ..., the
initial list of directories is constructed by appending the build-time default to the value of INFOPATH.”
So when installing in a non-standard directory and if INFOPATH was not initially defined, add a colon
to the end of INFOPATH as shown below, otherwise Info will not be able to find system-wide installed
documentation:

echo ’export INFOPATH=$INFOPATH: /home/name/.local/share/info:’ >> ~/.bashrc

Note that this is only an internal convention of Info, do not use it for other *PATH variables.

24

Chapter 3: Installation 95

This is good when a library, for example CFITSIO, is already present on the system, but the
system-wide install wasn’t configured with the correct configuration flags (see Section 3.1.1.2
[CFITSIO], page 74), or you want to use a newer version and you don’t have administrator
or root access to update it on the whole system/server. If you update LD_LIBRARY_PATH by
placing ~/.local/1ib first (like above), the linker will first find the CFITSIO you installed
for yourself and link with it. It thus will never reach the system-wide installation.

There are important security problems with using local installations first: all important
system-wide executables and libraries (important executables like 1s and cp, or libraries
like the C library) can be replaced by non-secure versions with the same file names and put
in the customized directory (~/.local in this example). So if you choose to search in your
customized directory first, please be sure to keep it clean from executables or libraries with
the same names as important system programs or libraries.

Summary: When you are using a server which doesn’t give you administrator/root access
AND you would like to give priority to your own built programs and libraries, not the
version that is (possibly already) present on the server, add these lines to your startup
file. See above for which startup file is best for your case and for a detailed explanation
on each. Don’t forget to replace ‘/YOUR-HOME-DIR’ with your home directory (for example
‘/home/your-id’):

export PATH="/YOUR-HOME-DIR/.local/bin:$PATH"

export LDFLAGS="-L/YOUR-HOME-DIR/.local/lib $LDFLAGS"

export MANPATH="/YOUR-HOME-DIR/.local/share/man/:$MANPATH"

export CPPFLAGS="-I/YOUR-HOME-DIR/.local/include $CPPFLAGS"

export INFOPATH="/YOUR-HOME-DIR/.local/share/info/:$INFOPATH"

export LD_LIBRARY_PATH="/YOUR-HOME-DIR/.local/lib:$LD_LIBRARY_PATH"

Afterwards, you just need to add an extra --prefix=/YOUR-HOME-DIR/.local to the
./configure command of the software that you intend to install. Everything else will

be the same as a standard build and install, see Section 1.1 [Quick start], page 1.
k J

3.3.1.3 Executable names

At first sight, the names of the executables for each program might seem to be uncommonly
long, for example astnoisechisel or astcrop. We could have chosen terse (and cryptic)
names like most programs do. We chose this complete naming convention (something like
the commands in TEX) so you don’t have to spend too much time remembering what the
name of a specific program was. Such complete names also enable you to easily search for
the programs.

To facilitate typing the names in, we suggest using the shell auto-complete. With this
facility you can find the executable you want very easily. It is very similar to file name
completion in the shell. For example, simply by typing the letters below (where [TAB]
stands for the Tab key on your keyboard)

$ ast[TAB] [TAB]

you will get the list of all the available executables that start with ast in your PATH envi-
ronment variable directories. So, all the Gnuastro executables installed on your system will
be listed. Typing the next letter for the specific program you want along with a Tab, will
limit this list until you get to your desired program.

Chapter 3: Installation 96

In case all of this does not convince you and you still want to type short names, some
suggestions are given below. You should have in mind though, that if you are writing a shell
script that you might want to pass on to others, it is best to use the standard name because
other users might not have adopted the same customization. The long names also serve as
a form of documentation in such scripts. A similar reasoning can be given for option names
in scripts: it is good practice to always use the long formats of the options in shell scripts,
see Section 4.1.1.2 [Options|, page 105.

The simplest solution is making a symbolic link to the actual executable. For example
let’s assume you want to type ic to run Crop instead of astcrop. Assuming you installed
Gnuastro executables in /usr/local/bin (default) you can do this simply by running the
following command as root:

1n -s /usr/local/bin/astcrop /usr/local/bin/ic

In case you update Gnuastro and a new version of Crop is installed, the default executable
name is the same, so your custom symbolic link still works.

The installed executable names can also be set using options to $./configure, see
Section 3.3.1 [Configuring], page 88. GNU Autoconf (which configures Gnuastro for your
particular system), allows the builder to change the name of programs with the three options
—--program-prefix, —-program-suffix and --program-transform-name. The first two
are for adding a fixed prefix or suffix to all the programs that will be installed. This will
actually make all the names longer! You can use it to add versions of program names to
the programs in order to simultaneously have two executable versions of a program.

The third configure option allows you to set the executable name at install time using
the SED program. SED is a very useful ‘stream editor’. There are various resources on
the internet to use it effectively. However, we should caution that using configure options
will change the actual executable name of the installed program and on every re-install (an
update for example), you have to also add this option to keep the old executable name
updated. Also note that the documentation or configuration files do not change from their
standard names either.

For example, let’s assume that typing ast on every invocation of every program is really
annoying you! You can remove this prefix from all the executables at configure time by
adding this option:

$./configure --program-transform-name=’s/ast/ /’

3.3.1.4 Configure and build in RAM

Gnuastro’s configure and build process (the GNU build system) involves the creation, read-
ing, and modification of a large number of files (input/output, or I/O). Therefore file I/O
issues can directly affect the work of developers who need to configure and build Gnuastro
numerous times. Some of these issues are listed below:

e [/O will cause wear and tear on both the HDDs (mechanical failures) and SSDs (de-
creasing the lifetime).

e Having the built files mixed with the source files can greatly affect backing up (syn-
chronization) of source files (since it involves the management of a large number of
small files that are regularly changed. Backup software can of course be configured to
ignore the built files and directories. However, since the built files are mixed with the
source files and can have a large variety, this will require a high level of customization.

Chapter 3: Installation 97

One solution to address both these problems is to use the tmpfs file system (https://
en.wikipedia.org/wiki/Tmpfs). Any file in tmpfs is actually stored in the RAM (and
possibly SAWP), not on HDDs or SSDs. The RAM is built for extensive and fast 1/0.
Therefore the large number of file I/Os associated with configuring and building will not
harm the HDDs or SSDs. Due to the volatile nature of RAM, files in the tmpfs file-system
will be permanently lost after a power-off. Since all configured and built files are derivative
files (not files that have been directly written by hand) there is no problem in this and this
feature can be considered as an automatic cleanup.

The modern GNU C library (and thus the Linux kernel) defines the /dev/shm directory
for this purpose in the RAM (POSIX shared memory). To build in it, you can use the
GNU build system’s ability to build in a separate directory (not necessarily in the source
directory) as shown below. Just set SRCDIR as the address of Gnuastro’s top source directory
(for example, the unpacked tarball).

$ mkdir /dev/shm/tmp-gnuastro-build
$ cd /dev/shm/tmp-gnuastro-build

$ SRCDIR/configure --srcdir=SRCDIR
$ make

Gnuastro comes with a script to simplify this process of configuring and building in a
different directory (a “clean” build), for more see Section 3.3.2 [Separate build and source
directories], page 97.

3.3.2 Separate build and source directories

The simple steps of Section 1.1 [Quick start], page 1, will mix the source and built files.
This can cause inconvenience for developers or enthusiasts following the the most recent
work (see Section 3.2.2 [Version controlled source|, page 84). The current section is mainly
focused on this later group of Gnuastro users. If you just install Gnuastro on major releases
(following Section 1.9 [Announcements|, page 13), you can safely ignore this section.

When it is necessary to keep the source (which is under version control), but not the
derivative (built) files (after checking or installing), the best solution is to keep the source
and the built files in separate directories. One application of this is already discussed in
Section 3.3.1.4 [Configure and build in RAM], page 96.

To facilitate this process of configuring and building in a separate directory, Gnuastro
comes with the developer-build script. It is available in the top source directory and is
not installed. It will make a directory under a given top-level directory (given to --top-
build-dir) and build Gnuastro in there directory. It thus keeps the source completely
separated from the built files. For easy access to the built files, it also makes a symbolic
link to the built directory in the top source files called build.

When run without any options, default values will be used for its configuration. As with
Gnuastro’s programs, you can inspect the default values with -P (or --printparams, the
output just looks a little different here). The default top-level build directory is /dev/shm:
the shared memory directory in RAM on GNU /Linux systems as described in Section 3.3.1.4
[Configure and build in RAM], page 96.

Besides these, it also has some features to facilitate the job of developers or bleeding edge
users like the --debug option to do a fast build, with debug information, no optimization,

https://en.wikipedia.org/wiki/Tmpfs
https://en.wikipedia.org/wiki/Tmpfs

Chapter 3: Installation 98

and no shared libraries. Here is the full list of options you can feed to this script to configure
its operations.

(N
Not all Gnuastro’s common program behavior usable here: developer-build is just a
non-installed script with a very limited scope as described above. It thus doesn’t have all

the common option behaviors or configuration files for example.
G J

e N
White space between option and value: developer-build doesn’t accept an = sign be-

tween the options and their values. It also needs at least one character between the op-
tion and its value. Therefore -n 4 or --numthreads 4 are acceptable, while -n4, -n=4,
or —-numthreads=4 aren’t. Finally multiple short option names cannot be merged: for

example you can say -c -n 4, but unlike Gnuastro’s programs, —cn4 is not acceptable.
N

(N
Reusable for other packages: This script can be used in any software which is configured

and built using the GNU Build System. Just copy it in the top source directory of that
software and run it from there.

J

-b STR

--top-build-dir STR
The top build directory to make a directory for the build. If this option isn’t
called, the top build directory is /dev/shm (only available in GNU/Linux op-
erating systems, see Section 3.3.1.4 [Configure and build in RAM], page 96).

-V

--version
Print the version string of Gnuastro that will be used in the build. This string
will be appended to the directory name containing the built files.

-a

—--autoreconf
Run autoreconf -f before building the package. In Gnuastro, this is necessary
when a new commit has been made to the project history. In Gnuastro’s build
system, the Git description will be used as the version, see Section 1.5 [Version
numbering], page 7, and Section 3.2.2.2 [Synchronizing], page 86.

--clean Delete the contents of the build directory (clean it) before starting the config-
uration and building of this run.

This is useful when you have recently pulled changes from the main Git
repository, or committed a change your self and ran autoreconf -f, see
Section 3.2.2.2 [Synchronizing], page 86. After running GNU Autoconf, the
version will be updated and you need to do a clean build.

--debug Build with debugging flags (for example to use in GNU Debugger, also known
as GDB, or Valgrind), disable optimization and also the building of shared
libraries. Similar to running the configure script of below

Chapter 3: Installation 99

$./configure --enable-debug

Besides all the debugging advantages of building with this option, it will also
be significantly speed up the build (at the cost of slower built programs). So
when you are testing something small or working on the build system itself, it
will be much faster to test your work with this option.

-v

--valgrind
Build all make check tests within Valgrind. For more, see the description
of -—enable-check-with-valgrind in Section 3.3.1.1 [Gnuastro configure op-
tions], page 89.

-j INT

—--jobs INT
The maximum number of threads/jobs for Make to build at any moment. As
the name suggests (Make has an identical option), the number given to this
option is directly passed on to any call of Make with its -j option.

-C

--check After finishing the build, also run make check. By default, make check isn’t
run because the developer usually has their own checks to work on (for example
defined in tests/during-dev.sh).

-i

--install
After finishing the build, also run make install.

-D

--dist Run make dist-1zip pdf to build a distribution tarball (in .tar.lz format)
and a PDF manual. This can be useful for archiving, or sending to colleagues
who don’t use Git for an easy build and manual.

-u STR

--upload STR
Activate the --dist (-D) option, then use secure copy (scp, part of the SSH
tools) to copy the tarball and PDF to the src and pdf sub-directories of the
specified server and its directory (value to this option). For example -—upload
my-server:dir, will copy the tarball in the dir/src, and the PDF manual
in dir/pdf of my-server server. It will then make a symbolic link in the top
server directory to the tarball that is called gnuastro-latest.tar.lz.

%

—--publish

Short for -—autoreconf --clean --debug --check --upload STR. --debug is
added because it will greatly speed up the build. It will have no effect on the
produced tarball. This is good when you have made a commit and are ready to
publish it on your server (if nothing crashes). Recall that if any of the previous
steps fail the script aborts.

Chapter 3: Installation 100

-—install-archive
Short for -—autoreconf --clean --check --install --dist. This is useful
when you actually want to install the commit you just made (if the build and
checks succeed). It will also produce a distribution tarball and PDF manual for
easy access to the installed tarball on your system at a later time.

Ideally, Gnuastro’s Git version history makes it easy for a prepared system to
revert back to a different point in history. But Gnuastro also needs to bootstrap
files and also your collaborators might (usually do!) find it too much of a burden
to do the bootstrapping themselves. So it is convenient to have a tarball and
PDF manual of the version you have installed (and are using in your research)
handily available.

-h

--help

-P

--printparams
Print a description of this script along with all the options and their current
values.

3.3.3 Tests

After successfully building (compiling) the programs with the $ make command you can
check the installation before installing. To run the tests, run

$ make check

For every program some tests are designed to check some possible operations. Running
the command above will run those tests and give you a final report. If everything is OK
and you have built all the programs, all the tests should pass. In case any of the tests fail,
please have a look at Section 3.3.5 [Known issues|, page 101, and if that still doesn’t fix
your problem, look that the ./tests/test-suite.log file to see if the source of the error is
something particular to your system or more general. If you feel it is general, please contact
us because it might be a bug. Note that the tests of some programs depend on the outputs
of other program’s tests, so if you have not installed them they might be skipped or fail.
Prior to releasing every distribution all these tests are checked. If you have a reasonably
modern terminal, the outputs of the successful tests will be colored green and the failed
ones will be colored red.

These scripts can also act as a good set of examples for you to see how the programs are
run. All the tests are in the tests/ directory. The tests for each program are shell scripts
(ending with .sh) in a sub-directory of this directory with the same name as the program.
See Section 11.7 [Test scripts], page 513, for more detailed information about these scripts
in case you want to inspect them.

3.3.4 A4 print book

The default print version of this book is provided in the letter paper size. If you would like
to have the print version of this book on paper and you are living in a country which uses
A4, then you can rebuild the book. The great thing about the GNU build system is that
the book source code which is in Texinfo is also distributed with the program source code,
enabling you to do such customization (hacking).

Chapter 3: Installation 101

In order to change the paper size, you will need to have GNU Texinfo installed. Open
doc/gnuastro.texi with any text editor. This is the source file that created this book. In
the first few lines you will see this line:

Q@c@afourpaper

In Texinfo, a line is commented with @c. Therefore, un-comment this line by deleting the
first two characters such that it changes to:

@afourpaper
Save the file and close it. You can now run the following command
$ make pdf

and the new PDF book will be available in SRCdir/doc/gnuastro.pdf. By changing the
pdf in $ make pdf to ps or dvi you can have the book in those formats. Note that you can
do this for any book that is in Texinfo format, they might not have @afourpaper line, so
you can add it close to the top of the Texinfo source file.

3.3.5 Known issues

Depending on your operating system and the version of the compiler you are using, you
might confront some known problems during the configuration ($./configure), compila-
tion ($ make) and tests ($ make check). Here, their solutions are discussed.

e $./configure: Configure complains about not finding a library even though you have
installed it. The possible solution is based on how you installed the package:

e From your distribution’s package manager. Most probably this is because your
distribution has separated the header files of a library from the library parts.
Please also install the ‘development’ packages for those libraries too. Just add a
—-dev or —devel to the end of the package name and re-run the package manager.
This will not happen if you install the libraries from source. When installed from
source, the headers are also installed.

e From source. Then your linker is not looking where you installed the library. If
you followed the instructions in this chapter, all the libraries will be installed in
/usr/local/lib. So you have to tell your linker to look in this directory. To do
so, configure Gnuastro like this:

$./configure LDFLAGS="-L/usr/local/lib"

If you want to use the libraries for your other programming projects, then export
this environment variable in a start-up script similar to the case for LD_LIBRARY_
PATH explained below, also see Section 3.3.1.2 [Installation directory], page 91.

e $ make: Complains about an unknown function on a non-GNU based operating system.
In this case, please run $./configure with the --enable-gnulibcheck option to
see if the problem is from the GNU Portability Library (Gnulib) not supporting your
system or if there is a problem in Gnuastro, see Section 3.3.1.1 [Gnuastro configure
options], page 89. If the problem is not in Gnulib and after all its tests you get the
same complaint from make, then please contact us at bug-gnuastro@gnu.org. The
cause is probably that a function that we have used is not supported by your operating
system and we didn’t included it along with the source tar ball. If the function is
available in Gnulib, it can be fixed immediately.

Chapter 3: Installation 102

e $ make: Can’t find the headers (.h files) of installed libraries. Your C pre-processor
(CPP) isn’t looking in the right place. To fix this, configure Gnuastro with an additional
CPPFLAGS like below (assuming the library is installed in /usr/local/include:

$./configure CPPFLAGS="-I/usr/local/include"

If you want to use the libraries for your other programming projects, then export
this environment variable in a start-up script similar to the case for LD_LIBRARY_PATH
explained below, also see Section 3.3.1.2 [Installation directory], page 91.

e $ make check: Only the first couple of tests pass, all the rest fail or get skipped. It is
highly likely that when searching for shared libraries, your system doesn’t look into the
/usr/local/1lib directory (or wherever you installed Gnuastro or its dependencies). To
make sure it is added to the list of directories, add the following line to your ~/.bashrc
file and restart your terminal. Don’t forget to change /usr/local/1ib if the libraries
are installed in other (non-standard) directories.

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib"

You can also add more directories by using a colon ‘:’ to separate them. See
Section 3.3.1.2 [Installation directory], page 91, and Section 10.1.2 [Linking], page 361,
to learn more on the PATH variables and dynamic linking respectively.

e $ make check: The tests relying on external programs (for example fitstopdf .sh fail.)
This is probably due to the fact that the version number of the external programs is
too old for the tests we have preformed. Please update the program to a more recent
version. For example to create a PDF image, you will need GPL Ghostscript, but older
versions do not work, we have successfully tested it on version 9.15. Older versions
might cause a failure in the test result.

o $ make pdf: The PDF book cannot be made. To make a PDF book, you need to have
the GNU Texinfo program (like any program, the more recent the better). A working
TEX program is also necessary, which you can get from Tex Live?5.

e After make check: do not copy the programs’ executables to another (for example,
the installation) directory manually (using cp, or mv for example). In the default
configuration®®, the program binaries need to link with Gnuastro’s shared library which
is also built and installed with the programs. Therefore, to run successfully before and
after installation, linking modifications need to be made by GNU Libtool at installation
time. make install does this internally, but a simple copy might give linking errors
when you run it. If you need to copy the executables, you can do so after installation.

If your problem was not listed above, please file a bug report (Section 1.7 [Report a bug],
page 11).

2 https://www.tug.org/texlive/

26 1f you configure Gnuastro with the --disable-shared option, then the libraries will be statically linked
to the programs and this problem won’t exist, see Section 10.1.2 [Linking], page 361.

https://www.tug.org/texlive/

103

4 Common program behavior

All the programs in Gnuastro share a set of common behavior mainly to do with user
interaction to facilitate their usage and development. This includes how to feed input
datasets into the programs, how to configure them, specifying the outputs, numerical data
types, treating columns of information in tables, etc. This chapter is devoted to describing
this common behavior in all programs. Because the behaviors discussed here are common
to several programs, they are not repeated in each program’s description.

In Section 4.1 [Command-line], page 103, a very general description of running the
programs on the command-line is discussed, like difference between arguments and options,
as well as options that are common/shared between all programs. None of Gnuastro’s
programs keep any internal configuration value (values for their different operational steps),
they read their configuration primarily from the command-line, then from specific files in
directory, user, or system-wide settings. Using these configuration files can greatly help
reproducible and robust usage of Gnuastro, see Section 4.2 [Configuration files], page 118,
for more.

It is not possible to always have the different options and configurations of each program
on the top of your head. It is very natural to forget the options of a program, their current
default values, or how it should be run and what it did. Gnuastro’s programs have multiple
ways to help you refresh your memory in multiple levels (just an option name, a short
description, or fast access to the relevant section of the manual. See Section 4.3 [Getting
help], page 121, for more for more on benefiting from this very convenient feature.

Many of the programs use the multi-threaded character of modern CPUs, in Section 4.5
[Multi-threaded operations]|, page 126, we’ll discuss how you can configure this behavior,
along with some tips on making best use of them. In Section 4.6 [Numeric data types],
page 128, we’ll review the various types to store numbers in your datasets: setting the
proper type for the usage context! can greatly improve the file size and also speed of
reading, writing or processing them.

We'll then look into the recognized table formats in Section 4.7 [Tables], page 130,
and how large datasets are broken into tiles, or mesh grid in Section 4.8 [Tessellation],
page 136. Finally, we’ll take a look at the behavior regarding output files: Section 4.9
[Automatic output|, page 138, describes how the programs set a default name for their
output when you don’t give one explicitly (using --output). When the output is a FITS
file, all the programs also store some very useful information in the header that is discussed
in Section 4.10 [Output FITS files|, page 139.

4.1 Command-line

Gnuastro’s programs are customized through the standard Unix-like command-line envi-
ronment and GNU style command-line options. Both are very common in many Unix-like
operating system programs. In Section 4.1.1 [Arguments and options|, page 104, we’ll start
with the difference between arguments and options and elaborate on the GNU style of op-

L For example if the values in your dataset can only be integers between 0 or 65000, store them in a
unsigned 16-bit type, not 64-bit floating point type (which is the default in most systems). It takes four
times less space and is much faster to process.

Chapter 4: Common program behavior 104

tions. Afterwards, in Section 4.1.2 [Common options], page 107, we’ll go into the detailed
list of all the options that are common to all the programs in Gnuastro.

4.1.1 Arguments and options

When you type a command on the command-line, it is passed onto the shell (a generic name
for the program that manages the command-line) as a string of characters. As an example,
see the “Invoking ProgramName” sections in this manual for some examples of commands
with each program, like Section 5.4.2 [Invoking Table|, page 170, Section 5.1.1 [Invoking
Fits], page 144, or Section 7.1.5 [Invoking Statistics|, page 246.

The shell then brakes up your string into separate tokens or words using any metachar-
acters (like white-space, tab, |, > or ;) that are in the string. On the command-line, the
first thing you usually enter is the name of the program you want to run. After that, you
can specify two types of tokens: arguments and options. In the GNU-style, arguments are
those tokens that are not preceded by any hyphens (-, see Section 4.1.1.1 [Arguments],
page 105). Here is one example:

$ astcrop --center=53.162551,-27.789676 -w10/3600 --mode=wcs udf.fits

In the example above, we are running Section 6.1 [Crop], page 178, to crop a region of
width 10 arc-seconds centered at the given RA and Dec from the input Hubble Ultra-Deep
Field (UDF) FITS image. Here, the argument is udf .fits. Arguments are most commonly
the input file names containing your data. Options start with one or two hyphens, followed
by an identifier for the option (the option’s name, for example, --center, -w, --mode
in the example above) and its value (anything after the option name, or the optional =
character). Through options you can configure how the program runs (interprets the data
you provided).

Arguments can be mandatory and optional and unlike options, they don’t have any iden-
tifiers. Hence, when there multiple arguments, their order might also matter (for example
in cp which is used for copying one file to another location). The outputs of ~—usage and
—--help shows which arguments are optional and which are mandatory, see Section 4.3.1
[--usage], page 122.

As their name suggests, options can be considered to be optional and most of the time,
you don’t have to worry about what order you specify them in. When the order does matter,
or the option can be invoked multiple times, it is explicitly mentioned in the “Invoking
ProgramName” section of each program (this is a very important aspect of an option).

If there is only one such character, you can use a backslash (\) before it. If there are
multiple, it might be easier to simply put your whole argument or option value inside of
double quotes ("). In such cases, everything inside the double quotes will be seen as one
token or word.

For example, let’s say you want to specify the header data unit (HDU) of your FITS file
using a complex expression like ‘3; images (exposure > 100)’. If you simply add these after
the —=hdu (-h) option, the programs in Gnuastro will read the value to the HDU option as
‘3" and run. Then, the shell will attempt to run a separate command ‘images (exposure >
100)’ and complain about a syntax error. This is because the semicolon (;) is an ‘end of
command’ character in the shell. To solve this problem you can simply put double quotes
around the whole string you want to pass to ——hdu as seen below:

$ astcrop --hdu="3; images(exposure > 100)" image.fits

Chapter 4: Common program behavior 105

4.1.1.1 Arguments

In Gnuastro, arguments are almost exclusively used as the input data file names. Please
consult the first few paragraph of the “Invoking ProgramName” section for each program
for a description of what it expects as input, how many arguments, or input data, it accepts,
or in what order. Everything particular about how a program treats arguments, is explained
under the “Invoking ProgramName” section for that program.

Generally, if there is a standard file name extension for a particular format, that filename
extension is used to separate the kinds of arguments. The list below shows the data formats
that are recognized in Gnuastro’s programs based on their file name endings. Any argument
that doesn’t end with the specified extensions below is considered to be a text file (usually
catalogs, see Section 4.7 [Tables], page 130). In some cases, a program can accept specific
formats, for example Section 5.3 [ConvertType|, page 156, also accepts . jpg images.

e .fits: The standard file name ending of a FITS image.

e .fit: Alternative (3 character) FITS suffix.

o .fits.Z: A FITS image compressed with compress.

e .fits.gz: A FITS image compressed with GNU zip (gzip).
e .fits.fz: A FITS image compressed with fpack.

e .imh: IRAF format image file.

Through out this book and in the command-line outputs, whenever we want to generalize
all such astronomical data formats in a text place holder, we will use ASTRdata, we will
assume that the extension is also part of this name. Any file ending with these names is
directly passed on to CFITSIO to read. Therefore you don’t necessarily have to have these
files on your computer, they can also be located on an FTP or HI'TP server too, see the
CFITSIO manual for more information.

CFITSIO has its own error reporting techniques, if your input file(s) cannot be opened,
or read, those errors will be printed prior to the final error by Gnuastro.

4.1.1.2 Options

Command-line options allow configuring the behavior of a program in all GNU/Linux ap-
plications for each particular execution on a particular input data. A single option can be
called in two ways: long or short. All options in Gnuastro accept the long format which has
two hyphens an can have many characters (for example --hdu). Short options only have
one hyphen (=) followed by one character (for example -h). You can see some examples in
the list of options in Section 4.1.2 [Common options|, page 107, or those for each program’s
“Invoking ProgramName” section. Both formats are shown for those which support both.
First the short is shown then the long.

Usually, the short options are for when you are writing on the command-line and want
to save keystrokes and time. The long options are good for shell scripts, where you aren’t
usually rushing. Long options provide a level of documentation, since they are more de-
scriptive and less cryptic. Usually after a few months of not running a program, the short
options will be forgotten and reading your previously written script will not be easy.

Some options need to be given a value if they are called and some don’t. You can

think of the latter type of options as on/off options. These two types of options can be
distinguished using the output of the ——help and -—usage options, which are common to all

Chapter 4: Common program behavior 106

GNU software, see Section 4.3 [Getting help], page 121. In Gnuastro we use the following
strings to specify when the option needs a value and what format that value should be
in. More specific tests will be done in the program and if the values are out of range (for
example negative when the program only wants a positive value), an error will be reported.

INT The value is read as an integer.

FLT The value is read as a float. There are generally two types, depending on the
context. If they are for fractions, they will have to be less than or equal to
unity.

STR The value is read as a string of characters (for example a file name) or other

particular settings like a HDU name, see below.

To specify a value in the short format, simply put the value after the option. Note that
since the short options are only one character long, you don’t have to type anything between
the option and its value. For the long option you either need white space or an = sign, for
example -h2, -h 2, —=hdu 2 or --hdu=2 are all equivalent.

The short format of on/off options (those that don’t need values) can be concatenated for
example these two hypothetical sequences of options are equivalent: -a -b -c4 and -abc4.
As an example, consider the following command to run Crop:

$ astcrop -Dr3 --wwidth 3 catalog.txt --deccol=4 ASTRdata

The $ is the shell prompt, astcrop is the program name. There are two arguments
(catalog.txt and ASTRdata) and four options, two of them given in short format (-D,
-r) and two in long format (--width and --deccol). Three of them require a value and
one (-D) is an on/off option.

If an abbreviation is unique between all the options of a program, the long option names
can be abbreviated. For example, instead of typing --printparams, typing --print or
maybe even —-pri will be enough, if there are conflicts, the program will warn you and show
you the alternatives. Finally, if you want the argument parser to stop parsing arguments
beyond a certain point, you can use two dashes: --. No text on the command-line beyond
these two dashes will be parsed.

Gnuastro has two types of options with values, those that only take a single value are
the most common type. If these options are repeated or called more than once on the
command-line, the value of the last time it was called will be assigned to it. This is very
useful when you are testing/experimenting. Let’s say you want to make a small modification
to one option value. You can simply type the option with a new value in the end of the
command and see how the script works. If you are satisfied with the change, you can remove
the original option for human readability. If the change wasn’t satisfactory, you can remove
the one you just added and not worry about forgetting the original value. Without this
capability, you would have to memorize or save the original value somewhere else, run the
command and then change the value again which is not at all convenient and is potentially
cause lots of bugs.

On the other hand, some options can be called multiple times in one run of a program
and can thus take multiple values (for example see the ——column option in Section 5.4.2
[Invoking Table|, page 170. In these cases, the order of stored values is the same order that
you specified on the command-line.

Chapter 4: Common program behavior 107

Gnuastro’s programs don’t keep any internal default values, so some options are manda-
tory and if they don’t have a value, the program will complain and abort. Most programs
have many such options and typing them by hand on every call is impractical. To facili-
tate the user experience, after parsing the command-line, Gnuastro’s programs read special
configuration files to get the necessary values for the options you haven’t identified on the
command-line. These configuration files are fully described in Section 4.2 [Configuration
files], page 118.

-

CAUTION: In specifying a file address, if you want to use the shell’s tilde expansion (~)
to specify your home directory, leave at least one space between the option name and your
value. For example use -0 ~/test, ——output “/test or ——output= ~/test. Calling them

with —0”/test or ——output="/test will disable shell expansion.
k J

a N
CAUTION: If you forget to specify a value for an option which requires one, and that

option is the last one, Gnuastro will warn you. But if it is in the middle of the command,
it will take the text of the next option or argument as the value which can cause undefined

behavior.
N J
e I

NOTE: In some contexts Gnuastro’s counting starts from 0 and in others 1. You can assume
by default that counting starts from 1, if it starts from O for a special option, it will be

explicitly mentioned.
-)

4.1.2 Common options

To facilitate the job of the users and developers, all the programs in Gnuastro share some
basic command-line options for the options that are common to many of the programs.
The full list is classified as Section 4.1.2.1 [Input/Output options], page 107, Section 4.1.2.2
[Processing options], page 110, and Section 4.1.2.3 [Operating mode options|, page 112. In
some programs, some of the options are irrelevant, but still recognized (you won’t get an
unrecognized option error, but the value isn’t used). Unless otherwise mentioned, these
options are identical between all programs.

4.1.2.1 Input/Output options
These options are to do with the input and outputs of the various programs.

--stdintimeout

Number of micro-seconds to wait for writing/typing in the first line of standard
input from the command-line (see Section 4.1.3 [Standard input], page 117).
This is only relevant for programs that also accept input from the standard
input, and you want to manually write/type the contents on the terminal.
When the standard input is already connected to a pipe (output of another
program), there won’t be any waiting (hence no timeout, thus making this
option redundant).

If the first line-break (for example with the ENTER key) is not provided before
the timeout, the program will abort with an error that no input was given.

Chapter 4: Common program behavior 108

Note that this time interval is only for the first line that you type. Once the
first line is given, the program will assume that more data will come and accept
rest of your inputs without any time limit. You need to specify the ending of
the standard input, for example by pressing CTRL-D after a new line.

Note that any input you write/type into a program on the command-line with
Standard input will be discarded (lost) once the program is finished. It is only
recoverable manually from your command-line (where you actually typed) as
long as the terminal is open. So only use this feature when you are sure that
you don’t need the dataset (or have a copy of it somewhere else).

-h STR/INT

--hdu=STR/INT
The name or number of the desired Header Data Unit, or HDU, in the FITS
image. A FITS file can store multiple HDUs or extensions, each with either
an image or a table or nothing at all (only a header). Note that counting of
the extensions starts from 0(zero), not 1(one). Counting from 0 is forced on
us by CFITSIO which directly reads the value you give with this option (see
Section 3.1.1.2 [CFITSIO], page 74). When specifying the name, case is not
important so IMAGE, image or ImAgE are equivalent.

CFITSIO has many capabilities to help you find the extension you want, far
beyond the simple extension number and name. See CFITSIO manual’s “HDU
Location Specification” section for a very complete explanation with several
examples. A # is appended to the string you specify for the HDU? and the result
is put in square brackets and appended to the FITS file name before calling
CFITSIO to read the contents of the HDU for all the programs in Gnuastro.

-s STR

—--searchin=STR
Where to match/search for columns when the column identifier wasn’t a num-
ber, see Section 4.7.3 [Selecting table columns|, page 135. The acceptable values
are name, unit, or comment. This option is only relevant for programs that take
table columns as input.

-1

--ignorecase
Ignore case while matching/searching column meta-data (in the field specified
by the --searchin). The FITS standard suggests to treat the column names as
case insensitive, which is strongly recommended here also but is not enforced.
This option is only relevant for programs that take table columns as input.

This option is not relevant to Section 10.2 [BuildProgram], page 365, hence in
that program the short option -I is used for include directories, not to ignore
case.

2 With the # character, CFITSIO will only read the desired HDU into your memory, not all the existing
HDUs in the fits file.

Chapter 4: Common program behavior 109

-o STR

—--output=STR
The name of the output file or directory. With this option the automatic output
names explained in Section 4.9 [Automatic output], page 138, are ignored.

-T STR

--type=STR
The data type of the output depending on the program context. This option
isn’t applicable to some programs like Section 5.1 [Fits], page 142, and will
be ignored by them. The different acceptable values to this option are fully
described in Section 4.6 [Numeric data types], page 128.

-D

-—dontdelete
By default, if the output file already exists, Gnuastro’s programs will silently
delete it and put their own outputs in its place. When this option is activated,
if the output file already exists, the programs will not delete it, will warn you,
and will abort.

-K

--keepinputdir
In automatic output names, don’t remove the directory information of the input
file names. As explained in Section 4.9 [Automatic output], page 138, if no
output name is specified (with --output), then the output name will be made
in the existing directory based on your input’s file name (ignoring the directory
of the input). If you call this option, the directory information of the input
will be kept and the automatically generated output name will be in the same
directory as the input (usually with a suffix added). Note that his is only
relevant if you are running the program in a different directory than the input
data.

-t STR

--tableformat=STR
The output table’s type. This option is only relevant when the output is a table
and its format cannot be deduced from its filename. For example, if a name
ending in .fits was given to ——output, then the program knows you want a
FITS table. But there are two types of FITS tables: FITS ASCII, and FITS
binary. Thus, with this option, the program is able to identify which type you
want. The currently recognized values to this option are:

txt A plain text table with white-space characters between the columns
(see Section 4.7.2 [Gnuastro text table format], page 133).

fits-ascii
A FITS ASCII table (see Section 4.7.1 [Recognized table formats,
page 131).

fits-binary
A FITS binary table (see Section 4.7.1 [Recognized table formats],
page 131).

Chapter 4: Common program behavior 110

4.1.2.2 Processing options

Some processing steps are common to several programs, so they are defined as common
options to all programs. Note that this class of common options is thus necessarily less
common between all the programs than those described in Section 4.1.2.1 [Input/Output
options|, page 107, or Section 4.1.2.3 [Operating mode options], page 112, options. Also,
if they are irrelevant for a program, these options will not display in the —-help output of
the program.

--minmapsize=INT
The minimum size (in bytes) to store the contents of each main processing array
of a program as a file (on the non-volatile HDD/SSD), not in RAM. This can
be very useful when you have limited RAM, but need to process large datasets
which can be very memory intensive. In such scenarios, without this option,
the program will crash.

A random filename is assigned to the array. This file will keep the contents of
the array as long as it is necessary and the program will delete it as soon as its
not necessary any more.

If the .gnuastro_mmap directory exists and is writable, then the random file
will be placed in there. Otherwise, the randomly named file will be directly
written in the current directory with the .gnuastro_mmap_ prefix.

By default, the name of the created file, and its size (in bytes) is printed by the
program when it is created and later, when its deleted/freed. These messages
are useful to the user who has enough RAM, but has forgot to increase the value
to —-minmapsize (this is often the case). To suppress/disable such messages,
use the -—quietmmap option.

When this option has a value of 0 (zero, strongly discouraged, see box below),
all arrays that use this feature in a program will actually be placed in a file (not
in RAM). When this option is larger than all the input datasets, all arrays will
be definitely allocated in RAM and the program will run MUCH faster.

Please note that using a non-volatile file (in the HDD/SDD) instead of RAM can
significantly increase the program’s running time, especially on HDDs (where
read/write is slower). So it is best to give this option large values by default.
You can then decrease it for a specific program’s invocation on a large input
after you see memory issues arise (for example an error, or the program not
aborting and fully consuming your memory).

The random file will be deleted once it is no longer needed by the program.
The .gnuastro directory will also be deleted if it has no other contents (you
may also have configuration files in this directory, see Section 4.2 [Configuration
files], page 118). If you see randomly named files remaining in this directory
when the program finishes normally, please send us a bug report so we address
the problem, see Section 1.7 [Report a bug], page 11.

Chapter 4: Common program behavior 111

Limited number of memory-mapped files: The operating system kernels usu-
ally support a limited number of memory-mapped files. Therefore never set
--minmapsize to zero or a small number of bytes (so too many files are cre-
ated). If the kernel capacity is exceeded, the program will crash.

--quietmmap
Don’t print any message when an array is stored in non-volatile memory
(HDD/SSD) and not RAM, see the description of -~-minmapsize (above) for
more.

-Z INT[,INT[,...]1]

--tilesize=[,INTI[,...]1]
The size of regular tiles for tessellation, see Section 4.8 [Tessellation|, page 136.
For each dimension an integer length (in units of data-elements or pixels) is
necessary. If the number of input dimensions is different from the number of
values given to this option, the program will stop with an error. Values must be
separated by commas (,) and can also be fractions (for example 4/2). If they
are fractions, the result must be an integer, otherwise an error will be printed.

-M INT[,INT[,...]1]

—--numchannels=INT[,INT[,...]]
The number of channels for larger input tessellation, see Section 4.8 [Tessel-
lation], page 136. The number and types of acceptable values are similar to
--tilesize. The only difference is that instead of length, the integers values
given to this option represent the number of channels, not their size.

-F FLT

--remainderfrac=FLT
The fraction of remainder size along all dimensions to add to the first tile. See
Section 4.8 [Tessellation|, page 136, for a complete description. This option is
only relevant if —-tilesize is not exactly divisible by the input dataset’s size
in a dimension. If the remainder size is larger than this fraction (compared to
--tilesize), then the remainder size will be added with one regular tile size
and divided between two tiles at the start and end of the given dimension.

--workoverch
Ignore the channel borders for the high-level job of the given application. As a
result, while the channel borders are respected in defining the small tiles (such
that no tile will cross a channel border), the higher-level program operation will
ignore them, see Section 4.8 [Tessellation], page 136.

—--checktiles
Make a FITS file with the same dimensions as the input but each pixel is
replaced with the ID of the tile that it is associated with. Note that the tile
IDs start from 0. See Section 4.8 [Tessellation|, page 136, for more on Tiling
an image in Gnuastro.

--oneelempertile
When showing the tile values (for example with --checktiles, or when the
program’s output is tessellated) only use one element for each tile. This can be
useful when only the relative values given to each tile compared to the rest are

Chapter 4: Common program behavior 112

important or need to be checked. Since the tiles usually have a large number
of pixels within them the output will be much smaller, and so easier to read,
write, store, or send.

Note that when the full input size in any dimension is not exactly divisible by
the given ——tilesize in that dimension, the edge tile(s) will have different sizes
(in units of the input’s size), see ~-remainderfrac. But with this option, all
displayed values are going to have the (same) size of one data-element. Hence,
in such cases, the image proportions are going to be slightly different with this
option.

If your input image is not exactly divisible by the tile size and you want one
value per tile for some higher-level processing, all is not lost though. You can
see how many pixels were within each tile (for example to weight the values or
discard some for later processing) with Gnuastro’s Statistics (see Section 7.1
[Statistics], page 237) as shown below. The output FITS file is going to have
two extensions, one with the median calculated on each tile and one with the
number of elements that each tile covers. You can then use the where operator
in Section 6.2 [Arithmetic], page 189, to set the values of all tiles that don’t
have the regular area to a blank value.

$ aststatistics --median --number --ontile input.fits \
--oneelempertile --output=o.fits
$ REGULAR_AREA=1600 # Check second extension of ‘o.fits’.
$ astarithmetic o.fits o.fits $REGULAR_AREA ne nan where \
-h1l -h2
Note that if input.fits also has blank values, then the median on tiles with
blank values will also be ignored with the command above (which is desirable).

--inteponlyblank
When values are to be interpolated, only change the values of the blank ele-
ments, keep the non-blank elements untouched.

--interpmetric=STR
The metric to use for finding nearest neighbors. Currently it only accepts
the Manhattan (or taxicab) metric with manhattan, or the radial metric with
radial.

The Manhattan distance between two points is defined with |Az| 4+ |Ay|. Thus
the Manhattan metric has the advantage of being fast, but at the expense of
being less accurate. The radial distance is the standard definition of distance
in a Euclidean space: /Az? + Ay?. It is accurate, but the multiplication and
square root can slow down the processing.

-—interpnumngb=INT
The number of nearby non-blank neighbors to use for interpolation.

4.1.2.3 Operating mode options

Another group of options that are common to all the programs in Gnuastro are those to do
with the general operation of the programs. The explanation for those that are not only
limited to Gnuastro but are common to all GNU programs start with (GNU option).

Chapter 4:

--usage

-7
--help

-V
—--version

--quiet

--cite

Common program behavior 113

(GNU option) Stop parsing the command-line. This option can be useful in
scripts or when using the shell history. Suppose you have a long list of options,
and want to see if removing some of them (to read from configuration files, see
Section 4.2 [Configuration files|, page 118) can give a better result. If the ones
you want to remove are the last ones on the command-line, you don’t have to
delete them, you can just add -- before them and if you don’t get what you
want, you can remove the —— and get the same initial result.

(GNU option) Only print the options and arguments and abort. This is very
useful for when you know the what the options do, and have just forgot their
long/short identifiers, see Section 4.3.1 [--usage], page 122.

(GNU option) Print all options with an explanation and abort. Adding this
option will print all the options in their short and long formats, also displaying
which ones need a value if they are called (with an = after the long format fol-
lowed by a string specifying the format, see Section 4.1.1.2 [Options], page 105).
A short explanation is also given for what the option is for. The program will
quit immediately after the message is printed and will not do any form of pro-
cessing, see Section 4.3.2 [--help], page 122.

(GNU option) Print a short message, showing the full name, version, copyright
information and program authors and abort. On the first line, it will print
the official name (not executable name) and version number of the program.
Following this is a blank line and a copyright information. The program will
not run.

Don’t report steps. All the programs in Gnuastro that have multiple major
steps will report their steps for you to follow while they are operating. If you do
not want to see these reports, you can call this option and only error/warning
messages will be printed. If the steps are done very fast (depending on the
properties of your input) disabling these reports will also decrease running time.

Print all necessary information to cite and acknowledge Gnuastro in your pub-
lished papers. With this option, the programs will print the BibTEX entry to
include in your paper for Gnuastro in general, and the particular program’s
paper (if that program comes with a separate paper). It will also print the
necessary acknowledgment statement to add in the respective section of your
paper and it will abort. For a more complete explanation, please see Section 1.11
[Acknowledgments], page 14.

Citations and acknowledgments are vital for the continued work on Gnuastro.
Gnuastro started, and is continued, based on separate research projects. So
if you find any of the tools offered in Gnuastro to be useful in your research,
please use the output of this command to cite and acknowledge the program
(and Gnuastro) in your research paper. Thank you.

Gnuastro is still new, there is no separate paper only devoted to Gnuastro yet.
Therefore currently the paper to cite for Gnuastro is the paper for NoiseChisel

Chapter 4: Common program behavior 114

-P

which is the first published paper introducing Gnuastro to the astronomical
community. Upon reaching a certain point, a paper completely devoted to
describing Gnuastro’s many functionalities will be published, see Section 1.5.1
[GNU Astronomy Utilities 1.0], page 8.

--printparams

With this option, Gnuastro’s programs will read your command-line options and
all the configuration files. If there is no problem (like a missing parameter or a
value in the wrong format or range) and immediately before actually running,
the programs will print the full list of option names, values and descriptions,
sorted and grouped by context and abort. They will also report the version
number, the date they were configured on your system and the time they were
reported.

As an example, you can give your full command-line options and even the input
and output file names and finally just add -P to check if all the parameters are
finely set. If everything is OK, you can just run the same command (easily
retrieved from the shell history, with the top arrow key) and simply remove the
last two characters that showed this option.

No program will actually start its processing when this option is called. The
otherwise mandatory arguments for each program (for example input image or
catalog files) are no longer required when you call this option.

--config=STR

Parse STR as a configuration file immediately when this option is confronted
(see Section 4.2 [Configuration files], page 118). The --config option can be
called multiple times in one run of any Gnuastro program on the command-line
or in the configuration files. In any case, it will be immediately read (before
parsing the rest of the options on the command-line, or lines in a configuration
file).

Note that by definition, options on the command-line still take precedence over
those in any configuration file, including the file(s) given to this option if they
are called before it. Also see —-lastconfig and --onlyversion on how this op-
tion can be used for reproducible results. You can use --checkconfig (below)
to check/confirm the parsing of configuration files.

—--checkconfig

Print options and their values, within the command-line or configuration files,
as they are parsed (see Section 4.2.2 [Configuration file precedence], page 119).
If an option has already been set, or is ignored by the program, this option
will also inform you with special values like ——ALREADY-SET--. Only options
that are parsed after this option are printed, so to see the parsing of all input
options, it is recommended to put this option immediately after the program
name before any other options.

This is a very good option to confirm where the value of each option is has been
defined in scenarios where there are multiple configuration files (for debugging).

Chapter 4: Common program behavior 115

-3

—--setdirconf

-U

Update the current directory configuration file for the Gnuastro program and
quit. The full set of command-line and configuration file options will be parsed
and options with a value will be written in the current directory configuration
file for this program (see Section 4.2 [Configuration files], page 118). If the con-
figuration file or its directory doesn’t exist, it will be created. If a configuration
file exists it will be replaced (after it, and all other configuration files have been
read). In any case, the program will not run.

This is the recommended method? to edit/set the configuration file for all future
calls to Gnuastro’s programs. It will internally check if your values are in
the correct range and type and save them according to the configuration file
format, see Section 4.2.1 [Configuration file format], page 119. So if there are
unreasonable values to some options, the program will notify you and abort
before writing the final configuration file.

When this option is called, the otherwise mandatory arguments, for example
input image or catalog file(s), are no longer mandatory (since the program will
not run).

--setusrconf

Update the user configuration file and quit (see Section 4.2 [Configuration files],
page 118). See explanation under --setdirconf for more details.

--lastconfig

This is the last configuration file that must be read. When this option is
confronted in any stage of reading the options (on the command-line or in a
configuration file), no other configuration file will be parsed, see Section 4.2.2
[Configuration file precedence], page 119, and Section 4.2.3 [Current directory
and User wide], page 120. Like all on/off options, on the command-line, this
option doesn’t take any values. But in a configuration file, it takes the values
of 0 or 1, see Section 4.2.1 [Configuration file format], page 119. If it is present
in a configuration file with a value of 0, then all later occurrences of this option
will be ignored.

--onlyversion=STR

Only run the program if Gnuastro’s version is exactly equal to STR (see
Section 1.5 [Version numbering], page 7). Note that it is not compared as a
number, but as a string of characters, so 0, or 0.0 and 0.00 are different. If
the running Gnuastro version is different, then this option will report an error
and abort as soon as it is confronted on the command-line or in a configuration
file. If the running Gnuastro version is the same as STR, then the program will
run as if this option was not called.

This is useful if you want your results to be exactly reproducible and not mis-
takenly run with an updated/newer or older version of the program. Besides
internal algorithmic/behavior changes in programs, the existence of options or

3 Alternatively, you can use your favorite text editor.

Chapter 4: Common program behavior 116

--log

their names might change between versions (especially in these earlier versions
of Gnuastro).

Hence, when using this option (probably in a script or in a configuration file),
be sure to call it before other options. The benefit is that, when the version
differs, the other options won’t be parsed and you, or your collaborators/users,
won’t get errors saying an option in your configuration doesn’t exist in the
running version of the program.

Here is one example of how this option can be used in conjunction with the
--lastconfig option. Let’s assume that you were satisfied with the results
of this command: astnoisechisel image.fits --snquant=0.95 (along with
various options set in various configuration files). You can save the state of
NoiseChisel and reproduce that exact result on image.fits later by following
these steps (the extra spaces, and \, are only for easy readability, if you want
to try it out, only one space between each token is enough).

$ echo "onlyversion X.XX" > reproducible.conf
$ echo "lastconfig 1" >> reproducible.conf
$ astnoisechisel image.fits --snquant=0.95 -P \

>> reproducible.conf

--onlyversion was available from Gnuastro 0.0, so putting it immediately
at the start of a configuration file will ensure that later, you (or others using
different version) won’t get a non-recognized option error in case an option
was added/removed. --lastconfig will inform the installed NoiseChisel to
not parse any other configuration files. This is done because we don’t want the
user’s user-wide or system wide option values affecting our results. Finally, with
the third command, which has a -P (short for --printparams), NoiseChisel will
print all the option values visible to it (in all the configuration files) and the shell
will append them to reproduce.conf. Hence, you don’t have to worry about
remembering the (possibly) different options in the different configuration files.

Afterwards, if you run NoiseChisel as shown below (telling it to read this con-
figuration file with the ——config option). You can be sure that there will either
be an error (for version mismatch) or it will produce exactly the same result
that you got before.

$ astnoisechisel --config=reproducible.conf
Some programs can generate extra information about their outputs in a log file.

When this option is called in those programs, the log file will also be printed.
If the program doesn’t generate a log file, this option is ignored.

--log isn’t thread-safe: The log file usually has a fixed name. Therefore if two
simultaneous calls (with -—-1log) of a program are made in the same directory,
the program will try to write to he same file. This will cause problems like
unreasonable log file, undefined behavior, or a crash.

Chapter 4: Common program behavior 117

-N INT

--numthreads=INT
Use INT CPU threads when running a Gnuastro program (see Section 4.5 [Multi-
threaded operations|, page 126). If the value is zero (0), or this option is not
given on the command-line or any configuration file, the value will be deter-
mined at run-time: the maximum number of threads available to the system
when you run a Gnuastro program.

Note that multi-threaded programming is only relevant to some programs. In
others, this option will be ignored.

4.1.3 Standard input

The most common way to feed the primary/first input dataset into a program is to give its
filename as an argument (discussed in Section 4.1.1.1 [Arguments|, page 105). When you
want to run a series of programs in sequence, this means that each will have to keep the
output of each program in a separate file and re-type that file’s name in the next command.
This can be very slow and frustrating (mis-typing a file’s name).

To solve the problem, the founders of Unix defined pipes to directly feed the output of
one program (its “Standard output” stream) into the “standard input” of a next program.
This removes the need to make temporary files between separate processes and became one
of the best demonstrations of the Unix-way, or Unix philosophy.

Every program has three streams identifying where it reads/writes non-file
inputs/outputs: Standard input, Standard output, and Standard error. When a program is
called alone, all three are directed to the terminal that you are using. If it needs an input,
it will prompt you for one and you can type it in. Or, it prints its results in the terminal
for you to see.

For example, say you have a FITS table/catalog containing the B and V band magnitudes
(MAG_B and MAG_V columns) of a selection of galaxies along with many other columns. If
you want to see only these two columns in your terminal, can use Gnuastro’s Section 5.4
[Table], page 166, program like below:

$ asttable cat.fits -cMAG_B,MAG_V

Through the Unix pipe mechanism, when the shell confronts the pipe character (1), it
connects the standard output of the program before the pipe, to the standard input of the
program after it. So it is literally a “pipe”: everything that you would see printed by the
first program on the command (without any pipe), is now passed to the second program
(and not seen by you).

To continue the previous example, let’s say you want to see the B-V color. To do this,
you can pipe Table’s output to AWK (a wonderful tool for processing things like plain text
tables):

$ asttable cat.fits -cMAG_B,MAG_V | awk ’{print $1-$2}’

But understanding the distribution by visually seeing all the numbers under each other
is not too useful! You can therefore feed this single column information into Section 7.1
[Statistics|, page 237, to give you a general feeling of the distribution with the same com-
mand:

$ asttable cat.fits -cMAG_B,MAG_V | awk ’{print $1-$2}’ | aststatistics

Chapter 4: Common program behavior 118

Gnuastro’s programs that accept input from standard input, only look into the Standard
input stream if there is no first argument. In other words, arguments take precedence over
Standard input. When no argument is provided, the programs check if the standard input
stream is already full or not (output from another program is waiting to be used). If data
is present in the standard input stream, it is used.

When the standard input is empty, the program will wait —~—stdintimeout micro-seconds
for you to manually enter the first line (ending with a new-line character, or the ENTER key,
see Section 4.1.2.1 [Input/Output options], page 107). If it detects the first line in this time,
there is no more time limit, and you can manually write/type all the lines for as long as it
takes. To inform the program that Standard input has finished, press CTRL-D after a new
line. If the program doesn’t catch the first line before the time-out finishes, it will abort
with an error saying that no input was provided.

e 2
Manual input in Standard input is discarded: Be careful that when you manually fill the
Standard input, the data will be discarded once the program finishes and reproducing the
result will be impossible. Therefore this form of providing input is only good for temporary
tests.

/)

(N
Standard input currently only for plain text: Currently Standard input only works for plain

text inputs like the example above. We will later allow FITS files into the programs through

standard input also.
S J

4.2 Configuration files

Each program needs a certain number of parameters to run. Supplying all the necessary
parameters each time you run the program is very frustrating and prone to errors. Therefore
all the programs read the values for the necessary options you have not given in the command
line from one of several plain text files (which you can view and edit with any text editor).
These files are known as configuration files and are usually kept in a directory named etc/
according to the file system hierarchy standard®.

The thing to have in mind is that none of the programs in Gnuastro keep any internal
default value. All the values must either be stored in one of the configuration files or
explicitly called in the command-line. In case the necessary parameters are not given
through any of these methods, the program will print a missing option error and abort.
The only exception to this is ——numthreads, whose default value is determined at run-
time using the number of threads available to your system, see Section 4.5 [Multi-threaded
operations|, page 126. Of course, you can still provide a default value for the number of
threads at any of the levels below, but if you don’t, the program will not abort. Also note
that through automatic output name generation, the value to the ——output option is also
not mandatory on the command-line or in the configuration files for all programs which
don’t rely on that value as an input®, see Section 4.9 [Automatic output|, page 138.

4 http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

5 One example of a program which uses the value given to —-output as an input is ConvertType, this value
specifies the type of the output through the value to --output, see Section 5.3.3 [Invoking ConvertType],
page 161.

http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

Chapter 4: Common program behavior 119

4.2.1 Configuration file format

The configuration files for each program have the standard program executable name with
a ‘.conf’ suffix. When you download the source code, you can find them in the same
directory as the source code of each program, see Section 11.4 [Program source|, page 506.

Any line in the configuration file whose first non-white character is a # is considered to
be a comment and is ignored. An empty line is also similarly ignored. The long name of the
option should be used as an identifier. The parameter name and parameter value have to be
separated by any number of ‘white-space’ characters: space, tab or vertical tab. By default
several space characters are used. If the value of an option has space characters (most
commonly for the hdu option), then the full value can be enclosed in double quotation signs
(", similar to the example in Section 4.1.1 [Arguments and options|, page 104). If it is an
option without a value in the --help output (on/off option, see Section 4.1.1.2 [Options],
page 105), then the value should be 1 if it is to be ‘on’ and 0 otherwise.

In each non-commented and non-blank line, any text after the first two words (option
identifier and value) is ignored. If an option identifier is not recognized in the configuration
file, the name of the file, the line number of the unrecognized option, and the unrecognized
identifier name will be reported and the program will abort. If a parameter is repeated
more more than once in the configuration files, accepts only one value, and is not set on
the command-line, then only the first value will be used, the rest will be ignored.

You can build or edit any of the directories and the configuration files yourself using
any text editor. However, it is recommended to use the --setdirconf and --setusrconf
options to set default values for the current directory or this user, see Section 4.1.2.3 [Op-
erating mode options], page 112. With these options, the values you give will be checked
before writing in the configuration file. They will also print a set of commented lines guiding
the reader and will also classify the options based on their context and write them in their
logical order to be more understandable.

4.2.2 Configuration file precedence

The option values in all the programs of Gnuastro will be filled in the following order. If an
option only takes one value which is given in an earlier step, any value for that option in a
later step will be ignored. Note that if the lastconfig option is specified in any step below,
no other configuration files will be parsed (see Section 4.1.2.3 [Operating mode options],
page 112).

1. Command-line options, for a particular run of ProgramName.

2. .gnuastro/astprogname.conf is parsed by ProgramName in the current directory.
3. .gnuastro/gnuastro.conf is parsed by all Gnuastro programs in the current directory.
4

. $HOME/ .local/etc/astprogname.conf is parsed by ProgramName in the user’s home
directory (see Section 4.2.3 [Current directory and User wide], page 120).

5. $HOME/.local/etc/gnuastro.conf is parsed by all Gnuastro programs in the user’s
home directory (see Section 4.2.3 [Current directory and User wide], page 120).

6. prefix/etc/astprogname.conf is parsed by ProgramName in the system-wide instal-
lation directory (see Section 4.2.4 [System wide], page 121, for prefix).

7. prefix/etc/gnuastro.conf is parsed by all Gnuastro programs in the system-wide
installation directory (see Section 4.2.4 [System wide], page 121, for prefix).

Chapter 4: Common program behavior 120

The basic idea behind setting this progressive state of checking for parameter values is
that separate users of a computer or separate folders in a user’s file system might need
different values for some parameters.

Checking the order: You can confirm/check the order of parsing configuration files using
the -—checkconfig option with any Gnuastro program, see Section 4.1.2.3 [Operating mode
options|, page 112. Just be sure to place this option immediately after the program name,
before any other option.

As you see above, there can also be a configuration file containing the common options
in all the programs: gnuastro.conf (see Section 4.1.2 [Common options|, page 107). If
options specific to one program are specified in this file, there will be unrecognized option
errors, or unexpected behavior if the option has different behavior in another program. On
the other hand, there is no problem with astprogname.conf containing common options®.
(" 2
Manipulating the order: You can manipulate this order or add new files with the following
two options which are fully described in Section 4.1.2.3 [Operating mode options], page 112:

--config Allows you to define any file to be parsed as a configuration file on the
command-line or within the any other configuration file. Recall that the file
given to —-config is parsed immediately when this option is confronted (on
the command-line or in a configuration file).

--lastconfig
Allows you to stop the parsing of subsequent configuration files. Note that if
this option is given in a configuration file, it will be fully read, so its position
in the configuration doesn’t matter (unlike --config).

\ J

One example of benefiting from these configuration files can be this: raw telescope images
usually have their main image extension in the second FITS extension, while processed FITS
images usually only have one extension. If your system-wide default input extension is 0 (the
first), then when you want to work with the former group of data you have to explicitly
mention it to the programs every time. With this progressive state of default values to
check, you can set different default values for the different directories that you would like
to run Gnuastro in for your different purposes, so you won’t have to worry about this issue
any more.

The same can be said about the gnuastro.conf files: by specifying a behavior in this
single file, all Gnuastro programs in the respective directory, user, or system-wide steps will
behave similarly. For example to keep the input’s directory when no specific output is given
(see Section 4.9 [Automatic output|, page 138), or to not delete an existing file if it has the
same name as a given output (see Section 4.1.2.1 [Input/Output options|, page 107).

4.2.3 Current directory and User wide

For the current (local) and user-wide directories, the configuration files are stored in the
hidden sub-directories named .gnuastro/ and $HOME/.local/etc/ respectively. Unless

6 As an example, the --setdirconf and --setusrconf options will also write the common options they
have read in their produced astprogname.conf.

Chapter 4: Common program behavior 121

you have changed it, the $HOME environment variable should point to your home directory.
You can check it by running $ echo $HOME. Each time you run any of the programs in
Gnuastro, this environment variable is read and placed in the above address. So if you
suddenly see that your home configuration files are not being read, probably you (or some
other program) has changed the value of this environment variable.

Although it might cause confusions like above, this dependence on the HOME environ-
ment variable enables you to temporarily use a different directory as your home directory.
This can come in handy in complicated situations. To set the user or current directory
configuration files based on your command-line input, you can use the --setdirconf or
--setusrconf, see Section 4.1.2.3 [Operating mode options|, page 112.

4.2.4 System wide

When Gnuastro is installed, the configuration files that are shipped with the distribution
are copied into the (possibly system wide) prefix/etc/ directory. For more details on
prefix, see Section 3.3.1.2 [Installation directory], page 91, (by default it is: /usr/local).
This directory is the final place (with the lowest priority) that the programs in Gnuastro
will check to retrieve parameter values.

If you remove an option and its value from the system wide configuration files, you either
have to specify it in more immediate configuration files or set it each time in the command-
line. Recall that none of the programs in Gnuastro keep any internal default values and will
abort if they don’t find a value for the necessary parameters (except the number of threads
and output file name). So even though you might never expect to use an optional option,
it safe to have it available in this system-wide configuration file even if you don’t intend to
use it frequently.

Note that in case you install Gnuastro from your distribution’s repositories, prefix will
either be set to / (the root directory) or /usr, so you can find the system wide configuration
variables in /etc/ or /usr/etc/. The prefix of /usr/local/ is conventionally used for
programs you install from source by your self as in Section 1.1 [Quick start], page 1.

4.3 Getting help

Probably the first time you read this book, it is either in the PDF or HTML formats. These
two formats are very convenient for when you are not actually working, but when you are
only reading. Later on, when you start to use the programs and you are deep in the middle
of your work, some of the details will inevitably be forgotten. Going to find the PDF file
(printed or digital) or the HTML webpage is a major distraction.

GNU software have a very unique set of tools for aiding your memory on the command-
line, where you are working, depending how much of it you need to remember. In the past,
such command-line help was known as “online” help, because they were literally provided
to you ‘on’ the command ‘line’. However, nowadays the word “online” refers to something
on the internet, so that term will not be used. With this type of help, you can resume your
exciting research without taking your hands off the keyboard.

Another major advantage of such command-line based help routines is that they are
installed with the software in your computer, therefore they are always in sync with the
executable you are actually running. Three of them are actually part of the executable.
You don’t have to worry about the version of the book or program. If you rely on external

Chapter 4: Common program behavior 122

help (a PDF in your personal print or digital archive or HTML from the official webpage)
you have to check to see if their versions fit with your installed program.

If you only need to remember the short or long names of the options, -—usage is advised.
If it is what the options do, then --help is a great tool. Man pages are also provided for
those who are use to this older system of documentation. This full book is also available
to you on the command-line in Info format. If none of these seems to resolve the problems,
there is a mailing list which enables you to get in touch with experienced Gnuastro users.
In the subsections below each of these methods are reviewed.

4.3.1 --usage

If you give this option, the program will not run. It will only print a very concise message
showing the options and arguments. Everything within square brackets ([]) is optional.
For example here are the first and last two lines of Crop’s ——usage is shown:

$ astcrop --usage
Usage: astcrop [-Do?IPqSVW] [-d INT] [-h INT] [-r INT] [-w INT]
[-x INT] [-y INT] [-c INT] [-p STR] [-N INT] [--deccol=INT]

[--setusrconf] [--usage] [--version] [--wcsmode]
[ASCIIcatalog] FITSimage(s).fits

There are no explanations on the options, just their short and long names shown sep-
arately. After the program name, the short format of all the options that don’t require a
value (on/off options) is displayed. Those that do require a value then follow in separate
brackets, each displaying the format of the input they want, see Section 4.1.1.2 [Options],
page 105. Since all options are optional, they are shown in square brackets, but arguments
can also be optional. For example in this example, a catalog name is optional and is only
required in some modes. This is a standard method of displaying optional arguments for
all GNU software.

4.3.2 --help

If the command-line includes this option, the program will not be run. It will print a
complete list of all available options along with a short explanation. The options are also
grouped by their context. Within each context, the options are sorted alphabetically. Since
the options are shown in detail afterwards, the first line of the ——help output shows the
arguments and if they are optional or not, similar to Section 4.3.1 [--usage], page 122.

In the --help output of all programs in Gnuastro, the options for each program are
classified based on context. The first two contexts are always options to do with the input
and output respectively. For example input image extensions or supplementary input files
for the inputs. The last class of options is also fixed in all of Gnuastro, it shows operating
mode options. Most of these options are already explained in Section 4.1.2.3 [Operating
mode options], page 112.

The help message will sometimes be longer than the vertical size of your terminal. If
you are using a graphical user interface terminal emulator, you can scroll the terminal with
your mouse, but we promised no mice distractions! So here are some suggestions:

e Shift + PageUP to scroll up and Shift + PageDown to scroll down. For most help
output this should be enough. The problem is that it is limited by the number of lines

Chapter 4: Common program behavior 123

that your terminal keeps in memory and that you can’t scroll by lines, only by whole
screens.

e Pipe to less. A pipe is a form of shell re-direction. The less tool in Unix-like systems
was made exactly for such outputs of any length. You can pipe (|) the output of any
program that is longer than the screen to it and then you can scroll through (up and
down) with its many tools. For example:

$ astnoisechisel --help | less
Once you have gone through the text, you can quit less by pressing the q key.

e Redirect to a file. This is a less convenient way, because you will then have to open
the file in a text editor! You can do this with the shell redirection tool (>):

$ astnoisechisel --help > filename.txt

In case you have a special keyword you are looking for in the help, you don’t have to
go through the full list. GNU Grep is made for this job. For example if you only want
the list of options whose —-help output contains the word “axis” in Crop, you can run the
following command:

$ astcrop --help | grep axis

If the output of this option does not fit nicely within the confines of your terminal, GNU
does enable you to customize its output through the environment variable ARGP_HELP_FMT,
you can set various parameters which specify the formatting of the help messages. For
example if your terminals are wider than 70 spaces (say 100) and you feel there is too much
empty space between the long options and the short explanation, you can change these
formats by giving values to this environment variable before running the program with the
—--help output. You can define this environment variable in this manner:

$ export ARGP_HELP_FMT=rmargin=100,opt-doc-col=20

This will affect all GNU programs using GNU C library’s argp.h facilities as long as the
environment variable is in memory. You can see the full list of these formatting parameters
in the “Argp User Customization” part of the GNU C library manual. If you are more
comfortable to read the —--help outputs of all GNU software in your customized format,
you can add your customization (similar to the line above, without the $ sign) to your
~/.bashrc file. This is a standard option for all GNU software.

4.3.3 Man pages

Man pages were the Unix method of providing command-line documentation to a program.
With GNU Info, see Section 4.3.4 [Info], page 124, the usage of this method of documentation
is highly discouraged. This is because Info provides a much more easier to navigate and
read environment.

However, some operating systems require a man page for packages that are installed
and some people are still used to this method of command line help. So the programs
in Gnuastro also have Man pages which are automatically generated from the outputs of
--version and --help using the GNU help2man program. So if you run

$ man programname

You will be provided with a man page listing the options in the standard manner.

Chapter 4: Common program behavior 124

4.3.4 Info

Info is the standard documentation format for all GNU software. It is a very useful
command-line document viewing format, fully equipped with links between the various
pages and menus and search capabilities. As explained before, the best thing about it is
that it is available for you the moment you need to refresh your memory on any command-
line tool in the middle of your work without having to take your hands off the keyboard.
This complete book is available in Info format and can be accessed from anywhere on the
command-line.

To open the Info format of any installed programs or library on your system which has
an Info format book, you can simply run the command below (change executablename to
the executable name of the program or library):

$ info executablename

In case you are not already familiar with it, run $ info info. It does a fantastic job in
explaining all its capabilities its self. It is very short and you will become sufficiently fluent
in about half an hour. Since all GNU software documentation is also provided in Info, your
whole GNU/Linux life will significantly improve.

Once you’ve become an efficient navigator in Info, you can go to any part of this book or
any other GNU software or library manual, no matter how long it is, in a matter of seconds.
It also blends nicely with GNU Emacs (a text editor) and you can search manuals while
you are writing your document or programs without taking your hands off the keyboard,
this is most useful for libraries like the GNU C library. To be able to access all the Info
manuals installed in your GNU/Linux within Emacs, type Ctrl-H + i.

To see this whole book from the beginning in Info, you can run

$ info gnuastro
If you run Info with the particular program executable name, for example astcrop or
astnoisechisel:

$ info astprogramname
you will be taken to the section titled “Invoking ProgramName” which explains the inputs
and outputs along with the command-line options for that program. Finally, if you run Info
with the official program name, for example Crop or NoiseChisel:

$ info ProgramName

you will be taken to the top section which introduces the program. Note that in all cases,
Info is not case sensitive.

4.3.5 help-gnuastro mailing list

Gnuastro maintains the help-gnuastro mailing list for users to ask any questions related to
Gnuastro. The experienced Gnuastro users and some of its developers are subscribed to this
mailing list and your email will be sent to them immediately. However, when contacting
this mailing list please have in mind that they are possibly very busy and might not be able
to answer immediately.

To ask a question from this mailing list, send a mail to help-gnuastro@gnu.org. Any-
one can view the mailing list archives at http://lists.gnu.org/archive/html/
help-gnuastro/. It is best that before sending a mail, you search the archives to see
if anyone has asked a question similar to yours. If you want to make a suggestion or report

http://lists.gnu.org/archive/html/help-gnuastro/
http://lists.gnu.org/archive/html/help-gnuastro/

Chapter 4: Common program behavior 125

a bug, please don’t send a mail to this mailing list. We have other mailing lists and tools
for those purposes, see Section 1.7 [Report a bug], page 11, or Section 1.8 [Suggest new
feature|, page 12.

4.4 Installed scripts

Gnuastro’s programs (introduced in previous chapters) are designed to be highly modular
and thus mainly contain lower-level operations on the data. However, in many contexts,
higher-level operations (for example a sequence of calls to multiple Gnuastro programs, or
a special way of running a program and using the outputs) are also very similar between
various projects.

To facilitate data analysis on these higher-level steps also, Gnuastro also installs some
scripts on your system with the (astscript-) prefix (in contrast to the other programs
that only have the ast prefix).

Like all of Gnuastro’s source code, these scripts are also heavily commented. They
are written in GNU Bash, which doesn’t need compilation. Therefore, if you open the
installed scripts in a text editor, you can actually read them”. Bash is the same language
that is mainly used when typing on the command-line. Because of these factors, Bash is
much more widely known and used than C (the language of other Gnuastro programs).
Gnuastro’s installed scripts also do higher-level operations, so customizing these scripts for
a special project will be more common than the programs. You can always inspect them (to
customize, check, or educate your self) with this command (just replace emacs with your
favorite text editor):

$ emacs $(which astscript-NAME)

These scripts also accept options and are in many ways similar to the programs (see
Section 4.1.2 [Common options|, page 107) with some minor differences:

e Currently they don’t accept configuration files themselves. However, the configuration
files of the Gnuastro programs they call are indeed parsed and used by those programs.

As a result, they don’t have the following options: --checkconfig, --config,
--lastconfig, --onlyversion, —-printparams, --setdirconf and --setusrconf.

e They don’t directly allocate any memory, so there is no —-minmapsize.

e They don’t have an independent ——usage option: when called with --usage, they just
recommend running --help.

e The output of ——help is not configurable like the programs (see Section 4.3.2 [--help],
page 122).
e The scripts will commonly use your installed Bash and other basic command-line tools

(for example AWK or SED). Different systems have different versions and implementa-
tions of these basic tools (for example GNU/Linux systems use GNU AWK and GNU

7 Gnuastro’s installed programs (those only starting with ast) aren’t human-readable. They are written
in C and are thus compiled (optimized in binary CPU instructions that will be given directly to your
CPU). Because they don’t need an interpreter like Bash on every run, they are much faster and more
independent than scripts. To read the source code of the programs, look into the bin/progname directory
of Gnuastro’s source (Section 3.2 [Downloading the source], page 83). If you would like to read more
about why C was chosen for the programs, please see Section 11.1 [Why C programming language?),
page 500.

Chapter 4: Common program behavior 126

SED which are far more advanced and up to date then the minimalist AWK and SED
of most other systems). Therefore, unexpected errors in these tools might come up
when you run these scripts. We will try our best to write these scripts in a portable
way. However, if you do confront such strange errors, please submit a bug report so we
fix it (see Section 1.7 [Report a bug], page 11).

4.5 Multi-threaded operations

Some of the programs benefit significantly when you use all the threads your computer’s
CPU has to offer to your operating system. The number of threads available can be larger
than the number of physical (hardware) cores in the CPU (also known as Simultaneous
multithreading). For example, in Intel’s CPUs (those that implement its Hyper-threading
technology) the number of threads is usually double the number of physical cores in your
CPU. On a GNU/Linux system, the number of threads available can be found with the
command $ nproc command (part of GNU Coreutils).

Gnuastro’s programs can find the number of threads available to your system inter-
nally at run-time (when you execute the program). However, if a value is given to the
--numthreads option, the given number will be used, see Section 4.1.2.3 [Operating mode
options]|, page 112, and Section 4.2 [Configuration files|, page 118, for ways to use this op-
tion. Thus --numthreads is the only common option in Gnuastro’s programs with a value
that doesn’t have to be specified anywhere on the command-line or in the configuration
files.

4.5.1 A note on threads

Spinning off threads is not necessarily the most efficient way to run an application. Creating
a new thread isn’t a cheap operation for the operating system. It is most useful when the
input data are fixed and you want the same operation to be done on parts of it. For example
one input image to Crop and multiple crops from various parts of it. In this fashion, the
image is loaded into memory once, all the crops are divided between the number of threads
internally and each thread cuts out those parts which are assigned to it from the same image.
On the other hand, if you have multiple images and you want to crop the same region(s)
out of all of them, it is much more efficient to set ~—numthreads=1 (so no threads spin off)
and run Crop multiple times simultaneously, see Section 4.5.2 [How to run simultaneous
operations]|, page 127.

You can check the boost in speed by first running a program on one of the data sets with
the maximum number of threads and another time (with everything else the same) and only
using one thread. You will notice that the wall-clock time (reported by most programs at
their end) in the former is longer than the latter divided by number of physical CPU cores
(not threads) available to your operating system. Asymptotically these two times can be
equal (most of the time they aren’t). So limiting the programs to use only one thread and
running them independently on the number of available threads will be more efficient.

Note that the operating system keeps a cache of recently processed data, so usually, the
second time you process an identical data set (independent of the number of threads used),
you will get faster results. In order to make an unbiased comparison, you have to first clean
the system’s cache with the following command between the two runs.

$ sync; echo 3 | sudo tee /proc/sys/vm/drop_caches

Chapter 4: Common program behavior 127

-
SUMMARY: Should I use multiple threads? Depends:

~

e If you only have one data set (image in most cases!), then yes, the more threads you
use (with a maximum of the number of threads available to your OS) the faster you
will get your results.

e If you want to run the same operation on multiple data sets, it is best to set the number
of threads to 1 and use Make, or GNU Parallel, as explained in Section 4.5.2 [How to
run simultaneous operations], page 127.

N

J

4.5.2 How to run simultaneous operations

There are two® approaches to simultaneously execute a program: using GNU Parallel or
Make (GNU Make is the most common implementation). The first is very useful when you
only want to do one job multiple times and want to get back to your work without actually
keeping the command you ran. The second is usually for more important operations, with
lots of dependencies between the different products (for example a full scientific research).

GNU Parallel

Make

When you only want to run multiple instances of a command on different
threads and get on with the rest of your work, the best method is to use GNU
parallel. Surprisingly GNU Parallel is one of the few GNU packages that has
no Info documentation but only a Man page, see Section 4.3.4 [Info], page 124.
So to see the documentation after installing it please run

$ man parallel

As an example, let’s assume we want to crop a region fixed on the pixels (500,
600) with the default width from all the FITS images in the ./data directory
ending with sci.fits to the current directory. To do this, you can run:

$ parallel astcrop --—numthreads=1 --xc=500 --yc=600 ::: \
./data/*sci.fits

GNU Parallel can help in many more conditions, this is one of the simplest, see
the man page for lots of other examples. For absolute beginners: the backslash
(\) is only a line breaker to fit nicely in the page. If you type the whole command
in one line, you should remove it.

Make is a program for building “targets” (e.g., files) using “recipes” (a set of
operations) when their known “prerequisites” (other files) have been updated.
It elegantly allows you to define dependency structures for building your final
output and updating it efficiently when the inputs change. It is the most
common infra-structure to build software today.

Scientific research methodology is very similar to software development: you
start by testing a hypothesis on a small sample of objects/targets with a sim-
ple set of steps. As you are able to get promising results, you improve the
method and use it on a larger, more general, sample. In the process, you

8 A third way would be to open multiple terminal emulator windows in your GUI, type the commands
separately on each and press Enter once on each terminal, but this is far too frustrating, tedious and
prone to errors. It’s therefore not a realistic solution when tens, hundreds or thousands of operations
(your research targets, multiplied by the operations you do on each) are to be done.

Chapter 4: Common program behavior 128

will confront many issues that have to be corrected (bugs in software develop-
ment jargon). Make a wonderful tool to manage this style of development. It
has been used to make reproducible papers, for example see the reproduction
pipeline (https://gitlab.com/makhlaghi/NoiseChisel-paper) of the paper
introducing Section 7.2 [NoiseChisel], page 258, (one of Gnuastro’s programs).

GNU Make? is the most common implementation which (similar to nearly all
GNU programs, comes with a wonderful manual'?). Make is very basic and
simple, and thus the manual is short (the most important parts are in the first
roughly 100 pages) and easy to read/understand.

Make comes with a -—jobs (-j) option which allows you to specify the maxi-
mum number of jobs that can be done simultaneously. For example if you have
8 threads available to your operating system. You can run:
$ make -3j8

With this command, Make will process your Makefile and create all the targets
(can be thousands of FITS images for example) simultaneously on 8 threads,
while fully respecting their dependencies (only building a file/target when its
prerequisites are successfully built). Make is thus strongly recommended for
managing scientific research where robustness, archiving, reproducibility and
speed!! are important.

4.6 Numeric data types

At the lowest level, the computer stores everything in terms of 1 or 0. For example, each
program in Gnuastro, or each astronomical image you take with the telescope is actually a
string of millions of these zeros and ones. The space required to keep a zero or one is the
smallest unit of storage, and is known as a bit. However, understanding and manipulating
this string of bits is extremely hard for most people. Therefore, different standards are
defined to package the bits into separate types with a fixed interpretation of the bits in each
package.

To store numbers, the most basic standard/type is for integers (...,—2,—1,0,1,2,...).
The common integer types are 8, 16, 32, and 64 bits wide (more bits will give larger limits).
Each bit corresponds to a power of 2 and they are summed to create the final number.
In the integer types, for each width there are two standards for reading the bits: signed
and unsigned. In the ‘signed’ convention, one bit is reserved for the sign (stating that the
integer is positive or negative). The ‘unsigned’ integers use that bit in the actual number
and thus contain only positive numbers (starting from zero).

Therefore, at the same number of bits, both signed and unsigned integers can allow the
same number of integers, but the positive limit of the unsigned types is double their signed
counterparts with the same width (at the expense of not having negative numbers). When

9 https://www.gnu.org/software/make/

10 hitps://wuw. gnu.org/software/make/manual/

1 Besides its multi-threaded capabilities, Make will only re-build those targets that depend on a change you
have made, not the whole work. For example, if you have set the prerequisites properly, you can easily
test the changing of a parameter on your paper’s results without having to re-do everything (which is
much faster). This allows you to be much more productive in easily checking various ideas/assumptions
of the different stages of your research and thus produce a more robust result for your exciting science.

https://gitlab.com/makhlaghi/NoiseChisel-paper
https://gitlab.com/makhlaghi/NoiseChisel-paper
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/manual/

Chapter 4: Common program behavior 129

the context of your work doesn’t involve negative numbers (for example counting, where
negative is not defined), it is best to use the unsigned types. For the full numerical range
of all integer types, see below.

Another standard of converting a given number of bits to numbers is the floating point
standard, this standard can approximately store any real number with a given precision.
There are two common floating point types: 32-bit and 64-bit, for single and double precision
floating point numbers respectively. The former is sufficient for data with less than 8
significant decimal digits (most astronomical data), while the latter is good for less than 16
significant decimal digits. The representation of real numbers as bits is much more complex
than integers. If you are interested to learn more about it, you can start with the Wikipedia
article (https://en.wikipedia.org/wiki/Floating_point).

Practically, you can use Gnuastro’s Arithmetic program to convert/change the type of
an image/datacube (see Section 6.2 [Arithmetic], page 189), or Gnuastro Table program to
convert a table column’s data type (see Section 5.4.1 [Column arithmetic], page 167). Con-
version of a dataset’s type is necessary in some contexts. For example the program/library,
that you intend to feed the data into, only accepts floating point values, but you have an
integer image/column. Another situation that conversion can be helpful is when you know
that your data only has values that fit within int8 or uint16. However it is currently
formatted in the float64 type.

The important thing to consider is that operations involving wider, floating point, or
signed types can be significantly slower than smaller-width, integer, or unsigned types re-
spectively. Note that besides speed, a wider type also requires much more storage space (by
4 or 8 times). Therefore, when you confront such situations that can be optimized and want
to store/archive/transfer the data, it is best to use the most efficient type. For example if
your dataset (image or table column) only has positive integers less than 65535, store it as
an unsigned 16-bit integer for faster processing, faster transfer, and less storage space.

The short and long names for the recognized numeric data types in Gnuastro are listed
below. Both short and long names can be used when you want to specify a type. For
example, as a value to the common option --type (see Section 4.1.2.1 [Input/Output op-
tions], page 107), or in the information comment lines of Section 4.7.2 [Gnuastro text table
format], page 133. The ranges listed below are inclusive.

u8

uint8 8-bit unsigned integers, range:
[0 to 2% — 1] or [0 to 255].

i8

int8 8-bit signed integers, range:
[—27 to 27 — 1] or [—128 to 127].

ulé

uint16 16-bit unsigned integers, range:
[0 to 26 — 1] or [0 to 65535].

il6

int16 16-bit signed integers, range:

[—215 to 2% — 1] or [—32768 to 32767].

https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Floating_point

Chapter 4: Common program behavior 130

u32
uint32 32-bit unsigned integers, range:

[0 to 232 — 1] or [0 to 4294967295].
i32
int32 32-bit signed integers, range:

[—23 to 231 — 1] or [—2147483648 to 2147483647].
u64
uint64 64-bit unsigned integers, range

[0 to 25* — 1] or [0 to 18446744073709551615].
i64
int64 64-bit signed integers, range:

[—25% to 203 — 1] or [—9223372036854775808 to 9223372036854775807].
£32

float32 32-bit (single-precision) floating point types. The maximum (minimum is its
negative) possible value is 3.402823 x 10%®. Single-precision floating points can
accurately represent a floating point number up to ~ 7.2 significant decimals.
Given the heavy noise in astronomical data, this is usually more than sufficient
for storing results.

f64

float64 64-bit (double-precision) floating point types. The maximum (minimum is its
negative) possible value is ~ 10°®. Double-precision floating points can accu-
rately represent a floating point number ~ 15.9 significant decimals. This is
usually good for processing (mixing) the data internally, for example a sum of
single precision data (and later storing the result as float32).

a N
Some file formats don’t recognize all types. For example the FITS standard (see Section 5.1

[Fits], page 142) does not define uint64 in binary tables or images. When a type is not
acceptable for output into a given file format, the respective Gnuastro program or library
will let you know and abort. On the command-line, you can convert the numerical type
of an image, or table column into another type with Section 6.2 [Arithmetic|, page 189, or
Section 5.4 [Table|, page 166, respectively. If you are writing your own program, you can
use the gal_data_copy_to_new_type() function in Gnuastro’s library, see Section 10.3.6.4

[Copying datasets], page 391.
= J

4.7 Tables

“A table is a collection of related data held in a structured format within a database. It
consists of columns, and rows.” (from Wikipedia). Each column in the table contains
the values of one property and each row is a collection of properties (columns) for one
target object. For example, let’s assume you have just ran MakeCatalog (see Section 7.4
[MakeCatalog|, page 284) on an image to measure some properties for the labeled regions
(which might be detected galaxies for example) in the image. For each labeled region
(detected galaxy), there will be a row which groups its measured properties as columns,
one column for each property. One such property can be the object’s magnitude, which is

Chapter 4: Common program behavior 131

the sum of pixels with that label, or its center can be defined as the light-weighted average
value of those pixels. Many such properties can be derived from the raw pixel values and
their position, see Section 7.4.5 [Invoking MakeCatalog], page 295, for a long list.

As a summary, for each labeled region (or, galaxy) we have one row and for each mea-
sured property we have one column. This high-level structure is usually the first step for
higher-level analysis, for example finding the stellar mass or photometric redshift from mag-
nitudes in multiple colors. Thus, tables are not just outputs of programs, in fact it is much
more common for tables to be inputs of programs. For example, to make a mock galaxy
image, you need to feed in the properties of each galaxy into Section 8.1 [MakeProfiles],
page 318, for it do the inverse of the process above and make a simulated image from a
catalog, see Section 2.1 [Sufi simulates a detection], page 17. In other cases, you can feed a
table into Section 6.1 [Crop], page 178, and it will crop out regions centered on the positions
within the table, see Section 2.2.17 [Finding reddest clumps and visual inspection], page 53.
So to end this relatively long introduction, tables play a very important role in astronomy,
or generally all branches of data analysis.

In Section 4.7.1 [Recognized table formats], page 131, the currently recognized table
formats in Gnuastro are discussed. You can use any of these tables as input or ask for them
to be built as output. The most common type of table format is a simple plain text file
with each row on one line and columns separated by white space characters, this format is
easy to read/write by eye/hand. To give it the full functionality of more specific table types
like the FITS tables, Gnuastro has a special convention which you can use to give each
column a name, type, unit, and comments, while still being readable by other plain text
table readers. This convention is described in Section 4.7.2 [Gnuastro text table format],
page 133.

When tables are input to a program, the program reading it needs to know which
column(s) it should use for its desired purposes. Gnuastro’s programs all follow a similar
convention, on the way you can select columns in a table. They are thoroughly discussed
in Section 4.7.3 [Selecting table columns|, page 135.

4.7.1 Recognized table formats

The list of table formats that Gnuastro can currently read from and write to are described
below. Each has their own advantage and disadvantages, so a short review of the format is
also provided to help you make the best choice based on how you want to define your input
tables or later use your output tables.

Plain text table
This is the most basic and simplest way to create, view, or edit the table by
hand on a text editor. The other formats described below are less eye-friendly
and have a more formal structure (for easier computer readability). It is fully
described in Section 4.7.2 [Gnuastro text table format], page 133.

FITS ASCII tables
The FITS ASCII table extension is fully in ASCII encoding and thus easily
readable on any text editor (assuming it is the only extension in the FITS
file). If the FITS file also contains binary extensions (for example an image or
binary table extensions), then there will be many hard to print characters. The
FITS ASCII format doesn’t have new line characters to separate rows. In the

Chapter 4: Common program behavior 132

FITS ASCII table standard, each row is defined as a fixed number of characters
(value to the NAXIS1 keyword), so to visually inspect it properly, you would
have to adjust your text editor’s width to this value. All columns start at given
character positions and have a fixed width (number of characters).

Numbers in a FITS ASCII table are printed into ASCII format, they are not
in binary (that the CPU uses). Hence, they can take a larger space in memory,
loose their precision, and take longer to read into memory. If you are dealing
with integer type columns (see Section 4.6 [Numeric data types|, page 128),
another issue with FITS ASCII tables is that the type information for the col-
umn will be lost (there is only one integer type in FITS ASCII tables). One
problem with the binary format on the other hand is that it isn’t portable
(different CPUs/compilers) have different standards for translating the zeros
and ones. But since ASCII characters are defined on a byte and are well rec-
ognized, they are better for portability on those various systems. Gnuastro’s
plain text table format described below is much more portable and easier to
read /write/interpret by humans manually.

Generally, as the name implies, this format is useful for when your table mainly
contains ASCII columns (for example file names, or descriptions). They can be
useful when you need to include columns with structured ASCII information
along with other extensions in one FITS file. In such cases, you can also consider
header keywords (see Section 5.1 [Fits], page 142).

FITS binary tables

The FITS binary table is the FITS standard’s solution to the issues discussed
with keeping numbers in ASCII format as described under the FITS ASCII
table title above. Only columns defined as a string type (a string of ASCII
characters) are readable in a text editor. The portability problem with binary
formats discussed above is mostly solved thanks to the portability of CFITSIO
(see Section 3.1.1.2 [CFITSIO], page 74) and the very long history of the FITS
format which has been widely used since the 1970s.

In the case of most numbers, storing them in binary format is more memory
efficient than ASCII format. For example, to store -25.72034 in ASCII for-
mat, you need 9 bytes/characters. But if you keep this same number (to the
approximate precision possible) as a 4-byte (32-bit) floating point number, you
can keep/transmit it with less than half the amount of memory. When catalogs
contain thousands/millions of rows in tens/hundreds of columns, this can lead
to significant improvements in memory /band-width usage. Moreover, since the
CPU does its operations in the binary formats, reading the table in and writing
it out is also much faster than an ASCII table.

When you are dealing with integer numbers, the compression ratio can be even
better, for example if you know all of the values in a column are positive and
less than 255, you can use the unsigned char type which only takes one byte!
If they are between -128 and 127, then you can use the (signed) char type. So
if you are thoughtful about the limits of your integer columns, you can greatly
reduce the size of your file and also the speed at which it is read /written. This
can be very useful when sharing your results with collaborators or publishing
them. To decrease the file size even more you can name your output as ending

Chapter 4: Common program behavior 133

in .fits.gz so it is also compressed after creation. Just note that compres-
sion/decompressing is CPU intensive and can slow down the writing/reading of
the file.

Fortunately the FITS Binary table format also accepts ASCII strings as column
types (along with the various numerical types). So your dataset can also contain
non-numerical columns.

4.7.2 Gnuastro text table format

Plain text files are the most generic, portable, and easiest way to (manually) create, (visu-
ally) inspect, or (manually) edit a table. In this format, the ending of a row is defined by
the new-line character (a line on a text editor). So when you view it on a text editor, every
row will occupy one line. The delimiters (or characters separating the columns) are white
space characters (space, horizontal tab, vertical tab) and a comma (,). The only further
requirement is that all rows/lines must have the same number of columns.

The columns don’t have to be exactly under each other and the rows can be arbitrarily
long with different lengths. For example the following contents in a file would be interpreted
as a table with 4 columns and 2 rows, with each element interpreted as a double type (see
Section 4.6 [Numeric data types|, page 128).

1 2.234948 128 39.8923e8
2, 4.454 792 72.98348e7

However, the example above has no other information about the columns (it is just raw
data, with no meta-data). To use this table, you have to remember what the numbers in
each column represent. Also, when you want to select columns, you have to count their
position within the table. This can become frustrating and prone to bad errors (getting the
columns wrong) especially as the number of columns increase. It is also bad for sending to
a colleague, because they will find it hard to remember/use the columns properly.

To solve these problems in Gnuastro’s programs/libraries you aren’t limited to using the
column’s number, see Section 4.7.3 [Selecting table columns], page 135. If the columns have
names, units, or comments you can also select your columns based on searches/matches in
these fields, for example see Section 5.4 [Table], page 166. Also, in this manner, you can’t
guide the program reading the table on how to read the numbers. As an example, the first
and third columns above can be read as integer types: the first column might be an ID and
the third can be the number of pixels an object occupies in an image. So there is no need
to read these to columns as a double type (which takes more memory, and is slower).

In the bare-minimum example above, you also can’t use strings of characters, for example
the names of filters, or some other identifier that includes non-numerical characters. In the
absence of any information, only numbers can be read robustly. Assuming we read columns
with non-numerical characters as string, there would still be the problem that the strings
might contain space (or any delimiter) character for some rows. So, each ‘word’ in the
string will be interpreted as a column and the program will abort with an error that the
rows don’t have the same number of columns.

To correct for these limitations, Gnuastro defines the following convention for storing
the table meta-data along with the raw data in one plain text file. The format is primarily
designed for ease of reading/writing by eye/fingers, but is also structured enough to be read
by a program.

Chapter 4: Common program behavior 134

When the first non-white character in a line is #, or there are no non-white characters
in it, then the line will not be considered as a row of data in the table (this is a pretty
standard convention in many programs, and higher level languages). In the former case,
the line is interpreted as a comment. If the comment line starts with ‘# Column N:’, then it
is assumed to contain information about column N (a number, counting from 1). Comment
lines that don’t start with this pattern are ignored and you can use them to include any
further information you want to store with the table in the text file. A column information
comment is assumed to have the following format:

Column N: NAME [UNIT, TYPE, BLANK] COMMENT

Any sequence of characters between ‘:” and ‘[’ will be interpreted as the column name (so
it can contain anything except the ‘[’ character). Anything between the ‘1’ and the end
of the line is defined as a comment. Within the brackets, anything before the first ¢,’ is
the units (physical units, for example km/s, or erg/s), anything before the second *,’ is the
short type identifier (see below, and Section 4.6 [Numeric data types|, page 128).

Finally (still within the brackets), any non-white characters after the second ‘,’ are
interpreted as the blank value for that column (see Section 6.1.3 [Blank pixels|, page 181).
The blank value can either be in the same type as the column (for example -99 for a signed
integer column), or any string (for example NaN in that same column). In both cases, the
values will be stored in memory as Gnuastro’s fixed blank values for each type. For floating
point types, Gnuastro’s internal blank value is IEEE NaN (Not-a-Number). For signed
integers, it is the smallest possible value and for unsigned integers its the largest possible
value.

When a formatting problem occurs (for example you have specified the wrong type code,
see below), or the column was already given meta-data in a previous comment, or the column
number is larger than the actual number of columns in the table (the non-commented or
empty lines), then the comment information line will be ignored.

When a comment information line can be used, the leading and trailing white space
characters will be stripped from all of the elements. For example in this line:

Column 5: column name [km/s, £32,-99] Redshift as speed

The NAME field will be ‘column name’ and the TYPE field will be ‘£32’. Note how all
the white space characters before and after strings are not used, but those in the middle
remained. Also, white space characters aren’t mandatory. Hence, in the example above,
the BLANK field will be given the value of ‘-=99’.

Except for the column number (N), the rest of the fields are optional. Also, the column
information comments don’t have to be in order. In other words, the information for
column N +m (m > 0) can be given in a line before column N. Also, you don’t have to
specify information for all columns. Those columns that don’t have this information will
be interpreted with the default settings (like the case above: values are double precision
floating point, and the column has no name, unit, or comment). So these lines are all
acceptable for any table (the first one, with nothing but the column number is redundant):

Column 5:
Column 1: ID [,i8] The Clump ID.
Column 3: mag f160w [AB mag, £32] Magnitude from the F160W filter

The data type of the column should be specified with one of the following values:

Chapter 4: Common program behavior 135

e For a numeric column, you can use any of the numeric types (and their recognized
identifiers) described in Section 4.6 [Numeric data types], page 128.

e ‘strN’: for strings. The N value identifies the length of the string (how many characters
it has). The start of the string on each row is the first non-delimiter character of the
column that has the string type. The next N characters will be interpreted as a string
and all leading and trailing white space will be removed.

If the next column’s characters, are closer than N characters to the start of the string
column in that line/row, they will be considered part of the string column. If there is a
new-line character before the ending of the space given to the string column (in other
words, the string column is the last column), then reading of the string will stop, even
if the N characters are not complete yet. See tests/table/table.txt for one example.
Therefore, the only time you have to pay attention to the positioning and spaces given
to the string column is when it is not the last column in the table.

The only limitation in this format is that trailing and leading white space characters will
be removed from the columns that are read. In most cases, this is the desired behavior,
but if trailing and leading white-spaces are critically important to your analysis, define
your own starting and ending characters and remove them after the table has been read.
For example in the sample table below, the two ‘|’ characters (which are arbitrary) will
remain in the value of the second column and you can remove them manually later.
If only one of the leading or trailing white spaces is important for your work, you can
only use one of the ‘|’s.

Column 1: ID [label, u8]

Column 2: Notes [no unit, strb50]

1 leading and trailing white space is ignored here 2.3442e10
2 | but they will be preserved here | 8.2964ell

Note that the FITS binary table standard does not define the unsigned int and
unsigned long types, so if you want to convert your tables to FITS binary tables, use
other types. Also, note that in the FITS ASCII table, there is only one integer type (long).
So if you convert a Gnuastro plain text table to a FITS ASCII table with the Section 5.4
[Table], page 166, program, the type information for integers will be lost. Conversely if
integer types are important for you, you have to manually set them when reading a FITS
ASCII table (for example with the Table program when reading/converting into a file, or
with the gnuastro/table.h library functions when reading into memory).

4.7.3 Selecting table columns

At the lowest level, the only defining aspect of a column in a table is its number, or position.
But selecting columns purely by number is not very convenient and, especially when the
tables are large it can be very frustrating and prone to errors. Hence, table file formats
(for example see Section 4.7.1 [Recognized table formats|, page 131) have ways to store
additional information about the columns (meta-data). Some of the most common pieces
of information about each column are its name, the units of data in the it, and a comment
for longer/informal description of the column’s data.

To facilitate research with Gnuastro, you can select columns by matching, or searching
in these three fields, besides the low-level column number. To view the full list of informa-
tion on the columns in the table, you can use the Table program (see Section 5.4 [Table],

Chapter 4: Common program behavior 136

page 166) with the command below (replace table-file with the filename of your table,
if its FITS, you might also need to specify the HDU /extension which contains the table):

$ asttable --information table-file

Gnuastro’s programs need the columns for different purposes, for example in Crop,
you specify the columns containing the central coordinates of the crop centers with the
--coordcol option (see Section 6.1.4.1 [Crop options], page 183). On the other hand, in
MakeProfiles, to specify the column containing the profile position angles, you must use the
--pcol option (see Section 8.1.5.1 [MakeProfiles catalog], page 327). Thus, there can be
no unified common option name to select columns for all programs (different columns have
different purposes). However, when the program expects a column for a specific context,
the option names end in the col suffix like the examples above. These options accept values
in integer (column number), or string (metadata match/search) format.

If the value can be parsed as a positive integer, it will be seen as the low-level column
number. Note that column counting starts from 1, so if you ask for column 0, the respective
program will abort with an error. When the value can’t be interpreted as an a integer
number, it will be seen as a string of characters which will be used to match/search in
the table’s meta-data. The meta-data field which the value will be compared with can
be selected through the --searchin option, see Section 4.1.2.1 [Input/Output options],
page 107. —--searchin can take three values: name, unit, comment. The matching will be
done following this convention:

e If the value is enclosed in two slashes (for example -x/RA_/, or --coordcol=/RA_
/, see Section 6.1.4.1 [Crop options|, page 183), then it is assumed to be a regular
expression with the same convention as GNU AWK. GNU AWK has a very well writ-
ten chapter (https://www.gnu.org/software/gawk/manual/html_node/Regexp.
html) describing regular expressions, so we we will not continue discussing them here.
Regular expressions are a very powerful tool in matching text and useful in many
contexts. We thus strongly encourage reviewing this chapter for greatly improving
the quality of your work in many cases, not just for searching column meta-data in
Gnuastro.

e When the string isn’t enclosed between ‘/’s, any column that exactly matches the given
value in the given field will be selected.

Note that in both cases, you can ignore the case of alphabetic characters with the
--ignorecase option, see Section 4.1.2.1 [Input/Output options|, page 107. Also, in both
cases, multiple columns may be selected with one call to this function. In this case, the
order of the selected columns (with one call) will be the same order as they appear in the
table.

4.8 Tessellation

It is sometimes necessary to classify the elements in a dataset (for example pixels in an
image) into a grid of individual, non-overlapping tiles. For example when background sky
gradients are present in an image, you can define a tile grid over the image. When the tile
sizes are set properly, the background’s variation over each tile will be negligible, allowing
you to measure (and subtract) it. In other cases (for example spatial domain convolution in
Gnuastro, see Section 6.3 [Convolve], page 206), it might simply be for speed of processing:
each tile can be processed independently on a separate CPU thread. In the arts and

https://www.gnu.org/software/gawk/manual/html_node/Regexp.html
https://www.gnu.org/software/gawk/manual/html_node/Regexp.html

Chapter 4: Common program behavior 137

mathematics, this process is formally known as tessellation (https://en.wikipedia.org/
wiki/Tessellation).

The size of the regular tiles (in units of data-elements, or pixels in an image) can be de-
fined with the --tilesize option. It takes multiple numbers (separated by a comma) which
will be the length along the respective dimension (in FORTRAN/FITS dimension order).
Divisions are also acceptable, but must result in an integer. For example --tilesize=30,40
can be used for an image (a 2D dataset). The regular tile size along the first FITS axis
(horizontal when viewed in SAO ds9) will be 30 pixels and along the second it will be 40
pixels. Ideally, —=—tilesize should be selected such that all tiles in the image have exactly
the same size. In other words, that the dataset length in each dimension is divisible by the
tile size in that dimension.

However, this is not always possible: the dataset can be any size and every pixel in it
is valuable. In such cases, Gnuastro will look at the significance of the remainder length,
if it is not significant (for example one or two pixels), then it will just increase the size of
the first tile in the respective dimension and allow the rest of the tiles to have the required
size. When the remainder is significant (for example one pixel less than the size along that
dimension), the remainder will be added to one regular tile’s size and the large tile will be
cut in half and put in the two ends of the grid/tessellation. In this way, all the tiles in the
central regions of the dataset will have the regular tile sizes and the tiles on the edge will be
slightly larger /smaller depending on the remainder significance. The fraction which defines
the remainder significance along all dimensions can be set through --remainderfrac.

The best tile size is directly related to the spatial properties of the property you want
to study (for example, gradient on the image). In practice we assume that the gradient is
not present over each tile. So if there is a strong gradient (for example in long wavelength
ground based images) or the image is of a crowded area where there isn’t too much blank
area, you have to choose a smaller tile size. A larger mesh will give more pixels and and so
the scatter in the results will be less (better statistics).

For raw image processing, a single tessellation/grid is not sufficient. Raw images are
the unprocessed outputs of the camera detectors. Modern detectors usually have multiple
readout channels each with its own amplifier. For example the Hubble Space Telescope
Advanced Camera for Surveys (ACS) has four amplifiers over its full detector area dividing
the square field of view to four smaller squares. Ground based image detectors are not
exempt, for example each CCD of Subaru Telescope’s Hyper Suprime-Cam camera (which
has 104 CCDs) has four amplifiers, but they have the same height of the CCD and divide
the width by four parts.

The bias current on each amplifier is different, and initial bias subtraction is not perfect.
So even after subtracting the measured bias current, you can usually still identify the
boundaries of different amplifiers by eye. See Figure 11(a) in Akhlaghi and Ichikawa (2015)
for an example. This results in the final reduced data to have non-uniform amplifier-shaped
regions with higher or lower background flux values. Such systematic biases will then
propagate to all subsequent measurements we do on the data (for example photometry and
subsequent stellar mass and star formation rate measurements in the case of galaxies).

Therefore an accurate analysis requires a two layer tessellation: the top layer contains
larger tiles, each covering one amplifier channel. For clarity we’ll call these larger tiles “chan-
nels”. The number of channels along each dimension is defined through the -—numchannels.

https://en.wikipedia.org/wiki/Tessellation
https://en.wikipedia.org/wiki/Tessellation

Chapter 4: Common program behavior 138

Each channel is then covered by its own individual smaller tessellation (with tile sizes de-
termined by the --tilesize option). This will allow independent analysis of two adjacent
pixels from different channels if necessary. If the image is processed or the detector only
has one amplifier, you can set the number of channels in both dimension to 1.

The final tessellation can be inspected on the image with the ——checktiles option that
is available to all programs which use tessellation for localized operations. When this option
is called, a FITS file with a _tiled.fits suffix will be created along with the outputs, see
Section 4.9 [Automatic output], page 138. Each pixel in this image has the number of the
tile that covers it. If the number of channels in any dimension are larger than unity, you
will notice that the tile IDs are defined such that the first channels is covered first, then
the second and so on. For the full list of processing-related common options (including
tessellation options), please see Section 4.1.2.2 [Processing options|, page 110.

4.9 Automatic output

All the programs in Gnuastro are designed such that specifying an output file or directory
(based on the program context) is optional. When no output name is explicitly given (with
--output, see Section 4.1.2.1 [Input/Output options|, page 107), the programs will automat-
ically set an output name based on the input name(s) and what the program does. For exam-
ple when you are using ConvertType to save FITS image named dataset.fits to a JPEG
image and don’t specify a name for it, the JPEG output file will be name dataset. jpg.
When the input is from the standard input (for example a pipe, see Section 4.1.3 [Standard
input], page 117), and --output isn’t given, the output name will be the program’s name
(for example converttype.jpg).

Another very important part of the automatic output generation is that all the directory
information of the input file name is stripped off of it. This feature can be disabled with
the —-keepinputdir option, see Section 4.1.2.1 [Input/Output options|, page 107. It is the
default because astronomical data are usually very large and organized specially with special
file names. In some cases, the user might not have write permissions in those directories'?.

Let’s assume that we are working on a report and want to process the FITS images from
two projects (ABC and DEF), which are stored in the sub-directories named ABCproject/
and DEFproject/ of our top data directory (/mnt/data). The following shell commands
show how one image from the former is first converted to a JPEG image through Convert-
Type and then the objects from an image in the latter project are detected using NoiseChisel.
The text after the # sign are comments (not typed!).

$ pwd # Current location
/home/usrname/research/report

$ 1s # List directory contents
ABCO1. jpg

$ 1s /mnt/data/ABCproject # Archive 1
ABCO1.fits ABCO2.fits ABCO3.fits

$ 1s /mnt/data/DEFproject # Archive 2

DEFO1.fits DEFO02.fits DEF03.fits
$ astconvertt /mnt/data/ABCproject/ABC02.fits --output=jpg # Prog 1

12 Tp fact, even if the data is stored on your own computer, it is advised to only grant write permissions to
the super user or root. This way, you won’t accidentally delete or modify your valuable data!

Chapter 4: Common program behavior 139

$ 1s

ABCO1.jpg ABCO2.jpg

$ astnoisechisel /mnt/data/DEFproject/DEFO1.fits # Prog 2
$ 1s

ABCO1. jpg ABCO2.jpg DEFO1l_detected.fits

4.10 Output FITS files

The output of many of Gnuastro’s programs are (or can be) FITS files. The FITS format
has many useful features for storing scientific datasets (cubes, images and tables) along with
a robust features for archivability. For more on this standard, please see Section 5.1 [Fits],
page 142.

As a community convention described in Section 5.1 [Fits], page 142, the first extension of
all FITS files produced by Gnuastro’s programs only contains the meta-data that is intended
for the file’s extension(s). For a Gnuastro program, this generic meta-data (that is stored
as FITS keyword records) is its configuration when it produced this dataset: file name(s)
of input(s) and option names, values and comments. Note that when the configuration is
too trivial (only input filename, for example the program Section 5.4 [Table], page 166) no
meta-data is written in this extension.

FITS keywords have the following limitations in regards to generic option names and
values which are described below:

e If a keyword (option name) is longer than 8 characters, the first word in the record (80
character line) is HIERARCH which is followed by the keyword name.

e Values can be at most 75 characters, but for strings, this changes to 73 (because of
the two extra ’ characters that are necessary). However, if the value is a file name,
containing slash (/) characters to separate directories, Gnuastro will break the value
into multiple keywords.

o Keyword names ignore case, therefore they are all in capital letters. Therefore, if you
want to use Grep to inspect these keywords, use the -i option, like the example below.

$ astfits image_detected.fits -hO | grep -i snquant

The keywords above are classified (separated by an empty line and title) as a group
titled “ProgramName configuration”. This meta-data extension, as well as all the other
extensions (which contain data), also contain have final group of keywords to keep the basic
date and version information of Gnuastro, its dependencies and the pipeline that is using
Gnuastro (if its under version control).

DATE The creation time of the FITS file. This date is written directly by CFITSIO
and is in UT format.

COMMIT Git’s commit description from the running directory of Gnuastro’s programs.
If the running directory is not version controlled or 1ibgit2 isn’t installed (see
Section 3.1.2 [Optional dependencies|, page 76) then this keyword will not be
present. The printed value is equivalent to the output of the following command:

git describe --dirty --always

If the running directory contains non-committed work, then the stored value
will have a ‘-dirty’ suffix. This can be very helpful to let you know that the

Chapter 4: Common program behavior 140

CFITSIO
WCSLIB

GSL

GNUASTRO

data is not ready to be shared with collaborators or submitted to a journal. You
should only share results that are produced after all your work is committed
(safely stored in the version controlled history and thus reproducible).

At first sight, version control appears to be mainly a tool for software devel-
opers. However progress in a scientific research is almost identical to progress
in software development: first you have a rough idea that starts with handful
of easy steps. But as the first results appear to be promising, you will have
to extend, or generalize, it to make it more robust and work in all the situ-
ations your research covers, not just your first test samples. Slowly you will
find wrong assumptions or bad implementations that need to be fixed (‘bugs’
in software development parlance). Finally, when you submit the research to
your collaborators or a journal, many comments and suggestions will come in,
and you have to address them.

Software developers have created version control systems precisely for this kind
of activity. Each significant moment in the project’s history is called a “com-
mit”, see Section 3.2.2 [Version controlled source], page 84. A snapshot of the
project in each “commit” is safely stored away, so you can revert back to it at
a later time, or check changes/progress. This way, you can be sure that your
work is reproducible and track the progress and history. With version control,
experimentation in the project’s analysis is greatly facilitated, since you can
easily revert back if a brainstorm test procedure fails.

One important feature of version control is that the research result (FITS im-
age, table, report or paper) can be stamped with the unique commit informa-
tion that produced it. This information will enable you to exactly reproduce
that same result later, even if you have made changes/progress. For one ex-
ample of a research paper’s reproduction pipeline, please see the reproduction
pipeline (https://gitlab.com/makhlaghi/NoiseChisel-paper) of the paper
(https://arxiv.org/abs/1505.01664) describing Section 7.2 [NoiseChisel],
page 258.

The version of CFITSIO used (see Section 3.1.1.2 [CFITSIO], page 74).

The version of WCSLIB used (see Section 3.1.1.3 [WCSLIB], page 75). Note
that older versions of WCSLIB do not report the version internally. So this is
only available if you are using more recent WCSLIB versions.

The version of GNU Scientific Library that was used, see Section 3.1.1.1 [GNU
Scientific library], page 74.

The version of Gnuastro used (see Section 1.5 [Version numbering], page 7).

Here is one example of the last few lines of an example output.

/ Versions and date

DATE =7, / file creation date

COMMIT = ’v0-8-gb47f6eb’ / Commit description in running dir.
CFITSIO = ’3.45) / CFITSIO version.

WCSLIB = ’5.19 g / WCSLIB version.

GSL = 2.5 ’ / GNU Scientific Library version.
GNUASTRO= ’0.7 ’ / GNU Astronomy Utilities version.

https://gitlab.com/makhlaghi/NoiseChisel-paper
https://gitlab.com/makhlaghi/NoiseChisel-paper
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 4: Common program behavior 141

END

142

5 Data containers

The most low-level and basic property of a dataset is how it is stored. To process, archive and
transmit the data, you need a container to store it first. From the start of the computer age,
different formats have been defined to store data, optimized for particular applications. One
format /container can never be useful for all applications: the storage defines the application
and vice-versa. In astronomy, the Flexible Image Transport System (FITS) standard has
become the most common format of data storage and transmission. It has many useful
features, for example multiple sub-containers (also known as extensions or header data
units, HDUs) within one file, or support for tables as well as images. Each HDU can store
an independent dataset and its corresponding meta-data. Therefore, Gnuastro has one
program (see Section 5.1 [Fits], page 142) specifically designed to manipulate FITS HDUs
and the meta-data (header keywords) in each HDU.

Your astronomical research does not just involve data analysis (where the FITS format is
very useful). For example you want to demonstrate your raw and processed FITS images or
spectra as figures within slides, reports, or papers. The FITS format is not defined for such
applications. Thus, Gnuastro also comes with the ConvertType program (see Section 5.3
[ConvertType], page 156) which can be used to convert a FITS image to and from (where
possible) other formats like plain text and JPEG (which allow two way conversion), along
with EPS and PDF (which can only be created from FITS, not the other way round).

Finally, the FITS format is not just for images, it can also store tables. Binary tables in
particular can be very efficient in storing catalogs that have more than a few tens of columns
and rows. However, unlike images (where all elements/pixels have one data type), tables
contain multiple columns and each column can have different properties: independent data
types (see Section 4.6 [Numeric data types], page 128) and meta-data. In practice, each
column can be viewed as a separate container that is grouped with others in the table. The
only shared property of the columns in a table is thus the number of elements they contain.
To allow easy inspection/manipulation of table columns, Gnuastro has the Table program
(see Section 5.4 [Table|, page 166). It can be used to select certain table columns in a FITS
table and see them as a human readable output on the command-line, or to save them into
another plain text or FITS table.

5.1 Fits

The “Flexible Image Transport System”, or FITS, is by far the most common data con-
tainer format in astronomy and in constant use since the 1970s. Archiving (future usage,
simplicity) has been one of the primary design principles of this format. In the last few
decades it has proved so useful and robust that the Vatican Library has also chosen FITS
for its “long-term digital preservation” project!.

Although the full name of the standard invokes the idea that it is only for images, it also
contains complete and robust features for tables. It started off in the 1970s and was formally
published as a standard in 1981, it was adopted by the International Astronomical Union
(TIAU) in 1982 and an TAU working group to maintain its future was defined in 1988. The
FITS 2.0 and 3.0 standards were approved in 2000 and 2008 respectively, and the 4.0 draft
has also been released recently, please see the FITS standard document webpage (https://

1 https://www.vaticanlibrary.va/home.php?pag=progettodigit

https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html
https://www.vaticanlibrary.va/home.php?pag=progettodigit

Chapter 5: Data containers 143

fits.gsfc.nasa.gov/fits_standard.html) for the full text of all versions. Also see the
FITS 3.0 standard paper (https://doi.org/10.1051/0004-6361/201015362) for a nice
introduction and history along with the full standard.

Many common image formats, for example a JPEG, only have one image/dataset per
file, however one great advantage of the FITS standard is that it allows you to keep multiple
datasets (images or tables along with their separate meta-data) in one file. In the FITS
standard, each data + metadata is known as an extension, or more formally a header data
unit or HDU. The HDUs in a file can be completely independent: you can have multiple
images of different dimensions/sizes or tables as separate extensions in one file. However,
while the standard doesn’t impose any constraints on the relation between the datasets, it
is strongly encouraged to group data that are contextually related with each other in one
file. For example an image and the table/catalog of objects and their measured properties
in that image. Other examples can be images of one patch of sky in different colors (filters),
or one raw telescope image along with its calibration data (tables or images).

As discussed above, the extensions in a FITS file can be completely independent. To
keep some information (meta-data) about the group of extensions in the FITS file, the
community has adopted the following convention: put no data in the first extension, so
it is just meta-data. This extension can thus be used to store Meta-data regarding the
whole file (grouping of extensions). Subsequent extensions may contain data along with
their own separate meta-data. All of Gnuastro’s programs also follow this convention: the
main output dataset(s) are placed in the second (or later) extension(s). The first extension
contains no data the program’s configuration (input file name, along with all its option
values) are stored as its meta-data, see Section 4.10 [Output FITS files], page 139.

The meta-data contain information about the data, for example which region of the
sky an image corresponds to, the units of the data, what telescope, camera, and filter
the data were taken with, it observation date, or the software that produced it and its
configuration. Without the meta-data, the raw dataset is practically just a collection of
numbers and really hard to understand, or connect with the real world (other datasets). It
is thus strongly encouraged to supplement your data (at any level of processing) with as
much meta-data about your processing/science as possible.

The meta-data of a FITS file is in ASCII format, which can be easily viewed or edited
with a text editor or on the command-line. Each meta-data element (known as a keyword
generally) is composed of a name, value, units and comments (the last two are optional).
For example below you can see three FITS meta-data keywords for specifying the world
coordinate system (WCS, or its location in the sky) of a dataset:

LATPOLE = -27.805089 / [deg] Native latitude of celestial pole
RADESYS = ’FKb’ / Equatorial coordinate system
EQUINOX = 2000.0 / [yr] Equinox of equatorial coordinates

However, there are some limitations which discourage viewing/editing the keywords with
text editors. For example there is a fixed length of 80 characters for each keyword (its name,
value, units and comments) and there are no new-line characters, so on a text editor all
the keywords are seen in one line. Also, the meta-data keywords are immediately followed
by the data which are commonly in binary format and will show up as strange looking
characters on a text editor, and significantly slowing down the processor.

https://fits.gsfc.nasa.gov/fits_standard.html
https://fits.gsfc.nasa.gov/fits_standard.html
https://doi.org/10.1051/0004-6361/201015362

Chapter 5: Data containers 144

Gnuastro’s Fits program was designed to allow easy manipulation of FITS extensions and
meta-data keywords on the command-line while conforming fully with the FITS standard.
For example you can copy or cut (copy and remove) HDUs/extensions from one FITS file
to another, or completely delete them. It also has features to delete, add, or edit meta-data
keywords within one HDU.

5.1.1 Invoking Fits

Fits can print or manipulate the FITS file HDUs (extensions), meta-data keywords in a
given HDU. The executable name is astfits with the following general template

$ astfits [OPTION...] ASTRdata
One line examples:

View general information about every extension:
$ astfits image.fits

Print the header keywords in the second HDU (counting from 0):
$ astfits image.fits -hl

Only print header keywords that contain ‘NAXIS’:
$ astfits image.fits -hl | grep NAXIS

Only print the WCS standard PC matrix elements
$ astfits image.fits -hl | grep ’PC._.°

Copy a HDU from input.fits to out.fits:
$ astfits input.fits --copy=hdu-name --output=out.fits

Update the OLDKEY keyword value to 153.034:
$ astfits --update=0LDKEY,153.034,"01d keyword comment"

Delete one COMMENT keyword and add a new one:
$ astfits --delete=COMMENT --comment="Anything you like ;-)."

Write two new keywords with different values and comments:
$ astfits --write=MYKEY1,20.00,"An example keyword" --write=MYKEY2,fd

When no action is requested (and only a file name is given), Fits will print a list of
information about the extension(s) in the file. This information includes the HDU number,
HDU name (EXTNAME keyword), type of data (see Section 4.6 [Numeric data types], page 128,
and the number of data elements it contains (size along each dimension for images and table
rows and columns). You can use this to get a general idea of the contents of the FITS file
and what HDU to use for further processing, either with the Fits program or any other
Gnuastro program.

Here is one example of information about a FITS file with four extensions: the first
extension has no data, it is a purely meta-data HDU (commonly used to keep meta-data
about the whole file, or grouping of extensions, see Section 5.1 [Fits], page 142). The second
extension is an image with name IMAGE and single precision floating point type (float32,
see Section 4.6 [Numeric data types], page 128), it has 4287 pixels along its first (horizontal)

Chapter 5: Data containers 145

axis and 4286 pixels along its second (vertical) axis. The third extension is also an image
with name MASK. It is in 2-byte integer format (int16) which is commonly used to keep
information about pixels (for example to identify which ones were saturated, or which ones
had cosmic rays and so on), note how it has the same size as the IMAGE extension. The
third extension is a binary table called CATALOG which has 12371 rows and 5 columns (it
probably contains information about the sources in the image).

GNU Astronomy Utilities X.X

Run on Day Month DD HH:MM:SS YYYY

HDU (extension) information: ‘image.fits’.
Column 1: Index (counting from 0).

Column 2: Name (‘EXTNAME’ in FITS standard).

Column 3: Image data type or ‘table’ format (ASCII or binary).
Column 4: Size of data in HDU.

0 n/a uint8 0

1 IMAGE float32 4287x4286

2 MASK int16 4287x4286

3 CATALOG table_binary 12371x5

If a specific HDU is identified on the command-line with the --hdu (or -h option) and
no operation requested, then the full list of header keywords in that HDU will be printed
(as if the -—printallkeys was called, see below). It is important to remember that this
only occurs when --hdu is given on the command-line. The --hdu value given in a config-
uration file will only be used when a specific operation on keywords requested. Therefore
as described in the paragraphs above, when no explicit call to the —-hdu option is made
on the command-line and no operation is requested (on the command-line or configuration
files), the basic information of each HDU /extension is printed.

The operating mode and input/output options to Fits are similar to the other programs
and fully described in Section 4.1.2 [Common options], page 107. The options particular to
Fits can be divided into two groups: 1) those related to modifying HDUs or extensions (see
Section 5.1.1.1 [HDU manipulation], page 145), and 2) those related to viewing/modifying
meta-data keywords (see Section 5.1.1.2 [Keyword manipulation|, page 147). These two
classes of options cannot be called together in one run: you can either work on the extensions
or meta-data keywords in any instance of Fits.

5.1.1.1 HDU manipulation

Each header data unit, or HDU (also known as an extension), in a FIT'S file is an independent
dataset (data + meta-data). Multiple HDUs can be stored in one FITS file, see Section 5.1
[Fits], page 142. The HDU modifying options to the Fits program are listed below.

These options may be called multiple times in one run. If so, the extensions will be copied
from the input FITS file to the output FITS file in the given order (on the command-line
and also in configuration files, see Section 4.2.2 [Configuration file precedence], page 119).
If the separate classes are called together in one run of Fits, then first ——copy is run (on all
specified HDUs), followed by --cut (again on all specified HDUs), and then --remove (on
all specified HDUs).

Chapter 5: Data containers 146

The --copy and --cut options need an output FITS file (specified with the --output
option). If the output file exists, then the specified HDU will be copied following the last
extension of the output file (the existing HDUs in it will be untouched). Thus, after Fits
finishes, the copied HDU will be the last HDU of the output file. If no output file name
is given, then automatic output will be used to store the HDUs given to this option (see
Section 4.9 [Automatic output], page 138).

-n
—-numhdus

——-datasum

Print the number of extensions/HDUs in the given file. Note that this option
must be called alone and will only print a single number. It is thus useful in
scripts, for example when you need to do check the number of extensions in a
FITS file.

For a complete list of basic meta-data on the extensions in a FITS file, don’t use
any of the options in this section or in Section 5.1.1.2 [Keyword manipulation],
page 147. For more, see Section 5.1.1 [Invoking Fits], page 144.

Calculate and print the given HDU’s "datasum" to stdout. The given HDU
is specified with the —-hdu (or -h) option. This number is calculated by pars-
ing all the bytes of the given HDU’s data records (excluding keywords). This
option ignores any possibly existing DATASUM keyword in the HDU. For more
on the datasum feature of the FITS standard, see Section 5.1.1.2 [Keyword
manipulation], page 147, (under the checksum component of --write).

You can use this option to confirm that the data in two different HDUs (possi-
bly with different keywords) is identical. Its advantage over --write=datasum
(which writes the DATASUM keyword into the given HDU) is that it doesn’t
require write permissions.

--pixelscale

-C STR

--copy=STR

-k STR
--cut=STR

-R STR

Print the HDU’s pixel-scale (change in world coordinate for one pixel along each
dimension). Without the --quiet option, the output of ~-pixelscale is more
human-friendly by printing the file/HDU name, number of dimensions, and the
units of each number along with the actual pixel scales. However, in scripts
(that are to be run automatically), this human-friendly format is annoying, so
when called with the -—quiet option, only the pixel-scale value(s) along each
dimension is(are) printed in one line.

Copy the specified extension into the output file, see explanations above.

Cut (copy to output, remove from input) the specified extension into the output
file, see explanations above.

—--remove=STR

Remove the specified HDU from the input file.

Chapter 5: Data containers 147

The first (zero-th) HDU cannot be removed with this option. Consider using
--copy or —-cut in combination with primaryimghdu to not have an empty
zero-th HDU. From CFITSIO: “In the case of deleting the primary array (the
first HDU in the file) then [it] will be replaced by a null primary array containing
the minimum set of required keywords and no data.”. So in practice, any
existing data (array) and meta-data in the first extension will be removed, but
the number of extensions in the file won’t change. This is because of the unique
position the first FITS extension has in the FITS standard (for example it
cannot be used to store tables).

—-—-primaryimghdu
Copy or cut an image HDU to the zero-th HDU /extension a file that doesn’t
yet exist. This option is thus irrelevant if the output file already exists or the
copied/cut extension is a FITS table. For example with the commands below,
first we make sure that out.fits doesn’t exist, then we copy the first extension
of in.fits to the zero-th extension of out.fits.

$ rm -f out.fits

$ astfits in.fits --copy=1 --primaryimghdu --output=out.fits
If we hadn’t used --primaryimghdu, then the zero-th extension of out.fits
would have no data, and its second extension would host the copied image (just
like any other output of Gnuastro).

5.1.1.2 Keyword manipulation

The meta-data in each header data unit, or HDU (also known as extension, see Section 5.1
[Fits], page 142) is stored as “keyword”s. Each keyword consists of a name, value, unit, and
comments. The Fits program (see Section 5.1 [Fits], page 142) options related to viewing
and manipulating keywords in a FITS HDU are described below.

To see the full list of keywords in a FITS HDU, you can use the ——printallkeys option.
If any of the keywords are to be modified, the headers of the input file will be changed. If
you want to keep the original FITS file or HDU, it is easiest to create a copy first and then
run Fits on that. In the FITS standard, keywords are always uppercase. So case does not
matter in the input or output keyword names you specify.

Most of the options can accept multiple instances in one command. For example you
can add multiple keywords to delete by calling --delete multiple times, since repeated
keywords are allowed, you can even delete the same keyword multiple times. The action of
such options will start from the top most keyword.

The precedence of operations are described below. Note that while the order within each
class of actions is preserved, the order of individual actions is not. So irrespective of what
order you called --delete and --update. First, all the delete operations are going to take
effect then the update operations.

1. --delete
2. --rename
3. --update
4. --write

5. ——asis

Chapter 5: Data containers 148

. ——history

6
7. —--comment
8. --date

9

. —-printallkeys
10. --verify
11. --copykeys
All possible syntax errors will be reported before the keywords are actually written. FITS
errors during any of these actions will be reported, but Fits won’t stop until all the opera-

tions are complete. If ——quitonerror is called, then Fits will immediately stop upon the
first error.

If you want to inspect only a certain set of header keywords, it is easiest to pipe the
output of the Fits program to GNU Grep. Grep is a very powerful and advanced tool to
search strings which is precisely made for such situations. For example if you only want to
check the size of an image FITS HDU, you can run:

$ astfits input.fits | grep NAXIS

a N
FITS STANDARD KEYWORDS: Some header keywords are necessary for later operations

on a FITS file, for example BITPIX or NAXIS, see the FITS standard for their full list. If
you modify (for example remove or rename) such keywords, the FITS file extension might
not be usable any more. Also be careful for the world coordinate system keywords, if
you modify or change their values, any future world coordinate system (like RA and Dec)

measurements on the image will also change.
N J

The keyword related options to the Fits program are fully described below.

-a STR
--asis=STR
Write STR exactly into the FITS file header with no modifications. If it does
not conform to the FITS standards, then it might cause trouble, so please be
very careful with this option. If you want to define the keyword from scratch, it
is best to use the ——write option (see below) and let CFITSIO worry about the
standards. The best way to use this option is when you want to add a keyword
from one FITS file to another unchanged and untouched. Below is an example
of such a case that can be very useful sometimes (on the command-line or in
scripts):
$ key=$(astfits firstimage.fits | grep KEYWORD)
$ astfits --asis="$key" secondimage.fits

In particular note the double quotation signs (") around the reference to the
key shell variable ($key). FITS keywords usually have lots of space characters,
if this variable is not quoted, the shell will only give the first word in the full
keyword to this option, which will definitely be a non-standard FITS keyword
and will make it hard to work on the file afterwords. See the “Quoting” section
of the GNU Bash manual for more information if your keyword has the special
characters $, ¢, or \.

Chapter 5: Data containers 149

-d STR

--delete=STR
Delete one instance of the STR keyword from the FITS header. Multiple in-
stances of --delete can be given (possibly even for the same keyword, when
its repeated in the meta-data). All keywords given will be removed from the
headers in the same given order. If the keyword doesn’t exist, Fits will give a
warning and return with a non-zero value, but will not stop. To stop as soon
as an error occurs, run with --quitonerror.

-r STR

—--rename=STR
Rename a keyword to a new value. STR contains both the existing and new
names, which should be separated by either a comma (,) or a space character.
Note that if you use a space character, you have to put the value to this option
within double quotation marks (") so the space character is not interpreted
as an option separator. Multiple instances of —-rename can be given in one
command. The keywords will be renamed in the specified order. If the keyword
doesn’t exist, Fits will give a warning and return with a non-zero value, but
will not stop. To stop as soon as an error occurs, run with --quitonerror.

-u STR

—--update=STR
Update a keyword, its value, its comments and its units in the format described
below. If there are multiple instances of the keyword in the header, they will
be changed from top to bottom (with multiple -—update options).

The format of the values to this option can best be specified with an example:
—--update=KEYWORD,value, "comments for this keyword",unit

If there is a writing error, Fits will give a warning and return with a non-
zero value, but will not stop. To stop as soon as an error occurs, run with
--quitonerror.

The value can be any numerical or string value?. Other than the KEYWORD, all
the other values are optional. To leave a given token empty, follow the preceding
comma (,) immediately with the next. If any space character is present around
the commas, it will be considered part of the respective token. So if more than
one token has space characters within it, the safest method to specify a value
to this option is to put double quotation marks around each individual token
that needs it. Note that without double quotation marks, space characters will
be seen as option separators and can lead to undefined behavior.

2 Some tricky situations arise with values like ‘87095e5’, if this was intended to be a number it will be kept
in the header as 8709500000 and there is no problem. But this can also be a shortened Git commit hash.
In the latter case, it should be treated as a string and stored as it is written. Commit hashes are very
important in keeping the history of a file during your research and such values might arise without you
noticing them in your reproduction pipeline. One solution is to use git describe instead of the short
hash alone. A less recommended solution is to add a space after the commit hash and Fits will write
the value as ‘87095e5 ’ in the header. If you later compare the strings on the shell, the space character
will be ignored by the shell in the latter solution and there will be no problem.

Chapter 5: Data containers 150

-w STR
--write=STR

Write a keyword to the header. For the possible value input formats, comments
and units for the keyword, see the —-update option above. The special names
(first string) below will cause a special behavior:

/

checksum

Write a “title” to the list of keywords. A title consists of one blank
line and another which is blank for several spaces and starts with
a slash (/). The second string given to this option is the “title”
or string printed after the slash. For example with the command
below you can add a “title” of ‘My keywords’ after the existing
keywords and add the subsequent K1 and K2 keywords under it
(note that keyword names are not case sensitive).
$ astfits test.fits -hl --write=/,"My keywords" \
--write=k1,1.23,"My first keyword" \
--write=k2,4.56,"My second keyword"
$ astfits test.fits -hl
[[[... truncated ... 111

/ My keywords

K1 = 1.23 / My first keyword
K2 = 4.56 / My second keyword
END

Adding a “title” before each contextually separate group of header
keywords greatly helps in readability and visual inspection of the
keywords. So generally, when you want to add new FITS keywords,
its good practice to also add a title before them.

The reason you need to use / as the keyword name for setting a
title is that / is the first non-white character.

The title(s) is(are) written into the FITS with the same order that
--write is called. Therefore in one run of the Fits program, you
can specify many different titles (with their own keywords under
them). For example the command below that builds on the previous
example and adds another group of keywords named Al and A2.

$ astfits test.fits -hl --write=/,"My keywords" \
--write=k1,1.23,"My first keyword" \
--write=k2,4.56,"My second keyword" \
--write=/,"My second group of keywords" \
--write=al,7.89,"First keyword" \
--write=a2,0.12,"Second keyword"

When nothing is given afterwards, the header integrity keywords
DATASUM and CHECKSUM will be calculated and written/updated.
This is calculation and writing is done fully by CFITSIO. They thus
comply with the FITS standard 4.0 that defines these keywords
(its Appendix J).

3 https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

https://fits.gsfc.nasa.gov/standard40/fits_standard40aa-le.pdf

Chapter 5: Data containers 151

If a value is given (e.g., -—write=checksum,MyOwnCheckSum), then
CFITSIO won’t be called to calculate these two keywords and the
value (as well as possible comment and unit) will be written just
like any other keyword. This is generally not recommended, but
necessary in special circumstances (for example when the checksum
needs to be manually updated).

DATASUM only depends on the data section of the HDU /extension,
so it is not changed when you update the keywords. But CHECKSUM
also depends on the header and will not be valid if you make any
further changes to the header. This includes any further keyword
modification options in the same call to the Fits program. Therefore
it is recommended to write these keywords as the last keywords that
are written/modified in the extension. You can use the --verify
option (described below) to verify the values of these two keywords.

datasum Similar to checksum, but only write the DATASUM keyword (that
doesn’t depend on the header keywords, only the data).

-H STR

--history STR
Add a HISTORY keyword to the header with the given value. A new HISTORY
keyword will be created for every instance of this option. If the string given
to this option is longer than 70 characters, it will be separated into multiple
keyword cards. If there is an error, Fits will give a warning and return with a
non-zero value, but will not stop. To stop as soon as an error occurs, run with
--quitonerror.

-c STR

—--comment STR
Add a COMMENT keyword to the header with the given value. Similar to the
explanation for --history above.

--date Put the current date and time in the header. If the DATE keyword already exists
in the header, it will be updated. If there is a writing error, Fits will give a
warning and return with a non-zero value, but will not stop. To stop as soon
as an error occurs, run with -—quitonerror.

Y

--printallkeys
Print all the keywords in the specified FITS extension (HDU) on the command-
line. If this option is called along with any of the other keyword editing com-
mands, as described above, all other editing commands take precedence to this.
Therefore, it will print the final keywords after all the editing has been done.

-v

-—verify Verify the DATASUM and CHECKSUM data integrity keywords of the FITS standard.
See the description under the checksum (under --write, above) for more on
these keywords.

Chapter 5: Data containers 152

This option will print Verified for both keywords if they can be verified. Other-
wise, if they don’t exist in the given HDU /extension, it will print NOT-PRESENT,
and if they cannot be verified it will print INCORRECT. In the latter case (when
the keyword values exist but can’t be verified), the Fits program will also return
with a failure.

By default this function will also print a short description of the DATASUM AND
CHECKSUM keywords. You can suppress this extra information with --quiet
option.

--copykeys=INT:INT
Copy the input’s keyword records in the given range (inclusive) to the output
HDU (specified with the ——output and --outhdu options, for the filename and
HDU /extension respectively).
The given string to this option must be two integers separated by a colon (:).
The first integer must be positive (counting of the keyword records starts from
1). The second integer may be negative (zero is not acceptable) or an integer
larger than the first.
A negative second integer means counting from the end. So -1 is the last
copy-able keyword (not including the END keyword).
To see the header keywords of the input with a number before them, you can
pipe the output of the FITS program (when it prints all the keywords in an
extension) into the cat program like below:

$ astfits input.fits -hl | cat -n

--outhdu The HDU /extension to write the output keywords of --copykeys.

-Q

--quitonerror
Quit if any of the operations above are not successful. By default if an error
occurs, Fits will warn the user of the faulty keyword and continue with the rest
of actions.

-s STR

--datetosec STR

Interpret the value of the given keyword in the FITS date format (most gener-
ally: YYYY-MM-DDThh:mm:ss.ddd. . .) and return the corresponding Unix epoch
time (number of seconds that have passed since 00:00:00 Thursday, January 1st,
1970). The Thh:mm:ss.ddd. .. section (specifying the time of day), and also
the .ddd... (specifying the fraction of a second) are optional. The value to
this option must be the FITS keyword name that contains the requested date,
for example -—datetosec=DATE-0BS.

This option can also interpret the older FITS date format
(DD/MM/YYThh:mm:ss.ddd...) where only two characters are given to
the year. In this case (following the GNU C Library), this option will make
the following assumption: values 68 to 99 correspond to the years 1969 to
1999, and values 0 to 68 as the years 2000 to 2068.

This is a very useful option for operations on the FITS date values, for example
sorting FITS files by their dates, or finding the time difference between two

Chapter 5: Data containers 153

FITS files. The advantage of working with the Unix epoch time is that you
don’t have to worry about calendar details (for example the number of days in
different months, or leap years, etc).

--wcsdistortion STR
If the argument has a WCS distortion, the output (file given with the -—output
option) will have the distortion given to this option (for example SIP, TPV).
With this option, the FITS program will read the minimal set of keywords
from the input HDU and the HDU data, it will then write them into the file
given to the —--output option but with a newly created set of WCS-related
keywords corresponding to the desired distortion standard.

If no --output file is specified, an automatically generated output name will
be used which is composed of the input’s name but with the -DDD.fits suffix,
see Section 4.9 [Automatic output], page 138. Where DDD is the value given to
this option (desired output distortion).

Note that all possible conversions between all standards are not yet supported.
If the requested conversion is not supported, an informative error message will
be printed. If this happens, please let us know and we’ll try our best to add
the respective conversions.

For example with the command below, you can be sure that if in.fits has a
distortion in its WCS, the distortion of out.fits will be in the SIP standard.

$ astfits in.fits --wcsdistortion=SIP --output=out.fits

5.2 Sort FITS files by night

FITS images usually contain (several) keywords for preserving important dates. In particu-
lar, for lower-level data, this is usually the observation date and time (for example, stored in
the DATE-0BS keyword value). When analyzing observed datasets, many calibration steps
(like the dark, bias or flat-field), are commonly calculated on a per-observing-night basis.

However, the FITS standard’s date format (YYYY-MM-DDThh:mm:ss.ddd) is based on the
western (Gregorian) calendar. Dates that are stored in this format are complicated for
automatic processing: a night starts in the final hours of one calendar day, and extends
to the early hours of the next calendar day. As a result, to identify datasets from one
night, we commonly need to search for two dates. However calendar peculiarities can make
this identification very difficult. For example when an observation is done on the night
separating two months (like the night starting on March 31st and going into April 1st),
or two years (like the night starting on December 31st 2018 and going into January 1st,
2019). To account for such situations, it is necessary to keep track of how many days are
in a month, and leap years, etc.

Gnuastro’s astscript-sort-by-night script is created to help in such important sce-
narios. It uses Section 5.1 [Fits], page 142, to convert the FITS date format into the Unix
epoch time (number of seconds since 00:00:00 of January 1st, 1970), using the --datetosec
option. The Unix epoch time is a single number (integer, if not given in sub-second preci-
sion), enabling easy comparison and sorting of dates after January 1st, 1970.

You can use this script as a basis for making a much more highly customized sorting
script. Here are some examples

Chapter 5: Data containers 154

e If you need to copy the files, but only need a single extension (not the whole file), you
can add a step just before the making of the symbolic links, or copies, and change it to
only copy a certain extension of the FITS file using the Fits program’s —-copy option,
see Section 5.1.1.1 [HDU manipulation|, page 145.

e If you need to classify the files with finer detail (for example the purpose of the dataset),
you can add a step just before the making of the symbolic links, or copies, to specify a
file-name prefix based on other certain keyword values in the files. For example when
the FITS files have a keyword to specify if the dataset is a science, bias, or flat-field
image. You can read it and to add a sci-, bias-, or flat- to the created file (after
the --prefix) automatically.

For example, let’s assume the observing mode is stored in the hypothetical MODE key-
word, which can have three values of BIAS-IMAGE, SCIENCE-IMAGE and FLAT-EXP. With
the step below, you can generate a mode-prefix, and add it to the generated link/copy
names (just correct the filename and extension of the first line to the script’s variables):

modepref=$§(astfits infile.fits -hl \
| sed -e"s/’/ /g" \
| awk ’$1=="MODE"{ \
if ($3=="BIAS-IMAGE") print "bias-"; \
else if ($3=="SCIENCE-IMAGE") print "sci-"; \
else if($3==FLAT-EXP) print "flat-"; \
else print $3, "NOT recognized"; exit 1}’)

Here is a description of it. We first use astfits to print all the keywords in extension
1of infile.fits. In the FITS standard, string values (that we are assuming here) are
placed in single quotes (?) which are annoying in this context/use-case. Therefore, we
pipe the output of astfits into sed to remove all such quotes (substituting them with
a blank space). The result is then piped to AWK for giving us the final mode-prefix:
with $1=="MODE", we ask AWK to only consider the line where the first column is
MODE. There is an equal sign between the key name and value, so the value is the third
column ($3 in AWK). We thus use a simple if-else structure to look into this value
and print our custom prefix based on it. The output of AWK is then stored in the
modepref shell variable which you can add to the link/copy name.

With the solution above, the increment of the file counter for each night will be inde-
pendent of the mode. If you want the counter to be mode-dependent, you can add a
different counter for each mode and use that counter instead of the generic counter for
each night (based on the value of modepref). But we’ll leave the implementation of
this step to you as an exercise.

5.2.1 Invoking astscript-sort-by-night

This installed script will read a FITS date formatted value from the given keyword, and
classify the input FITS files into individual nights. For more on installed scripts please see
(see Section 4.4 [Installed scripts], page 125). This script can be used with the following
general template:

$ astscript-sort-by-night [OPTION...] FITS-files
One line examples:

Use the DATE-0BS keyword

Chapter 5: Data containers 155

$ astscript-sort-by-night --key=DATE-0BS /path/to/data/*.fits

Make links to the input files with the ‘img-’ prefix
$ astscript-sort-by-night --link --prefix=img- /path/to/data/*.fits

This script will look into a HDU /extension (--hdu) for a keyword (--key) in the given
FITS files and interpret the value as a date. The inputs will be separated by "night"s
(9:00a.m to next day’s 8:59:59a.m, spanning two calendar days, exact hour can be set with
--hour).

The default output is a list of all the input files along with the following two columns:
night number and file number in that night (sorted by time). With --1ink a symbolic link
will be made (one for each input) that contains the night number, and number of file in
that night (sorted by time), see the description of --1ink for more. When --copy is used
instead of a link, a copy of the inputs will be made instead of symbolic link.

Below you can see one example where all the target-*.fits files in the data directory
should be separated by observing night according to the DATE-0BS keyword value in their
second extension (number 1, recall that HDU counting starts from 0). You can see the
output after the 1s command.

$ astscript-sort-by-night -pimg- -hl -kDATE-0BS data/target-*.fits
$ 1s
img-nl-1.fits img-nl1-2.fits img-n2-1.fits ...

The outputs can be placed in a different (already existing) directory by including that
directory’s name in the —-prefix value, for example —-prefix=sorted/img- will put them
all under the sorted directory.

This script can be configured like all Gnuastro’s programs (through command-line op-
tions, see Section 4.1.2 [Common options], page 107), with some minor differences that are
described in Section 4.4 [Installed scripts], page 125. The particular options to this script
are listed below:

-h STR

--hdu=STR
The HDU /extension to use in all the given FITS files. All of the given FITS
files must have this extension.

-k STR
--key=STR
The keyword name that contains the FITS date format to classify /sort by.

-H FLT

—--hour=FLT
The hour that defines the next “night”. By default, all times before 9:00a.m
are considered to belong to the previous calendar night. If a sub-hour value
is necessary, it should be given in units of hours, for example --hour=9.5
corresponds to 9:30a.m.

Chapter 5: Data containers 156

(7
Dealing with time zones: The time that is recorded in --key may be in UTC

(Universal Time Coordinate). However, the organization of the images taken
during the night depends on the local time. It is possible to take this into
account by setting the —-hour option to the local time in UTC.

For example, consider a set of images taken in Auckland (New Zealand,
UTC+12) during different nights. If you want to classify these images by night,
you have to know at which time (in UTC time) the Sun rises (or any other
separator/definition of a different night). In this particular example, you can
use ——hour=21. Because in Auckland, a night finishes (roughly) at the local
time of 9:00, which corresponds to 21:00 UTC.

N J
-1
--1link Create a symbolic link for each input FITS file. This option cannot be used with
--copy. The link will have a standard name in the following format (variable
parts are written in CAPITAL letters and described after it):
PnN-I.fits

P This is the value given to --prefix. By default, its value is ./
(to store the links in the directory this script was run in). See the
description of —-prefix for more.

N This is the night-counter: starting from 1. N is just incremented
by 1 for the next night, no matter how many nights (without any
dataset) there are between two subsequent observing nights (its just
an identifier for each night which you can easily map to different
calendar nights).

I File counter in that night, sorted by time.

e

--copy Make a copy of each input FITS file with the standard naming convention
described in --link. With this option, instead of making a link, a copy is
made. This option cannot be used with --1ink.

—p STR

--prefix=STR

Prefix to append before the night-identifier of each newly created link or copy.
This option is thus only relevant with the --copy or --1ink options. See the
description of --1ink for how its used. For example, with —-prefix=img-, all
the created file names in the current directory will start with img-, making
outputs like img-n1-1.fits or img-n3-42.fits.

--prefix can also be used to store the links/copies in another directory rela-
tive to the directory this script is being run (it must already exist). For exam-
ple ——prefix=/path/to/processing/img- will put all the links/copies in the
/path/to/processing directory, and the files (in that directory) will all start
with img-.

5.3 ConvertType

The FITS format used in astronomy was defined mainly for archiving, transmission, and
processing. In other situations, the data might be useful in other formats. For example,

Chapter 5: Data containers 157

when you are writing a paper or report, or if you are making slides for a talk, you can’t
use a FITS image. Other image formats should be used. In other cases you might want
your pixel values in a table format as plain text for input to other programs that don’t
recognize FITS. ConvertType is created for such situations. The various types will increase
with future updates and based on need.

The conversion is not only one way (from FITS to other formats), but two ways (except
the EPS and PDF formats?). So you can also convert a JPEG image or text file into a
FITS image. Basically, other than EPS/PDF, you can use any of the recognized formats as
different color channel inputs to get any of the recognized outputs. So before explaining the
options and arguments (in Section 5.3.3 [Invoking ConvertType], page 161), we’ll start with
a short description of the recognized files types in Section 5.3.1 [Recognized file formats],
page 157, followed a short introduction to digital color in Section 5.3.2 [Color], page 159.

5.3.1 Recognized file formats

The various standards and the file name extensions recognized by ConvertType are listed
below. Currently Gnuastro uses the file name’s suffix to identify the format.

FITS or IMH
Astronomical data are commonly stored in the FITS format (or the older data
IRAF .imh format), a list of file name suffixes which indicate that the file is in
this format is given in Section 4.1.1.1 [Arguments|, page 105.

Each image extension of a FITS file only has one value per pixel/element.
Therefore, when used as input, each input FITS image contributes as one color
channel. If you want multiple extensions in one FITS file for different color
channels, you have to repeat the file name multiple times and use the --hdu,
--hdu2, --hdu3 or --hdu4 options to specify the different extensions.

JPEG The JPEG standard was created by the Joint photographic experts group. It is
currently one of the most commonly used image formats. Its major advantage
is the compression algorithm that is defined by the standard. Like the FITS
standard, this is a raster graphics format, which means that it is pixelated.

A JPEG file can have 1 (for gray-scale), 3 (for RGB) and 4 (for CMYK) color
channels. If you only want to convert one JPEG image into other formats, there
is no problem, however, if you want to use it in combination with other input
files, make sure that the final number of color channels does not exceed four. If
it does, then ConvertType will abort and notify you.

The file name endings that are recognized as a JPEG file for input are: .jpg,
.JPG, .jpeg, .JPEG, .jpe, .jif, .jfif and .jfi.

TIFF TIFF (or Tagged Image File Format) was originally designed as a common for-
mat for scanners in the early 90s and since then it has grown to become very
general. In many aspects, the TIFF standard is similar to the FITS image stan-
dard: it can allow data of many types (see Section 4.6 [Numeric data types],
page 128), and also allows multiple images to be stored in a single file (each
image in the file is called a ‘directory’ in the TIFF standard). However, unlike

4 Because EPS and PDF are vector, not raster/pixelated formats

Chapter 5: Data containers 158

EPS

PDF

FITS, it can only store images, it has no constructs for tables. Another (incon-
venient) difference with the FITS standard is that keyword names are stored
as numbers, not human-readable text.

However, outside of astronomy, because of its support of different numeric data
types, many fields use TIFF images for accurate (for example 16-bit integer or
floating point for example) imaging data.

Currently ConvertType can only read TIFF images, if you are interested in
writing TIFF images, please get in touch with us.

The Encapsulated PostScript (EPS) format is essentially a one page PostScript
file which has a specified size. PostScript also includes non-image data, for ex-
ample lines and texts. It is a fully functional programming language to describe
a document. Therefore in ConvertType, EPS is only an output format and can-
not be used as input. Contrary to the FITS or JPEG formats, PostScript is
not a raster format, but is categorized as vector graphics.

The Portable Document Format (PDF) is currently the most common format
for documents. Some believe that PDF has replaced PostScript and that Post-
Script is now obsolete. This view is wrong, a PostScript file is an actual plain
text file that can be edited like any program source with any text editor. To
be able to display its programmed content or print, it needs to pass through a
processor or compiler. A PDF file can be thought of as the processed output
of the compiler on an input PostScript file. PostScript, EPS and PDF were
created and are registered by Adobe Systems.

With these features in mind, you can see that when you are compiling a doc-
ument with TEX or KTEX, using an EPS file is much more low level than a
JPEG and thus you have much greater control and therefore quality. Since it
also includes vector graphic lines we also use such lines to make a thin border
around the image to make its appearance in the document much better. No
matter the resolution of the display or printer, these lines will always be clear
and not pixelated. In the future, addition of text might be included (for exam-
ple labels or object IDs) on the EPS output. However, this can be done better
with tools within TEX or IWTEX such as PGF /Tikz®.

If the final input image (possibly after all operations on the flux explained be-
low) is a binary image or only has two colors of black and white (in segmentation
maps for example), then PostScript has another great advantage compared to
other formats. It allows for 1 bit pixels (pixels with a value of 0 or 1), this
can decrease the output file size by 8 times. So if a gray-scale image is bi-
nary, ConvertType will exploit this property in the EPS and PDF (see below)
outputs.

The standard formats for an EPS file are .eps, .EPS, .epsf and .epsi. The
EPS outputs of ConvertType have the .eps suffix.

As explained above, a PDF document is a static document description format,
viewing its result is therefore much faster and more efficient than PostScript.
To create a PDF output, ConvertType will make a PostScript page description

5 http: //sourceforge.net/projects/pgf/

http://sourceforge.net/projects/pgf/

Chapter 5: Data containers 159

blank

Plain text

and convert that to PDF using GPL Ghostscript. The suffixes recognized for a
PDF file are: .pdf, .PDF. If GPL Ghostscript cannot be run on the PostScript
file, it will remain and a warning will be printed.

This is not actually a file type! But can be used to fill one color channel with a
blank value. If this argument is given for any color channel, that channel will
not be used in the output.

Plain text files have the advantage that they can be viewed with any text editor
or on the command-line. Most programs also support input as plain text files.
As input, each plain text file is considered to contain one color channel.

In ConvertType, the recognized extensions for plain text files are .txt and
.dat. As described in Section 5.3.3 [Invoking ConvertType], page 161, if you
just give these extensions, (and not a full filename) as output, then automatic
output will be preformed to determine the final output name (see Section 4.9
[Automatic output|, page 138). Besides these, when the format of a file cannot
be recognized from its name, ConvertType will fall back to plain text mode.
So you can use any name (even without an extension) for a plain text input or
output. Just note that when the suffix is not recognized, automatic output will
not be preformed.

The basic input/output on plain text images is very similar to how tables
are read/written as described in Section 4.7.2 [Gnuastro text table format],
page 133. Simply put, the restrictions are very loose, and there is a conven-
tion to define a name, units, data type (see Section 4.6 [Numeric data types],
page 128), and comments for the data in a commented line. The only difference
is that as a table, a text file can contain many datasets (columns), but as a
2D image, it can only contain one dataset. As a result, only one information
comment line is necessary for a 2D image, and instead of the starting ‘# Column
N’ (N is the column number), the information line for a 2D image must start
with ‘# Image 1’. When ConvertType is asked to output to plain text file, this
information comment line is written before the image pixel values.

When converting an image to plain text, consider the fact that if the image
is large, the number of columns in each line will become very large, possibly
making it very hard to open in some text editors.

Standard output (command-line)

This is very similar to the plain text output, but instead of creating a file to
keep the printed values, they are printed on the command line. This can be
very useful when you want to redirect the results directly to another program
in one command with no intermediate file. The only difference is that only the
pixel values are printed (with no information comment line). To print to the
standard output, set the output name to ‘stdout’.

5.3.2 Color

Color is defined by mixing various measurements/filters. In digital monitors or common
digital cameras, colors are displayed/stored by mixing the three basic colors of red, green
and blue (RGB) with various proportions. When printing on paper, standard printers use

Chapter 5: Data containers 160

the cyan, magenta, yellow and key (CMYK, key=black) color space. In other words, for
each displayed/printed pixel of a color image, the dataset/image has three or four values.

To store/show the three values for each pixel, cameras and monitors allocate a certain
fraction of each pixel’s area to red, green and blue filters. These three filters are thus
built into the hardware at the pixel level. However, because measurement accuracy is
very important in scientific instruments, and we want to do measurements (take images)
with various/custom filters (without having to order a new expensive detector!), scientific
detectors use the full area of the pixel to store one value for it in a single/mono channel
dataset. To make measurements in different filters, we just place a filter in the light path
before the detector. Therefore, the FITS format that is used to store astronomical datasets
is inherently a mono-channel format (see Section 5.3.1 [Recognized file formats]|, page 157,
or Section 5.1 [Fits], page 142).

When a subject has been imaged in multiple filters, you can feed each different filter
into the red, green and blue channels and obtain a colored visualization. In ConvertType,
you can do this by giving each separate single-channel dataset (for example in the FITS
image format) as an argument (in the proper order), then asking for the output in a format
that supports multi-channel datasets (for example JPEG or PDF, see the examples in
Section 5.3.3 [Invoking ConvertType|, page 161).

As discussed above, color is not defined when a dataset/image contains a single value
for each pixel. However, we interact with scientific datasets through monitors or printers
(which allow multiple values per pixel and produce color with them). As a result, there is
a lot of freedom in visualizing a single-channel dataset. The most basic is to use shades of
black (because of its strong contrast with white). This scheme is called grayscale. To help in
visualization, more complex mappings can be defined. For example, the values can be scaled
to a range of 0 to 360 and used as the “Hue” term of the Hue-Saturation-Value (https://
en.wikipedia.org/wiki/HSL_and_HSV) (HSV) color space (while fixing the “Saturation”
and “Value” terms). In ConvertType, you can use the -—colormap option to choose be-
tween different mappings of mono-channel inputs, see Section 5.3.3 [Invoking ConvertType],
page 161.

Since grayscale is a commonly used mapping of single-valued datasets, we’ll continue
with a closer look at how it is stored. One way to represent a gray-scale image in different
color spaces is to use the same proportions of the primary colors in each pixel. This is the
common way most FITS image viewers work: for each pixel, they fill all the channels with
the single value. While this is necessary for displaying a dataset, there are downsides when
storing/saving this type of grayscale visualization (for example in a paper).

e Three (for RGB) or four (for CMYK) values have to be stored for every pixel, this
makes the output file very heavy (in terms of bytes).

e If printing, the printing errors of each color channel can make the printed image slightly
more blurred than it actually is.

To solve both these problems when storing grayscale visualization, the best way is to
save a single-channel dataset into the black channel of the CMYK color space. The JPEG
standard is the only common standard that accepts CMYK color space.

The JPEG and EPS standards set two sizes for the number of bits in each channel: 8-bit
and 12-bit. The former is by far the most common and is what is used in ConvertType.
Therefore, each channel should have values between 0 to 28 — 1 = 255. From this we see

https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV

Chapter 5: Data containers 161

how each pixel in a gray-scale image is one byte (8 bits) long, in an RGB image, it is 3 bytes
long and in CMYK it is 4 bytes long. But thanks to the JPEG compression algorithms,
when all the pixels of one channel have the same value, that channel is compressed to one
pixel. Therefore a Grayscale image and a CMYK image that has only the K-channel filled
are approximately the same file size.

5.3.3 Invoking ConvertType

ConvertType will convert any recognized input file type to any specified output type. The
executable name is astconvertt with the following general template

$ astconvertt [OPTION...] InputFile [InputFile2] ... [InputFile4]
One line examples:

Convert an image in FITS to PDF:
$ astconvertt image.fits --output=pdf

Similar to before, but use the Viridis color map:
$ astconvertt image.fits --colormap=viridis --output=pdf

Convert an image in JPEG to FITS (with multiple extensions
if its color):
$ astconvertt image.jpg -oimage.fits

Use three plain text 2D arrays to create an RGB JPEG output:
$ astconvertt fl.txt f2.txt £3.fits -o.jpg

Use two images and one blank for an RGB EPS output:
$ astconvertt M31_r.fits M31_g.fits blank -oeps

Directly pass input from output of another program through Standard
input (not a file).
$ cat 2darray.txt | astconvertt -oimg.fits

The output’s file format will be interpreted from the value given to the ——output option. It
can either be given on the command-line or in any of the configuration files (see Section 4.2
[Configuration files], page 118). Note that if the output suffix is not recognized, it will
default to plain text format, see Section 5.3.1 [Recognized file formats|, page 157.

At most four input files (one for each color channel for formats that allow it) are allowed
in ConvertType. The first input dataset can either be a file or come from Standard input
(see Section 4.1.3 [Standard input], page 117). The order of multiple input files is important.
After reading the input file(s) the number of color channels in all the inputs will be used to
define which color space to use for the outputs and how each color channel is interpreted.

Some formats can allow more than one color channel (for example in the JPEG format,
see Section 5.3.1 [Recognized file formats|, page 157). If there is one input dataset (color
channel) the output will be gray-scale, if three input datasets (color channels) are given,
they are respectively considered to be the red, green and blue color channels. Finally, if
there are four color channels they will be be cyan, magenta, yellow and black (CMYK
colors).

Chapter 5: Data containers 162

The value to --output (or -o) can be either a full file name or just the suffix of the
desired output format. In the former case, it will used for the output. In the latter case, the
name of the output file will be set based on the automatic output guidelines, see Section 4.9
[Automatic output], page 138. Note that the suffix name can optionally start a . (dot), so for
example --output=. jpg and --output=jpg are equivalent. See Section 5.3.1 [Recognized
file formats], page 157.

Besides the common set of options explained in Section 4.1.2 [Common options],
page 107, the options to ConvertType can be classified into input, output and flux related
options. The majority of the options are to do with the flux range. Astronomical data
usually have a very large dynamic range (difference between maximum and minimum
value) and different subjects might be better demonstrated with a limited flux range.

Input:

-h STR/INT

--hdu=STR/INT
In ConvertType, it is possible to call the HDU option multiple times for the
different input FITS or TIFF files in the same order that they are called on the
command-line. Note that in the TIFF standard, one ‘directory’ (similar to a
FITS HDU) may contain multiple color channels (for example when the image
is in RGB).
Except for the fact that multiple calls are possible, this option is identical to
the common --hdu in Section 4.1.2.1 [Input/Output options|, page 107. The
number of calls to this option cannot be less than the number of input FITS
or TIFF files, but if there are more, the extra HDUs will be ignored, note
that they will be read in the order described in Section 4.2.2 [Configuration file
precedence], page 119.

Unlike CFITSIO, libtiff (which is used to read TIFF files) only recognizes num-
bers (counting from zero, similar to CFITSIO) for ‘directory’ identification.
Hence the concept of names is not defined for the directories and the values to
this option for TIFF files must be numbers.

Output:

-w FLT

--widthincm=FLT
The width of the output in centimeters. This is only relevant for those formats
that accept such a width (not plain text for example). For most digital purposes,
the number of pixels is far more important than the value to this parameter
because you can adjust the absolute width (in inches or centimeters) in your
document preparation program.

-b INT

--borderwidth=INT
The width of the border to be put around the EPS and PDF outputs in units
of PostScript points. There are 72 or 28.35 PostScript points in an inch or
centimeter respectively. In other words, there are roughly 3 PostScript points
in every millimeter. If you are planning on adding a border, its significance is
highly correlated with the value you give to the ——widthincm parameter.

Chapter 5: Data containers 163

—-hex

-u INT

Unfortunately in the document structuring convention of the PostScript lan-
guage, the “bounding box” has to be in units of PostScript points with no
fractions allowed. So the border values only have to be specified in integers.
To have a final border that is thinner than one PostScript point in your docu-
ment, you can ask for a larger width in ConvertType and then scale down the
output EPS or PDF file in your document preparation program. For example
by setting width in your includegraphics command in TEX or KTEX. Since
it is vector graphics, the changes of size have no effect on the quality of your
output quality (pixels don’t get different values).

Use Hexadecimal encoding in creating EPS output. By default the ASCII85
encoding is used which provides a much better compression ratio. When con-
verted to PDF (or included in TEX or IATEX which is finally saved as a PDF
file), an efficient binary encoding is used which is far more efficient than both
of them. The choice of EPS encoding will thus have no effect on the final PDF.

So if you want to transfer your EPS files (for example if you want to submit your
paper to arXiv or journals in PostScript), their storage might become important
if you have large images or lots of small ones. By default ASCII85 encoding is
used which offers a much better compression ratio (nearly 40 percent) compared
to Hexadecimal encoding.

--quality=INT

The quality (compression) of the output JPEG file with values from 0 to 100
(inclusive). For other formats the value to this option is ignored. Note that
only in gray-scale (when one input color channel is given) will this actually be
the exact quality (each pixel will correspond to one input value). If it is in color
mode, some degradation will occur. While the JPEG standard does support
loss-less graphics, it is not commonly supported.

--colormap=STR[,FLT,...]

The color map to visualize a single channel. The first value given to this option
is the name of the color map, which is shown below. Some color maps can be
configured. In this case, the configuration parameters are optionally given as
numbers following the name of the color map for example see hsv. The table
below contains the usable names of the color maps that are currently supported:

gray

grey Grayscale color map. This color map doesn’t have any parameters.
The full dataset range will be scaled to 0 and 2% — 1 = 255 to be
stored in the requested format.

hsv Hue, Saturation, Value® color map. If no values are given after

the name (--colormap=hsv), the dataset will be scaled to 0
and 360 for hue covering the full spectrum of colors. However,
you can limit the range of hue (to show only a special color

6 https://en.wikipedia.org/wiki/HSL_and_HSV

https://en.wikipedia.org/wiki/HSL_and_HSV

Chapter 5: Data containers 164

--rgbtohsv

Flux range:

-c STR

range) by explicitly requesting them after the name (for example
--colormap=hsv,20,240).

The mapping of a single-channel dataset to HSV is done through
the Hue and Value elements: Lower dataset elements have lower
“value” and lower “hue”. This creates darker colors for fainter
parts, while also respecting the range of colors.

viridis Viridis is the default colormap of the popular Matplotlib module of
Python and available in many other visualization tools like PGF-
Plots.

sls The SLS color range, taken from the commonly used SAO DS9
(http://ds9.si.edu). The advantage of this color range is that
it starts with black, going into dark blue and finishes with the
brighter colors of red and white. So unlike the HSV color range, it
includes black and white and brighter colors (like yellow, red) show
the larger values.

sls-inverse
The inverse of the SLS color map (see above), where the lowest
value corresponds to white and the highest value is black. While
SLS is good for visualizing on the monitor, SLS-inverse is good for
printing.

When there are three input channels and the output is in the FITS format,
interpret the three input channels as red, green and blue channels (RGB) and
convert them to the hue, saturation, value (HSV) color space.

The currently supported output formats of ConvertType don’t have native sup-
port for HSV. Therefore this option is only supported when the output is in
FITS format and each of the hue, saturation and value arrays can be saved as
one FITS extension in the output for further analysis (for example to select a
certain color).

—--change=STR

(=STR) Change pixel values with the following format "froml:tol,
from2:to02,...". This option is very useful in displaying labeled pixels (not
actual data images which have noise) like segmentation maps. In labeled
images, usually a group of pixels have a fixed integer value. With this option,
you can manipulate the labels before the image is displayed to get a better
output for print or to emphasize on a particular set of labels and ignore the
rest. The labels in the images will be changed in the same order given. By
default first the pixel values will be converted then the pixel values will be
truncated (see -—fluxlow and --fluxhigh).

You can use any number for the values irrespective of your final output, your
given values are stored and used in the double precision floating point format.
So for example if your input image has labels from 1 to 20000 and you only

http://ds9.si.edu
http://ds9.si.edu

Chapter 5: Data containers 165

want to display those with labels 957 and 11342 then you can run ConvertType
with these options:

$ astconvertt --change=957:50000,11342:50001 --fluxlow=5e4 \

--fluxhigh=1e5 segmentationmap.fits —--output=jpg

While the output JPEG format is only 8 bit, this operation is done in an
intermediate step which is stored in double precision floating point. The pixel
values are converted to 8-bit after all operations on the input fluxes have been
complete. By placing the value in double quotes you can use as many spaces
as you like for better readability.

-C

--changeaftertrunc
Change pixel values (with --change) after truncation of the flux values, by
default it is the opposite.

-L FLT

—-—fluxlow=FLT

-H FLT

The minimum flux (pixel value) to display in the output image, any pixel value
below this value will be set to this value in the output. If the value to this option
is the same as ——fluxhigh, then no flux truncation will be applied. Note that
when multiple channels are given, this value is used for all the color channels.

--fluxhigh=FLT

-m INT

The maximum flux (pixel value) to display in the output image, see ——f1luxlow.

--maxbyte=INT

—-A INT

This is only used for the JPEG and EPS output formats which have an 8-bit
space for each channel of each pixel. The maximum value in each pixel can
therefore be 2® — 1 = 255. With this option you can change (decrease) the
maximum value. By doing so you will decrease the dynamic range. It can be
useful if you plan to use those values for other purposes.

—-—forcemin=INT

Enforce the value of —-fluxlow (when its given), even if its smaller than the
minimum of the dataset and the output is format supporting color. This is
particularly useful when you are converting a number of images to a common
image format like JPEG or PDF with a single command and want them all
to have the same range of colors, independent of the contents of the dataset.
Note that if the minimum value is smaller than —-fluxlow, then this option is
redundant.

By default, when the dataset only has two values, and the output format is
PDF or EPS, ConvertType will use the PostScript optimization that allows
setting the pixel values per bit, not byte (Section 5.3.1 [Recognized file formats],
page 157). This can greatly help reduce the file size. However, when --f1luxlow
or ——fluxhigh are called, this optimization is disabled: even though there are
only two values (is binary), the difference between them does not correspond
to the full contrast of black and white.

Chapter 5: Data containers 166

-B INT
—--forcemax=INT
Similar to --forcemin, but for the maximum.

-i

--invert For 8-bit output types (JPEG, EPS, and PDF for example) the final value that
is stored is inverted so white becomes black and vice versa. The reason for this
is that astronomical images usually have a very large area of blank sky in them.
The result will be that a large are of the image will be black. Note that this
behavior is ideal for gray-scale images, if you want a color image, the colors are
going to be mixed up.

5.4 Table

Tables are the products of processing astronomical images and spectra. For example in
Gnuastro, MakeCatalog will process the defined pixels over an object and produce a catalog
(see Section 7.4 [MakeCatalog], page 284). For each identified object, MakeCatalog can print
its position on the image or sky, its total brightness and many other information that is
deducible from the given image. Each one of these properties is a column in its output
catalog (or table) and for each input object, we have a row.

When there are only a small number of objects (rows) and not too many properties
(columns), then a simple plain text file is mainly enough to store, transfer, or even use the
produced data. However, to be more efficient in all these aspects, astronomers have defined
the FITS binary table standard to store data in a binary (0 and 1) format, not plain text.
This can offer major advantages in all those aspects: the file size will be greatly reduced and
the reading and writing will be faster (because the RAM and CPU also work in binary).

The FITS standard also defines a standard for ASCII tables, where the data are stored
in the human readable ASCII format, but within the FITS file structure. These are mainly
useful for keeping ASCII data along with images and possibly binary data as multiple
(conceptually related) extensions within a FITS file. The acceptable table formats are fully
described in Section 4.7 [Tables], page 130.

Binary tables are not easily readable by human eyes. There is no fixed /unified standard
on how the zero and ones should be interpreted. The Unix-like operating systems have
flourished because of a simple fact: communication between the various tools is based on
human readable characters”. So while the FITS table standards are very beneficial for the
tools that recognize them, they are hard to use in the vast majority of available software.
This creates limitations for their generic use.

‘Table’ is Gnuastro’s solution to this problem. With Table, FITS tables (ASCII or
binary) are directly accessible to the Unix-like operating systems power-users (those working
the command-line or shell, see Section 1.6.1 [Command-line interface|, page 9). With Table,
a FITS table (in binary or ASCII formats) is only one command away from AWK (or any
other tool you want to use). Just like a plain text file that you read with the cat command.

" In “The art of Unix programming”, Eric Raymond makes this suggestion to programmers: “When you
feel the urge to design a complex binary file format, or a complex binary application protocol, it is
generally wise to lie down until the feeling passes.”. This is a great book and strongly recommended,
give it a look if you want to truly enjoy your work/life in this environment.

Chapter 5: Data containers 167

You can pipe the output of Table into any other tool for higher-level processing, see the
examples in Section 5.4.2 [Invoking Table|, page 170, for some simple examples.

5.4.1 Column arithmetic

After reading the requested columns from the input table, you can also do opera-
tions/arithmetic on the columns and save the resulting values as new column(s) in the
output table (possibly in between other requested columns). To enable column arithmetic,
the first 6 characters of the value to --column (-c) should be the arithmetic activation
word ‘arith ’ (note the space character in the end, after ‘arith’).

After the activation word, you can use the reverse polish notation to identify the oper-
ators and their operands, see Section 6.2.1 [Reverse polish notation], page 189. Just note
that white-space characters are used between the tokens of the arithmetic expression and
that they are meaningful to the command-line environment. Therefore the whole expression
(including the activation word) has to be quoted on the command-line or in a shell script
(see the examples below).

To identify a column you can directly use its name, or specify its number (counting from
one, see Section 4.7.3 [Selecting table columns], page 135). When you are giving a column
number, it is necessary to prefix the number with a $, similar to AWK. Otherwise the
number is not distinguishable from a constant number to use in the arithmetic operation.

For example with the command below, the first two columns of table.fits will be
printed along with a third column that is the result of multiplying the first column with
10'% (for example to convert wavelength from Meters to Angstroms). Note that without
the ‘$’, it is not possible to distinguish between “1” as a column-counter, or as a constant
number to use in the arithmetic operation. Also note that because of the significance of $ for
the command-line environment, the single-quotes are used here (as in an AWK expression),
not double-quotes.

$ asttable table.fits -c1,2 -c’arith $1 1el0 x’

Single quotes when string contains $: On the command-line, or in shell-scripts, $ is used
to expand variables, for example echo $PATH prints the value (a string of characters) in
the variable PATH, it will not simply print $PATH. This operation is also permitted within
double quotes, so echo "$PATH" will produce the same output. This is good when printing
values, for example in the command below, $PATH will expand to the value within it.

$ echo "My path is: $PATH"

If you actually want to return the literal string $PATH, not the value in the PATH variable
(like the scenario here in column arithmetic), you should put it in single quotes like below.
The printed value here will include the $, please try it to see for your self and compare to
above.

$ echo ’My path is: $PATH’
Therefore, when your column arithmetic involves the $ sign (to specify columns by

number), quote your arith string with a single quotation mark. Otherwise you can use

both single or double quotes.
k)

Alternatively, if the columns have meta-data and the first two are respectively called
AWAV and SPECTRUM, the command above is equivalent to the command below. Note that

Chapter 5: Data containers 168

the character ‘$’ is no longer necessary in this scenario (because names will not be confused
with numbers):

$ asttable table.fits -cAWAV,SPECTRUM -c’arith AWAV 1el10 x’

Comparison of the two commands above clearly shows why it is recommended to use
column names instead of numbers. When the columns have descriptive names, the com-
mand /script actually becomes much more readable, describing the intent of the operation.
It is also independent of the low-level table structure: for the second command, the position
of the AWAV and SPECTRUM columns in table.fits is irrelevant.

By nature, column arithmetic changes the values of the data within the column. So the
old column meta data can’t be used any more. By default the new column created for the
arithmetic operation will be given generic metadata (for example its name will be ARITH_1,
which is hardly useful!). But meta data are critically important and it is good practice to
always have short, but descriptive, names for each columns, units and also some comments
for more explanation. To add metadata to a column, you can use the -—colmetadata option
that is described in Section 5.4.2 [Invoking Table], page 170.

Finally, since the arithmetic expressions are a value to -—column, it doesn’t necessarily
have to be a separate option, so the commands above are also identical to the command
below (note that this only has one -c option). Just be very careful with the quoting!

$ asttable table.fits —-cAWAV,SPECTRUM, ’arith AWAV 1el0 x’

Almost all the arithmetic operators of Section 6.2.2 [Arithmetic operators], page 190, are
also supported for column arithmetic in Table. In particular, the few that are not present
in the Gnuastro library aren’t yet supported. For a list of the Gnuastro library arithmetic
operators, please see the macros starting with GAL_ARITHMETIC_OP and ending with the op-
erator name in Section 10.3.14 [Arithmetic on datasets (arithmetic.h)], page 438. Besides
the operators in Section 6.2.2 [Arithmetic operators|, page 190, several operators are only
available in Table to use on table columns.

wcstoimg Convert the given WCS positions to image/dataset coordinates based on the
number of dimensions in the WCS structure of --wcshdu extension/HDU in
--wcsfile. It will output the same number of columns. The first popped
operand is the last FITS dimension.

For example the two commands below (which have the same output) will pro-
duce 5 columns. The first three columns are the input table’s ID, RA and Dec
columns. The fourth and fifth columns will be the pixel positions in image.fits
that correspond to each RA and Dec.

$ asttable table.fits -cID,RA,DEC,’arith RA DEC wcstoimg’ \
--wcsfile=image.fits

$ asttable table.fits -cID,RA -cDEC \
—-c’arith RA DEC wcstoimg’ --wcsfile=image.fits

imgtowcs Similar to westoimg, except that image/dataset coordinates are converted to
WCS coordinates.

distance-flat
Return the distance between two points assuming they are on a flat surface.
Note that each point needs two coordinates, so this operator needs four operands
(currently it only works for 2D spaces). The first and second popped operands

Chapter 5: Data containers 169

are considered to belong to one point and the third and fourth popped operands
to the second point.

Each of the input points can be a single coordinate or a full table column
(containing many points). In other words, the following commands are all
valid:

$ asttable table.fits \

-c’arith X1 Y1 X2 Y2 distance-flat’
$ asttable table.fits \

—-c’arith X Y 12.345 6.789 distance-flat’
$ asttable table.fits \

—c’arith 12.345 6.789 X Y distance-flat’

In the first case we are assuming that table.fits has the following four columns
X1, Y1, X2, Y2. The returned column by this operator will be the difference
between two points in each row with coordinates like the following (X1, Y1) and
(X2, Y2). In other words, for each row, the distance between different points is
calculated. In the second and third cases (which are identical), it is assumed
that table.fits has the two columns X and Y. The returned column by this
operator will be the difference of each row with the fixed point at (12.345,
6.789).

distance-on-sphere
Return the spherical angular distance (along a great circle, in degrees) between
the given two points. Note that each point needs two coordinates (in degrees),
so this operator needs four operands. The first and second popped operands are
considered to belong to one point and the third and fourth popped operands to
the second point.

Each of the input points can be a single coordinate or a full table column
(containing many points). In other words, the following commands are all
valid:

$ asttable table.fits \

—-c’arith RA1 DEC1 RA2 DEC2 distance-on-sphere’
$ asttable table.fits \

—-c’arith RA DEC 9.876 5.432 distance-on-sphere’
$ asttable table.fits \

-c’arith 9.876 5.432 RA DEC distance-on-sphere’

In the first case we are assuming that table.fits has the following four columns
RA1, DEC1, RA2, DEC2. The returned column by this operator will be the differ-
ence between two points in each row with coordinates like the following (RA1,
DEC1) and (RA2, DEC2). In other words, for each row, the angular distance be-
tween different points is calculated. In the second and third cases (which are
identical), it is assumed that table.fits has the two columns RA and DEC. The
returned column by this operator will be the difference of each row with the
fixed point at (9.876, 5.432).

The distance (along a great circle) on a sphere between two points is calculated
with the equation below, where ryi, 5, d; and dy are the right ascensions and
declinations of points 1 and 2.

Chapter 5: Data containers 170

cos(d) = sin(d;) sin(dz) + cos(d;) cos(ds) cos(ry — 12)

ra-to-degree
Convert the hour-wise Right Ascension (RA) string, in the format of HH:MM: SS,
to degrees. Note that the input column has to be an string format. In FITS
tables, string columns are well-defined. For plain-text tables, please follow
the standards defined in Section 4.7.2 [Gnuastro text table format], page 133,
otherwise the string column won’t be read.

$ asttable catalog.fits -c’arith RA ra-to-degree’
$ asttable catalog.fits -c’arith $5 ra-to-degree’

dec-to-degree
Convert the Declination (Dec) string, in the format of DD:MM:SS, to degrees (a
single floating point number). For more details please see the ra-to-degree
operator.

degree-to-ra
Convert degrees (a column with a single floating point number) to the Right
Ascension, RA, string (in the format of HH:MM: SS). The output will be a string
column so no further mathematical operations can be done on it. The output
can be in any format (for example FITS or plain-text). If its plain-text, the
string column will be written following the standards described in Section 4.7.2
[Gnuastro text table format], page 133.

degree-to-dec
Convert degrees (a column with a single floating point number) to the Declina-
tion, Dec, string (in the format of DD:MM:SS). See the degree-to-ra for more
on the format of the output.

5.4.2 Invoking Table

Table will read /write, select, convert, or show the information of the columns in FITS ASCII
table, FITS binary table and plain text table files, see Section 4.7 [Tables], page 130. Output
columns can also be determined by number or regular expression matching of column names,
units, or comments. The executable name is asttable with the following general template

$ asttable [OPTION...] InputFile
One line examples:

Get the table column information (name, data type, or units):
$ asttable bintab.fits --information

Print columns named RA and DEC, followed by all the columns where
the name starts with "MAG_":
$ asttable bintab.fits --column=RA --column=DEC --column=/"MAG_/

Similar to the above, but with one call to ‘--column’ (or ‘-c’),
also sort the rows by the input’s photometric redshift (‘Z_PHOT’)
column. To confirm the sort, you can add ‘Z_PHOT’ to the columns

Chapter 5: Data containers 171

to print.
$ asttable bintab.fits -cRA,DEC,/ MAG_/ --sort=Z_PHOT

Similar to the above, but only print rows that have a photometric
redshift between 2 and 3.
$ asttable bintab.fits -cRA,DEC,/"MAG_/ --range=Z_PHOT,2:3

Only print rows with a value in the 10th column above 100000:
$ asttable bintab.fits --range=10,10e5,inf

Only print the 2nd column, and the third column multiplied by 5,
Save the resulting two columns in ‘table.txt’
$ asttable bintab.fits -c2,’arith $2 5 x’ -otable.fits

Sort the output columns by the third column, save output:
$ asttable bintab.fits --sort=3 -ooutput.txt

Subtract the first column from the second in ‘cat.fits’ (can also
be a text table) and keep the third and fourth columns.
$ asttable cat.txt -c’arith $2 $1 -’,3,4 -ocat.fits

Table’s input dataset can be given either as a file or from Standard input (see
Section 4.1.3 [Standard input|, page 117). In the absence of selected columns, all the
input’s columns and rows will be written to the output. If any output file is explicitly
requested (with --output) the output table will be written in it. When no output file is
explicitly requested the output table will be written to the standard output.

If the specified output is a FITS file, the type of FITS table (binary or ASCII) will be
determined from the -—tabletype option. If the output is not a FITS file, it will be printed
as a plain text table (with space characters between the columns). When the columns are
accompanied by meta-data (like column name, units, or comments), this information will
also printed in the plain text file before the table, as described in Section 4.7.2 [Gnuastro
text table format], page 133.

For the full list of options common to all Gnuastro programs please see Section 4.1.2
[Common options], page 107. Options can also be stored in directory, user or system-wide
configuration files to avoid repeating on the command-line, see Section 4.2 [Configuration
files], page 118. Table does not follow Automatic output that is common in most Gnuastro
programs, see Section 4.9 [Automatic output], page 138. Thus, in the absence of an output
file, the selected columns will be printed on the command-line with no column information,
ready for redirecting to other tools like AWK or sort, similar to the examples above.

-1

--information
Only print the column information in the specified table on the command-line
and exit. Each column’s information (number, name, units, data type, and
comments) will be printed as a row on the command-line. Note that the FITS
standard only requires the data type (see Section 4.6 [Numeric data types],
page 128), and in plain text tables, no meta-data/information is mandatory.
Gnuastro has its own convention in the comments of a plain text table to store

Chapter 5: Data containers 172

-c STR/INT

and transfer this information as described in Section 4.7.2 [Gnuastro text table
format], page 133.

This option will take precedence over the ——column option, so when it is called
along with requested columns, the latter will be ignored. This can be useful
if you forget the identifier of a column after you have already typed some on
the command-line. You can simply add a -i and run Table to see the whole
list and remember. Then you can use the shell history (with the up arrow key
on the keyboard), and retrieve the last command with all the previously typed
columns present, delete -i and add the identifier you had forgot.

—-column=STR/INT

-w STR

Set the output columns either by specifying the column number, or name. For
more on selecting columns, see Section 4.7.3 [Selecting table columns], page 135.
If a value of this option starts with ‘arith ’, this option will do the requested
operations/arithmetic on the specified columns and output the result in that
place (among other requested columns). For more on column arithmetic see
Section 5.4.1 [Column arithmetic], page 167.

To ask for multiple columns this option can be used in two way: 1) multiple
calls to this option, 2) using a comma between each column specifier in one call
to this option. These different solutions may be mixed in one call to Table: for
example, —cRA,DEC -cMAG, or —cRA -cDEC -cMAG are both equivalent to —cRA
-cDEC -cMAG. The order of the output columns will be the same order given
to the option or in the configuration files (see Section 4.2.2 [Configuration file
precedence], page 119).

This option is not mandatory, if no specific columns are requested, all the input
table columns are output. When this option is called multiple times, it is
possible to output one column more than once.

—--wcsfile=STR

FITS file that contains the WCS to be used in the wcstoimg and imgtowcs
operators of ——column (see above). The extension name/number within the
FITS file can be specified with --wcshdu.

If the value to this option is none, no WCS will be written in the output.

-W STR

—-—wcshdu=STR
FITS extension/HDU that contains the WCS to be used in the wcstoimg and
imgtowcs operators of ——column (see above). The FITS file name can be spec-
ified with --wcsfile.

-L STR

--catcolumnfile=STR

Concatenate (or add, or append) the columns of this option’s value (a filename)
to the output columns. This option may be called multiple times (to add
columns from more than one file into the final output), the columns from each
file will be added in the same order that this option is called.

Chapter 5: Data containers 173

By default all the columns of the given file will be appended, if you only want
certain columns to be appended, use the ——catcolumns option to specify their
name or number (see Section 4.7.3 [Selecting table columns], page 135). Note
that the columns given to --catcolumns must be present in all the given files
(if this option is called more than once).

The concatenation is done after any column selection (for example with
--column) or row selection (for example with --range) is applied to the main
input table given to Table. The number of rows in the file(s) given to this
option has to be the same as the final output table if this option wasn’t given.

If the file given to this option is a FITS file, its necessary to also define the
corresponding HDU /extension with --catcolumnhdu. Also note that no oper-
ation (for example row selection, arithmetic or etc) is applied to the table given
to this option.

If the appended columns have a name, the column names of each file will be
appended with a -N, where N is a counter starting from 1 for each appended file.
This is done because when concatenating columns from multiple tables (more
than two) into one, they may have the same name, and its not good practice
to have multiple columns with the same name. You can disable this feature
with --catcolumnrawname. To have full control over the concatenated column
names, you can use the ——colmetadata option described below.

For example, let’s assume you have two catalogs of the same objects (same
number of rows) in different filters. Such that £160w-cat.fits has a MAGNITUDE
column that has the magnitude of each object in the F160W filter and similarly
f105w-cat.fits, also has a MAGNITUDE column, but for the F105W filter. You
can use column concatenation like below to import the MAGNITUDE column from
the F105W catalog into the F160W catalog, while giving each magnitude column
a different name:

asttable f160w-cat.fits --output=both.fits \
--catcolumnfile=f105w-cat.fits --catcolumns=MAGNITUDE \
--colmetadata=MAGNITUDE,MAG-F160W,log, "Magnitude in F160W" \
--colmetadata=MAGNITUDE-1,MAG-F105W,log,"Magnitude in F105W"

-u STR/INT

--catcolumnhdu=STR/INT
The HDU /extension of the FITS file(s) that should be concatenated, or ap-
pended, with --catcolumnfile. If --catcolumn is called more than once
with more than one FITS file, its necessary to call this option more than
once. The HDUs will be loaded in the same order as the FITS files given
to ——catcolumnfile.

-C STR/INT

--catcolumns=STR/INT
The column(s) in the file(s) given to -—catcolumnfile to append. When this
option is not given, all the columns will be concatenated. See -—catcolumnfile
for more.

Chapter 5: Data containers 174

-—catcolumnrawname
Don’t modify the names of the concatenated (appended) columns, see descrip-
tion in —--catcolumnfile.

-0

--colinfoinstdout
Add column metadata when the output is printed in the standard output.
Usually the standard output is used for a fast visual check or to pipe into other
program for further processing. So by default meta-data aren’t included.

-r STR,FLT:FLT

--range=STR,FLT:FLT
Only output rows that have a value within the given range in the STR col-
umn (can be a name or counter). Note that the range is only inclusive in
the lower-limit. For example with --range=sn,5:20 the output’s columns will
only contain rows that have a value in the sn column (not case-sensitive) that
is greater or equal to 5, and less than 20.

This option can be called multiple times (different ranges for different columns)
in one run of the Table program. This is very useful for selecting the final rows
from multiple criteria/columns.

The chosen column doesn’t have to be in the output columns. This is good
when you just want to select using one column’s values, but don’t need that
column anymore afterwards.

For one example of using this option, see the example under --sigclip-median
in Section 7.1.5 [Invoking Statistics], page 246.

--inpolygon=STR1,STR2
Only return rows where the given coordinates are inside the polygon specified
by the -—-polygon option. The coordinate columns are the given STR1 and STR2
columns, they can be a column name or counter (see Section 4.7.3 [Selecting
table columns|, page 135).

Note that the chosen columns doesn’t have to be in the output columns (which
are specified by the —-column option). For example if we want to select rows
in the polygon specified in Section 2.2.4 [Dataset inspection and cropping],
page 27, this option can be used like this (you can remove the double quotations
and write them all in one line if you remove the white-spaces around the colon
separating the column vertices):

asttable table.fits --inpolygon=RA,DEC
--polygon="53.187414,-27.779152
: 53.159507,-27.759633
: 53.134517,-27.787144
: 53.161906,-27.807208"

P

Flat/Euclidean space: The --inpolygon option assumes a flat/Euclidean
space so it is only correct for RA and Dec when the polygon size is very small
like the example above. If your polygon is a degree or larger, it may not return
correct results. We are working on other options for this.

Chapter 5: Data containers 175

--outpolygon=STR1,STR2
Only return rows where the given coordinates are outside the polygon specified
by the --polygon option. This option is very similar to the --inpolygon
option, so see the description there for more.

--polygon=FLT:FLT,...
The polygon to use for the —-inpolygon and --outpolygon options. The
values to this option is parsed in the same way that the Crop program, see its
description there for more: Section 6.1.4.1 [Crop options|, page 183.

-e STR, INT/FLT,...
--equal=STR,INT/FLT,...
Only output rows that are equal to the given number(s) in the given column.
The first argument is the column identifier (name or number, see Section 4.7.3
[Selecting table columns|, page 135), after that you can specify any num-
ber of values. For example --equal=ID,5,6,8 will only print the rows that
have a value of 5, 6, or 8 in the ID column. This option can also be called
multiple times, so --equal=ID,4,5 --equal=ID,6,7 has the same effect as
--equal=4,5,6,7.
The --equal and --notequal options also work when the given column has a
string type. In this case the given value to the option will also be parsed as
a string, not as a number. When dealing with string columns, be careful with
trailing white space characters (the actual value maybe adjusted to the right,
left, or center of the column’s width). If you need to account for such white
spaces, you can use shell quoting. For example --equal=NAME, " myname ".
(N
Equality and floating point numbers: Floating point numbers are only approx-
imate values (see Section 4.6 [Numeric data types|, page 128). In this context,
their equality depends on how the the input table was originally stored (as
a plain text table or as an ASCII/binary FITS table). If you want to select
floating point numbers, it is strongly recommended to use the —-range option
and set a very small interval around your desired number, don’t use --equal

or ——notequal.
- J

-n STR, INT/FLT, ...

--notequal=STR, INT/FLT,...
Only output rows that are not equal to the given number(s) in the given column.
The first argument is the column identifier (name or number, see Section 4.7.3
[Selecting table columns|, page 135), after that you can specify any number
of values. For example --notequal=ID,5,6,8 will only print the rows where
the ID column doesn’t have value of 5, 6, or 8. This option can also be called
multiple times, so -=—notequal=ID,4,5 --notequal=ID, 6,7 has the same effect
as ——notequal=4,5,6,7.
Be very careful if you want to use the non-equality with floating point numbers,
see the special note under -—equal for more. This option also works when the
given column has a string type, see the description under --equal (above) for
more.

Chapter 5: Data containers 176

-s STR

--sort=STR
Sort the output rows based on the values in the STR column (can be a column
name or number). By default the sort is done in ascending/increasing order, to
sort in a descending order, use ——descending.

The chosen column doesn’t have to be in the output columns. This is good
when you just want to sort using one column’s values, but don’t need that
column anymore afterwards.

-d
--descending
When called with --sort, rows will be sorted in descending order.

-H INT

—-—head=INT
Only print the given number of rows from the top of the final table. Note
that this option only affects the output table. For example if you use --sort,
or —--range, the printed rows are the first after applying the sort sorting, or
selecting a range of the full input.

If the given value to --head is 0, the output columns won’t have any rows
and if its larger than the number of rows in the input table, all the rows are
printed (this option is effectively ignored). This behavior is taken from the
head program in GNU Coreutils.

-t INT

-—tail=INT
Only print the given number of rows from the bottom of the final table. See
--head for more.

-m STR/INT,STR[,STR[,STR]]

--colmetadata=STR/INT,STR[,STR[,STR]]
Update a column’s metadata just before writing the final table (after all other
operations are done, for example column arithmetic, or column concatenation).
The first value (before the first comma) given to this option can either be a
counter (positive integer, counting from 1), or a name (the column’s name
in the output if this option wasn’t called). This option can be very useful
in conjunction with column arithmetic (see Section 5.4.1 [Column arithmetic],
page 167), or column concatenation (appending multiple columns from different
tables, for more see -—catcolumnfile).

After the to-be-updated column is identified, at least one other strings should
be given, with a maximum of three strings. The first string after the original
name will the the selected column’s new name. The next (optional) string will
be the selected column’s unit and the third (optional) will be its comments. If
the two optional strings aren’t given original column’s units or comments will
remain unchanged. Here are three examples

—-colmetadata=MAGNITUDE,MAG_F160W
This will convert name of the original MAGNITUDE column to MAG_
F160W, leaving the unit and comments unchanged.

Chapter 5: Data containers 177

--colmetadata=3,MAG_F160W,mag
This will convert name of the third column of the final output
to MAG_F160W and the units to mag, while leaving the comments
untouched.

—--colmetadata=MAGNITUDE,MAG_F160W,mag, "Magnitude in F160W filter"

This will convert name of the original MAGNITUDE column to MAG_
F160W, and the units to mag and the comments to Magnitude in
F160W filter. Note the double quotations around the comment
string, they are necessary to preserve the white-space characters
within the column comment from the command-line, into the pro-
gram (otherwise, upon reaching a white-space character, the shell
will consider this option to be finished and cause un-expected be-
havior).

The recommended way to use this option is to first do all your operations on
your table’s data and write it into a temporary file (maybe called temp.fits).
Look into that file’s metadata (with asttable temp.fits -i) to see the exact
column positions and possible names, then add the necessary calls to this option
to your previous call to asttable, so it writes proper metadata in the same
run (for example in a script or Makefile). Recall that when a name is given,
this option will update the metadata of the first column that matches, so if you
have multiple columns with the same name, you can call this options multiple
times with the same first argument to change them all.

Finally, if you already have a FITS table by other means (for example by down-
loading) and you merely want to update the column metadata and leave the
data intact, it is much more efficient to directly modify the respective FITS
header keywords with astfits, using the keyword manipulation features de-
scribed in Section 5.1.1.2 [Keyword manipulation], page 147. --colmetadata is
mainly intended for scenarios where you want to edit the data so it will always
load the full/partial dataset into memory, then write out the resulting datasets
with updated/corrected metadata.

178

6 Data manipulation

Images are one of the major formats of data that is used in astronomy. The functions in this
chapter explain the GNU Astronomy Utilities which are provided for their manipulation.
For example cropping out a part of a larger image or convolving the image with a given
kernel or applying a transformation to it.

6.1 Crop

Astronomical images are often very large, filled with thousands of galaxies. It often happens
that you only want a section of the image, or you have a catalog of sources and you want
to visually analyze them in small postage stamps. Crop is made to do all these things.
When more than one crop is required, Crop will divide the crops between multiple threads
to significantly reduce the run time.

Astronomical surveys are usually extremely large. So large in fact, that the whole survey
will not fit into a reasonably sized file. Because of this, surveys usually cut the final image
into separate tiles and store each tile in a file. For example the COSMOS survey’s Hubble
space telescope, ACS F814W image consists of 81 separate FITS images, with each one
having a volume of 1.7 Giga bytes.

Even though the tile sizes are chosen to be large enough that too many galaxies/targets
don’t fall on the edges of the tiles, inevitably some do. So when you simply crop the image
of such targets from one tile, you will miss a large area of the surrounding sky (which is
essential in estimating the noise). Therefore in its WCS mode, Crop will stitch parts of the
tiles that are relevant for a target (with the given width) from all the input images that
cover that region into the output. Of course, the tiles have to be present in the list of input
files.

Besides cropping postage stamps around certain coordinates, Crop can also crop arbi-
trary polygons from an image (or a set of tiles by stitching the relevant parts of different
tiles within the polygon), see ——polygon in Section 6.1.4 [Invoking Crop|, page 182. Alter-
natively, it can crop out rectangular regions through the --section option from one image,
see Section 6.1.2 [Crop section syntax], page 181.

6.1.1 Crop modes

In order to be comprehensive, intuitive, and easy to use, there are two ways to define the
crop:
1. From its center and side length. For example if you already know the coordinates of an
object and want to inspect it in an image or to generate postage stamps of a catalog
containing many such coordinates.

2. The vertices of the crop region, this can be useful for larger crops over many targets,
for example to crop out a uniformly deep, or contiguous, region of a large survey.

Irrespective of how the crop region is defined, the coordinates to define the crop can
be in Image (pixel) or World Coordinate System (WCS) standards. All coordinates are
read as floating point numbers (not integers, except for the —-section option, see below).
By setting the mode in Crop, you define the standard that the given coordinates must be
interpreted. Here, the different ways to specify the crop region are discussed within each
standard. For the full list options, please see Section 6.1.4 [Invoking Crop|, page 182.

Chapter 6: Data manipulation 179

When the crop is defined by its center, the respective (integer) central pixel position will
be found internally according to the FITS standard. To have this pixel positioned in the
center of the cropped region, the final cropped region will have an add number of pixels
(even if you give an even number to --width in image mode).

Furthermore, when the crop is defined as by its center, Crop allows you to only keep
crops what don’t have any blank pixels in the vicinity of their center (your primary target).
This can be very convenient when your input catalog/coordinates originated from another
survey /filter which is not fully covered by your input image, to learn more about this feature,
please see the description of the --checkcenter option in Section 6.1.4 [Invoking Crop],
page 182.

Image coordinates
In image mode (--mode=img), Crop interprets the pixel coordinates and widths
in units of the input data-elements (for example pixels in an image, not world
coordinates). In image mode, only one image may be input. The output crop(s)
can be defined in multiple ways as listed below.

Center of multiple crops (in a catalog)

The center of (possibly multiple) crops are read from a text file.
In this mode, the columns identified with the --coordcol option
are interpreted as the center of a crop with a width of --width
pixels along each dimension. The columns can contain any float-
ing point value. The value to —-output option is seen as a direc-
tory which will host (the possibly multiple) separate crop files, see
Section 6.1.4.2 [Crop output], page 188, for more. For a tutorial
using this feature, please see Section 2.2.17 [Finding reddest clumps
and visual inspection], page 53.

Center of a single crop (on the command-line)
The center of the crop is given on the command-line with the
--center option. The crop width is specified by the ——width op-
tion along each dimension. The given coordinates and width can
be any floating point number.

Vertices of a single crop
In Image mode there are two options to define the vertices of a
region to crop: --section and --polygon. The former is lower-
level (doesn’t accept floating point vertices, and only a rectangular
region can be defined), it is also only available in Image mode.
Please see Section 6.1.2 [Crop section syntax|, page 181, for a full
description of this method.

The latter option (--polygon) is a higher-level method to define
any polygon (with any number of vertices) with floating point val-
ues. Please see the description of this option in Section 6.1.4 [In-
voking Crop]|, page 182, for its syntax.

WCS coordinates
In WCS mode (--mode=wcs), the coordinates and widths are interpreted us-
ing the World Coordinate System (WCS, that must accompany the dataset),

Chapter 6: Data manipulation 180

not pixel coordinates. In WCS mode, Crop accepts multiple datasets as input.
When the cropped region (defined by its center or vertices) overlaps with mul-
tiple of the input images/tiles, the overlapping regions will be taken from the
respective input (they will be stitched when necessary for each output crop).

In this mode, the input images do not necessarily have to be the same size,
they just need to have the same orientation and pixel resolution. Currently
only orientation along the celestial coordinates is accepted, if your input has
a different orientation you can use Warp’s ——align option to align the image
before cropping it (see Section 6.4 [Warp|, page 228).

Each individual input image/tile can even be smaller than the final crop. In
any case, any part of any of the input images which overlaps with the desired
region will be used in the crop. Note that if there is an overlap in the input
images/tiles, the pixels from the last input image read are going to be used for
the overlap. Crop will not change pixel values, so it assumes your overlapping
tiles were cutout from the same original image. There are multiple ways to
define your cropped region as listed below.

Center of multiple crops (in a catalog)

Similar to catalog inputs in Image mode (above), except that the
values along each dimension are assumed to have the same units as
the dataset’s WCS information. For example, the central RA and
Dec value for each crop will be read from the first and second calls
to the -—coordcol option. The width of the cropped box (in units
of the WCS, or degrees in RA and Dec mode) must be specified
with the ——width option.

Center of a single crop (on the command-line)
You can specify the center of only one crop box with the --center
option. If it exists in the input images, it will be cropped similar
to the catalog mode, see above also for —-width.

Vertices of a single crop
The --polygon option is a high-level method to define any convex
polygon (with any number of vertices). Please see the description
of this option in Section 6.1.4 [Invoking Crop|, page 182, for its
syntax.

(N
CAUTION: In WCS mode, the image has to be aligned with the celestial co-

ordinates, such that the first FITS axis is parallel (opposite direction) to the
Right Ascension (RA) and the second FITS axis is parallel to the declination.
If these conditions aren’t met for an image, Crop will warn you and abort. You
can use Warp’s -—align option to align the input image with these coordinates,

see Section 6.4 [Warp], page 228.
N J

As a summary, if you don’t specify a catalog, you have to define the cropped region
manually on the command-line. In any case the mode is mandatory for Crop to be able to
interpret the values given as coordinates or widths.

Chapter 6: Data manipulation 181

6.1.2 Crop section syntax

When in image mode, one of the methods to crop only one rectangular section from the
input image is to use the --section option. Crop has a powerful syntax to read the box
parameters from a string of characters. If you leave certain parts of the string to be empty,
Crop can fill them for you based on the input image sizes.

To define a box, you need the coordinates of two points: the first (X1, Y1) and the
last pixel (X2, Y2) pixel positions in the image, or four integer numbers in total. The four
coordinates can be specified with one string in this format: ‘X1:X2,Y1:Y2’. This string is
given to the --section option. Therefore, the pixels along the first axis that are >X1 and
<X2 will be included in the cropped image. The same goes for the second axis. Note that
each different term will be read as an integer, not a float.

The reason it only accepts integers is that ——section is a low-level option (which is also
very fast!). For a higher-level way to specify region (any polygon, not just a box), please
see the —-polygon option in Section 6.1.4.1 [Crop options], page 183. Also note that in the
FITS standard, pixel indexes along each axis start from unity(1) not zero(0).

You can omit any of the values and they will be filled automatically. The left hand side
of the colon (:) will be filled with 1, and the right side with the image size. So, 2:,: will
include the full range of pixels along the second axis and only those with a first axis index
larger than 2 in the first axis. If the colon is omitted for a dimension, then the full range
is automatically used. So the same string is also equal to 2:, or 2: or even 2. If you want
such a case for the second axis, you should set it to: ,2.

If you specify a negative value, it will be seen as before the indexes of the image which
are outside the image along the bottom or left sides when viewed in SAO ds9. In case you
want to count from the top or right sides of the image, you can use an asterisk (*). When
confronted with a *, Crop will replace it with the maximum length of the image in that
dimension. So *=10:*+10,*-20:*+20 will mean that the crop box will be 20 x 40 pixels in
size and only include the top corner of the input image with 3/4 of the image being covered
by blank pixels, see Section 6.1.3 [Blank pixels], page 181.

If you feel more comfortable with space characters between the values, you can use as
many space characters as you wish, just be careful to put your value in double quotes, for
example --section="5:200, 123:854". If you forget the quotes, anything after the first
space will not be seen by —--section and you will most probably get an error because the
rest of your string will be read as a filename (which most probably doesn’t exist). See
Section 4.1 [Command-line|, page 103, for a description of how the command-line works.

6.1.3 Blank pixels

The cropped box can potentially include pixels that are beyond the image range. For
example when a target in the input catalog was very near the edge of the input image. The
parts of the cropped image that were not in the input image will be filled with the following
two values depending on the data type of the image. In both cases, SAO ds9 will not color
code those pixels.

e If the data type of the image is a floating point type (float or double), IEEE NaN (Not
a number) will be used.

e For integer types, pixels out of the image will be filled with the value of the BLANK
keyword in the cropped image header. The value assigned to it is the lowest value

Chapter 6: Data manipulation 182

possible for that type, so you will probably never need it any way. Only for the
unsigned character type (BITPIX=8 in the FITS header), the maximum value is used
because it is unsigned, the smallest value is zero which is often meaningful.

You can ask for such blank regions to not be included in the output crop image using the
--noblank option. In such cases, there is no guarantee that the image size of your outputs
are what you asked for.

In some survey images, unfortunately they do not use the BLANK FITS keyword. Instead
they just give all pixels outside of the survey area a value of zero. So by default, when
dealing with float or double image types, any values that are 0.0 are also regarded as blank
regions. This can be turned off with the ~—zeroisnotblank option.

6.1.4 Invoking Crop

Crop will crop a region from an image. If in WCS mode, it will also stitch parts from
separate images in the input files. The executable name is astcrop with the following
general template

$ astcrop [OPTION...] [ASCIIcatalog] ASTRdata ...
One line examples:

Crop all objects in cat.txt from image.fits:
$ astcrop --catalog=cat.txt image.fits

Crop all options in catalog (with RA,DEC) from all the files
ending in ‘_drz.fits’ in ‘/mnt/data/COSMOS/’:
$ astcrop --mode=wcs --catalog=cat.txt /mnt/data/COSMOS/*_drz.fits

Crop the outer 10 border pixels of the input image:
$ astcrop --section=10:%-10,10:%-10 --hdu=2 image.fits

Crop region around RA and Dec of (189.16704, 62.218203):
$ astcrop --mode=wcs --center=189.16704,62.218203 goodsnorth.fits

Crop region around pixel coordinate (568.342, 2091.719):
$ astcrop --mode=img --center=568.342,2091.719 --width=201 image.fits

Crop has one mandatory argument which is the input image name(s), shown above with
ASTRdata You can use shell expansions, for example * for this if you have lots of
images in WCS mode. If the crop box centers are in a catalog, you can use the —-catalog
option. In other cases, you have to provide the single cropped output parameters must be
given with command-line options. See Section 6.1.4.2 [Crop output], page 188, for how the
output file name(s) can be specified. For the full list of general options to all Gnuastro
programs (including Crop), please see Section 4.1.2 [Common options]|, page 107.

Floating point numbers can be used to specify the crop region (except the --section
option, see Section 6.1.2 [Crop section syntax|, page 181). In such cases, the floating point
values will be used to find the desired integer pixel indices based on the FITS standard.
Hence, Crop ultimately doesn’t do any sub-pixel cropping (in other words, it doesn’t change
pixel values). If you need such crops, you can use Section 6.4 [Warp], page 228, to first
warp the image to the a new pixel grid, then crop from that. For example, let’s assume

Chapter 6: Data manipulation 183

you want a crop from pixels 12.982 to 80.982 along the first dimension. You should first
translate the image by —0.482 (note that the edge of a pixel is at integer multiples of 0.5).
So you should run Warp with --translate=-0.482,0 and then crop the warped image
with --section=13:81.

There are two ways to define the cropped region: with its center or its vertices. See
Section 6.1.1 [Crop modes], page 178, for a full description. In the former case, Crop can
check if the central region of the cropped image is indeed filled with data or is blank (see
Section 6.1.3 [Blank pixels], page 181), and not produce any output when the center is
blank, see the description under ——checkcenter for more.

When in catalog mode, Crop will run in parallel unless you set —-numthreads=1, see
Section 4.5 [Multi-threaded operations|, page 126. Note that when multiple outputs are
created with threads, the outputs will not be created in the same order. This is because the
threads are asynchronous and thus not started in order. This has no effect on each output,
see Section 2.2.17 [Finding reddest clumps and visual inspection], page 53, for a tutorial on
effectively using this feature.

6.1.4.1 Crop options

The options can be classified into the following contexts: Input, Output and operating
mode options. Options that are common to all Gnuastro program are listed in Section 4.1.2
[Common options], page 107, and will not be repeated here.

When you are specifying the crop vertices your self (through --section, or --polygon)
on relatively small regions (depending on the resolution of your images) the outputs from
image and WCS mode can be approximately equivalent. However, as the crop sizes get
large, the curved nature of the WCS coordinates have to be considered. For example, when
using --section, the right ascension of the bottom left and top left corners will not be
equal. If you only want regions within a given right ascension, use --polygon in WCS
mode.

Input image parameters:

-—hstartwcs=INT

Specify the first keyword card (line number) to start finding the input image
world coordinate system information. Distortions were only recently included in
WCSLIB (from version 5). Therefore until now, different telescope would apply
their own specific set of WCS keywords and put them into the image header
along with those that WCSLIB does recognize. So now that WCSLIB recognizes
most of the standard distortion parameters, they will get confused with the old
ones and give completely wrong results. For example in the CANDELS-GOODS
South images'.

The two --hstartwcs and --hendwcs are thus provided so when using older
datasets, you can specify what region in the FITS headers you want to use to
read the WCS keywords. Note that this is only relevant for reading the WCS
information, basic data information like the image size are read separately.
These two options will only be considered when the value to --hendwcs is
larger than that of ——hstartwcs. So if they are equal or —-hstartwcs is larger

1 https://archive.stsci.edu/pub/hlsp/candels/goods-s/gs-tot/v1i.0/

https://archive.stsci.edu/pub/hlsp/candels/goods-s/gs-tot/v1.0/

Chapter 6: Data manipulation 184

than --hendwcs, then all the input keywords will be parsed to get the WCS
information of the image.

--hendwcs=INT
Specify the last keyword card to read for specifying the image world coordinate
system on the input images. See --hstartwcs

Crop box parameters:

-¢ FLT[,FLTL,...]]

--center=FLT[,FLTI[,...]]
The central position of the crop in the input image. The positions along each
dimension must be separated by a comma (,) and fractions are also acceptable.
The number of values given to this option must be the same as the dimensions
of the input dataset. The width of the crop should be set with ——width. The
units of the coordinates are read based on the value to the ——mode option, see
below.

-w FLT[,FLT[,...]1]

--width=FLT[,FLT[,...]]
Width of the cropped region about its center. —-width may take either a single
value (to be used for all dimensions) or multiple values (a specific value for each
dimension). If in WCS mode, value(s) given to this option will be read in the
same units as the dataset’s WCS information along this dimension. The final
output will have an odd number of pixels to allow easy identification of the
pixel which keeps your requested coordinate (from --center or --catalog).

The --width option also accepts fractions. For example if you want the width
of your crop to be 3 by 5 arcseconds along RA and Dec respectively, you can
call it with: --width=3/3600,5/3600

If you want an even sided crop, you can run Crop afterwards with
--section=":%-1,:*-1" or --section=2:,2: (depending on which side you
don’t need), see Section 6.1.2 [Crop section syntax], page 181.

-1 STR

--polygon=STR
String of vertices to define a polygon to crop. The vertices are used to define
the polygon in the same order given to this option. When the vertices are not
necessarily ordered in the proper order (for example one vertice in a square
comes after its diagonal opposite), you can add the --polygonsort option
which will attempt to sort the vertices before cropping. Note that for concave
polygons, sorting is not recommended because there is no unique solution, for
more, see the description under --polygonsort.

This option can be used both in the image and WCS modes, see Section 6.1.1
[Crop modes|, page 178. The cropped image will be the size of the rectangular
region that completely encompasses the polygon. By default all the pixels that
are outside of the polygon will be set as blank values (see Section 6.1.3 [Blank
pixels|, page 181). However, if --polygonout is called all pixels internal to
the vertices will be set to blank. In WCS-mode, you may provide many FITS

Chapter 6: Data manipulation 185

images/tiles: Crop will stitch them to produce this cropped region, then apply
the polygon.

The syntax for the polygon vertices is similar to, and simpler than, that for
--section. In short, the dimensions of each coordinate are separated by a
comma (,) and each vertex is separated by a colon (:). You can define as
many vertices as you like. If you would like to use space characters between the
dimensions and vertices to make them more human-readable, then you have to
put the value to this option in double quotation marks.

For example, let’s assume you want to work on the deepest part of the
WEFC3/IR images of Hubble Space Telescope eXtreme Deep Field (HST-XDF).
According to the webpage (https://archive.stsci.edu/prepds/xdf/)? the
deepest part is contained within the coordinates:

[(563.187414,-27.779152), (53.159507,-27.759633),
(63.134517,-27.787144), (53.161906,-27.807208) 1]

They have provided mask images with only these pixels in the WFC3/IR images,
but what if you also need to work on the same region in the full resolution ACS
images? Also what if you want to use the CANDELS data for the shallow
region? Running Crop with --polygon will easily pull out this region of the
image for you, irrespective of the resolution. If you have set the operating mode
to WCS mode in your nearest configuration file (see Section 4.2 [Configuration
files], page 118), there is no need to call —~-mode=wcs on the command line.

$ astcrop --mode=wcs desired-filter-image(s).fits \
--polygon="53.187414,-27.779152 : 53.159507,-27.759633 : \
53.134517,-27.787144 : 53.161906,-27.807208"

In other cases, you have an image and want to define the polygon yourself (it
isn’t already published like the example above). As the number of vertices
increases, checking the vertex coordinates on a FITS viewer (for example SAO
ds9) and typing them in one by one can be very tedious and prone to typo
erTors.

You can take the following steps to avoid the frustration and possible typos:
Open the image with ds9 and activate its “region” mode with Edit—Region.
Then define the region as a polygon with Region—+Shape—Polygon. Click on
the approximate center of the region you want and a small square will appear.
By clicking on the vertices of the square you can shrink or expand it, clicking
and dragging anywhere on the edges will enable you to define a new vertex.
After the region has been nicely defined, save it as a file with Region—Save
Regions. You can then select the name and address of the output file, keep the
format as REG and press “OK”. In the next window, keep format as “ds9” and
“Coordinate System” as “fk5”. A plain text file (let’s call it ds9.reg) is now
created.

You can now convert this plain text file to Crop’s polygon format with this
command (when typing on the command-line, ignore the “\” at the end of
the first and second lines along with the extra spaces, these are only for nice
printing):

2 https://archive.stsci.edu/prepds/xdf/

https://archive.stsci.edu/prepds/xdf/
https://archive.stsci.edu/prepds/xdf/

Chapter 6: Data manipulation 186

$ v=$(awk ’NR==4’ ds9.reg | sed -e’s/polygon(//’ \
-e’s/\([7,1%,[7,1%\),/\1:/g’> -e’s/)//’)

$ astcrop --mode=wcs image.fits --polygon=$v

—--polygonout

Keep all the regions outside the polygon and mask the inner ones with blank
pixels (see Section 6.1.3 [Blank pixels], page 181). This is practically the inverse
of the default mode of treating polygons. Note that this option only works
when you have only provided one input image. If multiple images are given (in
WCS mode), then the full area covered by all the images has to be shown and
the polygon excluded. This can lead to a very large area if large surveys like
COSMOS are used. So Crop will abort and notify you. In such cases, it is best
to crop out the larger region you want, then mask the smaller region with this
option.

—--polygonsort
Sort the given set of vertices to the ——polygon option. For a concave polygon
it will sort the vertices correctly, however for a convex polygon it there is no
unique sorting, so be careful because the crop may not be what you expected.

Polygons come in two classes: convex and concave (or generally, non-convex!),
see below for a demonstration. Convex polygons are those where all inner angles
are less than 180 degrees. By contrast, a convex polygon is one where an inner
angle may be more than 180 degrees.

Concave Polygon Convex Polygon
D ———————- C D--————————— C
\ I E / I
\E I \ I
/ I \ I
A B A B

-s STR

--section=STR
Section of the input image which you want to be cropped. See Section 6.1.2
[Crop section syntax], page 181, for a complete explanation on the syntax re-
quired for this input.

-x STR/INT

--coordcol=STR/INT
The column in a catalog to read as a coordinate. The value can be either the
column number (starting from 1), or a match/search in the table meta-data, see
Section 4.7.3 [Selecting table columns|, page 135. This option must be called
multiple times, depending on the number of dimensions in the input dataset.
If it is called more than necessary, the extra columns (later calls to this option
on the command-line or configuration files) will be ignored, see Section 4.2.2
[Configuration file precedence], page 119.

Chapter 6: Data manipulation 187

-n STR/INT

--namecol=STR/INT

Column selection of crop file name. The value can be either the column number
(starting from 1), or a match/search in the table meta-data, see Section 4.7.3
[Selecting table columns], page 135. This option can be used both in Image and
WCS modes, and not a mandatory. When a column is given to this option, the
final crop base file name will be taken from the contents of this column. The
directory will be determined by the ——output option (current directory if not
given) and the value to --suffix will be appended. When this column isn’t
given, the row number will be used instead.

Output options:

-c FLT/INT

——checkcenter=FLT/INT

-p STR

Square box width of region in the center of the image to check for blank values.
If any of the pixels in this central region of a crop (defined by its center) are
blank, then it will not be stored in an output file. If the value to this option is
zero, no checking is done. This check is only applied when the cropped region(s)
are defined by their center (not by the vertices, see Section 6.1.1 [Crop modes],
page 178).

The units of the value are interpreted based on the --mode value (in WCS or
pixel units). The ultimate checked region size (in pixels) will be an odd integer
around the center (converted from WCS, or when an even number of pixels are
given to this option). In WCS mode, the value can be given as fractions, for
example if the WCS units are in degrees, 0.1/3600 will correspond to a check
size of 0.1 arcseconds.

Because survey regions don’t often have a clean square or rectangle shape, some
of the pixels on the sides of the survey FITS image don’t commonly have any
data and are blank (see Section 6.1.3 [Blank pixels], page 181). So when the
catalog was not generated from the input image, it often happens that the
image does not have data over some of the points.

When the given center of a crop falls in such regions or outside the dataset, and
this option has a non-zero value, no crop will be created. Therefore with this
option, you can specify a width of a small box (3 pixels is often good enough)
around the central pixel of the cropped image. You can check which crops were
created and which weren’t from the command-line (if -—quiet was not called,
see Section 4.1.2.3 [Operating mode options|, page 112), or in Crop’s log file
(see Section 6.1.4.2 [Crop output], page 188).

—--suffix=STR

The suffix (or post-fix) of the output files for when you want all the cropped
images to have a special ending. One case where this might be helpful is when
besides the science images, you want the weight images (or exposure maps,
which are also distributed with survey images) of the cropped regions too. So
in one run, you can set the input images to the science images and —--suffix=_

Chapter 6: Data manipulation 188

s.fits. In the next run you can set the weight images as input and ——suffix=_

w.fits.

-b

--noblank
Pixels outside of the input image that are in the crop box will not be used. By
default they are filled with blank values (depending on type), see Section 6.1.3
[Blank pixels], page 181. This option only applies only in Image mode, see
Section 6.1.1 [Crop modes], page 178.

-z

—--zeroisnotblank

In float or double images, it is common to give the value of zero to blank
pixels. If the input image type is one of these two types, such pixels will also
be considered as blank. You can disable this behavior with this option, see
Section 6.1.3 [Blank pixels]|, page 181.

Operating mode options:

-0 STR

—--mode=STR
Operate in Image mode or WCS mode when the input coordinates can be both
image or WCS. The value must either be img or wcs, see Section 6.1.1 [Crop
modes|, page 178, for a full description.

6.1.4.2 Crop output

The string given to ——output option will be interpreted depending on how many crops were
requested, see Section 6.1.1 [Crop modes|, page 178:

e When a catalog is given, the value of the -—output (see Section 4.1.2 [Common options],
page 107) will be read as the directory to store the output cropped images. Hence if
it doesn’t already exist, Crop will abort with an error of a “No such file or directory”
error.

The crop file names will consist of two parts: a variable part (the row number of each
target starting from 1) along with a fixed string which you can set with the --suffix
option. Optionally, you may also use the —-namecol option to define a column in the
input catalog to use as the file name instead of numbers.

e When only one crop is desired, the value to ——output will be read as a file name. If no
output is specified or if it is a directory, the output file name will follow the automatic
output names of Gnuastro, see Section 4.9 [Automatic output|, page 138: The string
given to —-suffix will be replaced with the .fits suffix of the input.

The header of each output cropped image will contain the names of the input image(s)
it was cut from. If a name is longer than the 70 character space that the FITS standard
allows for header keyword values, the name will be cut into several keywords from the
nearest slash (/). The keywords have the following format: ICFn_m (for Crop File). Where
n is the number of the image used in this crop and m is the part of the name (it can be
broken into multiple keywords). Following the name is another keyword named ICFnPIX
which shows the pixel range from that input image in the same syntax as Section 6.1.2

Chapter 6: Data manipulation 189

[Crop section syntax|, page 181. So this string can be directly given to the --section
option later.

Once done, a log file can be created in the current directory with the —-log option.
This file will have three columns and the same number of rows as the number of cropped
images. There are also comments on the top of the log file explaining basic information
about the run and descriptions for the columns. A short description of the columns is also
given below:

1. The cropped image file name for that row.
2. The number of input images that were used to create that image.

3. A 0if the central few pixels (value to the -—checkcenter option) are blank and 1 if they
aren’t. When the crop was not defined by its center (see Section 6.1.1 [Crop modes],
page 178), or --checkcenter was given a value of 0 (see Section 6.1.4 [Invoking Crop],
page 182), the center will not be checked and this column will be given a value of -1.

6.2 Arithmetic

It is commonly necessary to do operations on some or all of the elements of a dataset
independently (pixels in an image). For example, in the reduction of raw data it is necessary
to subtract the Sky value (Section 7.1.4 [Sky value], page 241) from each image image. Later
(once the images as warped into a single grid using Warp for example, see Section 6.4 [Warp],
page 228), the images are co-added (the output pixel grid is the average of the pixels of the
individual input images). Arithmetic is Gnuastro’s program for such operations on your
datasets directly from the command-line. It currently uses the reverse polish or post-fix
notation, see Section 6.2.1 [Reverse polish notation|, page 189, and will work on the native
data types of the input images/data to reduce CPU and RAM resources, see Section 4.6
[Numeric data types|, page 128. For more information on how to run Arithmetic, please
see Section 6.2.3 [Invoking Arithmetic|, page 202.

6.2.1 Reverse polish notation

The most common notation for arithmetic operations is the infix notation (https://
en.wikipedia.org/wiki/Infix_notation) where the operator goes between the two
operands, for example 4 + 5. While the infix notation is the preferred way in most
programming languages, currently the Gnuastro’s program (in particular Arithmetic
and Table, when doing column arithmetic) do not use it. This is because it will require
parenthesis which can complicate the implementation of the code. In the near future we
do plan to also allow this notation®, but for the time being (due to time constraints on the
developers), arithmetic operations can only be done in the post-fix notation (also known as
reverse polish notation (https://en.wikipedia.org/wiki/Reverse_Polish_notation)).
The Wikipedia article provides some excellent explanation on this notation but here we
will give a short summary here for self-sufficiency.

In the post-fix notation, the operator is placed after the operands, as we will see below
this removes the need to define parenthesis for most ordinary operators. For example,
instead of writing 5+6, we write 5 6 +. To easily understand how this notation works, you
can think of each operand as a node in a “last-in-first-out” stack. Every time an operator

3 https://savannah.gnu.org/task/index.php?13867

https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://savannah.gnu.org/task/index.php?13867

Chapter 6: Data manipulation 190

is confronted, the operator pops the number of operands it needs from the top of the stack
(so they don’t exist in the stack any more), does its operation and pushes the result back
on top of the stack. So if you want the average of 5 and 6, you would write: 5 6 + 2 /. The
operations that are done are:

1. 5 is an operand, so it is pushed to the top of the stack (which is initially empty).
2. 6 is an operand, so it is pushed to the top of the stack.

3. +is a binary operator, so it will pop the top two elements of the stack out of it, and
perform addition on them (the order is 5+ 6 in the example above). The result is 11
which is pushed to the top of the stack.

4. 21is an operand so push it onto the top of the stack.

5. / is a binary operator, so pull out the top two elements of the stack (top-most is 2,
then 11) and divide the second one by the first.

In the Arithmetic program, the operands can be FITS images or numbers (see
Section 6.2.3 [Invoking Arithmetic]|, page 202). In Table’s column arithmetic, they can be
any column or a number (see Section 5.4.1 [Column arithmetic], page 167).

With this notation, very complicated procedures can be created without the need for
parenthesis or worrying about precedence. Even functions which take an arbitrary number
of arguments can be defined in this notation. This is a very powerful notation and is used
in languages like Postscript* which produces PDF files when compiled.

6.2.2 Arithmetic operators

The recognized operators in Arithmetic are listed below. See Section 6.2.1 [Reverse polish
notation], page 189, for more on how the operators and operands should be ordered on the
command-line. The operands to all operators can be a data array (for example a FITS
image) or a number, the output will be an array or number according to the inputs. For
example a number multiplied by an array will produce an array. The conditional operators
will return pixel, or numerical values of 0 (false) or 1 (true) and stored in an unsigned char
data type (see Section 4.6 [Numeric data types|, page 128).

+ Addition, so “4 5 +” is equivalent to 4 + 5.

- Subtraction, so “4 5 =" is equivalent to 4 — 5.

X Multiplication, so “4 5 x” is equivalent to 4 x 5.

/ Division, so “4 5 /” is equivalent to 4/5.

% Modulo (remainder), so “3 2 %” is equivalent to 1. Note that the modulo oper-
ator only works on integer types.

abs Absolute value of first operand, so “4 abs” is equivalent to |4].

pow First operand to the power of the second, so “4.3 5 pow” is equivalent to 4.3°.

sqrt The square root of the first operand, so “5 sqrt” is equivalent to v/5. The

output will have a floating point type, but its precision is determined from the
input: if the input is a 64-bit floating point, the output will also be 64-bit.

4 See the EPS and PDF part of Section 5.3.1 [Recognized file formats|, page 157, for a little more on the
Postscript language.

Chapter 6: Data manipulation 191

Otherwise, the output will be 32-bit floating point (see Section 4.6 [Numeric
data types], page 128, for the respective precision). Therefore if you require 64-
bit precision in estimating the square root, convert the input to 64-bit floating
point first, for example with 5 float64 sqrt.

log Natural logarithm of first operand, so “4 log” is equivalent to [n(4). The output
type is determined from the input, see the explanation under sqrt for more.

logl0 Base-10 logarithm of first operand, so “4 1og10” is equivalent to log(4). The
output type is determined from the input, see the explanation under sqrt for
more.

minvalue Minimum (non-blank) value in the top operand on the stack, so “a.fits
minvalue” will push the minimum pixel value in this image onto the stack.
Therefore this operator is mainly intended for data (for example images), if the
top operand is a number, this operator just returns it without any change. So
note that when this operator acts on a single image, the output will no longer
be an image, but a number. The output of this operand is in the same type as
the input.

maxvalue Maximum (non-blank) value of first operand in the same type, similar to
minvalue.

numbervalue
Number of non-blank elements in first operand in the uint64 type, similar to
minvalue.

sumvalue Sum of non-blank elements in first operand in the float32 type, similar to
minvalue.

meanvalue
Mean value of non-blank elements in first operand in the float32 type, similar
to minvalue.

stdvalue Standard deviation of non-blank elements in first operand in the float32 type,
similar to minvalue.

medianvalue
Median of non-blank elements in first operand with the same type, similar to
minvalue.

min For each pixel, find the minimum value in all given datasets. The output will

have the same type as the input.

The first popped operand to this operator must be a positive integer number
which specifies how many further operands should be popped from the stack.
All the subsequently popped operands must have the same type and size. This
operator (and all the variable-operand operators similar to it that are discussed
below) will work in multi-threaded mode unless Arithmetic is called with the
--numthreads=1 option, see Section 4.5 [Multi-threaded operations|, page 126.
Each pixel of the output of the min operator will be given the minimum value of
the same pixel from all the popped operands/images. For example the following
command will produce an image with the same size and type as the three inputs,

Chapter 6:

max

number

sum

mean

std

median

quantile

Data manipulation 192

but each output pixel value will be the minimum of the same pixel’s values in
all three input images.

$ astarithmetic a.fits b.fits c.fits 3 min
Important notes:
e NaN/blank pixels will be ignored, see Section 6.1.3 [Blank pixels]|, page 181.

e The output will have the same type as the inputs. This is natural for the
min and max operators, but for other similar operators (for example sum, or
average) the per-pixel operations will be done in double precision floating
point and then stored back in the input type. Therefore, if the input was
an integer, C’s internal type conversion will be used.

For each pixel, find the maximum value in all given datasets. The output will
have the same type as the input. This operator is called similar to the min
operator, please see there for more.

For each pixel count the number of non-blank pixels in all given datasets. The
output will be an unsigned 32-bit integer datatype (see Section 4.6 [Numeric
data types|, page 128). This operator is called similar to the min operator,
please see there for more.

For each pixel, calculate the sum in all given datasets. The output will have the
a single-precision (32-bit) floating point type. This operator is called similar to
the min operator, please see there for more.

For each pixel, calculate the mean in all given datasets. The output will have
the a single-precision (32-bit) floating point type. This operator is called similar
to the min operator, please see there for more.

For each pixel, find the standard deviation in all given datasets. The output
will have the a single-precision (32-bit) floating point type. This operator is
called similar to the min operator, please see there for more.

For each pixel, find the median in all given datasets. The output will have the
a single-precision (32-bit) floating point type. This operator is called similar to
the min operator, please see there for more.

For each pixel, find the quantile from all given datasets. The output will have
the same numeric data type and size as the input datasets. Besides the input
datasets, the quantile operator also needs a single parameter (the requested
quantile). The parameter should be the first popped operand, with a value
between (and including) 0 and 1. The second popped operand must be the
number of datasets to use.

In the example below, the first-popped operand (0.7) is the quantile, the
second-popped operand (3) is the number of datasets to pop.

astarithmetic a.fits b.fits c.fits 3 0.7 quantile

sigclip—number

For each pixel, find the sigma-clipped number (after removing outliers) in all
given datasets. The output will have the an unsigned 32-bit integer type (see
Section 4.6 [Numeric data types], page 128).

Chapter 6: Data manipulation 193

This operator will combine the specified number of inputs into a single output
that contains the number of remaining elements after o-clipping on each
element /pixel (for more on o-clipping, see Section 7.1.3 [Sigma clipping],
page 240). This operator is very similar to min, with the exception that it
expects two operands (parameters for sigma-clipping) before the total number
of inputs. The first popped operand is the termination criteria and the second
is the multiple of o.

For example in the command below, the first popped operand (0.2) is the sigma
clipping termination criteria. If the termination criteria is larger than, or equal
to, 1 it is interpreted as the number of clips to do. But if it is between 0 and 1,
then it is the tolerance level on the standard deviation (see Section 7.1.3 [Sigma
clipping], page 240). The second popped operand (5) is the multiple of sigma
to use in sigma-clipping. The third popped operand (10) is number of datasets
that will be used (similar to the first popped operand to min).

astarithmetic a.fits b.fits c.fits 3 5 0.2 sigclip—number

sigclip-median
For each pixel, find the sigma-clipped median in all given datasets. The output
will have the a single-precision (32-bit) floating point type. This operator is
called similar to the sigclip-number operator, please see there for more.

sigclip-mean
For each pixel, find the sigma-clipped mean in all given datasets. The output
will have the a single-precision (32-bit) floating point type. This operator is
called similar to the sigclip-number operator, please see there for more.

sigclip-std
For each pixel, find the sigma-clipped standard deviation in all given datasets.
The output will have the a single-precision (32-bit) floating point type. This
operator is called similar to the sigclip-number operator, please see there for
more.

filter-mean

Apply mean filtering (or moving average (https://en.wikipedia.org/wiki/
Moving_average)) on the input dataset. During mean filtering, each pixel (data
element) is replaced by the mean value of all its surrounding pixels (excluding
blank values). The number of surrounding pixels in each dimension (to calculate
the mean) is determined through the earlier operands that have been pushed
onto the stack prior to the input dataset. The number of necessary operands
is determined by the dimensions of the input dataset (first popped operand).
The order of the dimensions on the command-line is the order in FITS format.
Here is one example:

$ astarithmetic 5 4 image.fits filter-mean

In this example, each pixel is replaced by the mean of a 5 by 4 box around it.
The box is 5 pixels along the first FITS dimension (horizontal when viewed in
ds9) and 4 pixels along the second FITS dimension (vertical).

Each pixel will be placed in the center of the box that the mean is calculated on.
If the given width along a dimension is even, then the center is assumed to be

https://en.wikipedia.org/wiki/Moving_average
https://en.wikipedia.org/wiki/Moving_average

Chapter 6: Data manipulation 194

between the pixels (not in the center of a pixel). When the pixel is close to the
edge, the pixels of the box that fall outside the image are ignored. Therefore,
on the edge, less points will be used in calculating the mean.

The final effect of mean filtering is to smooth the input image, it is essentially
a convolution with a kernel that has identical values for all its pixels (is flat),
see Section 6.3.1.1 [Convolution process|, page 207.

Note that blank pixels will also be affected by this operator: if there are any
non-blank elements in the box surrounding a blank pixel, in the filtered image,
it will have the mean of the non-blank elements, therefore it won’t be blank
any more. If blank elements are important for your analysis, you can use the
isblank with the where operator to set them back to blank after filtering.

filter-median
Apply median filtering (https://en.wikipedia.org/wiki/Median_filter)
on the input dataset. This is very similar to filter-mean, except that instead
of the mean value of the box pixels, the median value is used to replace a pixel
value. For more on how to use this operator, please see filter-mean.

The median is less susceptible to outliers compared to the mean. As a result,
after median filtering, the pixel values will be more discontinuous than mean
filtering.

filter-sigclip—mean

Apply a o-clipped mean filtering onto the input dataset. This is very similar to
filter-mean, except that all outliers (identified by the o-clipping algorithm)
have been removed, see Section 7.1.3 [Sigma clipping], page 240, for more on
the basics of this algorithm. As described there, two extra input parameters
are necessary for o-clipping: the multiple of ¢ and the termination criteria.
filter-sigclip-mean therefore needs to pop two other operands from the
stack after the dimensions of the box.

For example the line below uses the same box size as the example of
filter-mean. However, all elements in the box that are iteratively beyond
30 of the distribution’s median are removed from the final calculation of the
mean until the change in o is less than 0.2.

$ astarithmetic 3 0.2 5 4 image.fits filter-sigclip-mean

The median (which needs a sorted dataset) is necessary for o-clipping, therefore
filter-sigclip-mean can be significantly slower than filter-mean. However,
if there are strong outliers in the dataset that you want to ignore (for example
emission lines on a spectrum when finding the continuum), this is a much better
solution.

filter-sigclip-median
Apply a o-clipped median filtering onto the input dataset. This operator and
its necessary operands are almost identical to filter-sigclip-mean, except
that after o-clipping, the median value (which is less affected by outliers than
the mean) is added back to the stack.

https://en.wikipedia.org/wiki/Median_filter

Chapter 6: Data manipulation 195

interpolate-medianngb
Interpolate all the blank elements of the second popped operand with the me-
dian of its nearest non-blank neighbors. The number of the nearest non-blank
neighbors used to calculate the median is given by the first popped operand.
Note that the distance of the nearest non-blank neighbors is irrelevant in this
interpolation.

interpolate-minngb
Similar to interpolate-medianngb, but will fill the blank values of the dataset
with the minimum value of the nearest neighbors.

interpolate-maxngb
Similar to interpolate-medianngb, but will fill the blank values of the dataset
with the maximum value of the nearest neighbors. One useful implementation
of this operator is to fill the saturated pixels of stars in images.

collapse-sum
Collapse the given dataset (second popped operand), by summing all elements
along the first popped operand (a dimension in FITS standard: counting from
one, from fastest dimension). The returned dataset has one dimension less
compared to the input.

The output will have a double-precision floating point type irrespective of the
input dataset’s type. Doing the operation in double-precision (64-bit) float-
ing point will help the collapse (summation) be affected less by floating point
errors. But afterwards, single-precision floating points are usually enough in
real (noisy) datasets. So depending on the type of the input and its nature, it
is recommended to use one of the type conversion operators on the returned
dataset.

If any WCS is present, the returned dataset will also lack the respective di-
mension in its WCS matrix. Therefore, when the WCS is important for later
processing, be sure that the input is aligned with the respective axes: all non-
diagonal elements in the WCS matrix are zero.

One common application of this operator is the creation of pseudo broad-band
or narrow-band 2D images from 3D data cubes. For example integral field
unit (IFU) data products that have two spatial dimensions (first two FITS
dimensions) and one spectral dimension (third FITS dimension). The command
below will collapse the whole third dimension into a 2D array the size of the
first two dimensions, and then convert the output to single-precision floating
point (as discussed above).

$ astarithmetic cube.fits 3 collapse-sum float32

collapse-mean
Similar to collapse-sum, but the returned dataset will be the mean value along
the collapsed dimension, not the sum.

collapse-number
Similar to collapse-sum, but the returned dataset will be the number of non-
blank values along the collapsed dimension. The output will have a 32-bit signed
integer type. If the input dataset doesn’t have blank values, all the elements

Chapter 6: Data manipulation 196

in the returned dataset will have a single value (the length of the collapsed
dimension). Therefore this is mostly relevant when there are blank values in
the dataset.

collapse-min
Similar to collapse-sum, but the returned dataset will have the same numeric
type as the input and will contain the minimum value for each pixel along the
collapsed dimension.

collapse-max
Similar to collapse-sum, but the returned dataset will have the same numeric
type as the input and will contain the maximum value for each pixel along the
collapsed dimension.

add-dimension

Build a higher-dimensional dataset from all the input datasets stacked after
one another (along the slowest dimension). The first popped operand has to
be a single number. It is used by the operator to know how many operands it
should pop from the stack (and the size of the output in the new dimension).
The rest of the operands must have the same size and numerical data type.
This operator currently only works for 2D input operands, please contact us if
you want inputs to have different dimensions.

The output’s WCS (which should have a different dimensionality compared to
the inputs) can be read from another file with the -—wcsfile option. If no file
is specified for the WCS, the first dataset’s WCS will be used, you can later
add/change the necessary WCS keywords with the FITS keyword modification
features of the Fits program (see Section 5.1 [Fits], page 142).

If your datasets don’t have the same type, you can use the type transformation
operators of Arithmetic that are discussed below. Just beware of overflow if
you are transforming to a smaller type, see Section 4.6 [Numeric data types],
page 128.

For example if you want to put the three imgl.fits, img2.fits and img3.fits
images (each a 2D dataset) into one 3D datacube, you can use this command:

$ astarithmetic imgl.fits img2.fits img3.fits 3 add-dimension

unique Remove all duplicate (and blank) elements from the first popped operand. The
unique elements of the dataset will be stored in a single-dimensional dataset.

Recall that by default, single-dimensional datasets are stored as a table column
in the output. But you can use --onedasimage or --onedonstdout to respec-
tively store them as a single-dimensional FITS array/image, or to print them
on the standard output.

erode Erode the foreground pixels (with value 1) of the input dataset (second popped
operand). The first popped operand is the connectivity (see description in
connected-components). Erosion is simply a flipping of all foreground pixels
(with value 1) to background (with value 0) that are “touching” background
pixels. “Touching” is defined by the connectivity. In effect, this carves off the
outer borders of the foreground, making them thinner. This operator assumes
a binary dataset (all pixels are 0 and 1).

Chapter 6: Data manipulation 197

dilate

Dilate the foreground pixels (with value 1) of the input dataset (second popped
operand). The first popped operand is the connectivity (see description in
connected-components). Dilation is simply a flipping of all background pixels
(with value 0) to foreground (with value 1) that are “touching” foreground
pixels. “Touching” is defined by the connectivity. In effect, this expands the
outer borders of the foreground. This operator assumes a binary dataset (all
pixels are 0 and 1).

connected-components

fill-holes

invert

1t

Find the connected components in the input dataset (second popped operand).
The first popped is the connectivity used in the connected components algo-
rithm. The second popped operand is the dataset where connected components
are to be found. It is assumed to be a binary image (with values of 0 or 1).
It must have an 8-bit unsigned integer type which is the format produced by
conditional operators. This operator will return a labeled dataset where the
non-zero pixels in the input will be labeled with a counter (starting from 1).

The connectivity is a number between 1 and the number of dimensions in the
dataset (inclusive). 1 corresponds to the weakest (symmetric) connectivity
between elements and the number of dimensions the strongest. For example
on a 2D image, a connectivity of 1 corresponds to 4-connected neighbors and 2
corresponds to 8-connected neighbors.

One example usage of this operator can be the identification of regions above a
certain threshold, as in the command below. With this command, Arithmetic
will first separate all pixels greater than 100 into a binary image (where pixels
with a value of 1 are above that value). Afterwards, it will label all those that
are connected.

$ astarithmetic in.fits 100 gt 2 connected-components

If your input dataset doesn’t have a binary type, but you know all its values
are 0 or 1, you can use the uint8 operator (below) to convert it to binary.

Flip background (0) pixels surrounded by foreground (1) in a binary dataset.
This operator takes two operands (similar to connected-components): the
first popped operand is the connectivity (to define a hole) and the second is the
binary (0 or 1 valued) dataset to fill holes in.

Invert an unsigned integer dataset. This is the only operator that ignores blank
values (which are set to be the maximum values in the unsigned integer types).

This is useful in cases where the target(s) has(have) been imaged in absorption
as raw formats (which are unsigned integer types). With this option, the max-
imum value for the given type will be subtracted from each pixel value, thus
“inverting” the image, so the target(s) can be treated as emission. This can
be useful when the higher-level analysis methods/tools only work on emission
(positive skew in the noise, not negative).

Less than: If the second popped (or left operand in infix notation, see
Section 6.2.1 [Reverse polish notation], page 189) value is smaller than the
first popped operand, then this function will return a value of 1, otherwise it

Chapter 6:

le

gt

ge

eq

ne

or

not

isblank

where

Data manipulation 198

will return a value of 0. If both operands are images, then all the pixels will be
compared with their counterparts in the other image. If only one operand is
an image, then all the pixels will be compared with the single value (number)
of the other operand. Finally if both are numbers, then the output is also just
one number (0 or 1). When the output is not a single number, it will be stored
as an unsigned char type.

Less or equal: similar to 1t (‘less than’ operator), but returning 1 when the
second popped operand is smaller or equal to the first.

Greater than: similar to 1t (‘less than’ operator), but returning 1 when the
second popped operand is greater than the first.

Greater or equal: similar to 1t (‘less than’ operator), but returning 1 when the
second popped operand is larger or equal to the first.

Equality: similar to 1t (‘less than’ operator), but returning 1 when the two
popped operands are equal (to double precision floating point accuracy).

Non-Equality: similar to 1t (‘less than’ operator), but returning 1 when the two
popped operands are not equal (to double precision floating point accuracy).

Logical AND: returns 1 if both operands have a non-zero value and 0 if both
are zero. Both operands have to be the same kind: either both images or both
numbers.

Logical OR: returns 1 if either one of the operands is non-zero and 0 only when
both operators are zero. Both operands have to be the same kind: either both
images or both numbers.

Logical NOT: returns 1 when the operand is zero and 0 when the operand is
non-zero. The operand can be an image or number, for an image, it is applied
to each pixel separately.

Test for a blank value (see Section 6.1.3 [Blank pixels|, page 181). In essence,
this is very similar to the conditional operators: the output is either 1 or 0
(see the ‘less than’ operator above). The difference is that it only needs one
operand. Because of the definition of a blank pixel, a blank value is not even
equal to itself, so you cannot use the equal operator above to select blank pixels.
See the “Blank pixels” box below for more on Blank pixels in Arithmetic.

Change the input (pixel) value where/if a certain condition holds. The con-
ditional operators above can be used to define the condition. Three operands
are required for where. The input format is demonstrated in this simplified
example:

$ astarithmetic modify.fits binary.fits if-true.fits where

The value of any pixel in modify.fits that corresponds to a non-zero and non-
blank pixel of binary.fits will be changed to the value of the same pixel in
if-true.fits (this may also be a number). The 3rd and 2nd popped operands
(modify.fits and binary.fits respectively, see Section 6.2.1 [Reverse polish
notation|, page 189) have to have the same dimensions/size. if-true.fits can
be either a number, or have the same dimension/size as the other two.

Chapter 6: Data manipulation 199

bitand

bitor

bitxor

1shift

The 2nd popped operand (binary.fits) has to have uint8 (or unsigned char
in standard C) type (see Section 4.6 [Numeric data types|, page 128). It is
treated as a binary dataset (with only two values: zero and non-zero, hence the
name binary.fits in this example). However, commonly you won’t be dealing
with an actual FITS file of a condition/binary image. You will probably define
the condition in the same run based on some other reference image and use
the conditional and logical operators above to make a true/false (or one/zero)
image for you internally. For example the case below:

$ astarithmetic in.fits reference.fits 100 gt new.fits where

In the example above, any of the in.fits pixels that has a value in
reference.fits greater than 100, will be replaced with the corresponding
pixel in new.fits. Effectively the reference.fits 100 gt part created
the condition/binary image which was added to the stack (in memory) and
later used by where. The command above is thus equivalent to these two
commands:

$ astarithmetic reference.fits 100 gt --output=binary.fits
$ astarithmetic in.fits binary.fits new.fits where

Finally, the input operands are read and used independently, so you can use
the same file more than once as any of the operands.

When the 1st popped operand to where (if-true.fits) is a single number, it
may be a NaN value (or any blank value, depending on its type) like the example
below (see Section 6.1.3 [Blank pixels|, page 181). When the number is blank,
it will be converted to the blank value of the type of the 3rd popped operand
(in.fits). Hence, in the example below, all the pixels in reference.fits that
have a value greater than 100, will become blank in the natural data type of
in.fits (even though NaN values are only defined for floating point types).

$ astarithmetic in.fits reference.fits 100 gt nan where

Bitwise AND operator: only bits with values of 1 in both popped operands will
get the value of 1, the rest will be set to 0. For example (assuming numbers can
be written as bit strings on the command-line): 00101000 00100010 bitand
will give 00100000. Note that the bitwise operators only work on integer type
datasets.

Bitwise inclusive OR operator: The bits where at least one of the two popped
operands has a 1 value get a value of 1, the others 0. For example (assum-
ing numbers can be written as bit strings on the command-line): 00101000
00100010 bitand will give 00101010. Note that the bitwise operators only
work on integer type datasets.

Bitwise exclusive OR operator: A bit will be 1 if it differs between the two
popped operands. For example (assuming numbers can be written as bit strings
on the command-line): 00101000 00100010 bitand will give 00001010. Note
that the bitwise operators only work on integer type datasets.

Bitwise left shift operator: shift all the bits of the first operand to the left by a
number of times given by the second operand. For example (assuming numbers
can be written as bit strings on the command-line): 00101000 2 1shift will

Chapter 6:

rshift

bitnot

uint8

int8

uinti16

int16

uint32

int32

uint64

float32

float64

size

Data manipulation 200

give 10100000. This is equivalent to multiplication by 4. Note that the bitwise
operators only work on integer type datasets.

Bitwise right shift operator: shift all the bits of the first operand to the right by a
number of times given by the second operand. For example (assuming numbers
can be written as bit strings on the command-line): 00101000 2 rshift will
give 00001010. Note that the bitwise operators only work on integer type
datasets.

Bitwise not (more formally known as one’s complement) operator: flip all the
bits of the popped operand (note that this is the only unary, or single operand,
bitwise operator). In other words, any bit with a value of 0 is changed to 1 and
vice-versa. For example (assuming numbers can be written as bit strings on the
command-line): 00101000 bitnot will give 11010111. Note that the bitwise
operators only work on integer type datasets/numbers.

Convert the type of the popped operand to 8-bit unsigned integer type (see
Section 4.6 [Numeric data types|, page 128). The internal conversion of C will
be used.

Convert the type of the popped operand to 8-bit signed integer type (see
Section 4.6 [Numeric data types], page 128). The internal conversion of C
will be used.

Convert the type of the popped operand to 16-bit unsigned integer type (see
Section 4.6 [Numeric data types], page 128). The internal conversion of C will
be used.

Convert the type of the popped operand to 16-bit signed integer (see Section 4.6
[Numeric data types], page 128). The internal conversion of C will be used.

Convert the type of the popped operand to 32-bit unsigned integer type (see
Section 4.6 [Numeric data types], page 128). The internal conversion of C will
be used.

Convert the type of the popped operand to 32-bit signed integer type (see
Section 4.6 [Numeric data types], page 128). The internal conversion of C will
be used.

Convert the type of the popped operand to 64-bit unsigned integer (see
Section 4.6 [Numeric data types], page 128). The internal conversion of C will
be used.

Convert the type of the popped operand to 32-bit (single precision) floating
point (see Section 4.6 [Numeric data types|, page 128). The internal conversion
of C will be used.

Convert the type of the popped operand to 64-bit (double precision) floating
point (see Section 4.6 [Numeric data types|, page 128). The internal conversion
of C will be used.

Size of the dataset along a given FITS/Fortran dimension (counting from 1).
The desired dimension should be the first popped operand and the dataset must
be the second popped operand. The output will be a single unsigned integer

Chapter 6: Data manipulation 201

(dimensions cannot be negative). For example, the following command will
produce the size of the first extension/HDU (the default HDU) of a.fits along
the second FITS axis.

astarithmetic a.fits 2 size

set-AAA Set the characters after the dash (AAA in the case shown here) as a name for
the first popped operand on the stack. The named dataset will be freed from
memory as soon as it is no longer needed, or if the name is reset to refer to
another dataset later in the command. This operator thus enables re-usability
of a dataset without having to re-read it from a file every time it is necessary
during a process. When a dataset is necessary more than once, this operator
can thus help simplify reading/writing on the command-line (thus avoiding
potential bugs), while also speeding up the processing.

Like all operators, this operator pops the top operand off of the main process-
ing stack, but unlike other operands, it won’t add anything back to the stack
immediately. It will keep the popped dataset in memory through a separate list
of named datasets (not on the main stack). That list will be used to add/copy
any requested dataset to the main processing stack when the name is called.

The name to give the popped dataset is part of the operator’s name. For
example the set-a operator of the command below, gives the name “a” to the
contents of image.fits. This name is then used instead of the actual filename
to multiply the dataset by two.

$ astarithmetic image.fits set-a a 2 x

The name can be any string, but avoid strings ending with standard filename
suffixes (for example .fits)®.

One example of the usefulness of this operator is in the where operator. For
example, let’s assume you want to mask all pixels larger than 5 in image.fits
(extension number 1) with a NaN value. Without setting a name for the dataset,
you have to read the file two times from memory in a command like this:

$ astarithmetic image.fits image.fits 5 gt nan where -gl

But with this operator you can simply give image .fits the name i and simplify
the command above to the more readable one below (which greatly helps when
the filename is long):

$ astarithmetic image.fits set-i i i 5 gt nan where

tofile-AAA
Write the top operand on the operands stack into a file called AAA (can be any
FITS file name) without changing the operands stack. If you don’t need the
dataset any more and would like to free it, see the tofilefree operator below.

By default, any file that is given to this operator is deleted before Arithmetic
actually starts working on the input datasets. The deletion can be deactivated
with the --dontdelete option (as in all Gnuastro programs, see Section 4.1.2.1

5 A dataset name like a.fits (which can be set with set-a.fits) will cause confusion in the initial parser
of Arithmetic. It will assume this name is a FITS file, and if it is used multiple times, Arithmetic will
abort, complaining that you haven’t provided enough HDUs.

Chapter 6: Data manipulation 202

[Input/Output options], page 107). If the same FITS file is given to this oper-
ator multiple times, it will contain multiple extensions (in the same order that
it was called.

For example the operator tofile-check.fits will write the top operand to
check.fits. Since it doesn’t modify the operands stack, this operator is very
convenient when you want to debug, or understanding, a string of operators
and operands given to Arithmetic: simply put tofile-AAA anywhere in the
process to see what is happening behind the scenes without modifying the
overall process.

tofilefree-AAA
Similar to the tofile operator, with the only difference that the dataset that
is written to a file is popped from the operand stack and freed from memory
(cannot be used any more).

(N
Blank pixels in Arithmetic: Blank pixels in the image (see Section 6.1.3 [Blank pixels],

page 181) will be stored based on the data type. When the input is floating point type,
blank values are NaN. One aspect of NaN values is that by definition they will fail on any
comparison. Hence both equal and not-equal operators will fail when both their operands
are NaN! Therefore, the only way to guarantee selection of blank pixels is through the
isblank operator explained above.

One way you can exploit this property of the NaN value to your advantage is when you
want a fully zero-valued image (even over the blank pixels) based on an already existing
image (with same size and world coordinate system settings). The following command will
produce this for you:

$ astarithmetic input.fits nan eq --output=all-zeros.fits

Note that on the command-line you can write NaN in any case (for example NaN, or NAN are

also acceptable). Reading NaN as a floating point number in Gnuastro isn’t case-sensitive.
S J

6.2.3 Invoking Arithmetic

Arithmetic will do pixel to pixel arithmetic operations on the individual pixels of input data
and/or numbers. For the full list of operators with explanations, please see Section 6.2.2
[Arithmetic operators], page 190. Any operand that only has a single element (number, or
single pixel FITS image) will be read as a number, the rest of the inputs must have the
same dimensions. The general template is:

$ astarithmetic [OPTION...] ASTRdatal [ASTRdata2] OPERATOR ...
One line examples:

Calculate (10.32-3.84)72.7 quietly (will just print 155.329):
$ astarithmetic -q 10.32 3.84 - 2.7 pow

Inverse the input image (1/pixel):
$ astarithmetic 1 image.fits / --out=inverse.fits

Multiply each pixel in image by -1:
$ astarithmetic image.fits -1 x --out=negative.fits

Chapter 6: Data manipulation 203

Subtract extension 4 from extension 1 (counting from zero):
$ astarithmetic image.fits image.fits - --out=skysub.fits \
--hdu=1 --hdu=4

Add two images, then divide them by 2 (2 is read as floating point):
Note that without the ’.0’, the ’2’ will be read/used as an integer.
$ astarithmetic imagel.fits image2.fits + 2.0 / --out=average.fits

Use Arithmetic’s average operator:
$ astarithmetic imagel.fits image2.fits average --out=average.fits

Calculate the median of three images in three separate extensions:
$ astarithmetic imgl.fits img2.fits img3.fits median \
-h0 -hl -h2 --out=median.fits

Arithmetic’s notation for giving operands to operators is fully described in Section 6.2.1
[Reverse polish notation], page 189. The output dataset is last remaining operand on the
stack. When the output dataset a single number, it will be printed on the command-line.
When the output is an array, it will be stored as a file.

The name of the final file can be specified with the —-output option, but if its not given,
Arithmetic will use “automatic output” on the name of the first FITS image encountered to
generate an output file name, see Section 4.9 [Automatic output], page 138. By default, if the
output file already exists, it will be deleted before Arithmetic starts operation. However,
this can be disabled with the --dontdelete option (see below). At any point during
Arithmetic’s operation, you can also write the top operand on the stack to a file, using the
tofile or tofilefree operators, see Section 6.2.2 [Arithmetic operators], page 190.

By default, the world coordinate system (WCS) information of the output dataset will
be taken from the first input image (that contains a WCS) on the command-line. This
can be modified with the —-wcsfile and --wcshdu options described below. When the
-—quiet option isn’t given, the name and extension of the dataset used for the output’s
WCS is printed on the command-line.

Through operators like those starting with collapse-, the dimensionality of the inputs
may not be the same as the outputs. By default, when the output is 1D, Arithmetic will
write it as a table, not an image/array. The format of the output table (plain text or
FITS ASCII or binary) can be set with the --tableformat option, see Section 4.1.2.1
[Input/Output options], page 107). You can disable this feature (write 1D arrays as FITS
images/arrays, or to the standard output) with the --onedasimage or --onedonstdout
options.

See Section 4.1.2 [Common options|, page 107, for a review of the options in all Gnuastro
programs. Arithmetic just redefines the —-hdu and --dontdelete options as explained
below.

-h INT/STR

--hdu INT/STR
The header data unit of the input FITS images, see Section 4.1.2.1
[Input/Output options], page 107. Unlike most options in Gnuastro (which

Chapter 6: Data manipulation 204

-g INT/STR

will ultimately only have one value for this option), Arithmetic allows --hdu
to be called multiple times and the value of each invocation will be stored
separately (for the unlimited number of input images you would like to use).
Recall that for other programs this (common) option only takes a single value.
So in other programs, if you specify it multiple times on the command-line,
only the last value will be used and in the configuration files, it will be ignored
if it already has a value.

The order of the values to —-hdu has to be in the same order as input FITS
images. Options are first read from the command-line (from left to right),
then top-down in each configuration file, see Section 4.2.2 [Configuration file
precedence], page 119.

If the number of HDUs is less than the number of input images, Arithmetic
will abort and notify you. However, if there are more HDUs than FITS images,
there is no problem: they will be used in the given order (every time a FITS
image comes up on the stack) and the extra HDUs will be ignored in the end.
So there is no problem with having extra HDUs in the configuration files and by
default several HDUs with a value of 0 are kept in the system-wide configuration
file when you install Gnuastro.

--globalhdu INT/STR

-w STR

Use the value to this option as the HDU of all input FITS files. This option is
very convenient when you have many input files and the dataset of interest is
in the same HDU of all the files. When this option is called, any values given
to the --hdu option (explained above) are ignored and will not be used.

--wcsfile STR

-W STR

FITS Filename containing the WCS structure that must be written to the
output. The HDU /extension should be specified with --wcshdu.

When this option is used, the respective WCS will be read before any processing
is done on the command-line and directly used in the final output. If the given
file doesn’t have any WCS, then the default WCS (first file on the command-line
with WCS) will be used in the output.

This option will mostly be used when the default file (first of the set of inputs)
is not the one containing your desired WCS. But with this option, you can also
use Arithmetic to rewrite/change the WCS of an existing FITS dataset from
another file:

$ astarithmetic data.fits --wcsfile=other.fits -ofinal.fits

—--wcshdu STR

HDU /extension to read the WCS within the file given to -—wcsfile. For more,
see the description of --wcsfile.

Chapter 6: Data manipulation 205

-0

--onedasimage
When final dataset to write as output only has one dimension, write it as a
FITS image/array. By default, if the output is 1D, it will be written as a table,
see above.

-s

—--onedonstdout
When final dataset to write as output only has one dimension, print it on the
standard output, not in a file. By default, if the output is 1D, it will be written
as a table, see above.

-D

-—dontdelete

Don’t delete the output file, or files given to the tofile or tofilefree opera-
tors, if they already exist. Instead append the desired datasets to the extensions
that already exist in the respective file. Note it doesn’t matter if the final output
file name is given with the -—output option, or determined automatically.

Arithmetic treats this option differently from its default operation in other
Gnuastro programs (see Section 4.1.2.1 [Input/Output options], page 107).
If the output file exists, when other Gnuastro programs are called with
--dontdelete, they simply complain and abort. But when Arithmetic is
called with --dontdelete, it will appended the dataset(s) to the existing
extension(s) in the file.

Arithmetic accepts two kinds of input: images and numbers. Images are considered to
be any of the inputs that is a file name of a recognized type (see Section 4.1.1.1 [Arguments],
page 105) and has more than one element/pixel. Numbers on the command-line will be
read into the smallest type (see Section 4.6 [Numeric data types|, page 128) that can store
them, so -2 will be read as a char type (which is signed on most systems and can thus keep
negative values), 2500 will be read as an unsigned short (all positive numbers will be read
as unsigned), while 3.1415926535897 will be read as a double and 3.14 will be read as a
float. To force a number to be read as float, put a . after it (possibly followed by a zero
for easier readability), or add an f after it. Hence while 5 will be read as an integer, 5.,
5.0 or 5f will be added to the stack as float (see Section 6.2.1 [Reverse polish notation],
page 189).

Unless otherwise stated (in Section 6.2.2 [Arithmetic operators], page 190), the operators
can deal with numeric multiple data types (see Section 4.6 [Numeric data types|, page 128).
For example in “a.fits b.fits +”, the image types can be long and float. In such cases,
C’s internal type conversion will be used. The output type will be set to the higher-ranking
type of the two inputs. Unsigned integer types have smaller ranking than their signed
counterparts and floating point types have higher ranking than the integer types. So the
internal C type conversions done in the example above are equivalent to this piece of C:

size_t i;

long a[100];

float b[100], out[100];
for(i=0;i<100;++i) out[il=al[i]+b[i];

Chapter 6: Data manipulation 206

Relying on the default C type conversion significantly speeds up the processing and also
requires less RAM (when using very large images).

Some operators can only work on integer types (of any length, for example bitwise
operators) while others only work on floating point types, (currently only the pow operator).
In such cases, if the operand type(s) are different, an error will be printed. Arithmetic also
comes with internal type conversion operators which you can use to convert the data into
the appropriate type, see Section 6.2.2 [Arithmetic operators], page 190.

The hyphen (=) can be used both to specify options (see Section 4.1.1.2 [Options],
page 105) and also to specify a negative number which might be necessary in your arith-
metic. In order to enable you to do this, Arithmetic will first parse all the input strings
and if the first character after a hyphen is a digit, then that hyphen is temporarily replaced
by the vertical tab character which is not commonly used. The arguments are then parsed
and these strings will not be specified as an option. Then the given arguments are parsed
and any vertical tabs are replaced back with a hyphen so they can be read as negative
numbers. Therefore, as long as the names of the files you want to work on, don’t start with
a vertical tab followed by a digit, there is no problem. An important consequence of this
implementation is that you should not write negative fractions like this: -.3, instead write
them as -0.3.

Without any images, Arithmetic will act like a simple calculator and print the resulting
output number on the standard output like the first example above. If you really want
such calculator operations on the command-line, AWK (GNU AWK is the most common
implementation) is much faster, easier and much more powerful. For example, the numerical
one-line example above can be done with the following command. In general AWK is a
fantastic tool and GNU AWK has a wonderful manual (https://www.gnu.org/software/
gawk/manual/). So if you often confront situations like this, or have to work with large
text tables/catalogs, be sure to checkout AWK and simplify your life.

$ echo "" | awk ’{print (10.32-3.84)72.73}’
155.329

6.3 Convolve

On an image, convolution can be thought of as a process to blur or remove the contrast
in an image. If you are already familiar with the concept and just want to run Convolve,
you can jump to Section 6.3.4 [Convolution kernel], page 224, and Section 6.3.5 [Invoking
Convolve], page 225, and skip the lengthy introduction on the basic definitions and concepts
of convolution.

There are generally two methods to convolve an image. The first and more intuitive
one is in the “spatial domain” or using the actual image pixel values, see Section 6.3.1
[Spatial domain convolution], page 207. The second method is when we manipulate the
“frequency domain”, or work on the magnitudes of the different frequencies that constitute
the image, see Section 6.3.2 [Frequency domain and Fourier operations], page 209. Un-
derstanding convolution in the spatial domain is more intuitive and thus recommended if
you are just starting to learn about convolution. However, getting a good grasp of the
frequency domain is a little more involved and needs some concentration and some math-
ematical proofs. However, its reward is a faster operation and more importantly a very
fundamental understanding of this very important operation.

https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/

Chapter 6: Data manipulation 207

Convolution of an image will generally result in blurring the image because it mixes pixel
values. In other words, if the image has sharp differences in neighboring pixel values®, those
sharp differences will become smoother. This has very good consequences in detection of
signal in noise for example. In an actual observed image, the variation in neighboring pixel
values due to noise can be very high. But after convolution, those variations will decrease
and we have a better hope in detecting the possible underlying signal. Another case where
convolution is extensively used is in mock images and modeling in general, convolution can
be used to simulate the effect of the atmosphere or the optical system on the mock profiles
that we create, see Section 8.1.1.2 [Point spread function|, page 320. Convolution is a
very interesting and important topic in any form of signal analysis (including astronomical
observations). So we have thoroughly” explained the concepts behind it in the following
sub-sections.

6.3.1 Spatial domain convolution

The pixels in an input image represent different “spatial” positions, therefore when convo-
lution is done only using the actual input pixel values, we name the process as being done
in the “Spatial domain”. In particular this is in contrast to the “frequency domain” that we
will discuss later in Section 6.3.2 [Frequency domain and Fourier operations|, page 209. In
the spatial domain (and in realistic situations where the image and the convolution kernel
don’t extend to infinity), convolution is the process of changing the value of one pixel to
the weighted average of all the pixels in its neighborhood.

The ‘neighborhood’ of each pixel (how many pixels in which direction) and the ‘weight’
function (how much each neighboring pixel should contribute depending on its position) are
given through a second image which is known as a “kernel”8.

6.3.1.1 Convolution process

In convolution, the kernel specifies the weight and positions of the neighbors of each pixel.
To find the convolved value of a pixel, the central pixel of the kernel is placed on that
pixel. The values of each overlapping pixel in the kernel and image are multiplied by each
other and summed for all the kernel pixels. To have one pixel in the center, the sides of
the convolution kernel have to be an odd number. This process effectively mixes the pixel
values of each pixel with its neighbors, resulting in a blurred image compared to the sharper
input image.

Formally, convolution is one kind of linear ‘spatial filtering’ in image processing texts.
If we assume that the kernel has 2a + 1 and 2b+ 1 pixels on each side, the convolved value
of a pixel placed at x and y (C,,) can be calculated from the neighboring pixel values in
the input image (/) and the kernel (K) from

a b
Ca:,y = Z Z Ks,t X Im+s,y+t'

s=—at=—b

6 In astronomy, the only major time we confront such sharp borders in signal are cosmic rays. All other
sources of signal in an image are already blurred by the atmosphere or the optics of the instrument.

7 A mathematician will certainly consider this explanation is incomplete and inaccurate. However this
text is written for an understanding on the operations that are done on a real (not complex, discrete
and noisy) astronomical image, not any general form of abstract function

8 Also known as filter, here we will use ‘kernel’.

Chapter 6: Data manipulation 208

Any pixel coordinate that is outside of the image in the equation above will be considered
to be zero. When the kernel is symmetric about its center the blurred image has the same
orientation as the original image. However, if the kernel is not symmetric, the image will
be affected in the opposite manner, this is a natural consequence of the definition of spatial
filtering. In order to avoid this we can rotate the kernel about its center by 180 degrees so
the convolved output can have the same original orientation. Technically speaking, only if
the kernel is flipped the process is known Convolution. If it isn’t it is known as Correlation.

To be a weighted average, the sum of the weights (the pixels in the kernel) have to be
unity. This will have the consequence that the convolved image of an object and unconvolved
object will have the same brightness (see Section 8.1.3 [Flux Brightness and magnitude],
page 324), which is natural, because convolution should not eat up the object photons, it
only disperses them.

6.3.1.2 Edges in the spatial domain

In purely ‘linear’ spatial filtering (convolution), there are problems on the edges of the input
image. Here we will explain the problem in the spatial domain. For a discussion of this
problem from the frequency domain perspective, see Section 6.3.2.10 [Edges in the frequency
domain|, page 223. The problem originates from the fact that on the edges, in practice?,
the sum of the weights we use on the actual image pixels is not unity. For example, as
discussed above, a profile in the center of an image will have the same brightness before
and after convolution. However, for partially imaged profile on the edge of the image, the
brightness (sum of its pixel fluxes within the image, see Section 8.1.3 [Flux Brightness and
magnitude], page 324) will not be equal, some of the flux is going to be ‘eaten’ by the edges.

If you ran $ make check on the source files of Gnuastro, you can see the this effect by
comparing the convolve_frequency.fits with convolve_spatial.fits in the ./tests/
directory. In the spatial domain, by default, no assumption will be made about pixels
outside of the image or any blank pixels in the image. The problem explained above will
also occur on the sides of blank regions (see Section 6.1.3 [Blank pixels], page 181). The
solution to this edge effect problem is only possible in the spatial domain. For pixels near the
edge, we have to abandon the assumption that the sum of the kernel pixels is unity during
the convolution process'®. So taking W as the sum of the kernel pixels that overlapped
with non-blank and in-image pixels, the equation in Section 6.3.1.1 [Convolution process],
page 207, will become:

a b
C _ Zs:—a Zt:-b Ks,t X Ia:+s,y+t
e %4 '

In this manner, objects which are near the edges of the image or blank pixels will also have
the same brightness (within the image) before and after convolution. This correction is
applied by default in Convolve when convolving in the spatial domain. To disable it, you
can use the -—noedgecorrection option. In the frequency domain, there is no way to avoid

9 Because we assumed the overlapping pixels outside the input image have a value of zero.
10 sfcourse the sum of the kernel pixels still have to be unity in general.

Chapter 6: Data manipulation 209

this loss of flux near the edges of the image, see Section 6.3.2.10 [Edges in the frequency
domain|, page 223, for an interpretation from the frequency domain perspective.

Note that the edge effect discussed here is different from the one in Section 8.1.2 [If
convolving afterwards], page 324. In making mock images we want to simulate a real
observation. In a real observation the images of the galaxies on the sides of the CCD are
first blurred by the atmosphere and instrument, then imaged. So light from the parts of a
galaxy which are immediately outside the CCD will affect the parts of the galaxy which are
covered by the CCD. Therefore in modeling the observation, we have to convolve an image
that is larger than the input image by exactly half of the convolution kernel. We can hence
conclude that this correction for the edges is only useful when working on actual observed
images (where we don’t have any more data on the edges) and not in modeling.

6.3.2 Frequency domain and Fourier operations

Getting a good grip on the frequency domain is usually not an easy job! So we have
decided to give the issue a complete review here. Convolution in the frequency domain (see
Section 6.3.2.6 [Convolution theorem|, page 216) heavily relies on the concepts of Fourier
transform (Section 6.3.2.4 [Fourier transform|, page 214) and Fourier series (Section 6.3.2.3
[Fourier series|, page 212) so we will be investigating these important operations first. It has
become something of a cliché for people to say that the Fourier series “is a way to represent
a (wave-like) function as the sum of simple sine waves” (from Wikipedia). However, sines
themselves are abstract functions, so this statement really adds no extra layer of physical
insight.

Before jumping head-first into the equations and proofs, we will begin with a historical
background to see how the importance of frequencies actually roots in our ancient desire
to see everything in terms of circles. A short review of how the complex plane should be
interpreted is then given. Having paved the way with these two basics, we define the Fourier
series and subsequently the Fourier transform. The final aim is to explain discrete Fourier
transform, however some very important concepts need to be solidified first: The Dirac
comb, convolution theorem and sampling theorem. So each of these topics are explained
in their own separate sub-sub-section before going on to the discrete Fourier transform.
Finally we revisit (after Section 6.3.1.2 [Edges in the spatial domain], page 208) the problem
of convolution on the edges, but this time in the frequency domain. Understanding the
sampling theorem and the discrete Fourier transform is very important in order to be able
to pull out valuable science from the discrete image pixels. Therefore we have included
the mathematical proofs and figures so you can have a clear understanding of these very
important concepts.

6.3.2.1 Fourier series historical background

Ever since the ancient times, the circle has been (and still is) the simplest shape for abstract
comprehension. All you need is a center point and a radius and you are done. All the
points on a circle are at a fixed distance from the center. However, the moment you try
to connect this elegantly simple and beautiful abstract construct (the circle) with the real
world (for example compute its area or its circumference), things become really hard (ideally,
impossible) because the irrational number 7 gets involved.

The key to understanding the Fourier series (thus the Fourier transform and finally the
Discrete Fourier Transform) is our ancient desire to express everything in terms of circles or

Chapter 6: Data manipulation 210

the most exceptionally simple and elegant abstract human construct. Most people prefer to
say the same thing in a more ahistorical manner: to break a function into sines and cosines.
As the term “ancient” in the previous sentence implies, Jean-Baptiste Joseph Fourier (1768
— 1830 A.D.) was not the first person to do this. The main reason we know this process
by his name today is that he came up with an ingenious method to find the necessary
coefficients (radius of) and frequencies (“speed” of rotation on) the circles for any generic
(integrable) function.

4sin@ 2sin@
n . . -n
4sin36 2sin20 - 7
3n AN 2n
4sin50 2sin36 b \/
5mn X -3n
Al A
4sin76 . ‘~ 2sinde . T
I e\ Tam \//
Figure 6.1: Epicycles and the Fourier series. Left: A demonstration of
Mercury’s epicycles relative to the “center of the world” by Qutb al-Din
al-Shirazi (1236 - 1311 A.D.) retrieved from Wikipedia (https://commons.
wikimedia.org/wiki/File:Ghotb2. jpg). Middle (https://commons.wikimedia.
org/wiki/File:Fourier_series_square_wave_circles_animation.gif) and
Right: How adding more epicycles (or terms in the Fourier series) will ap-
proximate functions. The right (https://commons.wikimedia.org/wiki/

File:Fourier_series_sawtooth_wave_circles_animation.gif) animation is also
available.

Like most aspects of mathematics, this process of interpreting everything in terms of
circles, began for astronomical purposes. When astronomers noticed that the orbit of Mars
and other outer planets, did not appear to be a simple circle (as everything should have
been in the heavens). At some point during their orbit, the revolution of these planets
would become slower, stop, go back a little (in what is known as the retrograde motion)
and then continue going forward again.

The correction proposed by Ptolemy (90 — 168 A.D.) was the most agreed upon. He
put the planets on Epicycles or circles whose center itself rotates on a circle whose center
is the earth. Eventually, as observations became more and more precise, it was necessary
to add more and more epicycles in order to explain the complex motions of the planets'!.
Figure 6.1(Left) shows an example depiction of the epicycles of Mercury in the late 13th
century.

Of course we now know that if they had abdicated the Earth from its throne in the center
of the heavens and allowed the Sun to take its place, everything would become much simpler

1 See the Wikipedia page on “Deferent and epicycle” for a more complete historical review.

https://commons.wikimedia.org/wiki/File:Ghotb2.jpg
https://commons.wikimedia.org/wiki/File:Ghotb2.jpg
https://commons.wikimedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif
https://commons.wikimedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif

Chapter 6: Data manipulation 211

and true. But there wasn’t enough observational evidence for changing the “professional
consensus” of the time to this radical view suggested by a small minority'?. So the pre-
Galilean astronomers chose to keep Earth in the center and find a correction to the models
(while keeping the heavens a purely “circular” order).

The main reason we are giving this historical background which might appear off topic is
to give historical evidence that while such “approximations” do work and are very useful for
pragmatic reasons (like measuring the calendar from the movement of astronomical bodies).
They offer no physical insight. The astronomers who were involved with the Ptolemaic world
view had to add a huge number of epicycles during the centuries after Ptolemy in order to
explain more accurate observations. Finally the death knell of this world-view was Galileo’s
observations with his new instrument (the telescope). So the physical insight, which is what
Astronomers and Physicists are interested in (as opposed to Mathematicians and Engineers
who just like proving and optimizing or calculating!) comes from being creative and not
limiting our selves to such approximations. Even when they work.

6.3.2.2 Circles and the complex plane

Before going onto the derivation, it is also useful to review how the complex numbers and
their plane relate to the circles we talked about above. The two schematics in the middle
and right of Figure 6.1 show how a 1D function of time can be made using the 2D real and
imaginary surface. Seeing the animation in Wikipedia will really help in understanding this
important concept. At each point in time, we take the vertical coordinate of the point and
use it to find the value of the function at that point in time. Figure 6.2 shows this relation
with the axes marked.

Leonhard Euler'® (1707 — 1783 A.D.) showed that the complex exponential (e’ where v
is real) is periodic and can be written as: e” = cosv + isinv. Therefore e’*t?™ = ™. Later,
Caspar Wessel (mathematician and cartographer 1745 — 1818 A.D.) showed how complex
numbers can be displayed as vectors on a plane. Euler’s identity might seem counter
intuitive at first, so we will try to explain it geometrically (for deeper physical insight). On
the real-imaginary 2D plane (like the left hand plot in each box of Figure 6.2), multiplying a
number by i can be interpreted as rotating the point by 90 degrees (for example the value 3
on the real axis becomes 3i on the imaginary axis). On the other hand, e = lim,,_, o (1+ %)",
therefore, defining m = nu, we get:

1 nu nuw m
e = lim <1+> = lim <1+u> = lim (1+u>
n—00 n n—o00 nu m—00 m

Taking u = iv the result can be written as a generic complex number (a function of v):

12 Aristarchus of Samos (310 — 230 B.C.) appears to be one of the first people to suggest the Sun being in
the center of the universe. This approach to science (that the standard model is defined by consensus)
and the fact that this consensus might be completely wrong still applies equally well to our models of
particle physics and cosmology today.

13 Other forms of this equation were known before Euler. For example in 1707 A.D. (the year of Euler’s

birth) Abraham de Moivre (1667 — 1754 A.D.) showed that (cosz + isinz)™ = cos(nz) + isin(nz). In

1714 A.D., Roger Cotes (1682 — 1716 A.D. a colleague of Newton who proofread the second edition of

Principia) showed that: iz = In(cosx + isinx).

Chapter 6: Data manipulation 212

e = lim (1 + iv)m = a(v) + ib(v)

m— 00 m

For v = 7, a nice geometric animation of going to the limit can be seen on Wikipedia
(https://commons.wikimedia.org/wiki/File:ExpIPi.gif). We see that lim,, ,. a(7) =
—1, while lim,,, ., b(w) = 0, which gives the famous ™ = —1 equation. The final value is
the real number —1, however the distance of the polygon points traversed as m — oo is half
the circumference of a circle or m, showing how v in the equation above can be interpreted
as an angle in units of radians and therefore how a(v) = cos(v) and b(v) = sin(v).

Since e is periodic (let’s assume with a period of T'), it is more clear to write it as
v = g ##t The advantage of this notation is that the

Tt (where n is an integer), so e’ = '’
period (T) is clearly visible and the frequency (22, in units of 1/cycle) is defined through
the integer n. In this notation, ¢ is in units of “cycle”s.

T

As we see from the examples in Figure 6.1 and Figure 6.2, for each constituting fre-
quency, we need a respective ‘magnitude’ or the radius of the circle in order to accurately
approximate the desired 1D function. The concepts of “period” and “frequency” are rela-
tively easy to grasp when using temporal units like time because this is how we define them
in every-day life. However, in an image (astronomical data), we are dealing with spatial
units like distance. Therefore, by one “period” we mean the distance at which the signal is
identical and frequency is defined as the inverse of that spatial “period”. The complex circle
of Figure 6.2 can be thought of the Moon rotating about Earth which is rotating around the
Sun; so the “Real (signal)” axis shows the Moon’s position as seen by a distant observer on
the Sun as time goes by. Because of the scalar (not having any direction or vector) nature
of time, Figure 6.2 is easier to understand in units of time. When thinking about spatial
units, mentally replace the “Time (sec)” axis with “Distance (meters)”. Because length has
direction and is a vector, visualizing the rotation of the imaginary circle and the advance
along the “Distance (meters)” axis is not as simple as temporal units like time.

Time: 1sec

Real(signal)

(R]

Real(signal)

Time: 2sec

Real(signal)

Real(signal)

NN

12 3 Time (sec)

-
N

3 Time (sec)

Figure 6.2: Relation between the real (signal), imaginary (i = /—1) and time axes at
two snapshots of time.

6.3.2.3 Fourier series

In astronomical images, our variable (brightness, or number of photo-electrons, or signal to
be more generic) is recorded over the 2D spatial surface of a camera pixel. However to make
things easier to understand, here we will assume that the signal is recorded in 1D (assume

https://commons.wikimedia.org/wiki/File:ExpIPi.gif
https://commons.wikimedia.org/wiki/File:ExpIPi.gif

Chapter 6: Data manipulation 213

one row of the 2D image pixels). Also for this section and the next (Section 6.3.2.4 [Fourier
transform|, page 214) we will be talking about the signal before it is digitized or pixelated.
Let’s assume that we have the continuous function f(I) which is integrable in the interval
[lo,lo + L] (always true in practical cases like images). Take [, as the position of the first
pixel in the assumed row of the image and L as the width of the image along that row. The
units of /[y and L can be in any spatial units (for example meters) or an angular unit (like
radians) multiplied by a fixed distance which is more common.

To approximate f(I) over this interval, we need to find a set of frequencies and their
corresponding ‘magnitude’s (see Section 6.3.2.2 [Circles and the complex plane], page 211).
Therefore our aim is to show f(l) as the following sum of periodic functions:

f()= Z et E

n=—oo

Note that the different frequencies (27n/L, in units of cycles per meters for example) are
not arbitrary. They are all integer multiples of the fundamental frequency of wy = 27 /L.
Recall that L was the length of the signal we want to model. Therefore, we see that the
smallest possible frequency (or the frequency resolution) in the end, depends on the length
we observed the signal or L. In the case of each dimension on an image, this is the size of the
image in the respective dimension. The frequencies have been defined in this “harmonic”
fashion to insure that the final sum is periodic outside of the [lg,ly + L] interval too. At
this point, you might be thinking that the sky is not periodic with the same period as my
camera’s view angle. You are absolutely right! The important thing is that since your
camera’s observed region is the only region we are “observing” and will be using, the rest of
the sky is irrelevant; so we can safely assume the sky is periodic outside of it. However, this
working assumption will haunt us later in Section 6.3.2.10 [Edges in the frequency domain],
page 223.

The frequencies are thus determined by definition. So all we need to do is to find the
coefficients (¢,), or magnitudes, or radii of the circles for each frequency which is identified
with the integer n. Fourier’s approach was to multiply both sides with a fixed term:

2 > 27 (n—m)
f(De 7T = Z cpe T T !

n=-—oo

where m > 0'*. We can then integrate both sides over the observation period:

lo+L lo+L St lo+L
_j2mm; j2rn—m), j2mn—m),
fHhe 7 dl = E cpe' T Tl = E Cn e~ T dl
lo

lo lo n=-—oo n=-—oo

Both n and m are positive integers. Also, we know that a complex exponential is periodic
so after one period (L) it comes back to its starting point. Therefore fllOOJrL e2 ™ /Ldl = 0 for

any k > 0. However, when k& = 0, this integral becomes: fllOOJrT eOdt = fliﬁT dt = T. Hence
since the integral will be zero for all n#m, we get:

14 Ve could have assumed m < 0 and set the exponential to positive, but this is more clear.

Chapter 6: Data manipulation 214

© lo+T j2m(n=m)
E Cn / e’ = ‘dl = Le,
lo

n=—oo

The origin of the axis is fundamentally an arbitrary position. So let’s set it to the start of
the image such that I, = 0. So we can find the “magnitude” of the frequency 27wm/L within
f(1) through the relation:

C = 1/L f(De 2l
m T L 0

6.3.2.4 Fourier transform

In Section 6.3.2.3 [Fourier series|, page 212, we had to assume that the function is periodic
outside of the desired interval with a period of L. Therefore, assuming that L — oo will
allow us to work with any function. However, with this approximation, the fundamental
frequency (wp) or the frequency resolution that we discussed in Section 6.3.2.3 [Fourier
series]|, page 212, will tend to zero: wy — 0. In the equation to find ¢,,, every m represented
a frequency (multiple of wy) and the integration on [removes the dependence of the right
side of the equation on [, making it only a function of m or frequency. Let’s define the
following two variables:

2mm

W=Emwy = ——
‘T L
F(w)=Le,,

The equation to find the coefficients of each frequency in Section 6.3.2.3 [Fourier series],
page 212, thus becomes:

Flw) = / T el

— 00

The function F'(w) is thus the Fourier transform of f(l) in the frequency domain. So through
this transformation, we can find (analyze) the magnitudes of the constituting frequencies or
the value in the frequency space!® of our spatial input function. The great thing is that we
can also do the reverse and later synthesize the input function from its Fourier transform.
Let’s do it: with the approximations above, multiply the right side of the definition of the
Fourier Series (Section 6.3.2.3 [Fourier series], page 212) with 1 = L/L = (woL)/(27):

1 & 2min 1 & -
== Y Lee = — Y Fw)elA
f() 5 Cae Wy = o (w)e™ Aw

n—=—oo n—=—oo

15 As we discussed before, this ‘magnitude’ can be interpreted as the radius of the circle rotating at this
frequency in the epicyclic interpretation of the Fourier series, see Figure 6.1 and Figure 6.2.

Chapter 6: Data manipulation 215

To find the right most side of this equation, we renamed wy as Aw because it was our
resolution, 27n/L was written as w and finally, Lc, was written as F(w) as we defined
above. Now, as L — 0o, Aw — 0 so we can write:

£) = % /_ O:o F(w)e duw

Together, these two equations provide us with a very powerful set of tools that we can use
to process (analyze) and recreate (synthesize) the input signal. Through the first equation,
we can break up our input function into its constituent frequencies and analyze it, hence it
is also known as analysis. Using the second equation, we can synthesize or make the input
function from the known frequencies and their magnitudes. Thus it is known as synthesis.
Here, we symbolize the Fourier transform (analysis) and its inverse (synthesis) of a function
f(1) and its Fourier Transform F(w) as F[f] and F~'[F].

6.3.2.5 Dirac delta and comb

The Dirac § (delta) function (also known as an impulse) is the way that we convert a
continuous function into a discrete one. It is defined to satisfy the following integral:

/ T sydi=1

— 0o

When integrated with another function, it gives that function’s value at | = 0:
| 1wswat = 5(0)
An impulse positioned at another point (say ly) is written as §(I — ly):

/ Z FWS(— L)t = (1)

The Dirac § function also operates similarly if we use summations instead of integrals. The
Fourier transform of the delta function is:

FI5()] = /_ Z S(1)e=ldl = =0 — 1

Flolt—to)) = [6~ lo)e™d1 = e

From the definition of the Dirac § we can also define a Dirac comb (IIIp) or an impulse
train with infinite impulses separated by P:

Chapter 6: Data manipulation 216

1Ip(l) = Z 5(1—kP)

k=—o0

P is chosen to represent “pixel width” later in Section 6.3.2.7 [Sampling theorem|, page 218.
Therefore the Dirac comb is periodic with a period of P. We have intentionally used a
different name for the period of the Dirac comb compared to the input signal’s length
of observation that we showed with L in Section 6.3.2.3 [Fourier series|, page 212. This
difference is highlighted here to avoid confusion later when these two periods are needed
together in Section 6.3.2.8 [Discrete Fourier transform|, page 221. The Fourier transform of
the Dirac comb will be necessary in Section 6.3.2.7 [Sampling theorem]|, page 218, so let’s
derive it. By its definition, it is periodic, with a period of P, so the Fourier coefficients of
its Fourier Series (Section 6.3.2.3 [Fourier series|, page 212) can be calculated within one
period:

IIp = Z coe’ P

n—=—oo

We can now find the ¢, from Section 6.3.2.3 [Fourier series|, page 212:

/P/2 e S M= i g
n = — = — [
- P P P=p

P/2 n=—oo

So we can write the Fourier transform of the Dirac comb as:

Flllp] = / Hlpe“!dl = Z / w2l Z 5(Qm)

- n=-—oo n=-—oo

In the last step, we used the fact that the complex exponential is a periodic function, that
n is an integer and that as we defined in Section 6.3.2.4 [Fourier transform|, page 214,
w=mwy, where m was an integer. The integral will be zero for any w that is not equal
to 27n/P, a more complete explanation can be seen in Section 6.3.2.3 [Fourier series],
page 212. Therefore, while in the spatial domain the impulses had spacing of P (meters
for example), in the frequency space, the spacing between the different impulses are 2w /P
cycles per meters.

6.3.2.6 Convolution theorem

The convolution (shown with the % operator) of the two functions f(I) and h(l) is defined
as:

o) = [7hl0) = [Fon(t - ryr

Chapter 6: Data manipulation 217

See Section 6.3.1.1 [Convolution process|, page 207, for a more detailed physical (pixel
based) interpretation of this definition. The Fourier transform of convolution (C(w)) can
be written as:

C(w) :/:[f*h](neiwldzz/_z £07) [/: h(l — 7)e~*'dl| dr

To solve the inner integral, let’s define s=I — 7, so that ds = dl and [= s+ 7 then the inner
integral becomes:

/ h(l —7)e ™l = / h(s)e ™+ ds = e_“”/ h(s)e™™“sds = H(w)e ™"

— 00

where H(w) is the Fourier transform of h(l). Substituting this result for the inner integral
above, we get:

C(w) = H(w) [o; F(r)e—“mdr = H(w)F(w) = F(w)H(w)

where F(w) is the Fourier transform of f(I). So multiplying the Fourier transform of two
functions individually, we get the Fourier transform of their convolution. The convolution
theorem also proves a relation between the convolutions in the frequency space. Let’s define:

D(w)=F(w)*H (w)

Applying the inverse Fourier Transform or synthesis equation (Section 6.3.2.4 [Fourier trans-
form], page 214) to both sides and following the same steps above, we get:

Where d(1) is the inverse Fourier transform of D(w). We can therefore re-write the two
equations above formally as the convolution theorem:

Flf=h] = FIf1F[h]

FLfhl = FIf] = Fln]

Besides its usefulness in blurring an image by convolving it with a given kernel, the
convolution theorem also enables us to do another very useful operation in data analysis:
to match the blur (or PSF) between two images taken with different telescopes/cameras or
under different atmospheric conditions. This process is also known as de-convolution. Let’s

Chapter 6: Data manipulation 218

take f(l) as the image with a narrower PSF (less blurry) and ¢(1) as the image with a wider
PSF which appears more blurred. Also let’s take h(l) to represent the kernel that should
be convolved with the sharper image to create the more blurry image. Above, we proved
the relation between these three images through the convolution theorem. But there, we
assumed that f(l) and h(l) are known (given) and the convolved image is desired.

In de-convolution, we have f(l) —the sharper image— and fxh(l) —the more blurry image—
and we want to find the kernel A(l). The solution is a direct result of the convolution
theorem:

Flh) = or b=

While this works really nice, it has two problems:
e If F[f] has any zero values, then the inverse Fourier transform will not be a number!

e If there is significant noise in the image, then the high frequencies of the noise are going
to significantly reduce the quality of the final result.

A standard solution to both these problems is the Weiner de-convolution algorithm!6.

6.3.2.7 Sampling theorem

Our mathematical functions are continuous, however, our data collecting and measuring
tools are discrete. Here we want to give a mathematical formulation for digitizing the
continuous mathematical functions so that later, we can retrieve the continuous function
from the digitized recorded input. Assuming that we have a continuous function f(I), then
we can define f,(1) as the ‘sampled’ f(I) through the Dirac comb (see Section 6.3.2.5 [Dirac
delta and comb], page 215):

L) = FOUL = S F(0)5(- nP)

n=—oo

The discrete data-element f; (for example, a pixel in an image), where k is an integer, can
thus be represented as:

fo= [ndi= [fs - kPt = f(kp)

Note that in practice, our discrete data points are not found in this fashion. Each
detector pixel (in an image for example) has an area and averages the signal it receives
over that area, not a mathematical point as the Dirac d function defines. However, as
long as the variation in the signal over one detector pixel is not significant, this can be a
good approximation. Having put this issue to the side, we can now try to find the relation
between the Fourier transforms of the un-sampled f(l) and the sampled f,(l). For a more
clear notation, let’s define:

16 https://en.wikipedia.org/wiki/Wiener_deconvolution

https://en.wikipedia.org/wiki/Wiener_deconvolution

Chapter 6: Data manipulation 219

D(w) = F[II1p]

Then using the Convolution theorem (see Section 6.3.2.6 [Convolution theorem], page 216),
F,(w) can be written as:

Fy(w) = FIF(OIIp] = F(w)«D(w)

Finally, from the definition of convolution and the Fourier transform of the Dirac comb (see
Section 6.3.2.5 [Dirac delta and comb], page 215), we get:

Fw) = [P - pp
_ ;nio _O; F(w)s (w . 2;”) d
-5 3 F (o)

F(w) was only a simple function, see Figure 6.3(left). However, from the sampled Fourier
transform function we see that Fi(w) is the superposition of infinite copies of F'(w) that

have been shifted, see Figure 6.3(right). From the equation, it is clear that the shift in each
copy is 2w/ P.

F(w): FT of unsampled f(I) Fy(w): FT of sampled f,(I) = f({)Illp
21
—wm 0 +wm Frequency (w) [|—47/P -2r/P —wm 0 +wm 27/P 4r /P

Figure 6.3: Sampling causes infinite repetition in the frequency domain. FT is an abbre-
viation for ‘Fourier transform’. w,, represents the maximum frequency present in the input.
F(w) is only symmetric on both sides of 0 when the input is real (not complex). In general
F(w) is complex and thus cannot be simply plotted like this. Here we have assumed a real
Gaussian f(t) which has produced a Gaussian F'(w).

The input f(I) can have any distribution of frequencies in it. In the example of
Figure 6.3(left), the input consisted of a range of frequencies equal to Aw = 2w,,.

Chapter 6: Data manipulation 220

Fortunately as Figure 6.3(right) shows, the assumed pixel size (P) we used to sample this
hypothetical function was such that 27/P > Aw. The consequence is that each copy
of F(w) has become completely separate from the surrounding copies. Such a digitized
(sampled) data set is thus called over-sampled. When 27/P = Aw, P is just small enough
to finely separate even the largest frequencies in the input signal and thus it is known
as critically-sampled. Finally if 27/P < Aw we are dealing with an under-sampled data
set. In an under-sampled data set, the separate copies of F(w) are going to overlap and
this will deprive us of recovering high constituent frequencies of f(I). The effects of
under-sampling in an image with high rates of change (for example a brick wall imaged
from a distance) can clearly be visually seen and is known as aliasing.

When the input f(1) is composed of a finite range of frequencies, f(I) is known as a
band-limited function. The example in Figure 6.3(left) was a nice demonstration of such a
case: for all w < —w,, or w > w,,, we have F(w) = 0. Therefore, when the input function
is band-limited and our detector’s pixels are placed such that we have critically (or over-)
sampled it, then we can exactly reproduce the continuous f(I) from the discrete or digitized
samples. To do that, we just have to isolate one copy of F(w) from the infinite copies and
take its inverse Fourier transform.

This ability to exactly reproduce the continuous input from the sampled or digitized data
leads us to the sampling theorem which connects the inherent property of the continuous
signal (its maximum frequency) to that of the detector (the spacing between its pixels).
The sampling theorem states that the full (continuous) signal can be recovered when the
pixel size (P) and the maximum constituent frequency in the signal (w,,) have the following
relation':

2T
— > 2w,
iz w

This relation was first formulated by Harry Nyquist (1889 — 1976 A.D.) in 1928 and for-
mally proved in 1949 by Claude E. Shannon (1916 — 2001 A.D.) in what is now known as
the Nyquist-Shannon sampling theorem. In signal processing, the signal is produced (syn-
thesized) by a transmitter and is received and de-coded (analyzed) by a receiver. Therefore
producing a band-limited signal is necessary.

In astronomy, we do not produce the shapes of our targets, we are only observers.
Galaxies can have any shape and size, therefore ideally, our signal is not band-limited.
However, since we are always confined to observing through an aperture, the aperture will
cause a point source (for which w,, = c0) to be spread over several pixels. This spread is
quantitatively known as the point spread function or PSF. This spread does blur the image
which is undesirable; however, for this analysis it produces the positive outcome that there
will be a finite w,,. Though we should caution that any detector will have noise which will
add lots of very high frequency (ideally infinite) changes between the pixels. However, the
coefficients of those noise frequencies are usually exceedingly small.

1T This equation is also shown in some places without the 2. Whether 27 is included or not depends on
how you define the frequency

Chapter 6: Data manipulation 221

6.3.2.8 Discrete Fourier transform

As we have stated several times so far, the input image is a digitized, pixelated or discrete
array of values (f,(l), see Section 6.3.2.7 [Sampling theorem]|, page 218). The input is not a
continuous function. Also, all our numerical calculations can only be done on a sampled, or
discrete Fourier transform. Note that F,(w) is not discrete, it is continuous. One way would
be to find the analytic F,(w), then sample it at any desired “freq-pixel”!® spacing. However,
this process would involve two steps of operations and computers in particular are not too
good at analytic operations for the first step. So here, we will derive a method to directly
find the ‘freq-pixel’ated Fi(w) from the pixelated f,(I). Let’s start with the definition of
the Fourier transform (see Section 6.3.2.4 [Fourier transform|, page 214):

Fi(w) = [O:O fD)e“dl

From the definition of f,(w) (using z instead of n) we get:

Fw=Y /_ O; F)5(1 — 2P)e—dl

T=—00
0
_ § —iwz P
- fme
T=—00

Where f, is the value of f(I) on the point x or the value of the xth pixel. As shown
in Section 6.3.2.7 [Sampling theorem|, page 218, this function is infinitely periodic with
a period of 2w/P. So all we need is the values within one period: 0 < w < 27/P, see
Figure 6.3. We want X samples within this interval, so the frequency difference between
each frequency sample or freq-pixel is 1/ X P. Hence we will evaluate the equation above on
the points at:

W= == u=20,1,2,.., X -1
Therefore the value of the freq-pixel u in the frequency domain is:
X-1 ‘
Fu = Z fme_l%
z=0

Therefore, we see that for each freq-pixel in the frequency domain, we are going to need all
the pixels in the spatial domain'®. If the input (spatial) pixel row is also X pixels wide,
then we can exactly recover the xth pixel with the following summation:

| X-1 i
fa::YQ;)Fue X

18 We are using the made-up word “freq-pixel” so they are not confused with spatial domain “pixels”.

19°So even if one pixel is a blank pixel (see Section 6.1.3 [Blank pixels], page 181), all the pixels in the
frequency domain will also be blank.

Chapter 6: Data manipulation 222

When the input pixel row (we are still only working on 1D data) has X pixels, then it is
L = X P spatial units wide. L, or the length of the input data was defined in Section 6.3.2.3
[Fourier series|, page 212, and P or the space between the pixels in the input was defined
in Section 6.3.2.5 [Dirac delta and comb|, page 215. As we saw in Section 6.3.2.7 [Sampling
theorem], page 218, the input (spatial) pixel spacing (P) specifies the range of frequencies
that can be studied and in Section 6.3.2.3 [Fourier series|, page 212, we saw that the length of
the (spatial) input, (L) determines the resolution (or size of the freq-pixels) in our discrete
Fourier transformed image. Both result from the fact that the frequency domain is the
inverse of the spatial domain.

6.3.2.9 Fourier operations in two dimensions

Once all the relations in the previous sections have been clearly understood in one dimension,
it is very easy to generalize them to two or even more dimensions since each dimension is
by definition independent. Previously we defined [as the continuous variable in 1D and the
inverse of the period in its direction to be w. Let’s show the second spatial direction with
m the inverse of the period in the second dimension with v. The Fourier transform in 2D
(see Section 6.3.2.4 [Fourier transform], page 214) can be written as:

F(w,v) = / / f(l,m)e " @Hrm g

fll,m) :/ / F(w,v)e@trmql

The 2D Dirac 6(l, m) is non-zero only when [= m = 0. The 2D Dirac comb (or Dirac
brush! See Section 6.3.2.5 [Dirac delta and comb], page 215) can be written in units of the
2D Dirac 6. For most image detectors, the sides of a pixel are equal in both dimensions.
So P remains unchanged, if a specific device is used which has non-square pixels, then for
each dimension a different value should be used.

IMIp(l,m) = i i 0(l —jP,m — kP)

Jj=—00 k=—00

The Two dimensional Sampling theorem (see Section 6.3.2.7 [Sampling theorem],
page 218) is thus very easily derived as before since the frequencies in each dimension
are independent. Let’s take v, as the maximum frequency along the second dimension.
Therefore the two dimensional sampling theorem says that a 2D band-limited function can
be recovered when the following conditions hold?°:

2 2
% > 2Wim and % > 2V,

20 If the pixels are not a square, then each dimension has to use the respective pixel size, but since most
detectors have square pixels, we assume so here too

Chapter 6: Data manipulation 223

Finally, let’s represent the pixel counter on the second dimension in the spatial and
frequency domains with y and v respectively. Also let’s assume that the input image has Y
pixels on the second dimension. Then the two dimensional discrete Fourier transform and
its inverse (see Section 6.3.2.8 [Discrete Fourier transform|, page 221) can be written as:

X—-1Y-1
—g(kz 4 2y

fac,ye (F+¥)

=0 y=0

X—-1Y-—
ou= o 2 3 Fud)

- (%
Z,1 -
! X u=0 v=0

6.3.2.10 Edges in the frequency domain

With a good grasp of the frequency domain, we can revisit the problem of convolution on the
image edges, see Section 6.3.1.2 [Edges in the spatial domain], page 208. When we apply the
convolution theorem (see Section 6.3.2.6 [Convolution theorem], page 216) to convolve an
image, we first take the discrete Fourier transforms (DFT, Section 6.3.2.8 [Discrete Fourier
transform|, page 221) of both the input image and the kernel, then we multiply them with
each other and then take the inverse DF'T to construct the convolved image. Of course, in
order to multiply them with each other in the frequency domain, the two images have to be
the same size, so let’s assume that we pad the kernel (it is usually smaller than the input
image) with zero valued pixels in both dimensions so it becomes the same size as the input
image before the DFT.

Having multiplied the two DFTs, we now apply the inverse DFT which is where the
problem is usually created. If the DFT of the kernel only had values of 1 (unrealistic
condition!) then there would be no problem and the inverse DFT of the multiplication would
be identical with the input. However in real situations, the kernel’s DFT has a maximum
of 1 (because the sum of the kernel has to be one, see Section 6.3.1.1 [Convolution process|,
page 207) and decreases something like the hypothetical profile of Figure 6.3. So when
multiplied with the input image’s DFT, the coefficients or magnitudes (see Section 6.3.2.2
[Circles and the complex plane|, page 211) of the smallest frequency (or the sum of the
input image pixels) remains unchanged, while the magnitudes of the higher frequencies are
significantly reduced.

As we saw in Section 6.3.2.7 [Sampling theorem]|, page 218, the Fourier transform of a
discrete input will be infinitely repeated. In the final inverse DF'T step, the input is in the
frequency domain (the multiplied DFT of the input image and the kernel DFT). So the
result (our output convolved image) will be infinitely repeated in the spatial domain. In
order to accurately reconstruct the input image, we need all the frequencies with the correct
magnitudes. However, when the magnitudes of higher frequencies are decreased, longer
periods (shorter frequencies) will dominate in the reconstructed pixel values. Therefore,
when constructing a pixel on the edge of the image, the newly empowered longer periods
will look beyond the input image edges and will find the repeated input image there. So if
you convolve an image in this fashion using the convolution theorem, when a bright object
exists on one edge of the image, its blurred wings will be present on the other side of the
convolved image. This is often termed as circular convolution or cyclic convolution.

Chapter 6: Data manipulation 224

So, as long as we are dealing with convolution in the frequency domain, there is nothing
we can do about the image edges. The least we can do is to eliminate the ghosts of the other
side of the image. So, we add zero valued pixels to both the input image and the kernel in
both dimensions so the image that will be convolved has a size equal to the sum of both
images in each dimension. Of course, the effect of this zero-padding is that the sides of the
output convolved image will become dark. To put it another way, the edges are going to
drain the flux from nearby objects. But at least it is consistent across all the edges of the
image and is predictable. In Convolve, you can see the padded images when inspecting the
frequency domain convolution steps with the --viewfreqsteps option.

6.3.3 Spatial vs. Frequency domain

With the discussions above it might not be clear when to choose the spatial domain and
when to choose the frequency domain. Here we will try to list the benefits of each.

The spatial domain,

e Can correct for the edge effects of convolution, see Section 6.3.1.2 [Edges in the spatial
domain], page 208.

e Can operate on blank pixels.

e Can be faster than frequency domain when the kernel is small (in terms of the number
of pixels on the sides).

The frequency domain,

e Will be much faster when the image and kernel are both large.

As a general rule of thumb, when working on an image of modeled profiles use the frequency
domain and when working on an image of real (observed) objects use the spatial domain
(corrected for the edges). The reason is that if you apply a frequency domain convolution to
a real image, you are going to loose information on the edges and generally you don’t want
large kernels. But when you have made the profiles in the image yourself, you can just make
a larger input image and crop the central parts to completely remove the edge effect, see
Section 8.1.2 [If convolving afterwards], page 324. Also due to oversampling, both the kernels
and the images can become very large and the speed boost of frequency domain convolution
will significantly improve the processing time, see Section 8.1.1.6 [Oversampling], page 323.

6.3.4 Convolution kernel

All the programs that need convolution will need to be given a convolution kernel file and
extension. In most cases (other than Convolve, see Section 6.3 [Convolve|, page 206) the
kernel file name is optional. However, the extension is necessary and must be specified either
on the command-line or at least one of the configuration files (see Section 4.2 [Configuration
files], page 118). Within Gnuastro, there are two ways to create a kernel image:

e MakeProfiles: You can use MakeProfiles to create a parametric (based on a radial
function) kernel, see Section 8.1 [MakeProfiles], page 318. By default MakeProfiles will
make the Gaussian and Moffat profiles in a separate file so you can feed it into any of
the programs.

e ConvertType: You can write your own desired kernel into a text file table and convert
it to a FITS file with ConvertType, see Section 5.3 [ConvertType|, page 156. Just be
careful that the kernel has to have an odd number of pixels along its two axes, see

Chapter 6: Data manipulation 225

Section 6.3.1.1 [Convolution process], page 207. All the programs that do convolution
will normalize the kernel internally, so if you choose this option, you don’t have to
worry about normalizing the kernel. Only within Convolve, there is an option to
disable normalization, see Section 6.3.5 [Invoking Convolve|, page 225.

The two options to specify a kernel file name and its extension are shown below. These are
common between all the programs that will do convolution.

-k STR

--kernel=STR
The convolution kernel file name. The BITPIX (data type) value of this file can
be any standard type and it does not necessarily have to be normalized. Several
operations will be done on the kernel image prior to the program’s processing;:

e It will be converted to floating point type.

e All blank pixels (see Section 6.1.3 [Blank pixels], page 181) will be set to
zero.

e It will be normalized so the sum of its pixels equal unity.

o It will be flipped so the convolved image has the same orientation. This is
only relevant if the kernel is not circular. See Section 6.3.1.1 [Convolution
process|, page 207.

-U STR

--khdu=STR
The convolution kernel HDU. Although the kernel file name is optional, before
running any of the programs, they need to have a value for -—khdu even if the
default kernel is to be used. So be sure to keep its value in at least one of the
configuration files (see Section 4.2 [Configuration files], page 118). By default,
the system configuration file has a value.

6.3.5 Invoking Convolve
Convolve an input dataset (2D image or 1D spectrum for example) with a known kernel,
or make the kernel necessary to match two PSFs. The general template for Convolve is:
$ astconvolve [OPTION...] ASTRdata
One line examples:

Convolve mockimg.fits with psf.fits:
$ astconvolve --kernel=psf.fits mockimg.fits

Convolve in the spatial domain:
$ astconvolve observedimg.fits --kernel=psf.fits --domain=spatial

Find the kernel to match sharper and blurry PSF images:
$ astconvolve --kernel=sharperimage.fits --makekernel=10 \
blurryimage.fits

Convolve a Spectrum (column 14 in the FITS table below) with a
custom kernel (the kernel will be normalized internally, so only
the ratios are important). Sed is used to replace the spaces with

Chapter 6: Data manipulation 226

new line characters so Convolve sees them as values in one column.
$ echo "1 3 10 3 1" | sed ’s/ /\n/g’ | astconvolve spectra.fits -cl4

The only argument accepted by Convolve is an input image file. Some of the options
are the same between Convolve and some other Gnuastro programs. Therefore, to avoid
repetition, they will not be repeated here. For the full list of options shared by all Gnuastro
programs, please see Section 4.1.2 [Common options], page 107. In particular, in the spatial
domain, on a multi-dimensional datasets, convolve uses Gnuastro’s tessellation to speed up
the run, see Section 4.8 [Tessellation], page 136. Common options related to tessellation
are described in in Section 4.1.2.2 [Processing options], page 110.

1-dimensional datasets (for example spectra) are only read as columns within a table
(see Section 4.7 [Tables], page 130, for more on how Gnuastro programs read tables). Note
that currently 1D convolution is only implemented in the spatial domain and thus kernel-
matching is also not supported.

Here we will only explain the options particular to Convolve. Run Convolve with —-help
in order to see the full list of options Convolve accepts, irrespective of where they are
explained in this book.

—-—kernelcolumn
Column containing the 1D kernel. When the input dataset is a 1-dimensional
column, and the host table has more than one column, use this option to specify
which column should be used.

--nokernelflip
Do not flip the kernel after reading it the spatial domain convolution. This can
be useful if the flipping has already been applied to the kernel.

--nokernelnormx
Do not normalize the kernel after reading it, such that the sum of its pixels is
unity.

-d STR

--domain=STR
The domain to use for the convolution. The acceptable values are ‘spatial’
and ‘frequency’, corresponding to the respective domain.

For large images, the frequency domain process will be more efficient than
convolving in the spatial domain. However, the edges of the image will loose
some flux (see Section 6.3.1.2 [Edges in the spatial domain|, page 208) and
the image must not contain any blank pixels, see Section 6.3.3 [Spatial vs.
Frequency domain], page 224.

—--checkfreqsteps
With this option a file with the initial name of the output file will be created
that is suffixed with _freqsteps.fits, all the steps done to arrive at the final
convolved image are saved as extensions in this file. The extensions in order
are:

1. The padded input image. In frequency domain convolution the two images
(input and convolved) have to be the same size and both should be padded
by zeros.

Chapter 6: Data manipulation 227

2. The padded kernel, similar to the above.

3. The Fourier spectrum of the forward Fourier transform of the input image.
Note that the Fourier transform is a complex operation (and not view able
in one image!) So we either have to show the ‘Fourier spectrum’ or the
‘Phase angle’. For the complex number a + b, the Fourier spectrum is
defined as v/a? + b? while the phase angle is defined as arctan(b/a).

4. The Fourier spectrum of the forward Fourier transform of the kernel image.

5. The Fourier spectrum of the multiplied (through complex arithmetic)
transformed images.

6. The inverse Fourier transform of the multiplied image. If you open it, you
will see that the convolved image is now in the center, not on one side of
the image as it started with (in the padded image of the first extension). If
you are working on a mock image which originally had pixels of precisely
0.0, you will notice that in those parts that your convolved profile(s) did
not convert, the values are now ~ 107!, this is due to floating-point round
off errors. Therefore in the final step (when cropping the central parts of
the image), we also remove any pixel with a value less than 1077,

--noedgecorrection
Do not correct the edge effect in spatial domain convolution. For a full discus-
sion, please see Section 6.3.1.2 [Edges in the spatial domain], page 208.

-m INT

—--makekernel=INT
(=INT) If this option is called, Convolve will do de-convolution (see
Section 6.3.2.6 [Convolution theorem|, page 216). The image specified by the
--kernel option is assumed to be the sharper (less blurry) image and the
input image is assumed to be the more blurry image. The value given to this
option will be used as the maximum radius of the kernel. Any pixel in the
final kernel that is larger than this distance from the center will be set to zero.
The two images must have the same size.

Noise has large frequencies which can make the result less reliable for the higher
frequencies of the final result. So all the frequencies which have a spectrum
smaller than the value given to the minsharpspec option in the sharper input
image are set to zero and not divided. This will cause the wings of the final
kernel to be flatter than they would ideally be which will make the convolved
image result unreliable if it is too high. Some notes to take into account for a
good result:

e Choose a bright (unsaturated) star and use a region box (with Crop for
example, see Section 6.1 [Crop|, page 178) that is sufficiently above the
noise.

e Use Warp (see Section 6.4 [Warp]|, page 228) to warp the pixel grid so the
star’s center is exactly on the center of the central pixel in the cropped im-
age. This will certainly slightly degrade the result, however, it is necessary.
If there are multiple good stars, you can shift all of them, then normalize
them (so the sum of each star’s pixels is one) and then take their average
to decrease this effect.

Chapter 6: Data manipulation 228

e The shifting might move the center of the star by one pixel in any direction,
so crop the central pixel of the warped image to have a clean image for the
de-convolution.

Note that this feature is not yet supported in 1-dimensional datasets.

e
--minsharpspec
(=FLT) The minimum frequency spectrum (or coefficient, or pixel value in the
frequency domain image) to use in deconvolution, see the explanations under
the ——makekernel option for more information.

6.4 Warp

Image warping is the process of mapping the pixels of one image onto a new pixel grid.
This process is sometimes known as transformation, however following the discussion of
Heckbert 1989%! we will not be using that term because it can be confused with only pixel
value or flux transformations. Here we specifically mean the pixel grid transformation which
is better conveyed with ‘warp’.

Image wrapping is a very important step in astronomy, both in observational data anal-
ysis and in simulating modeled images. In modeling, warping an image is necessary when
we want to apply grid transformations to the initial models, for example in simulating grav-
itational lensing (Radial warpings are not yet included in Warp). Observational reasons for
warping an image are listed below:

e Noise: Most scientifically interesting targets are inherently faint (have a very low Signal
to noise ratio). Therefore one short exposure is not enough to detect such objects that
are drowned deeply in the noise. We need multiple exposures so we can add them
together and increase the objects’ signal to noise ratio. Keeping the telescope fixed on
one field of the sky is practically impossible. Therefore very deep observations have to
put into the same grid before adding them.

e Resolution: If we have multiple images of one patch of the sky (hopefully at multiple
orientations) we can warp them to the same grid. The multiple orientations will allow us
to ‘guess’ the values of pixels on an output pixel grid that has smaller pixel sizes and thus
increase the resolution of the output. This process of merging multiple observations is
known as Mosaicing.

e Cosmic rays: Cosmic rays can randomly fall on any part of an image. If they collide
vertically with the camera, they are going to create a very sharp and bright spot that in
most cases can be separated easily??. However, depending on the depth of the camera
pixels, and the angle that a cosmic rays collides with it, it can cover a line-like larger
area on the CCD which makes the detection using their sharp edges very hard and
error prone. One of the best methods to remove cosmic rays is to compare multiple
images of the same field. To do that, we need all the images to be on the same pixel
grid.

2L Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at
University of California, Berkeley.

22 All astronomical targets are blurred with the PSF, see Section 8.1.1.2 [Point spread function], page 320,
however a cosmic ray is not and so it is very sharp (it suddenly stops at one pixel).

Chapter 6: Data manipulation 229

e Optical distortion: (Not yet included in Warp) In wide field images, the optical distor-
tion that occurs on the outer parts of the focal plane will make accurate comparison of
the objects at various locations impossible. It is therefore necessary to warp the image
and correct for those distortions prior to the analysis.

e Detector not on focal plane: In some cases (like the Hubble Space Telescope ACS and
WFC3 cameras), the CCD might be tilted compared to the focal plane, therefore the
recorded CCD pixels have to be projected onto the focal plane before further analysis.

6.4.1 Warping basics

Let’s take [u wv] as the coordinates of a point in the input image and [z y] as the
coordinates of that same point in the output image?®. The simplest form of coordinate
transformation (or warping) is the scaling of the coordinates, let’s assume we want to scale
the first axis by M and the second by N, the output coordinates of that point can be

calculated by
x| |[Mu| |[M 0]u
y| [Nv] |0 NJ||v

Note that these are matrix multiplications. We thus see that we can represent any such
grid warping as a matrix. Another thing we can do with this 2 x 2 matrix is to rotate the
output coordinate around the common center of both coordinates. If the output is rotated
anticlockwise by 6 degrees from the positive (to the right) horizontal axis, then the warping
matrix should become:

x| [ucos® —wvsind]| [cos® —sind] [u
y| |usind +wvcosh | | sinf cosh | |v

We can also flip the coordinates around the first axis, the second axis and the coordinate
center with the following three matrices respectively:

-1 0

0 -1

o A o]

The final thing we can do with this definition of a 2 x 2 warping matrix is shear. If we want
the output to be sheared along the first axis with A and along the second with B, then we
can use the matrix:

1 A

B 1

To have one matrix representing any combination of these steps, you use matrix multiplica-
tion, see Section 6.4.2 [Merging multiple warpings|, page 231. So any combinations of these
transformations can be displayed with one 2 x 2 matrix:

23 These can be any real number, we are not necessarily talking about integer pixels here.

Chapter 6: Data manipulation 230

a b
o 4
The transformations above can cover a lot of the needs of most coordinate transforma-
tions. However they are limited to mapping the point [0 0] to [0 0]. Therefore they
are useless if you want one coordinate to be shifted compared to the other one. They are
also space invariant, meaning that all the coordinates in the image will receive the same
transformation. In other words, all the pixels in the output image will have the same area
if placed over the input image. So transformations which require varying output pixel sizes

like projections cannot be applied through this 2 x 2 matrix either (for example for the
tilted ACS and WFC3 camera detectors on board the Hubble space telescope).

To add these further capabilities, namely translation and projection, we use the homo-
geneous coordinates. They were defined about 200 years ago by August Ferdinand Mobius
(1790 — 1868). For simplicity, we will only discuss points on a 2D plane and avoid the com-
plexities of higher dimensions. We cannot provide a deep mathematical introduction here,
interested readers can get a more detailed explanation from Wikipedia?* and the references
therein.

By adding an extra coordinate to a point we can add the flexibility we need. The
point [x y] can be represented as [¢Z yZ Z] in homogeneous coordinates. Therefore
multiplying all the coordinates of a point in the homogeneous coordinates with a constant
will give the same point. Put another way, the point [z y Z] corresponds to the point
[z/Z wy/Z] on the constant Z plane. Setting Z = 1, we get the input image plane, so
[u v 1] corresponds to [u v]. With this definition, the transformations above can be
generally written as:

T a b 0 U
y|l=1c d O v
1 0 0 1 1

We thus acquired 4 extra degrees of freedom. By giving non-zero values to the zero valued
elements of the last column we can have translation (try the matrix multiplication!). In
general, any coordinate transformation that is represented by the matrix below is known as
an affine transformation?®:

a b c
d e f
0 0 1

We can now consider translation, but the affine transform is still spatially invariant.
Giving non-zero values to the other two elements in the matrix above gives us the projective
transformation or Homography?® which is the most general type of transformation with the
3 X 3 matrix:

24 http://en.wikipedia. org/wiki/Homogeneous_coordinates
2 http://en.wikipedia.org/wiki/Affine_transformation
26 http://en.wikipedia.org/wiki/Homography

http://en.wikipedia.org/wiki/Homogeneous_coordinates
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Homography

Chapter 6: Data manipulation 231

/

T a b c U
y|l=1d e f||v
w g h 1 1
So the output coordinates can be calculated from:
' autbv+ec y dutev+ f
r=—-==———-— - = - ©
w gu+hv+1 Y= gu+hv+1

Thus with Homography we can change the sizes of the output pixels on the input plane,
giving a ‘perspective’-like visual impression. This can be quantitatively seen in the two
equations above. When g = h = 0, the denominator is independent of w or v and thus we
have spatial invariance. Homography preserves lines at all orientations. A very useful fact
about Homography is that its inverse is also a Homography. These two properties play a very
important role in the implementation of this transformation. A short but instructive and
illustrated review of affine, projective and also bi-linear mappings is provided in Heckbert
19897,

6.4.2 Merging multiple warpings

In Section 6.4.1 [Warping basics|, page 229, we saw how a basic warp/transformation can
be represented with a matrix. To make more complex warpings (for example to define a
translation, rotation and scale as one warp) the individual matrices have to be multiplied
through matrix multiplication. However matrix multiplication is not commutative, so the
order of the set of matrices you use for the multiplication is going to be very important.

The first warping should be placed as the left-most matrix. The second warping to
the right of that and so on. The second transformation is going to occur on the warped
coordinates of the first. As an example for merging a few transforms into one matrix, the
multiplication below represents the rotation of an image about a point [U V'] anticlockwise
from the horizontal axis by an angle of 6. To do this, first we take the origin to [U V]
through translation. Then we rotate the image, then we translate it back to where it was
initially. These three operations can be merged in one operation by calculating the matrix
multiplication below:

1 0 U cost) —sinf O 1 0 -U
01V sinf cosf O 01 -V
0 0 1 0 0 1 0 0 1

6.4.3 Resampling

A digital image is composed of discrete ‘picture elements’ or ‘pixels’. When a real image is
created from a camera or detector, each pixel’s area is used to store the number of photo-
electrons that were created when incident photons collided with that pixel’s surface area.

2T Paul S. Heckbert. 1989. Fundamentals of Texture mapping and Image Warping, Master’s thesis at
University of California, Berkeley. Note that since points are defined as row vectors there, the matrix is
the transpose of the one discussed here.

Chapter 6: Data manipulation 232

This process is called the ‘sampling’ of a continuous or analog data into digital data. When
we change the pixel grid of an image or warp it as we defined in Section 6.4.1 [Warping
basics], page 229, we have to ‘guess’ the flux value of each pixel on the new grid based on
the old grid, or re-sample it. Because of the ‘guessing’, any form of warping on the data
is going to degrade the image and mix the original pixel values with each other. So if an
analysis can be done on an unwarped data image, it is best to leave the image untouched
and pursue the analysis. However as discussed in Section 6.4 [Warp], page 228, this is not
possible most of the times, so we have to accept the problem and re-sample the image.

In most applications of image processing, it is sufficient to consider each pixel to be a
point and not an area. This assumption can significantly speed up the processing of an
image and also the simplicity of the code. It is a fine assumption when the signal to noise
ratio of the objects are very large. The question will then be one of interpolation because
you have multiple points distributed over the output image and you want to find the values
at the pixel centers. To increase the accuracy, you might also sample more than one point
from within a pixel giving you more points for a more accurate interpolation in the output
grid.

However, interpolation has several problems. The first one is that it will depend on the
type of function you want to assume for the interpolation. For example you can choose a
bi-linear or bi-cubic (the ‘bi’s are for the 2 dimensional nature of the data) interpolation
method. For the latter there are various ways to set the constants®®. Such functional
interpolation functions can fail seriously on the edges of an image. They will also need
normalization so that the flux of the objects before and after the warpings are comparable.
The most basic problem with such techniques is that they are based on a point while
a detector pixel is an area. They add a level of subjectivity to the data (make more
assumptions through the functions than the data can handle). For most applications this is
fine, but in scientific applications where detection of the faintest possible galaxies or fainter
parts of bright galaxies is our aim, we cannot afford this loss. Because of these reasons
Warp will not use such interpolation techniques.

Warp will do interpolation based on “pixel mixing”?® or “area resampling”. This is

also what the Hubble Space Telescope pipeline calls “Drizzling”3°. This technique requires
no functions, it is thus non-parametric. It is also the closest we can get (make least as-
sumptions) to what actually happens on the detector pixels. The basic idea is that you
reverse-transform each output pixel to find which pixels of the input image it covers and
what fraction of the area of the input pixels are covered. To find the output pixel value,
you simply sum the value of each input pixel weighted by the overlapfraction (between 0
to 1) of the output pixel and that input pixel. Through this process, pixels are treated as
an area not as a point (which is how detectors create the image), also the brightness (see
Section 8.1.3 [Flux Brightness and magnitude], page 324) of an object will be left completely
unchanged.

If there are very high spatial-frequency signals in the image (for example fringes) which
vary on a scale smaller than your output image pixel size, pixel mixing can cause ailiasing?!.

28 see http://entropymine.com/imageworsener/bicubic/ for a nice introduction.

29 For a graphic demonstration see http://entropymine.com/imageworsener/pixelmixing/
30 http://en.wikipedia.org/wiki/Drizzle_(image_processing)
31 http://en.wikipedia.org/wiki/Aliasing

http://entropymine.com/imageworsener/bicubic/
http://entropymine.com/imageworsener/pixelmixing/
http://en.wikipedia.org/wiki/Drizzle_(image_processing)
http://en.wikipedia.org/wiki/Aliasing

Chapter 6: Data manipulation 233

So if the input image has fringes, they have to be calculated and removed separately (which
would naturally be done in any astronomical application). Because of the PSF no astronom-
ical target has a sharpchange in the signal so this issue is less important for astronomical
applications, see Section 8.1.1.2 [Point spread function|, page 320.

6.4.4 Invoking Warp

Warp an input dataset into a new grid. Any homographic warp (for example scaling,
rotation, translation, projection) is acceptable, see Section 6.4.1 [Warping basics]|, page 229,
for the definitions. The general template for invoking Warp is:

$ astwarp [OPTIONS...] InputImage
One line examples:

Rotate and then scale input image:
$ astwarp --rotate=37.92 --scale=0.8 image.fits

Scale, then translate the input image:
$ astwarp --scale 8/3 --translate 2.1 image.fits

Align raw image with celestial coordinates:
$ astwarp --align rawimage.fits --output=aligned.fits

Directly input a custom warping matrix (using fraction):
$ astwarp --matrix=1/5,0,4/10,0,1/5,4/10,0,0,1 image.fits

Directly input a custom warping matrix, with final numbers:
$ astwarp --matrix="0.7071,-0.7071, 0.7071,0.7071" image.fits

If any processing is to be done, Warp can accept one file as input. As in all Gnuastro
programs, when an output is not explicitly set with the ——output option, the output file-
name will be set automatically based on the operation, see Section 4.9 [Automatic output],
page 138. For the full list of general options to all Gnuastro programs (including Warp),
please see Section 4.1.2 [Common options|, page 107.

To be the most accurate, the input image will be read as a 64-bit double precision floating
point dataset and all internal processing is done in this format (including the raw output
type). You can use the common --type option to write the output in any type you want,
see Section 4.6 [Numeric data types|, page 128.

Warps must be specified as command-line options, either as (possibly multiple) modular
warpings (for example --rotate, or --scale), or directly as a single raw matrix (with
--matrix). If specified together, the latter (direct matrix) will take precedence and all the
modular warpings will be ignored. Any number of modular warpings can be specified on the
command-line and configuration files. If more than one modular warping is given, all will
be merged to create one warping matrix. As described in Section 6.4.2 [Merging multiple
warpings|, page 231, matrix multiplication is not commutative, so the order of specifying the
modular warpings on the command-line, and/or configuration files makes a difference (see
Section 4.2.2 [Configuration file precedence], page 119). The full list of modular warpings
and the other options particular to Warp are described below.

Chapter 6: Data manipulation 234

The values to the warping options (modular warpings as well as --matrix), are a se-
quence of at least one number. Each number in this sequence is separated from the next by
a comma (,). Each number can also be written as a single fraction (with a forward-slash /
between the numerator and denominator). Space and Tab characters arepermitted between
any two numbers, just don’t forget to quote the whole value. Otherwise, the value will not
be fully passed onto the option. See the examples above as a demonstration.

Based on the FITS standard, integer values are assigned to the center of a pixel and the
coordinate [1.0, 1.0] is the center of the first pixel (bottom left of the image when viewed
in SAO ds9). So the coordinate center [0.0, 0.0] is half a pixel away (in each axis) from the
bottom left vertex of the first pixel. The resampling that is done in Warp (see Section 6.4.3
[Resampling|, page 231) is done on the coordinate axes and thus directly depends on the
coordinate center. In some situations this if fine, for example when rotating/aligning a real
image, all the edge pixels will be similarly affected. But in other situations (for example
when scaling an over-sampled mock image to its intended resolution, this is not desired:
you want the center of the coordinates to be on the corner of the pixel. In such cases, you
can use the —--centeroncorner option which will shift the center by 0.5 before the main
warp, then shift it back by —0.5 after the main warp, see below.

-a

--align Align the image and celestial (WCS) axes given in the input. After it, the ver-
tical image direction (when viewed in SAO ds9) corresponds to thedeclination
and the horizontal axis is the inverse of the Right Ascension (RA). The inverse
of the RA is chosen so the image can correspond to what you would actually
see on the sky and is common in most survey images.

Align is internally treated just like a rotation (--rotation), but uses the input
image’s WCS to find the rotation angle. Thus, if you have rotated the image
before calling -—align, you might get unexpected results (because the rotation
is defined on the original WCS).

-r FLT

-—rotate=FLT
Rotate the input image by the given angle in degrees: 6 in Section 6.4.1 [Warp-
ing basics|, page 229. Note that commonly, the WCS structure of the image
is set such that the RA is the inverse of the image horizontal axis which in-
creases towards the right in the FITS standard and as viewed by SAO ds9.
So the default center for rotation is on the right of the image. If you want to
rotate about other points, you have to translate the warping center first (with
--translate) then apply your rotation and then return the center back to the
original position (with another call to --translate, see Section 6.4.2 [Merging
multiple warpings|, page 231.

-s FLT[,FLT]

--scale=FLT[,FLT]
Scale the input image by the given factor(s): M and N in Section 6.4.1 [Warping
basics], page 229. If only one value is given, then both image axes will be scaled
with the given value. When two values are given (separated by a comma), the
first will be used to scale the first axis and the second will be used for the
second axis. If you only need to scale one axis, use 1 for the axis you don’t

Chapter 6: Data manipulation 235

need to scale. The value(s) can also be written (on the command-line or in
configuration files) as a fraction.

-f FLT[,FLT]

-—f1ip=FLT[,FLT]
Flip the input image around the given axis(s). If only one value is given,
then both image axes are flipped. When two values are given (separated by
acomma), you can choose which axis to flip over. —-flip only takes values 0
(for no flip), or 1 (for a flip). Hence, if you want to flip by the second axis only,
use ——f1lip=0,1.

-e FLT[,FLT]

--shear=FLT[,FLT]
Shear the input image by the given value(s): A and B in Section 6.4.1 [Warping
basics], page 229. If only one value is given, then both image axes will be sheared
with the given value. When two values are given (separated by a comma), the
first will be used to shear the first axis and the second will be used for the
second axis. If you only need to shear along one axis, use 0 for the axis that
must be untouched. The value(s) can also be written (on the command-line or
in configuration files) as a fraction.

-t FLT[,FLT]

-—translate=FLT[,FLT]
Translate (move the center of coordinates) the input image by the given value(s):
c and f in Section 6.4.1 [Warping basics|, page 229. If only one value is given,
then both image axes will be translated by the given value. When two values are
given (separated by a comma), the first will be used to translate the first axis
and the second will be used for the second axis. If you only need to translate
along one axis, use 0 for the axis that must be untouched. The value(s) can
also be written (on the command-line or in configuration files) as a fraction.

-p FLT[,FLT]

--project=FLT[,FLT]
Apply a projection to the input image by the given values(s): g and h in
Section 6.4.1 [Warping basics], page 229. If only one value is given, then pro-
jection will apply to both axes with the given value. When two values are given
(separated by a comma), the first will be used to project the first axis and
the second will be used for the second axis. If you only need to project along
one axis, use 0 for the axis that must be untouched. The value(s) can also be
written (on the command-line or in configuration files) as a fraction.

-m STR

--matrix=STR
The warp/transformation matrix. All the elements in this matrix must be
separated by comas(,) characters and as described above, you can also use
fractions (a forward-slash between two numbers). The transformation matrix
can be either a 2 by 2 (4 numbers), or a 3 by 3 (9 numbers) array. In the
former case (if a 2 by 2 matrix is given), then it is put into a 3 by 3 matrix (see
Section 6.4.1 [Warping basics], page 229).

Chapter 6: Data manipulation 236

—-C

The determinant of the matrix has to be non-zero and it must not contain
any non-number values (for example infinities or NaNs). The elements of
the matrix have to be written row by row. So for the general Homography
matrix of Section 6.4.1 [Warping basics|, page 229, it should be called with
--matrix=a,b,c,d,e,f,g,h,1.

The raw matrix takes precedence over all the modular warping options listed
above, so if it is called with any number of modular warps, the latter are ignored.

—-—centeroncorer

Put the center of coordinates on the corner of the first (bottom-left when viewed
in SAO ds9) pixel. This option is applied after the final warping matrix has
been finalized: either through modular warpings or the raw matrix. See the
explanation above for coordinates in the FITS standard to better understand
this option and when it should be used.

—-hstartwcs=INT

—-hendwcs=

-k
--keepwcs

-C FLT

Specify the first header keyword number (line) that should be used to read
the WCS information, see the full explanation in Section 6.1.4 [Invoking Crop],
page 182.

INT

Specify the last header keyword number (line) that should be used to read the
WCS information, see the full explanation in Section 6.1.4 [Invoking Crop],
page 182.

Do not correct the WCS information of the input image and save it untouched to
the output image. By default the WCS (World Coordinate System) information
of the input image is going to be corrected in the output image so the objects
in the image are at the same WCS coordinates. But in some cases it might be
useful to keep it unchanged (for example to correct alignments).

—-coveredfrac=FLT

Depending on the warp, the output pixels that cover pixels on the edge of the
input image, or blank pixels in the input image, are not going to be fully covered
by input data. With this option, you can specify the acceptable covered fraction
of such pixels (any value between 0 and 1). If you only want output pixels that
are fully covered by the input image area (and are not blank), then you can set
--coveredfrac=1. Alternatively, a value of 0 will keep output pixels that are
even infinitesimally covered by the input(so the sum of the pixels in the input
and output images will be the same).

237

7 Data analysis

Astronomical datasets (images or tables) contain very valuable information, the tools in this
section can help in analyzing, extracting, and quantifying that information. For example
getting general or specific statistics of the dataset (with Section 7.1 [Statistics]|, page 237),
detecting signal within a noisy dataset (with Section 7.2 [NoiseChisel], page 258), or creating
a catalog from an input dataset (with Section 7.4 [MakeCatalog], page 284).

7.1 Statistics

The distribution of values in a dataset can provide valuable information about it. For
example, in an image, if it is a positively skewed distribution, we can see that there is
significant data in the image. If the distribution is roughly symmetric, we can tell that
there is no significant data in the image. In a table, when we need to select a sample of
objects, it is important to first get a general view of the whole sample.

On the other hand, you might need to know certain statistical parameters of the dataset.
For example, if we have run a detection algorithm on an image, and we want to see how
accurate it was, one method is to calculate the average of the undetected pixels and see
how reasonable it is (if detection is done correctly, the average of undetected pixels should
be approximately equal to the background value, see Section 7.1.4 [Sky value], page 241).
In a table, you might have calculated the magnitudes of a certain class of objects and want
to get some general characteristics of the distribution immediately on the command-line
(very fast!), to possibly change some parameters. The Statistics program is designed for
such situations.

7.1.1 Histogram and Cumulative Frequency Plot

Histograms and the cumulative frequency plots are both used to visually study the distribu-
tion of a dataset. A histogram shows the number of data points which lie within pre-defined
intervals (bins). So on the horizontal axis we have the bin centers and on the vertical, the
number of points that are in that bin. You can use it to get a general view of the distri-
bution: which values have been repeated the most? how close/far are the most significant
bins? Are there more values in the larger part of the range of the dataset, or in the lower
part? Similarly, many very important properties about the dataset can be deduced from a
visual inspection of the histogram. In the Statistics program, the histogram can be either
output to a table to plot with your favorite plotting program!, or it can be shown with
ASCII characters on the command-line, which is very crude, but good enough for a fast and
on-the-go analysis, see the example in Section 7.1.5 [Invoking Statistics], page 246.

The width of the bins is only necessary parameter for a histogram. In the limiting
case that the bin-widths tend to zero (while assuming the number of points in the dataset
tend to infinity), then the histogram will tend to the probability density function (https://
en.wikipedia.org/wiki/Probability_density_function) of the distribution. When the
absolute number of points in each bin is not relevant to the study (only the shape of the
histogram is important), you can normalize a histogram so like the probability density
function, the sum of all its bins will be one.

1" We recommend PGFPlots (http://pgfplots.sourceforge.net/) which generates your plots directly

within TEX (the same tool that generates your document).

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Probability_density_function
http://pgfplots.sourceforge.net/

Chapter 7: Data analysis 238

In the cumulative frequency plot of a distribution, the horizontal axis is the sorted data
values and the y axis is the index of each data in the sorted distribution. Unlike a histogram,
a cumulative frequency plot does not involve intervals or bins. This makes it less prone to
any sort of bias or error that a given bin-width would have on the analysis. When a larger
number of the data points have roughly the same value, then the cumulative frequency plot
will become steep in that vicinity. This occurs because on the horizontal axis, there is little
change while on the vertical axis, the indexes constantly increase. Normalizing a cumulative
frequency plot means to divide each index (y axis) by the total number of data points (or
the last value).

Unlike the histogram which has a limited number of bins, ideally the cumulative fre-
quency plot should have one point for every data element. Even in small datasets (for
example a 200 x 200 image) this will result in an unreasonably large number of points to
plot (40000)! As a result, for practical reasons, it is common to only store its value on a
certain number of points (intervals) in the input range rather than the whole dataset, so you
should determine the number of bins you want when asking for a cumulative frequency plot.
In Gnuastro (and thus the Statistics program), the number reported for each bin is the total
number of data points until the larger interval value for that bin. You can see an example
histogram and cumulative frequency plot of a single dataset under the --asciihist and
--asciicfp options of Section 7.1.5 [Invoking Statistics|, page 246.

So as a summary, both the histogram and cumulative frequency plot in Statistics will
work with bins. Within each bin/interval, the lower value is considered to be within then
bin (it is inclusive), but its larger value is not (it is exclusive). Formally, an interval/bin
between a and b is represented by [a, b). When the over-all range of the dataset is specified
(with the --greaterequal, --lessthan, or --qrange options), the acceptable values of the
dataset are also defined with a similar inclusive-exclusive manner. But when the range is
determined from the actual dataset (none of these options is called), the last element in the
dataset is included in the last bin’s count.

7.1.2 2D Histograms

In Section 7.1.1 [Histogram and Cumulative Frequency Plot], page 237, the concept of
histograms were introduced on a single dataset. However, especially when doing high-level
science on tables, the distribution in a 2D space may be of interest (for example a color-
magnitude diagram). But the number of points may be too large for a simple scatter plot
to show the concentration of the points: they will all fall over each other and just make a
large connected region that will hide potentially interesting behaviors. This is where 2D
histograms can become very useful. The desired 2D region is broken up into 2D bins (boxes)
and the number of points falling within each box is returned. Added with a color-bar, you
can now clearly see the distribution.

Gnuastro’s Statistics program has the --histogram2d option for this task. Its output
will be three columns that have the centers of every box in both dimensions. The first
column is the central box coordinates in the first dimension, the second has values along
the second dimension and the third has the number of input points that fall within each
box. You can specify the number of bins along each dimension through the --numbins (for
first input column) an --numbins2 (for second input column). The output file from this
command can then be given to any plotting tool to visualize the distribution.

Chapter 7: Data analysis 239

For example, you can make high-quality plots within your paper (using the same ITEX
engine, thus blending very nicely with your text) using PGFPlots (https://ctan.org/
pkg/pgfplots). Below you can see one such minimal example, using your favorite text
editor, save it into a file, make the two small corrections in it, then run the commands
shown at the top. This assumes that you have TEX installed, if not the steps to install a
minimally sufficient IXTEX package on your system, see the respective section in Section 3.1.3
[Bootstrapping dependencies|, page 78.

Y

The two parts that need to be corrected are marked with %% <--": the first one
(XXXXXXXXX) should be replaced by the value to the ——numbins option which is the number
of bins along the first dimension. The second one (FILE.txt) should be replaced with the
name of the file generated by Statistics.

%% Replace ’XXXXXXXXX’ with your selected number of bins in the first
%% dimension.

oo

%% Then run these commands to build the plot in a LaTeX command.

o mkdir tikz

Ioth pdflatex -shell-escape -halt-on-error plot.tex
\documentclass{article}

%% Load PGFPlots and set it to build the figure separately in a ’tikz’
%% directory (which has to exist before LaTeX is run). This

%/ "externalization" is very useful to include the commands of multiple
%% plots in the middle of your paper/report, but also have the plots

%% separately to use in slides or other scenarios.
\usepackage{pgfplots}

\usetikzlibrary{external}

\tikzexternalize

\tikzsetexternalprefix{tikz/}

%% Start the document
\begin{document}

You can actually write a full paper here and include many figures!
Feel free to change this text.

%% Define the colormap.
\pgfplotssetq{
/pgfplots/colormap={coldredux}{

[1cm]
rgb255(0cm)=(255,255,255)
rgb255(2cm)=(0,192,255)
rgb255(4cm)=(0,0,255)
rgb255(6cm)=(0,0,0)

https://ctan.org/pkg/pgfplots
https://ctan.org/pkg/pgfplots

Chapter 7: Data analysis 240

%% Draw the plot.
\begin{tikzpicture}
\small
\begin{axis}[
width=\1linewidth,
view={0}{90},
colorbar horizontal,
xlabel=X axis,
ylabel=Y axis,
ylabel shift=-0.1cm,
colorbar style={at={(0,1.01)}, anchor=south west,
xticklabel pos=upper},

\addplot3[

surf,

shader=flat corner,

mesh/ordering=rowwise,

mesh/cols=XXXXXXXXX, %% <-— Number of bins in 1st column.
] file {FILE.txt}; %% <-- Name of aststatistics output.

\end{axis}
\end{tikzpicture}

\end{document}

7.1.3 Sigma clipping

Let’s assume that you have pure noise (centered on zero) with a clear Gaussian distribution
(https://en.wikipedia.org/wiki/Normal_distribution), or see Section 8.2.1.1 [Photon
counting noise], page 338. Now let’s assume you add very bright objects (signal) on the
image which have a very sharp boundary. By a sharp boundary, we mean that there is
a clear cutoff (from the noise) at the pixels the objects finish. In other words, at their
boundaries, the objects do not fade away into the noise. In such a case, when you plot
the histogram (see Section 7.1.1 [Histogram and Cumulative Frequency Plot], page 237)
of the distribution, the pixels relating to those objects will be clearly separate from pixels
that belong to parts of the image that did not have any signal (were just noise). In the
cumulative frequency plot, after a steady rise (due to the noise), you would observe a long
flat region were for a certain range of data (horizontal axis), there is no increase in the index
(vertical axis).

Outliers like the example above can significantly bias the measurement of noise statis-
tics. o-clipping is defined as a way to avoid the effect of such outliers. In astronomical
applications, cosmic rays (when they collide at a near normal incidence angle) are a very
good example of such outliers. The tracks they leave behind in the image are perfectly
immune to the blurring caused by the atmosphere and the aperture. They are also very
energetic and so their borders are usually clearly separated from the surrounding noise. So
o-clipping is very useful in removing their effect on the data. See Figure 15 in Akhlaghi
and Ichikawa, 2015 (https://arxiv.org/abs/1505.01664).

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 241

o-clipping is defined as the very simple iteration below. In each iteration, the range of
input data might decrease and so when the outliers have the conditions above, the outliers
will be removed through this iteration. The exit criteria will be discussed below.

1. Calculate the standard deviation (o) and median (m) of a distribution.
2. Remove all points that are smaller or larger than m + ao.

3. Go back to step 1, unless the selected exit criteria is reached.

The reason the median is used as a reference and not the mean is that the mean is too
significantly affected by the presence of outliers, while the median is less affected, see
Section 7.1.4.3 [Quantifying signal in a tile], page 244. As you can tell from this algorithm,
besides the condition above (that the signal have clear high signal to noise boundaries)
o-clipping is only useful when the signal does not cover more than half of the full data set.
If they do, then the median will lie over the outliers and o-clipping might remove the pixels
with no signal.

There are commonly two exit criteria to stop the o-clipping iteration:

e When a certain number of iterations has taken place (second value to the
--sclipparams option is larger than 1).

e When the new measured standard deviation is within a certain tolerance level of the

old one (second value to the ——sclipparams option is less than 1). The tolerance level
is defined by:

Oold — Onew

Jnew

The standard deviation is used because it is heavily influenced by the presence of
outliers. Therefore the fact that it stops changing between two iterations is a sign that
we have successfully removed outliers. Note that in each clipping, the dispersion in the
distribution is either less or equal. So 0,14 > Trew-

(N
When working on astronomical images, objects like galaxies and stars are blurred by the

atmosphere and the telescope aperture, therefore their signal sinks into the noise very
gradually. Galaxies in particular do not appear to have a clear high signal to noise cutoff
at all. Therefore o-clipping will not be useful in removing their effect on the data.

To gauge if o-clipping will be useful for your dataset, look at the histogram (see
Section 7.1.1 [Histogram and Cumulative Frequency Plot], page 237). The ASCII
histogram that is printed on the command-line with ——asciihist is good enough in most

cases.
- J

7.1.4 Sky value

One of the most important aspects of a dataset is its reference value: the value of the
dataset where there is no signal. Without knowing, and thus removing the effect of, this
value it is impossible to compare the derived results of many high-level analyses over the
dataset with other datasets (in the attempt to associate our results with the “real” world).

In astronomy, this reference value is known as the “Sky” value: the value that noise
fluctuates around: where there is no signal from detectable objects or artifacts (for example

Chapter 7: Data analysis 242

galaxies, stars, planets or comets, star spikes or internal optical ghost). Depending on the
dataset, the Sky value maybe a fixed value over the whole dataset, or it may vary based on
location. For an example of the latter case, see Figure 11 in Akhlaghi and Ichikawa (2015)
(https://arxiv.org/abs/1505.01664).

Because of the significance of the Sky value in astronomical data analysis, we have de-
voted this subsection to it for a thorough review. We start with a thorough discussion on its
definition (Section 7.1.4.1 [Sky value definition], page 242). In the astronomical literature,
researchers use a variety of methods to estimate the Sky value, so in Section 7.1.4.2 [Sky
value misconceptions|, page 243) we review those and discuss their biases. From the defini-
tion of the Sky value, the most accurate way to estimate the Sky value is to run a detection
algorithm (for example Section 7.2 [NoiseChisel], page 258) over the dataset and use the
undetected pixels. However, there is also a more crude method that maybe useful when
good direct detection is not initially possible (for example due to too many cosmic rays in
a shallow image). A more crude (but simpler method) that is usable in such situations is
discussed in Section 7.1.4.3 [Quantifying signal in a tile], page 244.

7.1.4.1 Sky value definition

This analysis is taken from Akhlaghi and Ichikawa (2015) (https://arxiv.org/abs/1505.
01664). Let’s assume that all instrument defects — bias, dark and flat — have been corrected
and the brightness (see Section 8.1.3 [Flux Brightness and magnitude], page 324) of a
detected object, O, is desired. The sources of flux on pixel® i of the image can be written
as follows:

e Contribution from the target object (O;).

e Contribution from other detected objects (D;).

e Undetected objects or the fainter undetected regions of bright objects (U;).

e A cosmic ray (C;).

e The background flux, which is defined to be the count if none of the others exists on
that pixel (B;).

The total flux in this pixel (7;) can thus be written as:

By definition, D; is detected and it can be assumed that it is correctly estimated (deblended)
and subtracted, we can thus set D; = 0. There are also methods to detect and remove
cosmic rays, for example the method described in van Dokkum (2001)?, or by comparing
multiple exposures. This allows us to set C; = 0. Note that in practice, D; and U; are
correlated, because they both directly depend on the detection algorithm and its input
parameters. Also note that no detection or cosmic ray removal algorithm is perfect. With
these limitations in mind, the observed Sky value for this pixel (S;) can be defined as

2 For this analysis the dimension of the data (image) is irrelevant. So if the data is an image (2D) with
width of w pixels, then a pixel located on column z and row y (where all counting starts from zero and
(0, 0) is located on the bottom left corner of the image), would have an index: i = z +y X w.

3 van Dokkum, P. G. (2001). Publications of the Astronomical Society of the Pacific. 113, 1420.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 243

Si = Bz+Ul

Therefore, as the detection process (algorithm and input parameters) becomes more accu-
rate, or U; — 0, the Sky value will tend to the background value or S; — B;. Hence, we
see that while B; is an inherent property of the data (pixel in an image), S; depends on the
detection process. Over a group of pixels, for example in an image or part of an image, this
equation translates to the average of undetected pixels (Sky= Y S;). With this definition
of Sky, the object flux in the data can be calculated, per pixel, with

In the fainter outskirts of an object, a very small fraction of the photo-electrons in a
pixel actually belongs to objects, the rest is caused by random factors (noise), see Figure 1b
in Akhlaghi and Ichikawa (2015) (https://arxiv.org/abs/1505.01664). Therefore even
a small over estimation of the Sky value will result in the loss of a very large portion of
most galaxies. Besides the lost area/brightness, this will also cause an over-estimation of
the Sky value and thus even more under-estimation of the object’s brightness. It is thus
very important to detect the diffuse flux of a target, even if they are not your primary
target.

In summary, the more accurately the Sky is measured, the more accurately the brightness
(sum of pixel values) of the target object can be measured (photometry). Any under/over-
estimation in the Sky will directly translate to an over/under-estimation of the measured
object’s brightness.

The Sky value is only correctly found when all the detected objects (D; and C;) have been
removed from the data.

7.1.4.2 Sky value misconceptions

As defined in Section 7.1.4 [Sky value], page 241, the sky value is only accurately defined
when the detection algorithm is not significantly reliant on the sky value. In particular
its detection threshold. However, most signal-based detection tools? use the sky value as
a reference to define the detection threshold. These older techniques therefore had to rely
on approximations based on other assumptions about the data. A review of those other
techniques can be seen in Appendix A of Akhlaghi and Ichikawa (2015) (https://arxiv.
org/abs/1505.01664).

These methods were extensively used in astronomical data analysis for several decades,
therefore they have given rise to a lot of misconceptions, ambiguities and disagreements
about the sky value and how to measure it. As a summary, the major methods used until
now were an approximation of the mode of the image pixel distribution and o-clipping.

4 According to Akhlaghi and Ichikawa (2015), signal-based detection is a detection process that relies
heavily on assumptions about the to-be-detected objects. This method was the most heavily used
technique prior to the introduction of NoiseChisel in that paper.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 244

e To find the mode of a distribution those methods would either have to assume (or find)
a certain probability density function (PDF) or use the histogram. But astronomical
datasets can have any distribution, making it almost impossible to define a generic
function. Also, histogram-based results are very inaccurate (there is a large dispersion)
and it depends on the histogram bin-widths. Generally, the mode of a distribution also
shifts as signal is added. Therefore, even if it is accurately measured, the mode is a
biased measure for the Sky value.

e Another approach was to iteratively clip the brightest pixels in the image (which is
known as o-clipping). See Section 7.1.3 [Sigma clipping], page 240, for a complete
explanation. o-clipping is useful when there are clear outliers (an object with a sharp
edge in an image for example). However, real astronomical objects have diffuse and
faint wings that penetrate deeply into the noise, see Figure 1 in Akhlaghi and Ichikawa
(2015) (https://arxiv.org/abs/1505.01664).

As discussed in Section 7.1.4 [Sky value], page 241, the sky value can only be correctly
defined as the average of undetected pixels. Therefore all such approaches that try to
approximate the sky value prior to detection are ultimately poor approximations.

7.1.4.3 Quantifying signal in a tile

Put simply, noise can be characterized with a certain spread about the measured value. In
the Gaussian distribution (most commonly used to model noise) the spread is defined by
the standard deviation about the characteristic mean.

Let’s start by clarifying some definitions first: Data is defined as the combination of
signal and noise (so a noisy image is one dataset). Signal is defined as the mean of the
noise on each element. We’ll also assume that the background (see Section 7.1.4.1 [Sky value
definition], page 242) is subtracted and is zero.

When a data set doesn’t have any signal (only noise), the mean, median and mode of the
distribution are equal within statistical errors and approximately equal to the background
value. Signal always has a positive value and will never become negative, see Figure 1
in Akhlaghi and Ichikawa (2015) (https://arxiv.org/abs/1505.01664). Therefore, as
more signal is added, the mean, median and mode of the dataset shift to the positive. The
mean’s shift is the largest. The median shifts less, since it is defined based on an ordered
distribution and so is not affected by a small number of outliers. The distribution’s mode
shifts the least to the positive.

Inverting the argument above gives us a robust method to quantify the significance of
signal in a dataset. Namely, when the mean and median of a distribution are approximately
equal, or the mean’s quantile is around 0.5, we can argue that there is no significant signal.

To allow for gradients (which are commonly present in ground-based images), we can
consider the image to be made of a grid of tiles (see Section 4.8 [Tessellation], page 136°).
Hence, from the difference of the mean and median on each tile, we can estimate the
significance of signal in it. The median of a distribution is defined to be the value of the
distribution’s middle point after sorting (or 0.5 quantile). Thus, to estimate the presence of
signal, we’ll compare with the quantile of the mean with 0.5. If the absolute difference in a
tile is larger than the value given to the --meanmedqdiff option, that tile will be ignored.
You can read this option as “mean-median-quantile-difference”.

5 The options to customize the tessellation are discussed in Section 4.1.2.2 [Processing options], page 110.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 245

The raw dataset’s distribution is noisy, so using the argument above on the raw input
will give a noisy result. To decrease the noise/error in estimating the mode, we will use
convolution (see Section 6.3.1.1 [Convolution process|, page 207). Convolution decreases the
range of the dataset and enhances its skewness, See Section 3.1.1 and Figure 4 in Akhlaghi
and Ichikawa (2015) (https://arxiv.org/abs/1505.01664). This enhanced skewness can
be interpreted as an increase in the Signal to noise ratio of the objects buried in the noise.
Therefore, to obtain an even better measure of the presence of signal in a tile, the mean
and median discussed above are measured on the convolved image.

Through the difference of the mean and median we have actually ‘detected’ data in the
distribution. However this “detection” was only based on the total distribution of the data
in each tile (a much lower resolution). This is the main limitation of this technique. The
best approach is thus to do detection over the dataset, mask all the detected pixels and
use the undetected regions to estimate the sky and its standard deviation (possibly over a
tessellation). This is how NoiseChisel works: it uses the argument above to find tiles that
are used to find its thresholds. Several higher-level steps are done on the thresholded pixels
to define the higher-level detections (see Section 7.2 [NoiseChisel], page 258).

There is one final hurdle: raw astronomical datasets are commonly peppered with Cosmic
rays. Images of Cosmic rays aren’t smoothed by the atmosphere or telescope aperture, so
they have sharp boundaries. Also, since they don’t occupy too many pixels, they don’t
affect the mode and median calculation. But their very high values can greatly bias the
calculation of the mean (recall how the mean shifts the fastest in the presence of outliers), for
example see Figure 15 in Akhlaghi and Ichikawa (2015) (https://arxiv.org/abs/1505.
01664).

The effect of outliers like cosmic rays on the mean and standard deviation can be removed
through o-clipping, see Section 7.1.3 [Sigma clipping], page 240, for a complete explanation.
Therefore, after asserting that the mode and median are approximately equal in a tile (see
Section 4.8 [Tessellation]|, page 136), the final Sky value and its standard deviation are
determined after o-clipping with the —-sigmaclip option.

In the end, some of the tiles will pass the mean and median quantile difference test.
However, prior to interpolating over the failed tiles, another point should be considered:
large and extended galaxies, or bright stars, have wings which sink into the noise very
gradually. In some cases, the gradient over these wings can be on scales that is larger than
the tiles. The mean-median distance test will pass on such tiles and will cause a strong peak
in the interpolated tile grid, see Section 2.3 [Detecting large extended targets], page 61.

The tiles that exist over the wings of large galaxies or bright stars are outliers in the
distribution of tiles that passed the mean-median quantile distance test. Therefore, the
final step of “quantifying signal in a tile” is to look at this distribution and remove the
outliers. o-clipping is a good solution for removing a few outliers, but the problem with
outliers of this kind is that there may be many such tiles (depending on the large/bright
stars/galaxies in the image). Therefore a novel outlier rejection algorithm will be used.

To identify the first outlier, we’ll use the distribution of distances between sorted ele-
ments. If there are N successful tiles, for every tile, the distance between the adjacent N/2
previous elements is found, giving a distribution containing N/2 — 1 points. The o-clipped
median and standard deviation of this distribution is then found (o-clipping is configured
with —-outliersclip). Finally, if the distance between the element and its previous el-
ement is more than --outliersigma multiples of the o-clipped standard deviation added

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 246

with the o-clipped median, that element is considered an outlier and all tiles larger than
that value are ignored.

Formally, if we assume there are N elements. They are first sorted. Searching for the
outlier starts on element N/2 (integer division). Let’s take v; to be the i-th element of the
sorted input (with no blank values) and m and o as the o-clipped median and standard
deviation from the distances of the previous N/2 — 1 elements (not including v;). If the
value given to —--outliersigma is displayed with s, the i-th element is considered as an
outlier when the condition below is true.

(Ui — ’1)7;_1> —m

> 8
o

Since ¢ begins from the median, the outlier has to be larger than the median. You can use
the check images (for example --checksky in the Statistics program or --checkqthresh,
--checkdetsky and --checksky options in NoiseChisel for any of its steps that uses this
outlier rejection) to inspect the steps and see which tiles have been discarded as outliers
prior to interpolation.

7.1.5 Invoking Statistics

Statistics will print statistical measures of an input dataset (table column or image). The
executable name is aststatistics with the following general template

$ aststatistics [OPTION ...] InputImage.fits
One line examples:

Print some general statistics of input image:
$ aststatistics image.fits

Print some general statistics of column named MAG_F160W:
$ aststatistics catalog.fits -hl --column=MAG_F160W

Make the histogram of the column named MAG_F160W:
$ aststatistics table.fits -cMAG_F160W --histogram

Find the Sky value on image with a given kernel:
$ aststatistics image.fits --sky --kernel=kernel.fits

Print Sigma-clipped results of records with a MAG_F160W
column value between 26 and 27:
$ aststatistics cat.fits -cMAG_F160W -g26 -127 --sigmaclip=3,0.2

Print the median value of all records in column MAG_F160W that
have a value larger than 3 in column PHOTO_Z:
$ aststatistics tab.txt -rPHOTO_Z -g3 -cMAG_F160W --median

Calculate the median of the third column in the input table, but only
for rows where the mean of the first and second columns is >5.
$ awk ’($1+$2)/2 > 5 {print $3}’ table.txt | aststatistics --median

Chapter 7: Data analysis 247

Statistics can take its input dataset either from a file (image or table) or the Standard
input (see Section 4.1.3 [Standard input], page 117). If any output file is to be created, the
value to the —-output option, is used as the base name for the generated files. Without
--output, the input name will be used to generate an output name, see Section 4.9 [Auto-
matic output], page 138. The options described below are particular to Statistics, but for
general operations, it shares a large collection of options with the other Gnuastro programs,
see Section 4.1.2 [Common options], page 107, for the full list. For more on reading from
standard input, please see the description of --stdintimeout option in Section 4.1.2.1 [In-
put/Output options|, page 107. Options can also be given in configuration files, for more,
please see Section 4.2 [Configuration files], page 118.

The input dataset may have blank values (see Section 6.1.3 [Blank pixels], page 181), in
this case, all blank pixels are ignored during the calculation. Initially, the full dataset will
be read, but it is possible to select a specific range of data elements to use in the analysis
of each run. You can either directly specify a minimum and maximum value for the range
of data elements to use (with --greaterequal or --lessthan), or specify the range using
quantiles (with --qrange). If a range is specified, all pixels outside of it are ignored before
any processing.

The following set of options are for specifying the input/outputs of Statistics. There
are many other input/output options that are common to all Gnuastro programs including
Statistics, see Section 4.1.2.1 [Input/Output options|, page 107, for those.

-c STR/INT

—--column=STR/INT
The column to use when the input file is a table with more than one column.
See Section 4.7.3 [Selecting table columns|, page 135, for a full description of
how to use this option. For more on how tables are read in Gnuastro, please
see Section 4.7 [Tables|, page 130.

-r STR/INT

--refcol=STR/INT
The reference column selector when the input file is a table. When a reference
column is given, the range options below will be applied to this column and only
elements in the input column that have a reference value in the correct range
will be used. In practice this option allows you to select a subset of the input
column based on values in another (the reference) column. All the statistical
calculations will be done on the selected input column, not the reference column.

-g FLT

--greaterequal=FLT
Limit the range of inputs into those with values greater and equal to what is
given to this option. None of the values below this value will be used in any of
the processing steps below.

-1 FLT

—-—lessthan=FLT
Limit the range of inputs into those with values less-than what is given to this
option. None of the values greater or equal to this value will be used in any of
the processing steps below.

Chapter 7: Data analysis 248

-Q FLT[,FLT]
--qrange=FLT[,FLT]

Specify the range of usable inputs using the quantile. This option can take one
or two quantiles to specify the range. When only one number is input (let’s call
it @), the range will be those values in the quantile range @ to 1 — Q. So when
only one value is given, it must be less than 0.5. When two values are given,
the first is used as the lower quantile range and the second is used as the larger
quantile range.

The quantile of a given element in a dataset is defined by the fraction of its
index to the total number of values in the sorted input array. So the smallest
and largest values in the dataset have a quantile of 0.0 and 1.0. The quantile is
a very useful non-parametric (making no assumptions about the input) relative
measure to specify a range. It can best be understood in terms of the cumulative
frequency plot, see Section 7.1.1 [Histogram and Cumulative Frequency Plot],
page 237. The quantile of each horizontal axis value in the cumulative frequency
plot is the vertical axis value associate with it.

When no operation is requested, Statistics will print some general basic properties of
the input dataset on the command-line like the example below (ran on one of the output
images of make check®). This default behavior is designed to help give you a general feeling
of how the data are distributed and help in narrowing down your analysis.

$ aststatistics convolve_spatial_scaled_noised.fits \

-—greaterequal=9500 --lessthan=11000

Statistics (GNU Astronomy Utilities) X.X

Input: convolve_spatial_scaled_noised.fits (hdu: 0)
Range: from (inclusive) 9500, upto (exclusive) 11000.
Unit: Brightness

Number of elements: 9074

Minimum: 9622.35

Maximum: 10999.7

Mode: 10055.45996

Mode quantile: 0.4001983908

Median: 10093.7

Mean: 10143.98257

Standard deviation: 221.80834
Histogram:

| *k

| kK ok ok

| *okokokokokk

| KoKk KKKk ok ok

| ook ok ok K ok Kok Kok K

5 You can try it by running the command in the tests directory, open the image with a FITS viewer and
have a look at it to get a sense of how these statistics relate to the input image/dataset.

Chapter 7: Data analysis 249

| ok kokok ok kofok kokok ok

| ok ok ok ok sk ok ok ok ok ok ok kok

| ok ok ok ok ok ok ok ok ok ok ok ok ok ok

| ook ok ok ok ok K ok Kok ok ok ok ok ok ok okkokk ok

| stk ok ok ok ok ok ok ok ok ok sk sk ok s sk ok ok ok ok ok ok ok ok ok ok Kk ok Kok ok

[ok sokokokok skok ok ko ok ok sk ok ok ok ok ok sk ok ok ok o ok ok sk ok sk ok ok ko ok ok sk ok ok ok ok ok ok sk o ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok

Gnuastro’s Statistics is a very general purpose program, so to be able to easily understand
this diversity in its operations (and how to possibly run them together), we’ll divided the
operations into two types: those that don’t respect the position of the elements and those
that do (by tessellating the input on a tile grid, see Section 4.8 [Tessellation], page 136).
The former treat the whole dataset as one and can re-arrange all the elements (for example
sort them), but the former do their processing on each tile independently. First, we’ll review
the operations that work on the whole dataset.

The group of options below can be used to get single value measurement(s) of the whole
dataset. They will print only the requested value as one field in a line/row, like the —-mean,
--median options. These options can be called any number of times and in any order. The
outputs of all such options will be printed on one line following each other (with a space
character between them). This feature makes these options very useful in scripts, or to
redirect into programs like GNU AWK for higher-level processing. These are some of the
most basic measures, Gnuastro is still under heavy development and this list will grow. If
you want another statistical parameter, please contact us and we will do out best to add it
to this list, see Section 1.8 [Suggest new feature], page 12.

-n
--number Print the number of all used (non-blank and in range) elements.

—-minimum
Print the minimum value of all used elements.

—-maximum
Print the maximum value of all used elements.

-—sum Print the sum of all used elements.

1
--mean Print the mean (average) of all used elements.

-t
--std Print the standard deviation of all used elements.

-E
--median Print the median of all used elements.

-u FLT[,FLT[,...]]

--quantile=FLT[,FLT[,...]]
Print the values at the given quantiles of the input dataset. Any number of
quantiles may be given and one number will be printed for each. Values can
either be written as a single number or as fractions, but must be between zero
and one (inclusive). Hence, in effect ——quantile=0.25 --quantile=0.75 is
equivalent to —-quantile=0.25,3/4, or -ul/4,3/4.

Chapter 7: Data analysis 250

The returned value is one of the elements from the dataset. Taking ¢ to be your
desired quantile, and N to be the total number of used (non-blank and within
the given range) elements, the returned value is at the following position in the
sorted array: round(q x N).

--quantfunc=FLT[,FLT[,...]]

—-mode

Print the quantiles of the given values in the dataset. This option is the inverse
of the -—quantile and operates similarly except that the acceptable values are
within the range of the dataset, not between 0 and 1. Formally it is known as
the “Quantile function”.

Since the dataset is not continuous this function will find the nearest element
of the dataset and use its position to estimate the quantile function.

Print the mode of all used elements. The mode is found through the mirror dis-
tribution which is fully described in Appendix C of Akhlaghi and Ichikawa 2015
(https://arxiv.org/abs/1505.01664). See that section for a full description.

This mode calculation algorithm is non-parametric, so when the dataset is not
large enough (larger than about 1000 elements usually), or doesn’t have a clear
mode it can fail. In such cases, this option will return a value of nan (for the
floating point NaN value).

As described in that paper, the easiest way to assess the quality of this mode
calculation method is to use it’s symmetricity (see --modesym below). A bet-
ter way would be to use the —-mirror option to generate the histogram and
cumulative frequency tables for any given mirror value (the mode in this case)
as a table. If you generate plots like those shown in Figure 21 of that paper,
then your mode is accurate.

—--modequant

—--modesym

Print the quantile of the mode. You can get the actual mode value from the
--mode described above. In many cases, the absolute value of the mode is
irrelevant, but its position within the distribution is important. In such cases,
this option will become handy.

Print the symmetricity of the calculated mode. See the description of --mode
for more. This mode algorithm finds the mode based on how symmetric it is,
so if the symmetricity returned by this option is too low, the mode is not too
accurate. See Appendix C of Akhlaghi and Ichikawa 2015 (https://arxiv.
org/abs/1505.01664) for a full description. In practice, symmetricity values
larger than 0.2 are mostly good.

--modesymvalue

Print the value in the distribution where the mirror and input distributions are
no longer symmetric, see ——mode and Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) for more.

--sigclip-number

Number of elements after applying o-clipping (see Section 7.1.3 [Sigma clipping],
page 240). o-clipping configuration is done with the --sigclipparams option.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 251

--sigclip-median
Median after applying o-clipping (see Section 7.1.3 [Sigma clipping], page 240).
o-clipping configuration is done with the --sigclipparams option.

Here is one scenario where this can be useful: assume you have a table and
you would like to remove the rows that are outliers (not within the o-clipping
range). Let’s assume your table is called table.fits and you only want to
keep the rows that have a value in COLUMN within the o-clipped range (to 3o,
with a tolerance of 0.1). This command will return the o-clipped median and
standard deviation (used to define the range later).

$ aststatistics table.fits -cCOLUMN --sclipparams=3,0.1 \
--sigclip-median --sigclip-std
You can then use the --range option of Table (see Section 5.4 [Table], page 166)
to select the proper rows. But for that, you need the actual starting and ending
values of the range (m + so; where m is the median and s is the multiple of
sigma to define an outlier). Therefore, the raw outputs of Statistics in the
command above aren’t enough.

To get the starting and ending values of the non-outlier range (and put a ¢,’
between them, ready to be used in --range), pipe the result into AWK. But in
AWK, we’ll also need the multiple of o, so we’ll define it as a shell variable (s)
before calling Statistics (note how $s is used two times now):
$ s=3
$ aststatistics table.fits -cCOLUMN --sclipparams=$s,0.1 \
--sigclip-median --sigclip-std \
| awk ’{s=’$s’; printf("%f,%f\n", $1-s*$2, $1+sx$2)}’
To pass it onto Table, we’ll need to keep the printed output from the command
above in another shell variable (r), not print it. In Bash, can do this by putting
the whole statement within a $(O:

$ s=3
$ r=$(aststatistics table.fits -cCOLUMN --sclipparams=$s,0.1 \
--sigclip-median --sigclip-std \
| awk ’{s="$s’; printf("%f,%f\n", $1-s*$2, $1+s*x$2)}’)
$ echo $r # Just to confirm.

Now you can use Table with the --range option to only print the rows that
have a value in COLUMN within the desired range:

$ asttable table.fits —--range=COLUMN, $r

To save the resulting table (that is clean of outliers) in another file (for
example named cleaned.fits, it can also have a .txt suffix), just add
—--output=cleaned.fits to the command above.

--sigclip-mean
Mean after applying o-clipping (see Section 7.1.3 [Sigma clipping], page 240).
o-clipping configuration is done with the --sigclipparams option.

--sigclip-std
Standard deviation after applying o-clipping (see Section 7.1.3 [Sigma clipping],
page 240). o-clipping configuration is done with the --sigclipparams option.

Chapter 7: Data analysis 252

The list of options below are for those statistical operations that output more than one
value. So while they can be called together in one run, their outputs will be distinct (each
one’s output will usually be printed in more than one line).

-A
-—asciihist
Print an ASCII histogram of the usable values within the input dataset along
with some basic information like the example below (from the UVUDF cata-
log”). The width and height of the histogram (in units of character widths and
heights on your command-line terminal) can be set with the —-numasciibins
(for the width) and --asciiheight options.
For a full description of the histogram, please see Section 7.1.1 [Histogram and
Cumulative Frequency Plot], page 237. An ASCII plot is certainly very crude
and cannot be used in any publication, but it is very useful for getting a general
feeling of the input dataset very fast and easily on the command-line without
having to take your hands off the keyboard (which is a major distraction!). If
you want to try it out, you can write it all in one line and ignore the \ and
extra spaces.
$ aststatistics uvudf_rafelski_2015.fits.gz --hdu=1 \
--column=MAG_F160W --lessthan=40 \
-—asciihist --numasciibins=55
ASCII Histogram:
Number: 8593
Y: (linear: O to 660)
X: (linear: 17.7735 -- 31.4679, in 55 bins)
| * Kk %k
| ook sk ok k
| *okokokokk
| KoKk KoKk ok ok
| KKK KKK KoKk
| skok s ok sk ok sk ok sk ok k
| 3k >k 3k 5k >k ok 5k k kK k k ok k
| Hokokokok ok ok ok ko ok kokok ok kK
| ok Kok Kok Kok oK Kok Kk Kok K
| ok Kk ok Kok Kok KoK KoK Kok K ok KoK Kk Kok Kok K
|*** 3k 3k 3k 5k >k 5k 5k 3k 3k 5k 5k 3k 5k 5k >k 5k 3k >k 5k 5k %k 5k 5k %k 5k 5k %k 5k 5k %k 5k 5k %k 5k 5k 5k >k 5k %k %k 5k sk %k 5k sk k >k sk k ok k
| ___
--asciicfp

Print the cumulative frequency plot of the usable elements in the input dataset.
Please see descriptions under ——asciihist for more, the example below is from
the same input table as that example. To better understand the cumulative
frequency plot, please see Section 7.1.1 [Histogram and Cumulative Frequency
Plot], page 237.

$ aststatistics uvudf_rafelski_2015.fits.gz --hdu=1
--column=MAG_F160W --lessthan=40 \

e

" https://asd. gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz

https://asd.gsfc.nasa.gov/UVUDF/uvudf_rafelski_2015.fits.gz

Chapter 7: Data analysis 253

-H

--asciicfp --numasciibins=55

ASCII Cumulative frequency plot:

Y: (linear: O to 8593)

X: (linear: 17.7735 -- 31.4679, in 55 bins)
| >k ok k 5k ok K
| ok ok ok ok ok sk ko ok
| sk ok ok ok ok ok ok ok ok
| ok ok 3k ok ok 3k ok ok 3k ok ok K
| sk 3k ok 3k K ok 3k ok ok 3k ok ok koK
| >k >k >k 3k 3k 5K 5k >k >k k 5k 5k 5k K %k
| ok ok sk ok ok sk ok ok sk ok ok sk ok ok koK
| sokokokokok ok sk ok ok kokkokokok ok kK
| sk sk ok 3k K ok ok ok ok 3k K ok 3k K ok 3k K ok sk ok ok koK
| sk sk ok 3k K ok ok 3k ok 3k K ok 3k K ok 3k K ok 3k 3 ok 3k K ok 3k ok ok 3k ok K
| sk ke sk sk sk sk sk e sk ok sk sk sk sk sk ok sk ok sk ok sk ok K ok K ok ok 3 ok 3 ok 3 ok 3 ok 3 ok 3 ok 3k ok 3 ok 3k ok K ok K ok K ok sk ok K

--histogram

Save the histogram of the usable values in the input dataset into a table. The
first column is the value at the center of the bin and the second is the number
of points in that bin. If the ——cumulative option is also called with this option
in a run, then the table will have three columns (the third is the cumulative fre-
quency plot). Through the --numbins, --onebinstart, or --manualbinrange,
you can modify the first column values and with ——normalize and --maxbinone
you can modify the second columns. See below for the description of each.

By default (when no --output is specified) a plain text table will be created,
see Section 4.7.2 [Gnuastro text table format], page 133. If a FITS name is
specified, you can use the common option --tableformat to have it as a FITS
ASCII or FITS binary format, see Section 4.1.2 [Common options|, page 107.
This table can then be fed into your favorite plotting tool and get a much more
clean and nice histogram than what the raw command-line can offer you (with
the --asciihist option).

--histogram2d

-C

Save the 2D histogram of two input columns into an output file, see Section 7.1.2
[2D Histograms|, page 238. The output will have three columns: the first
two are the coordinates of each box’s center in the first and second dimen-
sions/columns. The third will be number of input points that fall within that
box.

——cumulative

Save the cumulative frequency plot of the usable values in the input dataset
into a table, similar to -—histogram.

Chapter 7: Data analysis 254

-s

--sigmaclip
Do o-clipping on the usable pixels of the input dataset. See Section 7.1.3
[Sigma clipping], page 240, for a full description on o-clipping and also to
better understand this option. The o-clipping parameters can be set through
the --sclipparams option (see below).

--mirror=FLT
Make a histogram and cumulative frequency plot of the mirror distribution for
the given dataset when the mirror is located at the value to this option. The
mirror distribution is fully described in Appendix C of Akhlaghi and Ichikawa
2015 (https://arxiv.org/abs/1505.01664) and currently it is only used to
calculate the mode (see --mode).

Just note that the mirror distribution is a discrete distribution like the input,
so while you may give any number as the value to this option, the actual mirror
value is the closest number in the input dataset to this value. If the two numbers
are different, Statistics will warn you of the actual mirror value used.

This option will make a table as output. Depending on your selected name
for the output, it will be either a FITS table or a plain text table (which is
the default). It contains three columns: the first is the center of the bins,
the second is the histogram (with the largest value set to 1) and the third is
the normalized cumulative frequency plot of the mirror distribution. The bins
will be positioned such that the mode is on the starting interval of one of the
bins to make it symmetric around the mirror. With this output file and the
input histogram (that you can generate in another run of Statistics, using the
--onebinvalue), it is possible to make plots like Figure 21 of Akhlaghi and
Ichikawa 2015 (https://arxiv.org/abs/1505.01664).

The list of options below allow customization of the histogram and cumulative frequency
plots (for the -—histogram, ——cumulative, -—asciihist, and --asciicfp options).

—--numbins
The number of bins (rows) to use in the histogram and the cumulative frequency
plot tables (outputs of ~~histogram and --cumulative).

--numasciibins
The number of bins (characters) to use in the ASCII plots when printing the
histogram and the cumulative frequency plot (outputs of --asciihist and
--asciicfp).

--asciiheight
The number of lines to use when printing the ASCII histogram and cumulative
frequency plot on the command-line (outputs of -—asciihist and --asciicfp).

-n

--normalize

Normalize the histogram or cumulative frequency plot tables (outputs of
--histogram and --cumulative). For a histogram, the sum of all bins will
become one and for a cumulative frequency plot the last bin value will be one.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 255

--maxbinone
Divide all the histogram values by the maximum bin value so it becomes one
and the rest are similarly scaled. In some situations (for example if you want
to plot the histogram and cumulative frequency plot in one plot) this can be
very useful.

-—onebinstart=FLT
Make sure that one bin starts with the value to this option. In practice, this
will shift the bins used to find the histogram and cumulative frequency plot
such that one bin’s lower interval becomes this value.

For example when a histogram range includes negative and positive values and
zero has a special significance in your analysis, then zero might fall somewhere
in one bin. As a result that bin will have counts of positive and negative.
By setting ——onebinstart=0, you can make sure that one bin will only count
negative values in the vicinity of zero and the next bin will only count positive
ones in that vicinity.

Note that by default, the first row of the histogram and cumulative frequency
plot show the central values of each bin. So in the example above you will not
see the 0.000 in the first column, you will see two symmetric values.

If the value is not within the usable input range, this option will be ignored.
When it is, this option is the last operation before the bins are finalized, there-
fore it has a higher priority than options like ~-manualbinrange.

--manualbinrange
Use the values given to the --greaterequal and --lessthan to define the
range of all bin-based calculations like the histogram. This option itself doesn’t
take any value, but just tells the program to use the values of those two options
instead of the minimum and maximum values of a plot. If any of the two
options are not given, then the minimum or maximum will be used respectively.
Therefore, if none of them are called calling this option is redundant.

The --onebinstart option has a higher priority than this option. In other
words, ——onebinstart takes effect after the range has been finalized and the
initial bins have been defined, therefore it has the power to (possibly) shift the
bins. If you want to manually set the range of the bins and have one bin on a
special value, it is thus better to avoid ——onebinstart.

—--numbins2=INT
Similar to ——numbins, but for the second column when a 2D histogram is re-
quested, see ——histogram2d.

--greaterequal2=FLT
Similar to --greaterequal, but for the second column when a 2D histogram
is requested, see -—histogram?2d.

--lessthan2=FLT
Similar to --lessthan, but for the second column when a 2D histogram is
requested, see ——histogram2d.

Chapter 7: Data analysis 256

—-—-onebinstart2=FLT
Similar to -—onebinstart, but for the second column when a 2D histogram is
requested, see —~histogram2d.

All the options described until now were from the first class of operations discussed
above: those that treat the whole dataset as one. However, it often happens that the
relative position of the dataset elements over the dataset is significant. For example you
don’t want one median value for the whole input image, you want to know how the median
changes over the image. For such operations, the input has to be tessellated (see Section 4.8
[Tessellation], page 136). Thus this class of options can’t currently be called along with the
options above in one run of Statistics.

-t

--ontile Do the respective single-valued calculation over one tile of the input dataset, not
the whole dataset. This option must be called with at least one of the single val-
ued options discussed above (for example —-mean or --quantile). The output
will be a file in the same format as the input. If the —~—oneelempertile option
is called, then one element/pixel will be used for each tile (see Section 4.1.2.2
[Processing options|, page 110). Otherwise, the output will have the same size
as the input, but each element will have the value corresponding to that tile’s
value. If multiple single valued operations are called, then for each operation
there will be one extension in the output FITS file.

-R FLT[,FLT[,FLT...]]

--contour=FLT[,FLT[,FLT...]]
Write the contours for the requested levels in a file ending with _contour.txt.
It will have three columns: the first two are the coordinates of each point and
the third is the level it belongs to (one of the input values). Each disconnected
contour region will be separated by a blank line. This is the requested format
for adding contours with PGFPlots in IXTEX. If any other format can be useful
for your work please let us know so we can add it. If the image has World
Coordinate System information, the written coordinates will be in RA and
Dec, otherwise, they will be in pixel coordinates.

Note that currently, this is a very crude/simple implementation, please let us
know if you find problematic situations so we can fix it.

--sky Estimate the Sky value on each tile as fully described in Section 7.1.4.3 [Quan-
tifying signal in a tile], page 244. As described in that section, several options
are necessary to configure the Sky estimation which are listed below. The
output file will have two extensions: the first is the Sky value and the sec-
ond is the Sky standard deviation on each tile. Similar to —-ontile, if the
--oneelempertile option is called, then one element/pixel will be used for
each tile (see Section 4.1.2.2 [Processing options], page 110).

The parameters for estimating the sky value can be set with the following options, except
for the —-sclipparams option (which is also used by the --sigmaclip), the rest are only
used for the Sky value estimation.

Chapter 7: Data analysis 257

-k=STR

--kernel=STR
File name of kernel to help in estimating the significance of signal in a tile, see
Section 7.1.4.3 [Quantifying signal in a tile|, page 244.

--khdu=STR

Kernel HDU to help in estimating the significance of signal in a tile, see
Section 7.1.4.3 [Quantifying signal in a tile], page 244.

--meanmedqdiff=FLT

The maximum acceptable distance between the quantiles of the mean and me-
dian, see Section 7.1.4.3 [Quantifying signal in a tile], page 244. The initial Sky
and its standard deviation estimates are measured on tiles where the quantiles
of their mean and median are less distant than the value given to this option.
For example --meanmedqdiff=0.01 means that only tiles where the mean’s
quantile is between 0.49 and 0.51 (recall that the median’s quantile is 0.5) will
be used.

--sclipparams=FLT,FLT

The o-clipping parameters, see Section 7.1.3 [Sigma clipping], page 240. This
option takes two values which are separated by a comma (,). Each value can
either be written as a single number or as a fraction of two numbers (for example
3,1/10). The first value to this option is the multiple of o that will be clipped
(a in that section). The second value is the exit criteria. If it is less than 1,
then it is interpreted as tolerance and if it is larger than one it is a specific
number. Hence, in the latter case the value must be an integer.

--outliersclip=FLT,FLT
o-clipping parameters for the outlier rejection of the Sky value (similar to
--sclipparams).

Outlier rejection is useful when the dataset contains a large and diffuse (almost
flat within each tile) signal. The flatness of the profile will cause it to success-
fully pass the mean-median quantile difference test, so we’ll need to use the
distribution of successful tiles for removing these false positive. For more, see
the latter half of Section 7.1.4.3 [Quantifying signal in a tile], page 244.

--outliersigma=FLT
Multiple of sigma to define an outlier in the Sky value estimation. If this
option is given a value of zero, no outlier rejection will take place. For more see
--outliersclip and the latter half of Section 7.1.4.3 [Quantifying signal in a
tile], page 244.

—-—smoothwidth=INT
Width of a flat kernel to convolve the interpolated tile values. Tile interpolation
is done using the median of the --interpnumngb neighbors of each tile (see
Section 4.1.2.2 [Processing options], page 110). If this option is given a value of
zero or one, no smoothing will be done. Without smoothing, strong boundaries
will probably be created between the values estimated for each tile. It is thus
good to smooth the interpolated image so strong discontinuities do not show
up in the final Sky values. The smoothing is done through convolution (see

Chapter 7: Data analysis 258

Section 6.3.1.1 [Convolution process|, page 207) with a flat kernel, so the value
to this option must be an odd number.

--ignoreblankintiles
Don’t set the input’s blank pixels to blank in the tiled outputs (for example Sky
and Sky standard deviation extensions of the output). This is only applicable
when the tiled output has the same size as the input, in other words, when
—-oneelempertile isn’t called.

By default, blank values in the input (commonly on the edges which are outside
the survey/field area) will be set to blank in the tiled outputs also. But in other
scenarios this default behavior is not desired: for example if you have masked
something in the input, but want the tiled output under that also.

—--checksky
Create a multi-extension FITS file showing the steps that were used to estimate
the Sky value over the input, see Section 7.1.4.3 [Quantifying signal in a tile],
page 244. The file will have two extensions for each step (one for the Sky and
one for the Sky standard deviation).

7.2 NoiseChisel

Once instrumental signatures are removed from the raw data (image) in the initial reduc-
tion process (see Chapter 6 [Data manipulation], page 178). You are naturally eager to
start answering the scientific questions that motivated the data collection in the first place.
However, the raw dataset/image is just an array of values/pixels, that is alll These raw
values cannot directly be used to answer your scientific questions: for example “how many
galaxies are there in the image?”.

The first high-level step in the analysis of your dataset will thus be to classify, or label,
the dataset elements (pixels) into two classes: 1) Noise, where random effects are the major
contributor to the value, and 2) Signal, where non-random factors (for example light from
a distant galaxy) are present. This classification of the elements in a dataset is formally
known as detection.

In an observational/experimental dataset, signal is always buried in noise: only
mock/simulated datasets are free of noise. Therefore detection, or the process of separating
signal from noise, determines the number of objects you study and the accuracy of
any higher-level measurement you do on them. Detection is thus the most important
step of any analysis and is not trivial. In particular, the most scientifically interesting
astronomical targets are faint, can have a large variety of morphologies, along with a large
distribution in brightness and size. Therefore when noise is significant, proper detection of
your targets is a uniquely decisive step in your final scientific analysis/result.

NoiseChisel is Gnuastro’s program for detection of targets that don’t have a sharp border
(almost all astronomical objects). When the targets have sharp edges/borders (for example
cells in biological imaging), a simple threshold is enough to separate them from noise and
each other (if they are not touching). To detect such sharp-edged targets, you can use
Gnuastro’s Arithmetic program in a command like below (assuming the threshold is 100,
see Section 6.2 [Arithmetic], page 189):

$ astarithmetic in.fits 100 gt 2 connected-components

Chapter 7: Data analysis 259

Since almost no astronomical target has such sharp edges, we need a more advanced
detection methodology. NoiseChisel uses a new noise-based paradigm for detection of very
extended and diffuse targets that are drowned deeply in the ocean of noise. It was initially
introduced in Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/1505.01664) and
improvements after the first four were published in Akhlaghi [2019] (https://arxiv.org/
abs/1909.11230). Please take the time to go through these papers to most effectively use
NoiseChisel.

The name of NoiseChisel is derived from the first thing it does after thresholding the
dataset: to erode it. In mathematical morphology, erosion on pixels can be pictured as
carving-off boundary pixels. Hence, what NoiseChisel does is similar to what a wood chisel
or stone chisel do. It is just not a hardware, but a software. In fact, looking at it as a
chisel and your dataset as a solid cube of rock will greatly help in effectively understanding
and optimally using it: with NoiseChisel you literally carve your targets out of the noise.
Try running it with the --checkdetection option, and open the temporary output as a
multi-extension cube, to see each step of the carving process on your input dataset (see
Section B.1.1 [Viewing multiextension FITS images], page 524).

NoiseChisel’s primary output is a binary detection map with the same size as the input
but its pixels only have two values: 0 (background) and 1 (foreground). Pixels that don’t
harbor any detected signal (noise) are given a label (or value) of zero and those with a value
of 1 have been identified as hosting signal.

Segmentation is the process of classifying the signal into higher-level constructs. For
example if you have two separate galaxies in one image, NoiseChisel will give a value of
1 to the pixels of both (each forming an “island” of touching foreground pixels). After
segmentation, the connected foreground pixels will get separate labels, enabling you to study
them individually. NoiseChisel is only focused on detection (separating signal from noise), to
segment the signal (into separate galaxies for example), Gnuastro has a separate specialized
program Section 7.3 [Segment], page 273. NoiseChisel’s output can be directly/readily fed
into Segment.

For more on NoiseChisel’s output format and its benefits (especially in conjunction with
Section 7.3 [Segment]|, page 273, and later Section 7.4 [MakeCatalog], page 284), please see
Akhlaghi [2016] (https://arxiv.org/abs/1611.06387). Just note that when that paper
was published, Segment was not yet spun-off into a separate program, and NoiseChisel done
both detection and segmentation.

NoiseChisel’s output is designed to be generic enough to be easily used in any higher-
level analysis. If your targets are not touching after running NoiseChisel and you aren’t
interested in their sub-structure, you don’t need the Segment program at all. You can ask
NoiseChisel to find the connected pixels in the output with the --label option. In this
case, the output won’t be a binary image any more, the signal will have counters/labels
starting from 1 for each connected group of pixels. You can then directly feed NoiseChisel’s
output into MakeCatalog for measurements over the detections and the production of a
catalog (see Section 7.4 [MakeCatalog], page 284).

Thanks to the published papers mentioned above, there is no need to provide a more
complete introduction to NoiseChisel in this book. In Section 7.2.1 [Invoking NoiseChisel],
page 260, the details of running NoiseChisel and its options are discussed.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1611.06387

Chapter 7: Data analysis 260

As discussed above, detection is one of the most important steps for your scientific
result. It is therefore very important to obtain a good understanding of NoiseChisel (and
afterwards Section 7.3 [Segment], page 273, and Section 7.4 [MakeCatalog|, page 284). We
strongly recommend reviewing two tutorials of Section 2.2 [General program usage tutorial],
page 24, and Section 2.3 [Detecting large extended targets|, page 61. They are designed
to show how to most effectively use NoiseChisel for the detection of small faint objects
and large extended objects. In the meantime, they also show the modular principle behind
Gnuastro’s programs and how they are built to complement, and build upon, each other.

Section 2.2 [General program usage tutorial], page 24, culminates in using NoiseChisel
to detect galaxies and use its outputs to find the galaxy colors. Defining colors is a very
common process in most science-cases. Therefore it is also recommended to (patiently)
complete that tutorial for optimal usage of NoiseChisel in conjunction with all the other
Gnuastro programs. Section 2.3 [Detecting large extended targets], page 61, shows you can
optimize NoiseChisel’s settings for very extended objects to successfully carve out to signal-
to-noise ratio levels of below 1/10. After going through those tutorials, play a little with
the settings (in the order presented in the paper and Section 7.2.1 [Invoking NoiseChisel],
page 260) on a dataset you are familiar with and inspect all the check images (options
starting with —-check) to see the effect of each parameter.

Below, in Section 7.2.1 [Invoking NoiseChisel], page 260, we will review NoiseChisel’s
input, detection, and output options in Section 7.2.1.1 [NoiseChisel input|, page 262,
Section 7.2.1.2 [Detection options|, page 264, and Section 7.2.1.3 [NoiseChisel output],
page 271. If you have used NoiseChisel within your research, please run it with --cite to
list the papers you should cite and how to acknowledge its funding sources.

7.2.1 Invoking NoiseChisel

NoiseChisel will detect signal in noise producing a multi-extension dataset containing a
binary detection map which is the same size as the input. Its output can be readily used
for input into Section 7.3 [Segment|, page 273, for higher-level segmentation, or Section 7.4
[MakeCatalog], page 284, to do measurements and generate a catalog. The executable name
is astnoisechisel with the following general template

$ astnoisechisel [OPTION ...] InputImage.fits
One line examples:

Detect signal in input.fits.
$ astnoisechisel input.fits

Inspect all the detection steps after changing a parameter.
$ astnoisechisel input.fits --qthresh=0.4 --checkdetection

Detect signal assuming input has 4 amplifier channels along first
dimension and 1 along the second. Also set the regular tile size
to 100 along both dimensions:

$ astnoisechisel --numchannels=4,1 --tilesize=100,100 input.fits

If NoiseChisel is to do processing (for example you don’t want to get help, or see the
values to each input parameter), an input image should be provided with the recognized
extensions (see Section 4.1.1.1 [Arguments], page 105). NoiseChisel shares a large set of

Chapter 7: Data analysis 261

common operations with other Gnuastro programs, mainly regarding input/output, general
processing steps, and general operating modes. To help in a unified experience between
all of Gnuastro’s programs, these operations have the same command-line options, see
Section 4.1.2 [Common options|, page 107, for a full list /description (they are not repeated
here).

As in all Gnuastro programs, options can also be given to NoiseChisel in configura-
tion files. For a thorough description on Gnuastro’s configuration file parsing, please see
Section 4.2 [Configuration files|, page 118. All of NoiseChisel’s options with a short descrip-
tion are also always available on the command-line with the —-help option, see Section 4.3
[Getting help], page 121. To inspect the option values without actually running NoiseChisel,
append your command with ——printparams (or -P).

NoiseChisel’s input image may contain blank elements (see Section 6.1.3 [Blank pixels],
page 181). Blank elements will be ignored in all steps of NoiseChisel. Hence if your dataset
has bad pixels which should be masked with a mask image, please use Gnuastro’s Section 6.2
[Arithmetic], page 189, program (in particular its where operator) to convert those pixels
to blank pixels before running NoiseChisel. Gnuastro’s Arithmetic program has bitwise
operators helping you select specific kinds of bad-pixels when necessary.

A convolution kernel can also be optionally given. If a value (file name) is given to
--kernel on the command-line or in a configuration file (see Section 4.2 [Configuration
files|, page 118), then that file will be used to convolve the image prior to thresholding.
Otherwise a default kernel will be used. The default kernel is a 2D Gaussian with a FWHM
of 2 pixels truncated at 5 times the FWHM. This choice of the default kernel is discussed
in Section 3.1.1 of Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/1505.01664).
See Section 6.3.4 [Convolution kernel], page 224, for kernel related options. Passing none to
--kernel will disable convolution. On the other hand, through the --convolved option,
you may provide an already convolved image, see descriptions below for more.

NoiseChisel defines two tessellations over the input (see Section 4.8 [Tessellation],

page 136). This enables it to deal with possible gradients in the input dataset and also
significantly improve speed by processing each tile on different threads simultaneously.
Tessellation related options are discussed in Section 4.1.2.2 [Processing options|, page 110.
In particular, NoiseChisel uses two tessellations (with everything between them identical
except the tile sizes): a fine-grained one with smaller tiles (used in thresholding and
Sky value estimations) and another with larger tiles which is used for pseudo-detections
over non-detected regions of the image. The common Tessellation options described in
Section 4.1.2.2 [Processing options], page 110, define all parameters of both tessellations.
The large tile size for the latter tessellation is set through the --largetilesize option.
To inspect the tessellations on your input dataset, run NoiseChisel with -—checktiles.
(7
Usage TIP: Frequently use the options starting with --check. Since the noise properties
differ between different datasets, you can often play with the parameters/options for a
better result than the default parameters. You can start with ——checkdetection for the
main steps. For the full list of NoiseChisel’s checking options please run:

$ astnoisechisel --help | grep check

Below, we’ll discuss NoiseChisel’s options, classified into two general classes, to help
in easy navigation. Section 7.2.1.1 [NoiseChisel input], page 262, mainly discusses the

https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 262

basic options relating to inputs and prior to the detection process detection. Afterwards,
Section 7.2.1.2 [Detection options], page 264, fully describes every configuration parameter
(option) related to detection and how they affect the final result. The order of options in
this section follow the logical order within NoiseChisel. On first reading (while you are
still new to NoiseChisel), it is therefore strongly recommended to read the options in the
given order below. The output of —-printparams (or -P) also has this order. However, the
output of —-help is sorted alphabetically. Finally, in Section 7.2.1.3 [NoiseChisel output],
page 271, the format of NoiseChisel’s output is discussed.

7.2.1.1 NoiseChisel input

The options here can be used to configure the inputs and output of NoiseChisel, along with
some general processing options. Recall that you can always see the full list of Gnuastro’s
options with the --help (see Section 4.3 [Getting help|, page 121), or --printparams (or
-P) to see their values (see Section 4.1.2.3 [Operating mode options|, page 112).

-k STR

--kernel=STR
File name of kernel to smooth the image before applying the threshold, see
Section 6.3.4 [Convolution kernel], page 224. If no convolution is needed, give
this option a value of none.

The first step of NoiseChisel is to convolve/smooth the image and use the
convolved image in multiple steps including the finding and applying of the
quantile threshold (see --qthresh).

The --kernel option is not mandatory. If not called, a 2D Gaussian profile with
a FWHM of 2 pixels truncated at 5 times the FWHM is used. This choice of
the default kernel is discussed in Section 3.1.1 of Akhlaghi and Ichikawa [2015].
You can use MakeProfiles to build a kernel with any of its recognized profile
types and parameters. For more details, please see Section 8.1.5.3 [MakeProfiles
output dataset], page 333. For example, the command below will make a Moffat
kernel (with 8 = 2.8) with FWHM of 2 pixels truncated at 10 times the FWHM.

$ astmkprof --oversample=1 --kernel=moffat,2,2.8,10

Since convolution can be the slowest step of NoiseChisel, for large datasets,
you can convolve the image once with Gnuastro’s Convolve (see Section 6.3
[Convolve|, page 206), and use the ——convolved option to feed it directly to
NoiseChisel. This can help getting faster results when you are playing/testing
the higher-level options.

--khdu=STR
HDU containing the kernel in the file given to the --kernel option.

—--convolved=STR
Use this file as the convolved image and don’t do convolution (ignore --kernel).
NoiseChisel will just check the size of the given dataset is the same as the input’s
size. If a wrong image (with the same size) is given to this option, the results
(errors, bugs, etc) are unpredictable. So please use this option with care and in
a highly controlled environment, for example in the scenario discussed below.

In almost all situations, as the input gets larger, the single most CPU (and
time) consuming step in NoiseChisel (and other programs that need a con-

Chapter 7: Data analysis 263

—-chdu=STR

-w STR
--widekern

volved image) is convolution. Therefore minimizing the number of convolutions
can save a significant amount of time in some scenarios. One such scenario
is when you want to segment NoiseChisel’s detections using the same kernel
(with Section 7.3 [Segment]|, page 273, which also supports this —-convolved
option). This scenario would require two convolutions of the same dataset: once
by NoiseChisel and once by Segment. Using this option in both programs, only
one convolution (prior to running NoiseChisel) is enough.

Another common scenario where this option can be convenient is when you
are testing NoiseChisel (or Segment) for the best parameters. You have to run
NoiseChisel multiple times and see the effect of each change. However, once you
are happy with the kernel, re-convolving the input on every change of higher-
level parameters will greatly hinder, or discourage, further testing. With this
option, you can convolve the input image with your chosen kernel once before
running NoiseChisel, then feed it to NoiseChisel on each test run and thus save
valuable time for better/more tests.

To build your desired convolution kernel, you can use Section 8.1 [MakeProfiles],
page 318. To convolve the image with a given kernel you can use Section 6.3
[Convolve|, page 206. Spatial domain convolution is mandatory: in the fre-
quency domain, blank pixels (if present) will cover the whole image and gradi-
ents will appear on the edges, see Section 6.3.3 [Spatial vs. Frequency domain],
page 224.

Below you can see an example of the second scenario: you want to see how
variation of the growth level (through the --detgrowquant option) will affect
the final result. Recall that you can ignore all the extra spaces, new lines, and
backslash’s (‘\’) if you are typing in the terminal. In a shell script, remove the
$ signs at the start of the lines.

Make the kernel to convolve with.
$ astmkprof --oversample=1 --kernel=gaussian,2,5

Convolve the input with the given kernel.
$ astconvolve input.fits --kernel=kernel.fits
--domain=spatial --output=convolved.fits

Run NoiseChisel with seven growth quantile values.
$ for g in 60 65 70 75 80 85 90; do
astnoisechisel input.fits --convolved=convolved.fits
--detgrowquant=0.$g --output=%g.fits;
done

The HDU /extension containing the convolved image in the file given to
—-—convolved.

el=STR
File name of a wider kernel to use in estimating the difference of the mode
and median in a tile (this difference is used to identify the significance of signal

= -

Chapter 7: Data analysis 264

in that tile, see Section 7.1.4.3 [Quantifying signal in a tile], page 244). As
displayed in Figure 4 of Akhlaghi and Ichikawa [2015] (https://arxiv.org/
abs/1505.01664), a wider kernel will help in identifying the skewness caused
by data in noise. The image that is convolved with this kernel is only used for
this purpose. Once the mode is found to be sufficiently close to the median,
the quantile threshold is found on the image convolved with the sharper kernel
(--kernel), see -—qthresh).

Since convolution will significantly slow down the processing, this feature is
optional. When it isn’t given, the image that is convolved with —-kernel will
be used to identify good tiles and apply the quantile threshold. This option is
mainly useful in conditions were you have a very large, extended, diffuse signal
that is still present in the usable tiles when using --kernel. See Section 2.3
[Detecting large extended targets|, page 61, for a practical demonstration on
how to inspect the tiles used in identifying the quantile threshold.

--whdu=STR
HDU containing the kernel file given to the -—widekernel option.

-L INT[,INT]

—--largetilesize=INT[,INT]
The size of each tile for the tessellation with the larger tile sizes. Except for
the tile size, all the other parameters for this tessellation are taken from the
common options described in Section 4.1.2.2 [Processing options|, page 110.
The format is identical to that of the ——tilesize option that is discussed in
that section.

7.2.1.2 Detection options

Detection is the process of separating the pixels in the image into two groups: 1) Signal,
and 2) Noise. Through the parameters below, you can customize the detection process in
NoiseChisel. Recall that you can always see the full list of NoiseChisel’s options with the
--help (see Section 4.3 [Getting help|, page 121), or --printparams (or -P) to see their
values (see Section 4.1.2.3 [Operating mode options|, page 112).

-Q FLT

--meanmedqdiff=FLT
The maximum acceptable distance between the quantiles of the mean and me-
dian in each tile, see Section 7.1.4.3 [Quantifying signal in a tile], page 244. The
quantile threshold estimates are measured on tiles where the quantiles of their
mean and median are less distant than the value given to this option. For ex-
ample --meanmedqdiff=0.01 means that only tiles where the mean’s quantile
is between 0.49 and 0.51 (recall that the median’s quantile is 0.5) will be used.

--outliersclip=FLT,FLT
o-clipping parameters for the outlier rejection of the quantile threshold. The
format of the given values is similar to —-sigmaclip below. In NoiseChisel,
outlier rejection on tiles is used when identifying the quantile thresholds
(--qthresh, --noerodequant, and detgrowquant).

Outlier rejection is useful when the dataset contains a large and diffuse (almost
flat within each tile) signal. The flatness of the profile will cause it to success-

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 265

fully pass the mean-median quantile difference test, so we’ll need to use the
distribution of successful tiles for removing these false positives. For more, see
the latter half of Section 7.1.4.3 [Quantifying signal in a tile], page 244.

--outliersigma=FLT

-t FLT

Multiple of sigma to define an outlier. If this option is given a value of zero, no
outlier rejection will take place. For more see -—outliersclip and the latter
half of Section 7.1.4.3 [Quantifying signal in a tile], page 244.

--qthresh=FLT

The quantile threshold to apply to the convolved image. The detection process
begins with applying a quantile threshold to each of the tiles in the small tessel-
lation. The quantile is only calculated for tiles that don’t have any significant
signal within them, see Section 7.1.4.3 [Quantifying signal in a tile], page 244.
Interpolation is then used to give a value to the unsuccessful tiles and it is
finally smoothed.

The quantile value is a floating point value between 0 and 1. Assume that we
have sorted the N data elements of a distribution (the pixels in each mesh on
the convolved image). The quantile (¢) of this distribution is the value of the
element with an index of (the nearest integer to) ¢ x N in the sorted data set.
After thresholding is complete, we will have a binary (two valued) image. The
pixels above the threshold are known as foreground pixels (have a value of 1)
while those which lie below the threshold are known as background (have a
value of 0).

—-smoothwidth=INT

Width of flat kernel used to smooth the interpolated quantile thresholds, see
-—qgthresh for more.

—--checkqthresh

Check the quantile threshold values on the mesh grid. A file suffixed with _
gthresh.fits will be created showing each step. With this option, NoiseChisel
will abort as soon as quantile estimation has been completed, allowing you to
inspect the steps leading to the final quantile threshold, this can be disabled
with —-continueaftercheck. By default the output will have the same pixel
size as the input, but with the ——oneelempertile option, only one pixel will
be used for each tile (see Section 4.1.2.2 [Processing options], page 110).

-—-blankasforeground

In the erosion and opening steps below, treat blank elements as foreground
(regions above the threshold). By default, blank elements in the dataset are
considered to be background, so if a foreground pixel is touching it, it will be
eroded. This option is irrelevant if the datasets contains no blank elements.

When there are many blank elements in the dataset, treating them as fore-
ground will systematically erode their regions less, therefore systematically cre-
ating more false positives. So use this option (when blank values are present)
with care.

Chapter 7: Data analysis 266

-e INT

——erode=INT

The number of erosions to apply to the binary thresholded image. Erosion is
simply the process of flipping (from 1 to 0) any of the foreground pixels that
neighbor a background pixel. In a 2D image, there are two kinds of neighbors, 4-
connected and 8-connected neighbors. You can specify which type of neighbors
should be used for erosion with the ——erodengb option, see below.

Erosion has the effect of shrinking the foreground pixels. To put it another way,
it expands the holes. This is a founding principle in NoiseChisel: it exploits the
fact that with very low thresholds, the holes in the very low surface brightness
regions of an image will be smaller than regions that have no signal. Therefore
by expanding those holes, we are able to separate the regions harboring signal.

—--erodengb=INT

The type of neighborhood (structuring element) used in erosion, see —-erode
for an explanation on erosion. Only two integer values are acceptable: 4 or 8. In
4-connectivity, the neighbors of a pixel are defined as the four pixels on the top,
bottom, right and left of a pixel that share an edge with it. The 8-connected
neighbors on the other hand include the 4-connected neighbors along with the
other 4 pixels that share a corner with this pixel. See Figure 6 (a) and (b) in
Akhlaghi and Ichikawa (2015) for a demonstration.

--noerodequant

-p INT

Pure erosion is going to carve off sharp and small objects completely out of
the detected regions. This option can be used to avoid missing such sharp and
small objects (which have significant pixels, but not over a large area). All
pixels with a value larger than the significance level specified by this option will
not be eroded during the erosion step above. However, they will undergo the
erosion and dilation of the opening step below.

Like the --qthresh option, the significance level is determined using the quan-
tile (a value between 0 and 1). Just as a reminder, in the normal distribution,
1o, 1.50, and 20 are approximately on the 0.84, 0.93, and 0.98 quantiles.

—--opening=INT

Depth of opening to be applied to the eroded binary image. Opening is a com-
posite operation. When opening a binary image with a depth of n, n erosions
(explained in --erode) are followed by n dilations. Simply put, dilation is the
inverse of erosion. When dilating an image any background pixel is flipped
(from 0 to 1) to become a foreground pixel. Dilation has the effect of fattening
the foreground. Note that in NoiseChisel, the erosion which is part of opening
is independent of the initial erosion that is done on the thresholded image (ex-
plained in --erode). The structuring element for the opening can be specified
with the --openingngb option. Opening has the effect of removing the thin
foreground connections (mostly noise) between separate foreground ‘islands’
(detections) thereby completely isolating them. Once opening is complete, we
have initial detections.

Chapter 7: Data analysis 267

—--openingngb=INT

The structuring element used for opening, see ——erodengb for more information
about a structuring element.

--skyfracnoblank

-B FLT

Ignore blank pixels when estimating the fraction of undetected pixels for Sky
estimation. NoiseChisel only measures the Sky over the tiles that have a suffi-
ciently large fraction of undetected pixels (value given to --minskyfrac). By
default this fraction is found by dividing number of undetected pixels in a tile
by the tile’s area. But this default behavior ignores the possibility of blank
pixels. In situations that blank/masked pixels are scattered across the image
and if they are large enough, all the tiles can fail the —~—minskyfrac test, thus
not allowing NoiseChisel to proceed. With this option, such scenarios can be
fixed: the denominator of the fraction will be the number of non-blank elements
in the tile, not the total tile area.

--minskyfrac=FLT

Minimum fraction (value between 0 and 1) of Sky (undetected) areas in a tile.
Only tiles with a fraction of undetected pixels (Sky) larger than this value will
be used to estimate the Sky value. NoiseChisel uses this option value twice
to estimate the Sky value: after initial detections and in the end when false
detections have been removed.

Because of the PSF and their intrinsic amorphous properties, astronomical
objects (except cosmic rays) never have a clear cutoff and commonly sink into
the noise very slowly. Even below the very low thresholds used by NoiseChisel.
So when a large fraction of the area of one mesh is covered by detections, it is
very plausible that their faint wings are present in the undetected regions (hence
causing a bias in any measurement). To get an accurate measurement of the
above parameters over the tessellation, tiles that harbor too many detected
regions should be excluded. The used tiles are visible in the respective ——check
option of the given step.

—--checkdetsky

-s FLT,FLT

Check the initial approximation of the sky value and its standard deviation
in a FITS file ending with _detsky.fits. With this option, NoiseChisel will
abort as soon as the sky value used for defining pseudo-detections is complete.
This allows you to inspect the steps leading to the final quantile threshold, this
behavior can be disabled with --continueaftercheck. By default the output
will have the same pixel size as the input, but with the --oneelempertile
option, only one pixel will be used for each tile (see Section 4.1.2.2 [Processing
options|, page 110).

--sigmaclip=FLT,FLT

The o-clipping parameters for measuring the initial and final Sky values from
the undetected pixels, see Section 7.1.3 [Sigma clipping], page 240.

This option takes two values which are separated by a comma (,). Each value
can either be written as a single number or as a fraction of two numbers (for

Chapter 7: Data analysis 268

-R FLT

example 3,1/10). The first value to this option is the multiple of o that will
be clipped (« in that section). The second value is the exit criteria. If it is
less than 1, then it is interpreted as tolerance and if it is larger than one it
is assumed to be the fixed number of iterations. Hence, in the latter case the
value must be an integer.

——dthresh=FLT

The detection threshold: a multiple of the initial Sky standard deviation
added with the initial Sky approximation (which you can inspect with
--checkdetsky). This flux threshold is applied to the initially undetected
regions on the unconvolved image. The background pixels that are completely
engulfed in a 4-connected foreground region are converted to background
(holes are filled) and one opening (depth of 1) is applied over both the initially
detected and undetected regions. The Signal to noise ratio of the resulting
‘pseudo-detections’ are used to identify true vs. false detections. See Section
3.1.5 and Figure 7 in Akhlaghi and Ichikawa (2015) for a very complete
explanation.

--dopening=INT

The number of openings to do after applying --dthresh.

--dopeningngb=INT

The connectivity used in the opening of ——dopening. In a 2D image this must
be either 4 or 8. The stronger the connectivity, the more smaller regions will
be discarded.

-—holengb=INT

The connectivity (defined by the number of neighbors) to fill holes after applying
--dthresh (above) to find pseudo-detections. For example in a 2D image it
must be 4 (the neighbors that are most strongly connected) or 8 (all neighbors).
The stronger the connectivity, the stronger the hole will be enclosed. So setting
a value of 8 in a 2D image means that the walls of the hole are 4-connected. If
standard (near Sky level) values are given to --dthresh, setting ——holengb=4,
might fill the complete dataset and thus not create enough pseudo-detections.

—--pseudoconcomp=INT

-m INT

The connectivity (defined by the number of neighbors) to find individual
pseudo-detections. If it is a weaker connectivity (4 in a 2D image), then
pseudo-detections that are connected on the corners will be treated as
separate.

—-snminarea=INT

The minimum area to calculate the Signal to noise ratio on the pseudo-
detections of both the initially detected and undetected regions. When the
area in a pseudo-detection is too small, the Signal to noise ratio measurements
will not be accurate and their distribution will be heavily skewed to the
positive. So it is best to ignore any pseudo-detection that is smaller than this
area. Use ——detsnhistnbins to check if this value is reasonable or not.

Chapter 7: Data analysis 269

——checksn

Save the S/N values of the pseudo-detections (and possibly grown detections if
--cleangrowndet is called) into separate tables. If —-tableformat is a FITS
table, each table will be written into a separate extension of one file suffixed
with _detsn.fits. If it is plain text, a separate file will be made for each table
(ending in _detsn_sky.txt, _detsn_det.txt and _detsn_grown.txt). For
more on --tableformat see Section 4.1.2.1 [Input/Output options], page 107.

You can use these to inspect the S/N values and their distribution (in combi-
nation with the --checkdetection option to see where the pseudo-detections
are). You can use Gnuastro’s Section 7.1 [Statistics|, page 237, to make a
histogram of the distribution or any other analysis you would like for better
understanding of the distribution (for example through a histogram).

—-minnumfalse=INT

-c FLT

--snquant=

The minimum number of ‘pseudo-detections’ over the undetected regions to
identify a Signal-to-Noise ratio threshold. The Signal to noise ratio (S/N)
of false pseudo-detections in each tile is found using the quantile of the S/N
distribution of the pseudo-detections over the undetected pixels in each mesh.
If the number of S/N measurements is not large enough, the quantile will not
be accurate (can have large scatter). For example if you set -~-snquant=0.99
(or the top 1 percent), then it is best to have at least 100 S/N measurements.

FLT

The quantile of the Signal to noise ratio distribution of the pseudo-detections in
each mesh to use for filling the large mesh grid. Note that this is only calculated
for the large mesh grids that satisfy the minimum fraction of undetected pixels
(value of --minbfrac) and minimum number of pseudo-detections (value of
--minnumfalse).

—-snthresh=FLT

-d FLT

Manually set the signal-to-noise ratio of true pseudo-detections. With this
option, NoiseChisel will not attempt to find pseudo-detections over the noisy
regions of the dataset, but will directly go onto applying the manually input
value.

This option is useful in crowded images where there is no blank sky to find the
sky pseudo-detections. You can get this value on a similarly reduced dataset
(from another region of the Sky with more undetected regions spaces).

--detgrowquant=FLT

Quantile limit to “grow” the final detections. As discussed in the previous
options, after applying the initial quantile threshold, layers of pixels are carved
off the objects to identify true signal. With this step you can return those low
surface brightness layers that were carved off back to the detections. To disable
growth, set the value of this option to 1.

The process is as follows: after the true detections are found, all the non-
detected pixels above this quantile will be put in a list and used to “grow” the

Chapter 7: Data analysis 270

true detections (seeds of the growth). Like all quantile thresholds, this thresh-
old is defined and applied to the convolved dataset. Afterwards, the dataset
is dilated once (with minimum connectivity) to connect very thin regions on
the boundary: imagine building a dam at the point rivers spill into an open
sea/ocean. Finally, all holes are filled. In the geography metaphor, holes can be
seen as the closed (by the dams) rivers and lakes, so this process is like turning
the water in all such rivers and lakes into soil. See -—~detgrowmaxholesize for
configuring the hole filling.

--detgrowmaxholesize=INT
The maximum hole size to fill during the final expansion of the true detections
as described in --detgrowquant. This is necessary when the input contains
many smaller objects and can be used to avoid marking blank sky regions as
detections.

For example multiple galaxies can be positioned such that they surround an
empty region of sky. If all the holes are filled, the Sky region in between
them will be taken as a detection which is not desired. To avoid such cases, the
integer given to this option must be smaller than the hole between such objects.
However, we should caution that unless the “hole” is very large, the combined
faint wings of the galaxies might actually be present in between them, so be
very careful in not filling such holes.

On the other hand, if you have a very large (and extended) galaxy, the diffuse
wings of the galaxy may create very large holes over the detections. In such
cases, a large enough value to this option will cause all such holes to be detected
as part of the large galaxy and thus help in detecting it to extremely low surface
brightness limits. Therefore, especially when large and extended objects are
present in the image, it is recommended to give this option (very) large values.
For one real-world example, see Section 2.3 [Detecting large extended targets],
page 61.

—--cleangrowndet
After dilation, if the signal-to-noise ratio of a detection is less than the derived
pseudo-detection S/N limit, that detection will be discarded. In an ideal/clean
noise, a true detection’s S/N should be larger than its constituent pseudo-
detections because its area is larger and it also covers more signal. However,
on a false detections (especially at lower —-snquant values), the increase in size
can cause a decrease in S/N below that threshold.

This will improve purity and not change completeness (a true detection will not
be discarded). Because a true detection has flux in its vicinity and dilation will
catch more of that flux and increase the S/N. So on a true detection, the final
S/N cannot be less than pseudo-detections.

However, in many real images bad processing creates artifacts that cannot be
accurately removed by the Sky subtraction. In such cases, this option will
decrease the completeness (will artificially discard true detections). So this
feature is not default and should to be explicitly called when you know the
noise is clean.

Chapter 7: Data analysis 271

—-—checkdetection
Every step of the detection process will be added as an extension to a file with
the suffix _det.fits. Going through each would just be a repeat of the expla-
nations above and also of those in Akhlaghi and Ichikawa (2015). The extension
label should be sufficient to recognize which step you are observing. Viewing
all the steps can be the best guide in choosing the best set of parameters. With
this option, NoiseChisel will abort as soon as a snapshot of all the detection
process is saved. This behavior can be disabled with —-continueaftercheck.

—--checksky
Check the derivation of the final sky and its standard deviation values on the
mesh grid. With this option, NoiseChisel will abort as soon as the sky value
is estimated over the image (on each tile). This behavior can be disabled with
--continueaftercheck. By default the output will have the same pixel size as
the input, but with the --oneelempertile option, only one pixel will be used
for each tile (see Section 4.1.2.2 [Processing options], page 110).

7.2.1.3 NoiseChisel output

NoiseChisel’s output is a multi-extension FITS file. The main extension/dataset is a (bi-
nary) detection map. It has the same size as the input but with only two possible values for
all pixels: 0 (for pixels identified as noise) and 1 (for those identified as signal/detections).
The detection map is followed by a Sky and Sky standard deviation dataset (which are cal-
culated from the binary image). By default (when --rawoutput isn’t called), NoiseChisel
will also subtract the Sky value from the input and save the sky-subtracted input as the
first extension in the output with data. The zero-th extension (that contains no data), con-
tains NoiseChisel’s configuration as FITS keywords, see Section 4.10 [Output FITS files],
page 139.

The name of the output file can be set by giving a value to ——output (this is a common
option between all programs and is therefore discussed in Section 4.1.2.1 [Input/Output
options|, page 107). If --output isn’t used, the input name will be suffixed with
_detected.fits and used as output, see Section 4.9 [Automatic output], page 138. If any
of the options starting with —-check* are given, NoiseChisel won’t complete and will abort
as soon as the respective check images are created. For more information on the different
check images, see the description for the --check* options in Section 7.2.1.2 [Detection
options|, page 264, (this can be disabled with --continueaftercheck).

The last two extensions of the output are the Sky and its Standard deviation, see
Section 7.1.4 [Sky value], page 241, for a complete explanation. They are calculated on
the tile grid that you defined for NoiseChisel. By default these datasets will have the same
size as the input, but with all the pixels in one tile given one value. To be more space-efficient
(keep only one pixel per tile), you can use the —-oneelempertile option, see Section 4.8
[Tessellation], page 136.

To inspect any of NoiseChisel’s output files, assuming you use SAO DS9, you can con-
figure your Graphic User Interface (GUI) to open NoiseChisel’s output as a multi-extension
data cube. This will allow you to flip through the different extensions and visually inspect
the results. This process has been described for the GNOME GUI (most common GUI
in GNU/Linux operating systems) in Section B.1.1 [Viewing multiextension FITS images],
page 524.

Chapter 7: Data analysis 272

NoiseChisel’s output configuration options are described in detail below.

—-continueaftercheck

Continue NoiseChisel after any of the options starting with --check (see
Section 7.2.1.2 [Detection options], page 264. NoiseChisel involves many steps
and as a result, there are many checks, allowing you to inspect the status of
the processing. The results of each step affect the next steps of processing.
Therefore, when you want to check the status of the processing at one step,
the time spent to complete NoiseChisel is just wasted/distracting time.

To encourage easier experimentation with the option values, when you use any
of the NoiseChisel options that start with -—check, NoiseChisel will abort once
its desired extensions have been written. With --continueaftercheck option,
you can disable this behavior and ask NoiseChisel to continue with the rest of
the processing, even after the requested check files are complete.

--ignoreblankintiles

—--label

Don’t set the input’s blank pixels to blank in the tiled outputs (for example Sky
and Sky standard deviation extensions of the output). This is only applicable
when the tiled output has the same size as the input, in other words, when
—--oneelempertile isn’t called.

By default, blank values in the input (commonly on the edges which are outside
the survey/field area) will be set to blank in the tiled outputs also. But in other
scenarios this default behavior is not desired: for example if you have masked
something in the input, but want the tiled output under that also.

Run a connected-components algorithm on the finally detected pixels to identify
which pixels are connected to which. By default the main output is a binary
dataset with only two values: 0 (for noise) and 1 (for signal/detections). See
Section 7.2.1.3 [NoiseChisel output], page 271, for more.

The purpose of NoiseChisel is to detect targets that are extended and diffuse,
with outer parts that sink into the noise very gradually (galaxies and stars
for example). Since NoiseChisel digs down to extremely low surface brightness
values, many such targets will commonly be detected together as a single large
body of connected pixels.

To properly separate connected objects, sophisticated segmentation methods
are commonly necessary on NoiseChisel’s output. Gnuastro has the dedicated
Section 7.3 [Segment], page 273, program for this job. Since input images are
commonly large and can take a significant volume, the extra volume necessary
to store the labels of the connected components in the detection map (which
will be created with this --1abel option, in 32-bit signed integer type) can thus
be a major waste of space. Since the default output is just a binary dataset,
an 8-bit unsigned dataset is enough.

The binary output will also encourage users to segment the result separately
prior to doing higher-level analysis. As an alternative to —-1label, if you have
the binary detection image, you can use the connected-components operator
in Gnuastro’s Arithmetic program to identify regions that are connected with

Chapter 7: Data analysis 273

each other. For example with this command (assuming NoiseChisel’s output is
called nc.fits):

$ astarithmetic nc.fits 2 connected-components -hDETECTIONS

--rawoutput
Don’t include the Sky-subtracted input image as the first extension of the out-
put. By default, the Sky-subtracted input is put in the first extension of the
output. The next extensions are NoiseChisel’s main outputs described above.

The extra Sky-subtracted input can be convenient in checking NoiseChisel’s
output and comparing the detection map with the input: visually see if every-
thing you expected is detected (reasonable completeness) and that you don’t
have too many false detections (reasonable purity). This visual inspection is
simplified if you use SAO DS9 to view NoiseChisel’s output as a multi-extension
data-cube, see Section B.1.1 [Viewing multiextension FITS images|, page 524.

When you are satisfied with your NoiseChisel configuration (therefore you don’t
need to check on every run), or you want to archive/transfer the outputs, or
the datasets become large, or you are running NoiseChisel as part of a pipeline,
this Sky-subtracted input image can be a significant burden (take up a large
volume). The fact that the input is also noisy, makes it hard to compress it
efficiently.

In such cases, this ——rawoutput can be used to avoid the extra sky-subtracted
input in the output. It is always possible to easily produce the Sky-subtracted
dataset from the input (assuming it is in extension 1 of in.fits) and the SKY
extension of NoiseChisel’s output (let’s call it nc.fits) with a command like be-
low (assuming NoiseChisel wasn’t run with --oneelempertile, see Section 4.8
[Tessellation], page 136):

$ astarithmetic in.fits nc.fits - -hl -hSKY

(N
Save space: with the ——rawoutput and --oneelempertile, NoiseChisel’s output will only

be one binary detection map and two much smaller arrays with one value per tile. Since
none of these have noise they can be compressed very effectively (without any loss of data)
with exceptionally high compression ratios. This makes it easy to archive, or transfer,
NoiseChisel’s output even on huge datasets. To compress it with the most efficient method
(take up less volume), run the following command:

$ gzip --best noisechisel_output.fits

The resulting .fits.gz file can then be fed into any of Gnuastro’s programs directly, or
viewed in viewers like SAO DS9, without having to decompress it separately (they will just
take a little longer, because they have to internally decompress it before starting). See
Section 2.2.12 [NoiseChisel optimization for storage|, page 43, for an example on a real
\dataset.

J

7.3 Segment

Once signal is separated from noise (for example with Section 7.2 [NoiseChisel|, page 258),
you have a binary dataset: each pixel is either signal (1) or noise (0). Signal (for example

Chapter 7: Data analysis 274

every galaxy in your image) has been “detected”, but all detections have a label of 1.
Therefore while we know which pixels contain signal, we still can’t find out how many
galaxies they contain or which detected pixels correspond to which galaxy. At the lowest
(most generic) level, detection is a kind of segmentation (segmenting the whole dataset into
signal and noise, see Section 7.2 [NoiseChisel], page 258). Here, we’ll define segmentation
only on signal: to separate sub-structure within the detections.

If the targets are clearly separated, or their detected regions aren’t touching, a simple
connected components® algorithm (very basic segmentation) is enough to separate the re-
gions that are touching/connected. This is such a basic and simple form of segmentation
that Gnuastro’s Arithmetic program has an operator for it: see connected-components
in Section 6.2.2 [Arithmetic operators], page 190. Assuming the binary dataset is called
binary.fits, you can use it with a command like this:

$ astarithmetic binary.fits 2 connected-components

You can even do a very basic detection (a threshold, say at value 100) and segmentation in
Arithmetic with a single command like below:

$ astarithmetic in.fits 100 gt 2 connected-components

However, in most astronomical situations our targets are not nicely separated or have a
sharp boundary/edge (for a threshold to suffice): they touch (for example merging galaxies),
or are simply in the same line-of-sight (which is much more common). This causes their
images to overlap.

In particular, when you do your detection with NoiseChisel, you will detect signal to very
low surface brightness limits: deep into the faint wings of galaxies or bright stars (which can
extend very far and irregularly from their center). Therefore, it often happens that several
galaxies are detected as one large detection. Since they are touching, a simple connected
components algorithm will not suffice. It is therefore necessary to do a more sophisticated
segmentation and break up the detected pixels (even those that are touching) into multiple
target objects as accurately as possible.

Segment will use a detection map and its corresponding dataset to find sub-structure over
the detected areas and use them for its segmentation. Until Gnuastro version 0.6 (released
in 2018), Segment was part of Section 7.2 [NoiseChisel], page 258. Therefore, similar to
NoiseChisel, the best place to start reading about Segment and understanding what it does
(with many illustrative figures) is Section 3.2 of Akhlaghi and Ichikawa [2015] (https://
arxiv.org/abs/1505.01664), and continue with Akhlaghi [2019] (https://arxiv.org/
abs/1909.11230).

As a summary, Segment first finds true clumps over the detections. Clumps are associ-
ated with local maxima/minima® and extend over the neighboring pixels until they reach
a local minimum/maximum (river/watershed). By default, Segment will use the distribu-
tion of clump signal-to-noise ratios over the undetected regions as reference to find “true”
clumps over the detections. Using the undetected regions can be disabled by directly giving
a signal-to-noise ratio to ——clumpsnthresh.

The true clumps are then grown to a certain threshold over the detections. Based on
the strength of the connections (rivers/watersheds) between the grown clumps, they are

8 https://en.wikipedia.org/wiki/Connected-component_labeling

9 By default the maximum is used as the first clump pixel, to define clumps based on local minima, use
the --minima option.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230
https://en.wikipedia.org/wiki/Connected-component_labeling

Chapter 7: Data analysis 275

considered parts of one object or as separate objects. See Section 3.2 of Akhlaghi and
Ichikawa [2015] (https://arxiv.org/abs/1505.01664) for more. Segment’s main output
are thus two labeled datasets: 1) clumps, and 2) objects. See Section 7.3.1.3 [Segment
output], page 282, for more.

To start learning about Segment, especially in relation to detection (Section 7.2
[NoiseChisel], page 258) and measurement (Section 7.4 [MakeCatalog], page 284), the
recommended references are Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/
1505.01664), Akhlaghi [2016] (https://arxiv.org/abs/1611.06387) and Akhlaghi
[2019] (https://arxiv.org/abs/1909.11230). If you have used Segment within your
research, please run it with --cite to list the papers you should cite and how to
acknowledge its funding sources.

Those papers cannot be updated any more but the software will evolve. For example
Segment became a separate program (from NoiseChisel) in 2018 (after those papers were
published). Therefore this book is the definitive reference. Finally, in Section 7.3.1 [Invoking
Segment], page 275, we’ll discuss Segment’s inputs, outputs and configuration options.

7.3.1 Invoking Segment

Segment will identify substructure within the detected regions of an input image. Seg-
ment’s output labels can be directly used for measurements (for example with Section 7.4
[MakeCatalog|, page 284). The executable name is astsegment with the following general
template

$ astsegment [OPTION ...] InputlImage.fits
One line examples:

Segment NoiseChisel’s detected regions.
$ astsegment default-noisechisel-output.fits

Use a hand-input S/N value for keeping true clumps
(avoid finding the S/N using the undetected regions).
$ astsegment nc-out.fits --clumpsnthresh=10

Inspect all the segmentation steps after changing a parameter.
$ astsegment input.fits --snquant=0.9 --checksegmentaion

Use the fixed value of 0.01 for the input’s Sky standard deviation
(in the units of the input), and assume all the pixels are a

detection (for example a large structure extending over the whole
image), and only keep clumps with S/N>10 as true clumps.

$ astsegment in.fits --std=0.01 --detection=all --clumpsnthresh=10

If Segment is to do processing (for example you don’t want to get help, or see the values of
each option), at least one input dataset is necessary along with detection and error infor-
mation, either as separate datasets (per-pixel) or fixed values, see Section 7.3.1.1 [Segment
input], page 276. Segment shares a large set of common operations with other Gnuastro
programs, mainly regarding input/output, general processing steps, and general operating
modes. To help in a unified experience between all of Gnuastro’s programs, these common
operations have the same names and defined in Section 4.1.2 [Common options|, page 107.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1611.06387
https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1909.11230

Chapter 7: Data analysis 276

As in all Gnuastro programs, options can also be given to Segment in configuration files.
For a thorough description of Gnuastro’s configuration file parsing, please see Section 4.2
[Configuration files], page 118. All of Segment’s options with a short description are also
always available on the command-line with the --help option, see Section 4.3 [Getting
help], page 121. To inspect the option values without actually running Segment, append
your command with --printparams (or -P).

To help in easy navigation between Segment’s options, they are separately discussed in
the three sub-sections below: Section 7.3.1.1 [Segment input], page 276, discusses how you
can customize the inputs to Segment. Section 7.3.1.2 [Segmentation options]|, page 279, is
devoted to options specific to the high-level segmentation process. Finally, in Section 7.3.1.3
[Segment output], page 282, we’ll discuss options that affect Segment’s output.

7.3.1.1 Segment input

Besides the input dataset (for example astronomical image), Segment also needs to know
the Sky standard deviation and the regions of the dataset that it should segment. The
values dataset is assumed to be Sky subtracted by default. If it isn’t, you can ask Segment
to subtract the Sky internally by calling --sky. For the rest of this discussion, we’ll assume
it is already sky subtracted.

The Sky and its standard deviation can be a single value (to be used for the whole
dataset) or a separate dataset (for a separate value per pixel). If a dataset is used for the
Sky and its standard deviation, they must either be the size of the input image, or have
a single value per tile (generated with --oneelempertile, see Section 4.1.2.2 [Processing
options], page 110, and Section 4.8 [Tessellation], page 136).

The detected regions/pixels can be specified as a detection map (for example see
Section 7.2.1.3 [NoiseChisel output], page 271). If --detection=all, Segment won’t read
any detection map and assume the whole input is a single detection. For example when
the dataset is fully covered by a large nearby galaxy/globular cluster.

When dataset are to be used for any of the inputs, Segment will assume they are multiple
extensions of a single file by default (when --std or --detection aren’t called). For
example NoiseChisel’s default output Section 7.2.1.3 [NoiseChisel output], page 271. When
the Sky-subtracted values are in one file, and the detection and Sky standard deviation are
in another, you just need to use ——detection: in the absence of --std, Segment will look
for both the detection labels and Sky standard deviation in the file given to --detection.
Ultimately, if all three are in separate files, you need to call both --detection and --std.

The extensions of the three mandatory inputs can be specified with —-hdu, --dhdu,
and --stdhdu. For a full discussion on what to give to these options, see the description
of -=hdu in Section 4.1.2.1 [Input/Output options|, page 107. To see their default values
(along with all the other options), run Segment with the --printparams (or -P) option.
Just recall that in the absence of -~-detection and --std, all three are assumed to be in
the same file. If you only want to see Segment’s default values for HDUs on your system,
run this command:

$ astsegment -P | grep hdu

By default Segment will convolve the input with a kernel to improve the signal-to-noise
ratio of true peaks. If you already have the convolved input dataset, you can pass it directly
to Segment for faster processing (using the --convolved and --chdu options). Just don’t

Chapter 7: Data analysis 277

forget that the convolved image must also be Sky-subtracted before calling Segment. If
a value/file is given to --sky, the convolved values will also be Sky subtracted internally.
Alternatively, if you prefer to give a kernel (with -——kernel and --khdu), Segment can do
the convolution internally. To disable convolution, use -—-kernel=none.

~-sky=STR/FLT
The Sky value(s) to subtract from the input. This option can either be given
a constant number or a file name containing a dataset (multiple values, per
pixel or per tile). By default, Segment will assume the input dataset is Sky
subtracted, so this option is not mandatory.

If the value can’t be read as a number, it is assumed to be a file name. When
the value is a file, the extension can be specified with --skyhdu. When its not
a single number, the given dataset must either have the same size as the output
or the same size as the tessellation (so there is one pixel per tile, see Section 4.8
[Tessellation], page 136).

When this option is given, its value(s) will be subtracted from the input and
the (optional) convolved dataset (given to --convolved) prior to starting the
segmentation process.

--skyhdu=STR/INT
The HDU /extension containing the Sky values. This is mandatory when the
value given to —-sky is not a number. Please see the description of --hdu in
Section 4.1.2.1 [Input/Output options], page 107, for the different ways you can
identify a special extension.

--std=STR/FLT
The Sky standard deviation value(s) corresponding to the input. The value
can either be a constant number or a file name containing a dataset (multiple
values, per pixel or per tile). The Sky standard deviation is mandatory for
Segment to operate.

If the value can’t be read as a number, it is assumed to be a file name. When
the value is a file, the extension can be specified with —-skyhdu. When its not
a single number, the given dataset must either have the same size as the output
or the same size as the tessellation (so there is one pixel per tile, see Section 4.8
[Tessellation], page 136).

When this option is not called, Segment will assume the standard deviation
is a dataset and in a HDU/extension (--stdhdu) of another one of the input
file(s). If a file is given to —-detection, it will assume that file contains the
standard deviation dataset, otherwise, it will look into input filename (the main
argument, without any option).

--stdhdu=INT/STR
The HDU /extension containing the Sky standard deviation values, when the
value given to --std is a file name. Please see the description of --hdu in
Section 4.1.2.1 [Input/Output options], page 107, for the different ways you
can identify a special extension.

Chapter 7: Data analysis 278

—-variance

-d STR

The input Sky standard deviation value/dataset is actually variance. When this
option is called, the square root of input Sky standard deviation (see --std) is
used internally, not its raw value(s).

—--detection=STR

--dhdu

-k STR

Detection map to use for segmentation. If given a value of all, Segment will
assume the whole dataset must be segmented, see below. If a detection map is
given, the extension can be specified with --dhdu. If not given, Segment will
assume the desired HDU /extension is in the main input argument (input file
specified with no option).

The final segmentation (clumps or objects) will only be over the non-zero pixels
of this detection map. The dataset must have the same size as the input image.
Only datasets with an integer type are acceptable for the labeled image, see
Section 4.6 [Numeric data types|, page 128. If your detection map only has
integer values, but it is stored in a floating point container, you can use Gnu-
astro’s Arithmetic program (see Section 6.2 [Arithmetic], page 189) to convert
it to an integer container, like the example below:

$ astarithmetic float.fits int32 --output=int.fits

It may happen that the whole input dataset is covered by signal, for example
when working on parts of the Andromeda galaxy, or nearby globular clusters
(that cover the whole field of view). In such cases, segmentation is necessary
over the complete dataset, not just specific regions (detections). By default Seg-
ment will first use the undetected regions as a reference to find the proper signal-
to-noise ratio of “true” clumps (give a purity level specified with --snquant).
Therefore, in such scenarios you also need to manually give a “true” clump
signal-to-noise ratio with the —-clumpsnthresh option to disable looking into
the undetected regions, see Section 7.3.1.2 [Segmentation options|, page 279.
In such cases, is possible to make a detection map that only has the value 1
for all pixels (for example using Section 6.2 [Arithmetic], page 189), but for
convenience, you can also use --detection=all.

The HDU /extension containing the detection map given to --detection.
Please see the description of --hdu in Section 4.1.2.1 [Input/Output options],
page 107, for the different ways you can identify a special extension.

—--kernel=STR

—-khdu

The kernel used to convolve the input image. The usage of this option is
identical to NoiseChisel’s --kernel option (Section 7.2.1.1 [NoiseChisel input],
page 262). Please see the descriptions there for more. To disable convolution,
you can give it a value of none.

The HDU /extension containing the kernel used for convolution. For acceptable
values, please see the description of --hdu in Section 4.1.2.1 [Input/Output
options], page 107.

Chapter 7: Data analysis 279

——convolved

——-chdu

The convolved image to avoid internal convolution by Segment. The usage
of this option is identical to NoiseChisel’s —-convolved option. Please see
Section 7.2.1.1 [NoiseChisel input], page 262, for a thorough discussion of the
usefulness and best practices of using this option.

If you want to use the same convolution kernel for detection (with Section 7.2
[NoiseChisel], page 258) and segmentation, with this option, you can use the
same convolved image (that is also available in NoiseChisel) and avoid two
convolutions. However, just be careful to use the input to NoiseChisel as the
input to Segment also, then use the —-sky and --std to specify the Sky and its
standard deviation (from NoiseChisel’s output). Recall that when NoiseChisel
is not called with --rawoutput, the first extension of NoiseChisel’s output is
the Sky-subtracted input (see Section 7.2.1.3 [NoiseChisel output|, page 271).
So if you use the same convolved image that you fed to NoiseChisel, but use
NoiseChisel’s output with Segment’s ——convolved, then the convolved image
won’t be Sky subtracted.

The HDU /extension containing the convolved image (given to --convolved).
For acceptable values, please see the description of —--hdu in Section 4.1.2.1
[Input/Output options|, page 107.

-L INT[,INT]
--largetilesize=INT[, INT]

The size of the large tiles to use for identifying the clump S/N threshold over
the undetected regions. The usage of this option is identical to NoiseChisel’s
--largetilesize option (Section 7.2.1.1 [NoiseChisel input], page 262). Please
see the descriptions there for more.

The undetected regions can be a significant fraction of the dataset and finding
clumps requires sorting of the desired regions, which can be slow. To speed up
the processing, Segment finds clumps in the undetected regions over separate
large tiles. This allows it to have to sort a much smaller set of pixels and also
to treat them independently and in parallel. Both these issues greatly speed it
up. Just be sure to not decrease the large tile sizes too much (less than 100
pixels in each dimension). It is important for them to be much larger than the
clumps.

7.3.1.2 Segmentation options

The options below can be used to configure every step of the segmentation process in the
Segment program. For a more complete explanation (with figures to demonstrate each
step), please see Section 3.2 of Akhlaghi and Ichikawa [2015] (https://arxiv.org/
abs/1505.01664), and also Section 7.3 [Segment], page 273. By default, Segment will
follow the procedure described in the paper to find the S/N threshold based on the noise
properties. This can be disabled by directly giving a trustable signal-to-noise ratio to the
—--clumpsnthresh option.

Recall that you can always see the full list of Gnuastro’s options with the --help (see
Section 4.3 [Getting help], page 121), or --printparams (or -P) to see their values (see
Section 4.1.2.3 [Operating mode options]|, page 112).

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 280

-B FLT

--minskyfrac=FLT

—--minima

-m INT

Minimum fraction (value between 0 and 1) of Sky (undetected) areas in a large
tile. Only (large) tiles with a fraction of undetected pixels (Sky) greater than
this value will be used for finding clumps. The clumps found in the undetected
areas will be used to estimate a S/N threshold for true clumps. Therefore
this is an important option (to decrease) in crowded fields. Operationally,
this is almost identical to NoiseChisel’s --minskyfrac option (Section 7.2.1.2
[Detection options|, page 264). Please see the descriptions there for more.

Build the clumps based on the local minima, not maxima. By default, clumps
are built starting from local maxima (see Figure 8 of Akhlaghi and Ichikawa
[2015] (https://arxiv.org/abs/1505.01664)). Therefore, this option can be
useful when you are searching for true local minima (for example absorption
features).

—-snminarea=INT

—-checksn

The minimum area which a clump in the undetected regions should have in
order to be considered in the clump Signal to noise ratio measurement. If this
size is set to a small value, the Signal to noise ratio of false clumps will not be
accurately found. It is recommended that this value be larger than the value
to NoiseChisel’s -——snminarea. Because the clumps are found on the convolved
(smoothed) image while the pseudo-detections are found on the input image.
You can use --checksn and --checksegmentation to see if your chosen value
is reasonable or not.

Save the S/N values of the clumps over the sky and detected regions into sep-
arate tables. If -—tableformat is a FITS format, each table will be written
into a separate extension of one file suffixed with _clumpsn.fits. If it is plain
text, a separate file will be made for each table (ending in _clumpsn_sky.txt
and _clumpsn_det.txt). For more on --tableformat see Section 4.1.2.1 [In-
put/Output options], page 107.

You can use these tables to inspect the S/N values and their distribution (in
combination with the --checksegmentation option to see where the clumps
are). You can use Gnuastro’s Section 7.1 [Statistics|, page 237, to make a
histogram of the distribution (ready for plotting in a text file, or a crude ASCII-
art demonstration on the command-line).

With this option, Segment will abort as soon as the two tables are created.
This allows you to inspect the steps leading to the final S/N quantile threshold,
this behavior can be disabled with ——continueaftercheck.

—-minnumfalse=INT

The minimum number of clumps over undetected (Sky) regions to identify the
requested Signal-to-Noise ratio threshold. Operationally, this is almost identi-
cal to NoiseChisel’s --minnumfalse option (Section 7.2.1.2 [Detection options],
page 264). Please see the descriptions there for more.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 281

-c FLT

--snquant=FLT

-V

The quantile of the signal-to-noise ratio distribution of clumps in undetected
regions, used to define true clumps. After identifying all the usable clumps in
the undetected regions of the dataset, the given quantile of their signal-to-noise
ratios is used to define the signal-to-noise ratio of a “true” clump. Effectively,
this can be seen as an inverse p-value measure. See Figure 9 and Section 3.2.1
of Akhlaghi and Ichikawa [2015] (https://arxiv.org/abs/1505.01664) for a
complete explanation. The full distribution of clump signal-to-noise ratios over
the undetected areas can be saved into a table with --checksn option and
visually inspected with --checksegmentation.

--keepmaxnearriver

-s FLT

Keep a clump whose maximum (minimum if --minima is called) flux is 8-
connected to a river pixel. By default such clumps over detections are considered
to be noise and are removed irrespective of their brightness (see Section 8.1.3
[Flux Brightness and magnitude], page 324). Over large profiles, that sink into
the noise very slowly, noise can cause part of the profile (which was flat without
noise) to become a very large and with a very high Signal to noise ratio. In
such cases, the pixel with the maximum flux in the clump will be immediately
touching a river pixel.

--clumpsnthresh=FLT

-G FLT

The signal-to-noise threshold for true clumps. If this option is given, then the
segmentation options above will be ignored and the given value will be directly
used to identify true clumps over the detections. This can be useful if you have a
large dataset with similar noise properties. You can find a robust signal-to-noise
ratio based on a (sufficiently large) smaller portion of the dataset. Afterwards,
with this option, you can speed up the processing on the whole dataset. Other
scenarios where this option may be useful is when, the image might not contain
enough/any Sky regions.

--gthresh=FLT

-y INT

Threshold (multiple of the sky standard deviation added with the sky) to stop
growing true clumps. Once true clumps are found, they are set as the basis to
segment the detected region. They are grown until the threshold specified by
this option.

--minriverlength=INT

The minimum length of a river between two grown clumps for it to be considered
in signal-to-noise ratio estimations. Similar to --snminarea, if the length of
the river is too short, the signal-to-noise ratio can be noisy and unreliable.
Any existing rivers shorter than this length will be considered as non-existent,
independent of their Signal to noise ratio. The clumps are grown on the input
image, therefore this value can be smaller than the value given to ——snminarea.

https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 282

Recall that the clumps were defined on the convolved image so —-snminarea
should be larger.

-0 FLT

--objbordersn=FLT
The maximum Signal to noise ratio of the rivers between two grown clumps
in order to consider them as separate ‘objects’. If the Signal to noise ratio of
the river between two grown clumps is larger than this value, they are defined
to be part of one ‘object’. Note that the physical reality of these ‘objects’ can
never be established with one image, or even multiple images from one broad-
band filter. Any method we devise to define ‘object’s over a detected region is
ultimately subjective.

Two very distant galaxies or satellites in one halo might lie in the same line
of sight and be detected as clumps on one detection. On the other hand, the
connection (through a spiral arm or tidal tail for example) between two parts
of one galaxy might have such a low surface brightness that they are broken
up into multiple detections or objects. In fact if you have noticed, exactly
for this purpose, this is the only Signal to noise ratio that the user gives into
NoiseChisel. The ‘true’ detections and clumps can be objectively identified
from the noise characteristics of the image, so you don’t have to give any hand
input Signal to noise ratio.

—--checksegmentation

A file with the suffix _seg.fits will be created. This file keeps all the relevant
steps in finding true clumps and segmenting the detections into multiple objects
in various extensions. Having read the paper or the steps above. Examining
this file can be an excellent guide in choosing the best set of parameters. Note
that calling this function will significantly slow NoiseChisel. In verbose mode
(without the --quiet option, see Section 4.1.2.3 [Operating mode options],
page 112) the important steps (along with their extension names) will also be
reported.

With this option, NoiseChisel will abort as soon as the two tables are created.
This behavior can be disabled with ——continueaftercheck.

7.3.1.3 Segment output

The main output of Segment are two label datasets (with integer types, separating the
dataset’s elements into different classes). They have HDU/extension names of CLUMPS and
OBJECTS.

Similar to all Gnuastro’s FITS outputs, the zero-th extension/HDU of the main output
file only contains header keywords and image or table. It contains the Segment input
files and parameters (option names and values) as FITS keywords. Note that if an option
name is longer than 8 characters, the keyword name is the second word. The first word
is HIERARCH. Also note that according to the FITS standard, the keyword names must be
in capital letters, therefore, if you want to use Grep to inspect these keywords, use the -1
option, like the example below.

$ astfits image_segmented.fits -hO | grep -i snquant

Chapter 7: Data analysis 283

By default, besides the CLUMPS and OBJECTS extensions, Segment’s output will also con-
tain the (technically redundant) input dataset and the sky standard deviation dataset (if
it wasn’t a constant number). This can help in visually inspecting the result when viewing
the images as a “Multi-extension data cube” in SAO DS9 for example (see Section B.1.1
[Viewing multiextension FITS images], page 524). You can simply flip through the exten-
sions and see the same region of the image and its corresponding clumps/object labels.
It also makes it easy to feed the output (as one file) into MakeCatalog when you intend
to make a catalog afterwards (see Section 7.4 [MakeCatalog|, page 284. To remove these
redundant extensions from the output (for example when designing a pipeline), you can use
-—rawoutput.

The OBJECTS and CLUMPS extensions can be used as input into Section 7.4 [MakeCatalog],
page 284, to generate a catalog for higher-level analysis. If you want to treat each clump
separately, you can give a very large value (or even a NaN, which will always fail) to the
--gthresh option (for example --gthresh=1e10 or --gthresh=nan), see Section 7.3.1.2
[Segmentation options|, page 279.

For a complete definition of clumps and objects, please see Section 3.2 of Akhlaghi and
Ichikawa [2015] (https://arxiv.org/abs/1505.01664) and Section 7.3.1.2 [Segmentation
options|, page 279. The clumps are “true” local maxima (minima if --minima is called) and
their surrounding pixels until a local minimum/maximum (caused by noise fluctuations, or
another “true” clump). Therefore it may happen that some of the input detections aren’t
covered by clumps at all (very diffuse objects without any strong peak), while some objects
may contain many clumps. Even in those that have clumps, there will be regions that are
too diffuse. The diffuse regions (within the input detected regions) are given a negative
label (-1) to help you separate them from the undetected regions (with a value of zero).

Each clump is labeled with respect to its host object. Therefore, if an object has three
clumps for example, the clumps within it have labels 1, 2 and 3. As a result, if an initial
detected region has multiple objects, each with a single clump, all the clumps will have a
label of 1. The total number of clumps in the dataset is stored in the NCLUMPS keyword of
the CLUMPS extension and printed in the verbose output of Segment (when --quiet is not
called).

The OBJECTS extension of the output will give a positive counter/label to every detected
pixel in the input. As described in Akhlaghi and Ichikawa [2015], the true clumps are grown
until a certain threshold. If the grown clumps touch other clumps and the connection is
strong enough, they are considered part of the same object. Once objects (grown clumps)
are identified, they are grown to cover the whole detected area.

The options to configure the output of Segment are listed below:

--continueaftercheck
Don’t abort Segment after producing the check image(s). The usage of this op-
tion is identical to NoiseChisel’s -—continueaftercheck option (Section 7.2.1.1
[NoiseChisel input], page 262). Please see the descriptions there for more.

—--onlyclumps
Abort Segment after finding true clumps and don’t continue with finding op-
tions. Therefore, no OBJECTS extension will be present in the output. Each
true clump in CLUMPS will get a unique label, but diffuse regions will still have
a negative value.

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 284

To make a catalog of the clumps, the input detection map (where all the labels
are one) can be fed into Section 7.4 [MakeCatalog], page 284, along with the
input detection map to Segment (that only had a value of 1 for all detected
pixels) with --clumpscat. In this way, MakeCatalog will assume all the clumps
belong to a single “object”.

—--grownclumps
In the output CLUMPS extension, store the grown clumps. If a detected region
contains no clumps or only one clump, then it will be fully given a label of 1
(no negative valued pixels).

-—-rawoutput

Only write the CLUMPS and OBJECTS datasets in the output file. Without this
option (by default), the first and last extensions of the output will the Sky-
subtracted input dataset and the Sky standard deviation dataset (if it wasn’t a
number). When the datasets are small, these redundant extensions can make
it convenient to inspect the results visually or feed the output to Section 7.4
[MakeCatalog|, page 284, for measurements. Ultimately both the input and
Sky standard deviation datasets are redundant (you had them before running
Segment). When the inputs are large/numerous, these extra dataset can be a
burden.

-

~

Save space: with the —--rawoutput, Segment’s output will only be two labeled datasets
(only containing integers). Since they have no noise, such datasets can be compressed very
effectively (without any loss of data) with exceptionally high compression ratios. You can
use the following command to compress it with the best ratio:

$ gzip --best segment_output.fits

The resulting .fits.gz file can then be fed into any of Gnuastro’s programs directly,
without having to decompress it separately (it will just take them a little longer, because

they have to decompress it internally before use).
N

J

7.4 MakeCatalog

At the lowest level, a dataset (for example an image) is just a collection of values, placed
after each other in any number of dimensions (for example an image is a 2D dataset).
Each data-element (pixel) just has two properties: its position (relative to the rest) and its
value. In higher-level analysis, an entire dataset (an image for example) is rarely treated
as a singular entity'?. You usually want to know/measure the properties of the (separate)
scientifically interesting targets that are embedded in it. For example the magnitudes,
positions and elliptical properties of the galaxies that are in the image.

MakeCatalog is Gnuastro’s program for localized measurements over a dataset. In
other words, MakeCatalog is Gnuastro’s program to convert low-level datasets (like im-
ages), to high level catalogs. The role of MakeCatalog in a scientific analysis and the
benefits of its model (where detection/segmentation is separated from measurement) is dis-

10 You can derive the over-all properties of a complete dataset (1D table column, 2D image, or 3D data-
cube) treated as a single entity with Gnuastro’s Statistics program (see Section 7.1 [Statistics], page 237).

Chapter 7: Data analysis 285

cussed in Akhlaghi [2016] (https://arxiv.org/abs/1611.06387v1)'" and summarized in
Section 7.4.1 [Detection and catalog production], page 286. We strongly recommend reading
this short paper for a better understanding of this methodology. Understanding the effec-
tive usage of MakeCatalog, will thus also help effective use of other (lower-level) Gnuastro’s
programs like Section 7.2 [NoiseChisel], page 258, or Section 7.3 [Segment], page 273.

It is important to define your regions of interest for measurements before running Make-
Catalog. MakeCatalog is specialized in doing measurements accurately and efficiently.
Therefore MakeCatalog will not do detection, segmentation, or defining apertures on re-
quested positions in your dataset. Following Gnuastro’s modularity principle, there are
separate and highly specialized and customizable programs in Gnuastro for these other
jobs as shown below (for a usage example in a real-world analysis, see Section 2.2 [Gen-
eral program usage tutorial], page 24, and Section 2.3 [Detecting large extended targets],
page 61).

e Section 6.2 [Arithmetic], page 189: Detection with a simple threshold.
e Section 7.2 [NoiseChisel], page 258: Advanced detection.

e Section 7.3 |
[

e Section 8.1 [MakeProfiles], page 318: Aperture creation for known positions.

Segment], page 273: Segmentation (substructure over detections).

These programs will/can return labeled dataset(s) to be fed into MakeCatalog. A labeled
dataset for measurement has the same size/dimensions as the input, but with integer valued
pixels that have the label /counter for each sub-set of pixels that must be measured together.
For example all the pixels covering one galaxy in an image, get the same label.

The requested measurements are then done on similarly labeled pixels. The final result
is a catalog where each row corresponds to the measurements on pixels with a specific label.
For example the flux weighted average position of all the pixels with a label of 42 will be
written into the 42nd row of the output catalog/table’s central position column'?. Similarly,
the sum of all these pixels will be the 42nd row in the brightness column, etc. Pixels with
labels equal to, or smaller than, zero will be ignored by MakeCatalog. In other words, the
number of rows in MakeCatalog’s output is already known before running it (the maximum
value of the labeled dataset).

Before getting into the details of running MakeCatalog (in Section 7.4.5 [Invoking Make-
Catalog], page 295, we’ll start with a discussion on the basics of its approach to separating
detection from measurements in Section 7.4.1 [Detection and catalog production|, page 286.
A very important factor in any measurement is understanding its validity range, or limits.
Therefore in Section 7.4.2 [Quantifying measurement limits|, page 287, we’ll discuss how to
estimate the reliability of the detection and basic measurements. This section will continue
with a derivation of elliptical parameters from the labeled datasets in Section 7.4.3 [Mea-
suring elliptical parameters], page 291. For those who feel MakeCatalog’s existing measure-
ments/columns aren’t enough and would like to add further measurements, in Section 7.4.4
[Adding new columns to MakeCatalog], page 294, a checklist of steps is provided for readily
adding your own new measurements/columns.

1A published paper cannot undergo any more change, so this manual is the definitive guide.

12 Gee Section 7.4.3 [Measuring elliptical parameters], page 291, for a discussion on this and the derivation
of positional parameters, which includes the center.

https://arxiv.org/abs/1611.06387v1

Chapter 7: Data analysis 286

7.4.1 Detection and catalog production

Most existing common tools in low-level astronomical data-analysis (for example SExtrac-
tor'®) merge the two processes of detection and measurement (catalog production) in one
program. However, in light of Gnuastro’s modularized approach (modeled on the Unix sys-
tem) detection is separated from measurements and catalog production. This modularity is
therefore new to many experienced astronomers and deserves a short review here. Further
discussion on the benefits of this methodology can be seen in Akhlaghi [2016] (https://
arxiv.org/abs/1611.06387v1).

As discussed in the introduction of Section 7.4 [MakeCatalog], page 284, detection (iden-
tifying which pixels to do measurements on) can be done with different programs. Their
outputs (a labeled dataset) can be directly fed into MakeCatalog to do the measurements
and write the result as a catalog/table. Beyond that, Gnuastro’s modular approach has
many benefits that will become clear as you get more experienced in astronomical data
analysis and want to be more creative in using your valuable data for the exciting scientific
project you are working on. In short the reasons for this modularity can be classified as
below:

e Simplicity /robustness of independent, modular tools: making a catalog is a logically
separate process from labeling (detection, segmentation, or aperture production). A
user might want to do certain operations on the labeled regions before creating a catalog
for them. Another user might want the properties of the same pixels/objects in another
image (another filter for example) to measure the colors or SED fittings.

Here is an example of doing both: suppose you have images in various broad band
filters at various resolutions and orientations. The image of one color will thus not lie
exactly on another or even be in the same scale. However, it is imperative that the
same pixels be used in measuring the colors of galaxies.

To solve the problem, NoiseChisel can be run on the reference image to generate the
labeled detection image. Afterwards, the labeled image can be warped into the grid of
the other color (using Section 6.4 [Warp|, page 228). MakeCatalog will then generate
the same catalog for both colors (with the different labeled images). It is currently
customary to warp the images to the same pixel grid, however, modification of the
scientific dataset is very harmful for the data and creates correlated noise. It is much
more accurate to do the transformations on the labeled image.

e Complexity of a monolith: Adding in a catalog functionality to the detector program
will add several more steps (and many more options) to its processing that can equally
well be done outside of it. This makes following what the program does harder for the
users and developers, it can also potentially add many bugs.

As an example, if the parameter you want to measure over one profile is not provided
by the developers of MakeCatalog. You can simply open this tiny little program and
add your desired calculation easily. This process is discussed in Section 7.4.4 [Adding
new columns to MakeCatalog], page 294. However, if making a catalog was part of
NoiseChisel for example, adding a new column/measurement would require a lot of
energy to understand all the steps and internal structures of that huge program. It
might even be so intertwined with its processing, that adding new columns might cause
problems/bugs in its primary job (detection).

13 https://www.astromatic.net/software/sextractor

https://arxiv.org/abs/1611.06387v1
https://arxiv.org/abs/1611.06387v1
https://www.astromatic.net/software/sextractor

Chapter 7: Data analysis 287

7.4.2 Quantifying measurement limits

No measurement on a real dataset can be perfect: you can only reach a certain level /limit
of accuracy. Therefore, a meaningful (scientific) analysis requires an understanding of these
limits for the dataset and your analysis tools: different datasets have different noise prop-
erties and different detection methods (one method/algorithm/software that is run with a
different set of parameters is considered as a different detection method) will have different
abilities to detect or measure certain kinds of signal (astronomical objects) and their prop-
erties in the dataset. Hence, quantifying the detection and measurement limitations with
a particular dataset and analysis tool is the most crucial/critical aspect of any high-level
analysis.

Here, we’ll review some of the most general limits that are important in any astronomical
data analysis and how MakeCatalog makes it easy to find them. Depending on the higher-
level analysis, there are more tests that must be done, but these are relatively low-level and
usually necessary in most cases. In astronomy, it is common to use the magnitude (a unit-
less scale) and physical units, see Section 8.1.3 [Flux Brightness and magnitude], page 324.
Therefore the measurements discussed here are commonly used in units of magnitudes.

Surface brightness limit (of whole dataset)

As we make more observations on one region of the sky, and add the observations
into one dataset, the signal and noise both increase. However, the signal increase
much faster than the noise: assuming you add N datasets with equal exposure
times, the signal will increases as a multiple of N, while noise increases as v/ N.
Thus this increases the signal-to-noise ratio. Qualitatively, fainter (per pixel)
parts of the objects/signal in the image will become more visible/detectable.
The noise-level is known as the dataset’s surface brightness limit.

You can think of the noise as muddy water that is completely covering a flat
ground'. The signal (or astronomical objects in this analogy) will be sum-
mits/hills that start from the flat sky level (under the muddy water) and can
sometimes reach outside of the muddy water. Let’s assume that in your first
observation the muddy water has just been stirred and you can’t see anything
through it. As you wait and make more observations/exposures, the mud settles
down and the depth of the transparent water increases, making the summits
visible. As the depth of clear water increases, the parts of the hills with lower
heights (parts with lower surface brightness) can be seen more clearly. In this
analogy, height (from the ground) is surface brightness'® and the height of the
muddy water is your surface brightness limit.

The outputs of NoiseChisel include the Sky standard deviation (o) on every
group of pixels (a mesh) that were calculated from the undetected pixels in each
tile, see Section 4.8 [Tessellation|, page 136, and Section 7.2.1.3 [NoiseChisel
output], page 271. Let’s take o, as the median o over the successful meshes in
the image (prior to interpolation or smoothing).

14 The ground is the sky value in this analogy, see Section 7.1.4 [Sky value], page 241. Note that this
analogy only holds for a flat sky value across the surface of the image or ground.

15 Note that this muddy water analogy is not perfect, because while the water-level remains the same all
over a peak, in data analysis, the Poisson noise increases with the level of data.

Chapter 7: Data analysis 288

On different instruments, pixels have different physical sizes (for example in
micro-meters, or spatial angle over the sky). Nevertheless, a pixel is our unit
of data collection. In other words, while quantifying the noise, the physical or
projected size of the pixels is irrelevant. We thus define the Surface brightness
limit or depth, in units of magnitude/pixel, of a data-set, with zeropoint mag-
nitude z, with the nth multiple of o, as (see Section 8.1.3 [Flux Brightness and
magnitude], page 324):

SBPixel = —2.5 X loglo (’I’LO‘m) + z

As an example, the XDF survey covers part of the sky that the Hubble space
telescope has observed the most (for 85 orbits) and is consequently very small
(~ 4 arcmin?). On the other hand, the CANDELS survey, is one of the widest
multi-color surveys covering several fields (about 720 arcmin?) but its deepest
fields have only 9 orbits observation. The depth of the XDF and CANDELS-
deep surveys in the near infrared WFC3/F160W filter are respectively 34.40 and
32.45 magnitudes/pixel. In a single orbit image, this same field has a depth of
31.32. Recall that a larger magnitude corresponds to less brightness.

The low-level magnitude/pixel measurement above is only useful when all the
datasets you want to use belong to one instrument (telescope and camera).
However, you will often find yourself using datasets from various instruments
with different pixel scales (projected pixel sizes). If we know the pixel scale,
we can obtain a more easily comparable surface brightness limit in units of:
magnitude/arcsec?. Let’s assume that the dataset has a zeropoint value of z,
and every pixel is p arcsec? (so A/p is the number of pixels that cover an area
of A arcsec?). If the surface brightness is desired at the nth multiple of o,,, the
following equation (in units of magnitudes per A arcsec?) can be used:

A
SBProjected =—-25X logm <7’L0'm\/7> + z
p

The /A/p term comes from the fact that noise is added in RMS: if you add
three datasets with noise oy, o2 and o3, the resulting noise level is o; =
Vo? 4+ 03 4+ 03, so when 0, = 0, = 03 = 0, then 0, = V/30. As mentioned
above, there are A/p pixels in the area A. Therefore, as A/p increases, the
surface brightness limiting magnitude will become brighter.

It is just important to understand that the surface brightness limit is the raw
noise level, not the signal-to-noise. To get a feeling for it you can try these
commands on any FITS image (let’s assume its called image.fits), the output
of the first command (zero.fits) will be the same size as the input, but all
pixels will have a value of zero. We then add an ideal noise to this image and
warp it to a new pixel size (such that the area of the new pixels is area_per_
pixel times the input’s), then we print the standard deviation of the raw noise
and warped noise. Please open the output images an compare them (their sizes,

Chapter 7: Data analysis 289

or their pixel values) to get a good feeling of what is going on. Just note that
this demo only works when area_per_pixel is larger than one.

area_per_pixel=25

scale=$(echo $area_per_pixel | awk ’{print sqrt($1)}’)
astarithmetic image.fits -hO nan + isblank not -ozero.fits
astmknoise zero.fits -onoise.fits

astwarp --scale=1/$scale,1/$scale noise.fits -onoise-w.fits
std_raw=$(aststatistics noise.fits --std)

std_warped=$ (aststatistics noise-w.fits --std)

echo;
echo "(warped pixel area) = $area_per_pixel x (pixel area)"
echo "Raw STD: $std_raw"

echo "Warped STD: $std_warped"

As you see in this example, this is thus just an extrapolation of the per-pixel
measurement o,,. So it should be used with extreme care: for example the
dataset must have an approximately flat depth or noise properties overall. A
more accurate measure for each detection is known as the wupper-limit magni-
tude which actually uses random positioning of each detection’s area/footprint,
see the respective item below. The upper-limit magnitude doesn’t extrapolate
and even accounts for correlated noise patterns in relation to that detection.
Therefore, the upper-limit magnitude is a much better measure of your dataset’s
surface brightness limit for each particular object.

MakeCatalog will calculate the input dataset’s SDBpixe and SBprojectea and
write them as comments/meta-data in the output catalog(s). Just note that
S Bprojectea 18 only calculated if the input has World Coordinate System (WCS).

Completeness limit (of each detection)

As the surface brightness of the objects decreases, the ability to detect them
will also decrease. An important statistic is thus the fraction of objects of
similar morphology and brightness that will be identified with our detection
algorithm /parameters in the given image. This fraction is known as complete-
ness. For brighter objects, completeness is 1: all bright objects that might exist
over the image will be detected. However, as we go to objects of lower overall
surface brightness, we will fail to detect some, and gradually we are not able
to detect anything any more. For a given profile, the magnitude where the
completeness drops below a certain level (usually above 90%) is known as the
completeness limit.

Another important parameter in measuring completeness is purity: the frac-
tion of true detections to all true detections. In effect purity is the measure of
contamination by false detections: the higher the purity, the lower the contam-
ination. Completeness and purity are anti-correlated: if we can allow a large
number of false detections (that we might be able to remove by other means),
we can significantly increase the completeness limit.

One traditional way to measure the completeness and purity of a given sample is
by embedding mock profiles in regions of the image with no detection. However

Chapter 7: Data analysis 290

in such a study we must be really careful to choose model profiles as similar to
the target of interest as possible.

Magnitude measurement error (of each detection)

Upper limit

Any measurement has an error and this includes the derived magnitude for an
object. Note that this value is only meaningful when the object’s magnitude
is brighter than the upper-limit magnitude (see the next items in this list).
As discussed in Section 8.1.3 [Flux Brightness and magnitude|, page 324, the
magnitude (M) of an object with brightness B and Zeropoint magnitude z can
be written as:

M = —2.5log,,(B) + =

Calculating the derivative with respect to B, we get:

dM =25
dB B x In(10)

From the Tailor series (AM = dM/dB x AB), we can write:

AB

X —

But, AB/B is just the inverse of the Signal-to-noise ratio (S/N), so we can
write the error in magnitude in terms of the signal-to-noise ratio:

2.5
AM = S/N x In(10)
MakeCatalog uses this relation to estimate the magnitude errors. The signal-to-
noise ratio is calculated in different ways for clumps and objects (see Akhlaghi
and Ichikawa [2015] (https://arxiv.org/abs/1505.01664)), but this single
equation can be used to estimate the measured magnitude error afterwards for
any type of target.

magnitude (of each detection)

Due to the noisy nature of data, it is possible to get arbitrarily low values for
a faint object’s brightness (or arbitrarily high magnitudes). Given the scatter
caused by the dataset’s noise, values fainter than a certain level are meaningless:
another similar depth observation will give a radically different value.

For example, while the depth of the image is 32 magnitudes/pixel, a measure-
ment that gives a magnitude of 36 for a ~ 100 pixel object is clearly unreliable.
In another similar depth image, we might measure a magnitude of 30 for it, and
yet another might give 33. Furthermore, due to the noise scatter so close to
the depth of the data-set, the total brightness might actually get measured as
a negative value, so no magnitude can be defined (recall that a magnitude is a

https://arxiv.org/abs/1505.01664
https://arxiv.org/abs/1505.01664

Chapter 7: Data analysis 291

base-10 logarithm). This problem usually becomes relevant when the detection
labels were not derived from the values being measured (for example when you
are estimating colors, see Section 7.4 [MakeCatalog], page 284).

Using such unreliable measurements will directly affect our analysis, so we must
not use the raw measurements. But how can we know how reliable a measure-
ment on a given dataset is?

When we confront such unreasonably faint magnitudes, there is one thing we
can deduce: that if something actually exists here (possibly buried deep under
the noise), it’s inherent magnitude is fainter than an upper limit magnitude. To
find this upper limit magnitude, we place the object’s footprint (segmentation
map) over random parts of the image where there are no detections, so we only
have pure (possibly correlated) noise, along with undetected objects. Doing this
a large number of times will give us a distribution of brightness values. The
standard deviation (o) of that distribution can be used to quantify the upper
limit magnitude.

Traditionally, faint /small object photometry was done using fixed circular aper-
tures (for example with a diameter of N arc-seconds). Hence, the upper limit
was like the depth discussed above: one value for the whole image. The prob-
lem with this simplified approach is that the number of pixels in the aperture
directly affects the final distribution and thus magnitude. Also the image corre-
lated noise might actually create certain patters, so the shape of the object can
also affect the final result result. Fortunately, with the much more advanced
hardware and software of today, we can make customized segmentation maps
for each object.

When requested, MakeCatalog will randomly place each target’s footprint over
the dataset as described above and estimate the resulting distribution’s proper-
ties (like the upper limit magnitude). The procedure is fully configurable with
the options in Section 7.4.5.2 [Upper-limit settings|, page 300. If one value for
the whole image is required, you can either use the surface brightness limit
above or make a circular aperture and feed it into MakeCatalog to request an
upper-limit magnitude for it'6.

7.4.3 Measuring elliptical parameters

The shape or morphology of a target is one of the most commonly desired parameters of
a target. Here, we will review the derivation of the most basic/simple morphological pa-
rameters: the elliptical parameters for a set of labeled pixels. The elliptical parameters are:
the (semi-)major axis, the (semi-)minor axis and the position angle along with the central
position of the profile. The derivations below follow the SExtractor manual derivations with
some added explanations for easier reading.

16 ¢ you intend to make apertures manually and not use a detection map (for example from Section 7.3
[Segment], page 273), don’t forget to use the --upmaskfile to give NoiseChisel’s output (or any a
binary map, marking detected pixels, see Section 7.2.1.3 [NoiseChisel output], page 271) as a mask.
Otherwise, the footprints may randomly fall over detections, giving highly skewed distributions, with
wrong upper-limit distributions. See The description of --upmaskfile in Section 7.4.5.2 [Upper-limit
settings], page 300, for more.

Chapter 7: Data analysis 292

Let’s begin with one dimension for simplicity: Assume we have a set of N values B; (for
example showing the spatial distribution of a target’s brightness), each at position ;. The
simplest parameter we can define is the geometric center of the object (z,) (ignoring the
brightness values): z, = (3, x;)/N. Moments are defined to incorporate both the value
(brightness) and position of the data. The first moment can be written as:

_ Zl B;x;
€r= ——-

> Bi
This is essentially the weighted (by B;) mean position. The geometric center (x,, defined
above) is a special case of this with all B; = 1. The second moment is essentially the
variance of the distribution:

— _ 2 Bi(zi — T)* Y, B} B |, YiBal
Te = = — 2T +r == -7
Zi B; Zi B; Zi B; ZL B;

The last step was done from the definition of Z. Hence, the square root of 22 is the spatial
standard deviation (along the one-dimension) of this particular brightness distribution (B;).
Crudely (or qualitatively), you can think of its square root as the distance (from Z) which
contains a specific amount of the flux (depending on the B; distribution). Similar to the
first moment, the geometric second moment can be found by setting all B, = 1. So while
the first moment quantified the position of the brightness distribution, the second moment
quantifies how that brightness is dispersed about the first moment. In other words, it
quantifies how “sharp” the object’s image is.

Before continuing to two dimensions and the derivation of the elliptical parameters, let’s
pause for an important implementation technicality. You can ignore this paragraph and the
next two if you don’t want to implement these concepts. The basic definition (first definition
of 22 above) can be used without any major problem. However, using this fraction requires
two runs over the data: one run to find Z and another run to find 2 from 7, this can be
slow. The advantage of the last fraction above, is that we can estimate both the first and
second moments in one run (since the —7? term can easily be added later).

The logarithmic nature of floating point number digitization creates a complication how-
ever: suppose the object is located between pixels 10000 and 10020. Hence the target’s pixels
are only distributed over 20 pixels (with a standard deviation < 20), while the mean has
a value of ~ 10000. The Y, B?z? will go to very very large values while the individual
pixel differences will be orders of magnitude smaller. This will lower the accuracy of our
calculation due to the limited accuracy of floating point operations. The variance only
depends on the distance of each point from the mean, so we can shift all position by a
constant /arbitrary K which is much closer to the mean: z — K = 7 — K. Hence we can
calculate the second order moment using:

The closer K is to T, the better (the sums of squares will involve smaller numbers), as
long as K is within the object limits (in the example above: 10000 < K < 10020), the

Chapter 7: Data analysis 293

floating point error induced in our calculation will be negligible. For the most simplest
implementation, MakeCatalog takes K to be the smallest position of the object in each
dimension. Since K is arbitrary and an implementation/technical detail, we will ignore it
for the remainder of this discussion.

In two dimensions, the mean and variances can be written as:

. > Biz; - _ > Bix? 72
- b

T B, 2 = S B, —
7_21‘Biyi —2_2231%2 _9
Yy=—7w""> Y¥Y==5x VY
B; > Bi
By _

If an elliptical profile’s major axis exactly lies along the x axis, then 22 will be directly
proportional with the profile’s major axis, 2 with its minor axis and Zy = 0. However, in
reality we are not that lucky and (assuming galaxies can be parameterized as an ellipse)
the major axis of galaxies can be in any direction on the image (in fact this is one of the
core principles behind weak-lensing by shear estimation). So the purpose of the remainder
of this section is to define a strategy to measure the position angle and axis ratio of some
randomly positioned ellipses in an image, using the raw second moments that we have
calculated above in our image coordinates.

Let’s assume we have rotated the galaxy by 6, the new second order moments are:
;0 = 22 cos® 0 + 32 sin® @ — 277 cos O sin 0

% = 22sin? 0 + y2 cos? 0 + 27 cos O sin 6

T7g = 22 cos O sin — 32 cos O sin § + Tg(cos® f — sin® 0)

The best 0 (6, where major axis lies along the z, axis) can be found by:

-2
Ox;

=0
809

0

Taking the derivative, we get:
2 cos 0 sin Oy (y% — 22) + 2(cos? — sin® 6y)Ty = 0
When 22 # 2, we can write:

zy

tan 26, = 2 ——.
==y

Chapter 7: Data analysis 294

MakeCatalog uses the standard C math library’s atan2 function to estimate 6y, which we
define as the position angle of the ellipse. To recall, this is the angle of the major axis of
the ellipse with the z axis. By definition, when the elliptical profile is rotated by 6, then
TYg, = 0, :CT%O will be the extent of the maximum variance and yT%O the extent of the minimum
variance (which are perpendicular for an ellipse). Replacing 6y in the equations above for
Ty and 7, we can get the semi-major (A) and semi-minor (B) lengths:

- .\ 2
2 2 2 _ 92
A2Ex30:$;—y + <x y) + 77"

— — — —\ 2
2 2 2 __ 92
B =, = 5 - (w y> o

As a summary, it is important to remember that the units of A and B are in pixels
(the standard deviation of a positional distribution) and that they represent the spatial
light distribution of the object in both image dimensions (rotated by 6,). When the object
cannot be represented as an ellipse, this interpretation breaks down: Ty, # 0 and yT?O will
not be the direction of minimum variance.

7.4.4 Adding new columns to MakeCatalog

MakeCatalog is designed to allow easy addition of different measurements over a labeled
image (see Akhlaghi [2016] (https://arxiv.org/abs/1611.06387v1)). A check-list style
description of necessary steps to do that is described in this section. The common de-
velopment characteristics of MakeCatalog and other Gnuastro programs is explained in
Chapter 11 [Developing], page 500. We strongly encourage you to have a look at that chap-
ter to greatly simplify your navigation in the code. After adding and testing your column,
you are most welcome (and encouraged) to share it with us so we can add to the next release
of Gnuastro for everyone else to also benefit from your efforts.

MakeCatalog will first pass over each label’s pixels two times and do necessary
raw/internal calculations. Once the passes are done, it will use the raw information for
filling the final catalog’s columns. In the first pass it will gather mainly object information
and in the second run, it will mainly focus on the clumps, or any other measurement that
needs an output from the first pass. These two passes are designed to be raw summations:
no extra processing. This will allow parallel processing and simplicity/clarity. So if your
new calculation, needs new raw information from the pixels, then you will need to also
modify the respective mkcatalog_first_pass and mkcatalog_second_pass functions
(both in bin/mkcatalog/mkcatalog.c) and define new raw table columns in main.h
(hopefully the comments in the code are clear enough).

In all these different places, the final columns are sorted in the same order (same order
as Section 7.4.5 [Invoking MakeCatalog], page 295). This allows a particular column/option
to be easily found in all steps. Therefore in adding your new option, be sure to keep it in
the same relative place in the list in all the separate places (it doesn’t necessarily have to
be in the end), and near conceptually similar options.

https://arxiv.org/abs/1611.06387v1

Chapter 7:

main.h

ui.c

ui.h

args.h

columns.c

mkcatalog.

Data analysis 295

The objectcols and clumpcols enumerated variables (enum) define the
raw/internal calculation columns. If your new column requires new raw
calculations, add a row to the respective list. If your calculation requires any
other settings parameters, you should add a variable to the mkcatalogparams
structure.

If the new column needs raw calculations (an entry was added in objectcols
and clumpcols), specify which inputs it needs in ui_necessary_inputs, sim-
ilar to the other options. Afterwards, if your column includes any particular
settings (you needed to add a variable to the mkcatalogparams structure in
main.h), you should do the sanity checks and preparations for it here.

The option_keys_enum associates a unique value for each option to MakeCat-
alog. The options that have a short option version, the single character short
comment is used for the value. Those that don’t have a short option version,
get a large integer automatically. You should add a variable here to identify
your desired column.

This file specifies all the parameters for the GNU C library, Argp structure that
is in charge of reading the user’s options. To define your new column, just copy
an existing set of parameters and change the first, second and 5th values (the
only ones that differ between all the columns), you should use the macro you
defined in ui.h here.

This file contains the main definition and high-level calculation of your new col-
umn through the columns_define_alloc and columns_£fill functions. In the
first, you specify the basic information about the column: its name, units, com-
ments, type (see Section 4.6 [Numeric data types|, page 128) and how it should
be printed if the output is a text file. You should also specify the raw/internal
columns that are necessary for this column here as the many existing examples
show. Through the types for objects and rows, you can specify if this column
is only for clumps, objects or both.

The second main function (columns_fill) writes the final value into the appro-
priate column for each object and clump. As you can see in the many existing
examples, you can define your processing on the raw/internal calculations here
and save them in the output.

c
As described before, this file contains the two main MakeCatalog work-horses:
mkcatalog_first_pass and mkcatalog_second_pass, their names are descrip-
tive enough and their internals are also clear and heavily commented.

doc/gnuastro.texi

Update this manual and add a description for the new column.

7.4.5 Invoking MakeCatalog

MakeCatalog will do measurements and produce a catalog from a labeled dataset and
optional values dataset(s). The executable name is astmkcatalog with the following general

template

Chapter 7: Data analysis 296

$ astmkcatalog [OPTION ...] InputImage.fits
One line examples:

Create catalog with RA, Dec, Magnitude and Magnitude error,
from Segment’s output:
$ astmkcatalog --ra --dec --magnitude --magnitudeerr seg-out.fits

Same catalog as above (using short options):
$ asmkcatalog -rdmG seg-out.fits

Write the catalog to a text table:
$ astmkcatalog -mpQ seg-out.fits --output=cat.txt

Output columns specified in ‘columns.conf’:
$ astmkcatalog --config=columns.conf seg-out.fits

Use object and clump labels from a K-band image, but pixel values

from an i-band image.

$ astmkcatalog K_segmented.fits --hdu=DETECTIONS --clumpscat \
--clumpsfile=K_segmented.fits --clumpshdu=CLUMPS \
--valuesfile=i_band.fits

If MakeCatalog is to do processing (not printing help or option values), an input labeled
image should be provided. The options described in this section are those that are particular
to MakeProfiles. For operations that MakeProfiles shares with other programs (mainly
involving input/output or general processing steps), see Section 4.1.2 [Common options],
page 107. Also see Chapter 4 [Common program behavior|, page 103, for some general
characteristics of all Gnuastro programs including MakeCatalog.

The various measurements/columns of MakeCatalog are requested as options, either on
the command-line or in configuration files, see Section 4.2 [Configuration files|, page 118.
The full list of available columns is available in Section 7.4.5.3 [MakeCatalog measurements],
page 302. Depending on the requested columns, MakeCatalog needs more than one input
dataset, for more details, please see Section 7.4.5.1 [MakeCatalog inputs and basic settings],
page 296. The upper-limit measurements in particular need several configuration options
which are thoroughly discussed in Section 7.4.5.2 [Upper-limit settings|, page 300. Finally, in
Section 7.4.5.4 [MakeCatalog output], page 310, the output file(s) created by MakeCatalog
are discussed.

7.4.5.1 MakeCatalog inputs and basic settings

MakeCatalog works by using a localized/labeled dataset (see Section 7.4 [MakeCatalog],
page 284). This dataset maps/labels pixels to a specific target (row number in the final
catalog) and is thus the only necessary input dataset to produce a minimal catalog in any
situation. Because it only has labels/counters, it must have an integer type (see Section 4.6
[Numeric data types|, page 128), see below if your labels are in a floating point container.
When the requested measurements only need this dataset (for example --geox, —--geoy, or
--geoarea), MakeCatalog won’t read any more datasets.

Low-level measurements that only use the labeled image are rarely sufficient for any high-
level science case. Therefore necessary input datasets depend on the requested columns in

Chapter 7: Data analysis 297

each run. For example, let’s assume you want the brightness/magnitude and signal-to-
noise ratio of your labeled regions. For these columns, you will also need to provide an
extra dataset containing values for every pixel of the labeled input (to measure brightness)
and another for the Sky standard deviation (to measure error). All such auxiliary input
files have to have the same size (number of pixels in each dimension) as the input labeled
image. Their numeric data type is irrelevant (they will be converted to 32-bit floating point
internally). For the full list of available measurements, see Section 7.4.5.3 [MakeCatalog
measurements|, page 302.

The “values” dataset is used for measurements like brightness/magnitude, or
flux-weighted positions. If it is a real image, by default it is assumed to be already
Sky-subtracted prior to running MakeCatalog. If it isn’t, you use the --subtractsky
option to, so MakeCatalog reads and subtracts the Sky dataset before any processing. To
obtain the Sky value, you can use the --sky option of Section 7.1 [Statistics], page 237,
but the best recommended method is Section 7.2 [NoiseChisel|, page 258, see Section 7.1.4
[Sky value], page 241.

MakeCatalog can also do measurements on sub-structures of detections. In other words,
it can produce two catalogs. Following the nomenclature of Segment (see Section 7.3 [Seg-
ment|, page 273), the main labeled input dataset is known as “object” labels and the
(optional) sub-structure input dataset is known as “clumps”. If MakeCatalog is run with
the —-clumpscat option, it will also need a labeled image containing clumps, similar to
what Segment produces (see Section 7.3.1.3 [Segment output], page 282). Since clumps are
defined within detected regions (they exist over signal, not noise), MakeCatalog uses their
boundaries to subtract the level of signal under them.

There are separate options to explicitly request a file name and HDU /extension for each
of the required input datasets as fully described below (with the --*file format). When
each dataset is in a separate file, these options are necessary. However, one great advantage
of the FITS file format (that is heavily used in astronomy) is that it allows the storage of
multiple datasets in one file. So in most situations (for example if you are using the outputs
of Section 7.2 [NoiseChisel], page 258, or Section 7.3 [Segment], page 273), all the necessary
input datasets can be in one file.

When none of the --*file options are given, MakeCatalog will assume the necessary
input datasets are in the file given as its argument (without any option). When the Sky
or Sky standard deviation datasets are necessary and the only --*file option called is
--valuesfile, MakeCatalog will search for these datasets (with the default/given HDUs)
in the file given to --valuesfile (before looking into the main argument file).

When the clumps image (necessary with the ——clumpscat option) is used, MakeCatalog
looks into the (possibly existing) NUMLABS keyword for the total number of clumps in the
image (irrespective of how many objects there are). If its not present, it will count them
and possibly re-label the clumps so the clump labels always start with 1 and finish with the
total number of clumps in each object. The re-labeled clumps image will be stored with
the —clumps-relab.fits suffix. This can slightly slow-down the run.

Note that NUMLABS is automatically written by Segment in its outputs, so if you are
feeding Segment’s clump labels, you can benefit from the improved speed. Otherwise, if
you are creating the clumps label dataset manually, it may be good to include the NUMLABS
keyword in its header and also be sure that there is no gap in the clump labels. For example

Chapter 7: Data analysis 298

if an object has three clumps, they are labeled as 1, 2, 3. If they are labeled as 1, 3, 4, or
any other combination of three positive integers that aren’t an increment of the previous,
you might get unknown behavior.

It may happen that your labeled objects image was created with a program that only
outputs floating point files. However, you know it only has integer valued pixels that are
stored in a floating point container. In such cases, you can use Gnuastro’s Arithmetic
program (see Section 6.2 [Arithmetic|, page 189) to change the numerical data type of the
image (float.fits) to an integer type image (int.fits) with a command like below:

$ astarithmetic float.fits int32 --output=int.fits

To summarize: if the input file to MakeCatalog is the default/full output of Segment
(see Section 7.3.1.3 [Segment output|, page 282) you don’t have to worry about any of
the —-*file options below. You can just give Segment’s output file to MakeCatalog as
described in Section 7.4.5 [Invoking MakeCatalog], page 295. To feed NoiseChisel’s output
into MakeCatalog, just change the labeled dataset’s header (with ——hdu=DETECTIONS). The
full list of input dataset options and general setting options are described below.

-1 STR

--clumpsfile=STR
The file containing the labeled clumps dataset when --clumpscat is called (see
Section 7.4.5.4 [MakeCatalog output|, page 310). When --clumpscat is called,
but this option isn’t, MakeCatalog will look into the main input file (given as
an argument) for the required extension/HDU (value to --clumpshdu).

—--clumpshdu=STR
The HDU /extension of the clump labels dataset. Only pixels with values above
zero will be considered. The clump labels dataset has to be an integer data type
(see Section 4.6 [Numeric data types|, page 128) and only pixels with a value
larger than zero will be used. See Section 7.3.1.3 [Segment output], page 282,
for a description of the expected format.

-v STR

--valuesfile=STR
The file name of the (sky-subtracted) values dataset. When any of the
columns need values to associate with the input labels (for example to
measure the brightness/magnitude of a galaxy), MakeCatalog will look into a
“values” for the respective pixel values. In most common processing, this is
the actual astronomical image that the labels were defined, or detected, over.
The HDU /extension of this dataset in the given file can be specified with
--valueshdu. If this option is not called, MakeCatalog will look for the given
extension in the main input file.

--valueshdu=STR/INT
The name or number (counting from zero) of the extension containing the “val-
ues” dataset, see the descriptions above and those in —-valuesfile for more.

-s STR/FLT

--insky=STR/FLT
Sky value as a single number, or the file name containing a dataset (different
values per pixel or tile). The Sky dataset is only necessary when --subtractsky

Chapter 7: Data analysis 299

is called or when a column directly related to the Sky value is requested (cur-
rently --sky). This dataset may be a tessellation, with one element per tile
(see —-oneelempertile of NoiseChisel’s Section 4.1.2.2 [Processing options],
page 110).

When the Sky dataset is necessary but this option is not called, MakeCatalog
will assume it is an HDU /extension (specified by ——skyhdu) in one of the already
given files. First it will look for it in the --valuesfile (if it is given) and then
the main input file (given as an argument).

By default the values dataset is assumed to be already Sky subtracted, so this
dataset is not necessary for many of the columns.

--skyhdu=STR
HDU /extension of the Sky dataset, see ——skyfile.

--subtractsky
Subtract the sky value or dataset from the values file prior to any processing.

-t STR/FLT

--instd=STR/FLT
Sky standard deviation value as a single number, or the file name containing
a dataset (different values per pixel or tile). With the --variance option you
can tell MakeCatalog to interpret this value/dataset as a variance image, not
standard deviation.

Important note: This must only be the SKY standard deviation or variance
(not including the signal’s contribution to the error). In other words, the fi-
nal standard deviation of a pixel depends on how much signal there is in it.
MakeCatalog will find the amount of signal within each pixel (while subtract-
ing the Sky, if ——subtractsky is called) and account for the extra error due
to it’s value (signal). Therefore if the input standard deviation (or variance)
image also contains the contribution of signal to the error, then the final error
measurements will be over-estimated.

--stdhdu=STR
The HDU of the Sky value standard deviation image.

--variance
The dataset given to --stdfile (and --stdhdu has the Sky variance of every
pixel, not the Sky standard deviation.

--forcereadstd
Read the input STD image even if it is not required by any of the requested
columns. This is because some of the output catalog’s metadata may need it,
for example to calculate the dataset’s surface brightness limit (see Section 7.4.2
[Quantifying measurement limits], page 287, configured with --sfmagarea and
--sfmagnsigma in Section 7.4.5.4 [MakeCatalog output], page 310).

-z FLT

--zeropoint=FLT
The zero point magnitude for the input image, see Section 8.1.3 [Flux Brightness
and magnitude], page 324.

Chapter 7: Data analysis 300

--sigmaclip FLT,FLT
The sigma-clipping parameters when any of the sigma-clipping related columns
are requested (for example --sigclip-median or --sigclip-number).

This option takes two values: the first is the multiple of o, and the second is
the termination criteria. If the latter is larger than 1, it is read as an integer
number and will be the number of times to clip. If it is smaller than 1, it is
interpreted as the tolerance level to stop clipping. See Section 7.1.3 [Sigma
clipping], page 240, for a complete explanation.

7.4.5.2 Upper-limit settings

The upper-limit magnitude was discussed in Section 7.4.2 [Quantifying measurement lim-
its], page 287. Unlike other measured values/columns in MakeCatalog, the upper limit
magnitude needs several extra parameters which are discussed here. All the options spe-
cific to the upper-limit measurements start with up for “upper-limit”. The only exception
is ——envseed that is also present in other programs and is general for any job requiring
random number generation in Gnuastro (see Section 8.2.1.4 [Generating random numbers],
page 340).

One very important consideration in Gnuastro is reproducibility. Therefore, the values
to all of these parameters along with others (like the random number generator type and
seed) are also reported in the comments of the final catalog when the upper limit magnitude
column is desired. The random seed that is used to define the random positions for each
object or clump is unique and set based on the (optionally) given seed, the total number of
objects and clumps and also the labels of the clumps and objects. So with identical inputs,
an identical upper-limit magnitude will be found. However, even if the seed is identical,
when the ordering of the object/clump labels differs between different runs, the result of
upper-limit measurements will not be identical.

MakeCatalog will randomly place the object/clump footprint over the dataset. When the
randomly placed footprint doesn’t fall on any object or masked region (see -——upmaskfile)
it will be used in the final distribution. Otherwise that particular random position will be
ignored and another random position will be generated. Finally, when the distribution has
the desired number of successfully measured random samples (--upnum) the distribution’s
properties will be measured and placed in the catalog.

When the profile is very large or the image is significantly covered by detections, it might
not be possible to find the desired number of samplings in a reasonable time. MakeProfiles
will continue searching until it is unable to find a successful position (since the last suc-
cessful measurement!”), for a large multiple of ~—upnum (currently'® this is 10). If -—upnum
successful samples cannot be found until this limit is reached, MakeCatalog will set the
upper-limit magnitude for that object to NaN (blank).

MakeCatalog will also print a warning if the range of positions available for the labeled
region is smaller than double the size of the region. In such cases, the limited range of
random positions can artificially decrease the standard deviation of the final distribution.

7 The counting of failed positions restarts on every successful measurement.

18 In Gnuastro’s source, this constant number is defined as the MKCATALOG_UPPERLIMIT_MAXFAILS_MULTIP
macro in bin/mkcatalog/main.h, see Section 3.2 [Downloading the source], page 83.

Chapter 7: Data analysis 301

If your dataset can allow it (it is large enough), it is recommended to use a larger range if
you see such warnings.

--upmaskfile=STR

File name of mask image to use for upper-limit calculation. In some cases
(especially when doing matched photometry), the object labels specified in the
main input and mask image might not be adequate. In other words they do
not necessarily have to cover all detected objects: the user might have selected
only a few of the objects in their labeled image. This option can be used
to ignore regions in the image in these situations when estimating the upper-
limit magnitude. All the non-zero pixels of the image specified by this option
(in the --upmaskhdu extension) will be ignored in the upper-limit magnitude
measurements.

For example, when you are using labels from another image, you can give
NoiseChisel’s objects image output for this image as the value to this option. In
this way, you can be sure that regions with data do not harm your distribution.
See Section 7.4.2 [Quantifying measurement limits], page 287, for more on the
upper limit magnitude.

--upmaskhdu=STR

The extension in the file specified by --upmask.

—-—upnum=INT

--uprange=

——envseed

The number of random samples to take for all the objects. A larger value to
this option will give a more accurate result (asymptotically), but it will also
slow down the process. When a randomly positioned sample overlaps with a
detected /masked pixel it is not counted and another random position is found
until the object completely lies over an undetected region. So you can be sure
that for each object, this many samples over undetected objects are made. See
the upper limit magnitude discussion in Section 7.4.2 [Quantifying measurement
limits|, page 287, for more.

INT,INT

The range/width of the region (in pixels) to do random sampling along each
dimension of the input image around each object’s position. This is not a
mandatory option and if not given (or given a value of zero in a dimension),
the full possible range of the dataset along that dimension will be used. This
is useful when the noise properties of the dataset vary gradually. In such cases,
using the full range of the input dataset is going to bias the result. However,
note that decreasing the range of available positions too much will also artifi-
cially decrease the standard deviation of the final distribution (and thus bias
the upper-limit measurement).

Read the random number generator type and seed value from the environment
(see Section 8.2.1.4 [Generating random numbers], page 340). Random numbers
are used in calculating the random positions of different samples of each object.

--upsigmaclip=FLT,FLT

The raw distribution of random values will not be used to find the upper-
limit magnitude, it will first be o-clipped (see Section 7.1.3 [Sigma clipping],

Chapter 7: Data analysis 302

page 240) to avoid outliers in the distribution (mainly the faint undetected
wings of bright/large objects in the image). This option takes two values: the
first is the multiple of o, and the second is the termination criteria. If the
latter is larger than 1, it is read as an integer number and will be the number
of times to clip. If it is smaller than 1, it is interpreted as the tolerance level
to stop clipping. See Section 7.1.3 [Sigma clipping], page 240, for a complete
explanation.

--upnsigma=FLT
The multiple of the final (o-clipped) standard deviation (or o) used to measure
the upper-limit brightness or magnitude.

--checkuplim=INT [, INT]
Print a table of positions and measured values for all the full random distribu-
tion used for one particular object or clump. If only one integer is given to this
option, it is interpreted to be an object’s label. If two values are given, the first
is the object label and the second is the ID of requested clump within it.

The output is a table with three columns (its type is determined with the
--tableformat option, see Section 4.1.2.1 [Input/Output options], page 107).
The first two columns are the position of the first pixel in each random sampling
of this particular object /clump. The the third column is the measured flux over
that region. If the region overlapped with a detection or masked pixel, then
its measured value will be a NaN (not-a-number). The total number of rows
is thus unknown, but you can be sure that the number of rows with non-NaN
measurements is the number given to the ——upnum option.

7.4.5.3 MakeCatalog measurements

The final group of options particular to MakeCatalog are those that specify which measure-
ments/columns should be written into the final output table. The current measurements
in MakeCatalog are those which only produce one final value for each label (for example
its total brightness: a single number). All the different label’s measurements can be writ-
ten as one column in a final table/catalog that contains other columns for other similar
single-number measurements.

In this case, all the different label’s measurements can be written as one column in a final
table/catalog that contains other columns for other similar single-number measurements.
The majority of this section is devoted to MakeCatalog’s single-valued measurements. How-
ever, MakeCatalog can also do measurements that produce more than one value for each
label. Currently the only such measurement is generation of spectra from 3D cubes with
the --spectrum option and it is discussed in the end of this section.

Command-line options are used to identify which measurements you want in the final
catalog(s) and in what order. If any of the options below is called on the command line or
in any of the configuration files, it will be included as a column in the output catalog. The
order of the columns is in the same order as the options were seen by MakeCatalog (see
Section 4.2.2 [Configuration file precedence], page 119). Some of the columns apply to both
“objects” and “clumps” and some are particular to only one of them (for the definition of
“objects” and “clumps”, see Section 7.3 [Segment], page 273). Columns/options that are

Chapter 7: Data analysis 303

unique to one catalog (only objects, or only clumps), are explicitly marked with [Objects]
or [Clumps] to specify the catalog they will be placed in.

--i

--ids This is a unique option which can add multiple columns to the final catalog(s).
Calling this option will put the object IDs (-—objid) in the objects catalog and
host-object-ID (--hostobjid) and ID-in-host-object (-—idinhostobj) into the
clumps catalog. Hence if only object catalogs are required, it has the same effect
as ——objid.

--objid [Objects] ID of this object.

=]

--hostobjid
[Clumps] The ID of the object which hosts this clump.

--idinhostobj
[Clumps] The ID of this clump in its host object.

-x

--X The flux weighted center of all objects and clumps along the first FITS axis
(horizontal when viewed in SAO ds9), see T in Section 7.4.3 [Measuring elliptical
parameters|, page 291. The weight has to have a positive value (pixel value
larger than the Sky value) to be meaningful! Specially when doing matched
photometry, this might not happen: no pixel value might be above the Sky
value. For such detections, the geometric center will be reported in this column
(see ——geox). You can use --weightarea to see which was used.

-y

-y The flux weighted center of all objects and clumps along the second FITS axis
(vertical when viewed in SAO ds9). See --x.

-z

--z The flux weighted center of all objects and clumps along the third FITS axis.
See —-x.

--geox The geometric center of all objects and clumps along the first FITS axis axis.
The geometric center is the average pixel positions irrespective of their pixel
values.

--geoy The geometric center of all objects and clumps along the second FITS axis axis,
see ——geox.

--geoz The geometric center of all objects and clumps along the third FITS axis axis,
see ——geox.

--minx The minimum position of all objects and clumps along the first FITS axis.

--maxx The maximum position of all objects and clumps along the first FITS axis.

--miny The minimum position of all objects and clumps along the second FITS axis.

--maxy The maximum position of all objects and clumps along the second FITS axis.

--minz The minimum position of all objects and clumps along the third FITS axis.

Chapter 7: Data analysis 304

-—maxz The maximum position of all objects and clumps along the third FITS axis.

--clumpsx
[Objects] The flux weighted center of all the clumps in this object along the
first FITS axis. See —--x.

—-—clumpsy
[Objects] The flux weighted center of all the clumps in this object along the
second FITS axis. See --x.

--clumpsz
[Objects] The flux weighted center of all the clumps in this object along the
third FITS axis. See —-x.

--clumpsgeox
[Objects] The geometric center of all the clumps in this object along the first
FITS axis. See --geox.

—--clumpsgeoy
[Objects] The geometric center of all the clumps in this object along the second
FITS axis. See --geox.

--clumpsgeoz
[Objects] The geometric center of all the clumps in this object along the third
FITS axis. See --geoz.

--ra Flux weighted right ascension of all objects or clumps, see ——x. This is just
an alias for one of the lower-level -—w1 or —--w2 options. Using the FITS WCS
keywords (CTYPE), MakeCatalog will determine which axis corresponds to the
right ascension. If no CTYPE keywords start with RA, an error will be printed
when requesting this column and MakeCatalog will abort.

--dec Flux weighted declination of all objects or clumps, see ——x. This is just an
alias for one of the lower-level -—wl or --w2 options. Using the FITS WCS
keywords (CTYPE), MakeCatalog will determine which axis corresponds to the
declination. If no CTYPE keywords start with DEC, an error will be printed when
requesting this column and MakeCatalog will abort.

--wl Flux weighted first WCS axis of all objects or clumps, see ——x. The first WCS
axis is commonly used as right ascension in images.

--w2 Flux weighted second WCS axis of all objects or clumps, see ——x. The second
WCS axis is commonly used as declination in images.

--w3 Flux weighted third WCS axis of all objects or clumps, see ==x. The third WCS
axis is commonly used as wavelength in integral field unit data cubes.

--geowl Geometric center in first WCS axis of all objects or clumps, see ——geox. The
first WCS axis is commonly used as right ascension in images.

--geow2 Geometric center in second WCS axis of all objects or clumps, see —~geox. The
second WCS axis is commonly used as declination in images.

Chapter 7: Data analysis 305

--geow3 Geometric center in third WCS axis of all objects or clumps, see ——geox. The
third WCS axis is commonly used as wavelength in integral field unit data
cubes.

--clumpswl
[Objects] Flux weighted center in first WCS axis of all clumps in this object,
see —-x. The first WCS axis is commonly used as right ascension in images.

--clumpsw2
[Objects] Flux weighted declination of all clumps in this object, see ——x. The
second WCS axis is commonly used as declination in images.

--clumpsw3
[Objects] Flux weighted center in third WCS axis of all clumps in this object,
see ——x. The third WCS axis is commonly used as wavelength in integral field
unit data cubes.

—--clumpsgeowl
[Objects] Geometric center right ascension of all clumps in this object, see
—--geox. The first WCS axis is commonly used as right ascension in images.

—--clumpsgeow?2
[Objects] Geometric center declination of all clumps in this object, see -~geox.
The second WCS axis is commonly used as declination in images.

--clumpsgeow3
[Objects] Geometric center in third WCS axis of all clumps in this object, see
—-—geox. The third WCS axis is commonly used as wavelength in integral field
unit data cubes.

-b

--brightness
The brightness (sum of all pixel values), see Section 8.1.3 [Flux Brightness
and magnitude], page 324. For clumps, the ambient brightness (flux of river
pixels around the clump multiplied by the area of the clump) is removed, see
--riverave. So the sum of all the clumps brightness in the clump catalog will
be smaller than the total clump brightness in the -——clumpbrightness column
of the objects catalog.

If no usable pixels are present over the clump or object (for example they are
all blank), the returned value will be NaN (note that zero is meaningful).

--brightnesserr
The (1o0) error in measuring the brightness of objects or clumps.

--clumpbrightness
[Objects] The total brightness of the clumps within an object. This is simply
the sum of the pixels associated with clumps in the object. If no usable pixels
are present over the clump or object (for example they are all blank), the stored
value will be NaN (note that zero is meaningful).

--brightnessnoriver
[Clumps] The Sky (not river) subtracted clump brightness. By definition, for
the clumps, the average brightness of the rivers surrounding it are subtracted

Chapter 7: Data analysis 306

——mean

from it for a first order accounting for contamination by neighbors. In cases
where you will be calculating the flux brightness difference later (one example
below) the contamination will be (mostly) removed at that stage, which is why
this column was added.

If no usable pixels are present over the clump or object (for example they are
all blank), the stored value will be NaN (note that zero is meaningful).

The mean sky subtracted value of pixels within the object or clump. For clumps,
the average river flux is subtracted from the sky subtracted mean.

--median The median sky subtracted value of pixels within the object or clump. For

clumps, the average river flux is subtracted from the sky subtracted median.

--sigclip—-number

The number of elements/pixels in the dataset after sigma-clipping the object or
clump. The sigma-clipping parameters can be set with the --sigmaclip option
described in Section 7.4.5.1 [MakeCatalog inputs and basic settings], page 296.
For more on Sigma-clipping, see Section 7.1.3 [Sigma clipping], page 240.

--sigclip-median

The sigma-clipped median value of the object of clump’s pixel distribution. For
more on sigma-clipping and how to define it, see -~-sigclip-number.

--sigclip-mean

The sigma-clipped mean value of the object of clump’s pixel distribution. For
more on sigma-clipping and how to define it, see ——sigclip-number.

--sigclip-std

The sigma-clipped standard deviation of the object of clump’s pixel distribution.
For more on sigma-clipping and how to define it, see —~—sigclip-number.

-m
--magnitude
The magnitude of clumps or objects, see ——brightness.
-e
--magnitudeerr
The magnitude error of clumps or objects. The magnitude error is calculated
from the signal-to-noise ratio (see —-sn and Section 7.4.2 [Quantifying measure-
ment limits], page 287). Note that until now this error assumes uncorrelated
pixel values and also does not include the error in estimating the aperture (or
error in generating the labeled image).
For now these factors have to be found by other means. Task 14124 (https://
savannah.gnu.org/task/index.php?14124) has been defined for work on
adding these sources of error too.
—--clumpsmagnitude
[Objects] The magnitude of all clumps in this object, see ~—clumpbrightness.
--upperlimit

The upper limit value (in units of the input image) for this object or clump. See
Section 7.4.2 [Quantifying measurement limits|, page 287, and Section 7.4.5.2

https://savannah.gnu.org/task/index.php?14124
https://savannah.gnu.org/task/index.php?14124

Chapter 7: Data analysis 307

[Upper-limit settings|, page 300, for a complete explanation. This is very im-
portant for the fainter and smaller objects in the image where the measured
magnitudes are not reliable.

--upperlimitmag
The upper limit magnitude for this object or clump. See Section 7.4.2 [Quanti-
fying measurement limits], page 287, and Section 7.4.5.2 [Upper-limit settings],
page 300, for a complete explanation. This is very important for the fainter and
smaller objects in the image where the measured magnitudes are not reliable.

—--upperlimitonesigma
The 1o upper limit value (in units of the input image) for this object or
clump. See Section 7.4.2 [Quantifying measurement limits], page 287, and
Section 7.4.5.2 [Upper-limit settings], page 300, for a complete explanation.
When --upnsigma=1, this column’s values will be the same as ——upperlimit.

--upperlimitsigma
The position of the total brightness measured within the distribution of ran-
domly placed upperlimit measurements in units of the distribution’s ¢ or stan-
dard deviation. See Section 7.4.2 [Quantifying measurement limits], page 287,
and Section 7.4.5.2 [Upper-limit settings], page 300, for a complete explanation.

--upperlimitquantile
The position of the total brightness measured within the distribution of ran-
domly placed upperlimit measurements as a quantile (value between 0 or 1). See
Section 7.4.2 [Quantifying measurement limits|, page 287, and Section 7.4.5.2
[Upper-limit settings|, page 300, for a complete explanation. If the object is
brighter than the brightest randomly placed profile, a value of inf is returned.
If it is less than the minimum, a value of -inf is reported.

--upperlimitskew
This column contains the non-parametric skew of the o-clipped random dis-
tribution that was used to estimate the upper-limit magnitude. Taking u as
the mean, v as the median and o as the standard deviation, the traditional
definition of skewness is defined as: (u —v)/o.

This can be a good measure to see how much you can trust the random mea-
surements, or in other words, how accurately the regions with signal have been
masked/detected. If the skewness is strong (and to the positive), then you can
tell that you have a lot of undetected signal in the dataset, and therefore that
the upper-limit measurement (and other measurements) are not reliable.

--riverave

[Clumps] The average brightness of the river pixels around this clump. River
pixels were defined in Akhlaghi and Ichikawa 2015. In short they are the pixels
immediately outside of the clumps. This value is used internally to find the
brightness (or magnitude) and signal to noise ratio of the clumps. It can gen-
erally also be used as a scale to gauge the base (ambient) flux surrounding the
clump. In case there was no river pixels, then this column will have the value
of the Sky under the clump. So note that this value is not sky subtracted.

Chapter 7: Data analysis 308

--rivernum
[Clumps] The number of river pixels around this clump, see --riverave.

-n

--sn The Signal to noise ratio (S/N) of all clumps or objects. See Akhlaghi and
Ichikawa (2015) for the exact equations used.

—--sky The sky flux (per pixel) value under this object or clump. This is actually the
mean value of all the pixels in the sky image that lie on the same position as
the object or clump.

--std The sky value standard deviation (per pixel) for this clump or object. This is
the square root of the mean variance under the object, or the root mean square.

-C

—--numclumps
[Objects] The number of clumps in this object.

-a

--area The raw area (number of pixels/voxels) in any clump or object independent of

what pixel it lies over (if it is NaN/blank or unused for example).

--areaxy Similar to --area, when the clump or object is projected onto the first two
dimensions. This is only available for 3-dimensional datasets. When work-
ing with Integral Field Unit (IFU) datasets, this projection onto the first two
dimensions would be a narrow-band image.

--clumpsarea
[Objects] The total area of all the clumps in this object.

--weightarea
The area (number of pixels) used in the flux weighted position calculations.

--geoarea
The area of all the pixels labeled with an object or clump. Note that unlike
--area, pixel values are completely ignored in this column. For example, if a
pixel value is blank, it won’t be counted in --area, but will be counted here.

--geoareaxy
Similar to --geoarea, when the clump or object is projected onto the first two
dimensions. This is only available for 3-dimensional datasets. When work-
ing with Integral Field Unit (IFU) datasets, this projection onto the first two
dimensions would be a narrow-band image.

-A

--semimajor
The pixel-value weighted root mean square (RMS) along the semi-major axis
of the profile (assuming it is an ellipse) in units of pixels. See Section 7.4.3
[Measuring elliptical parameters], page 291.

-B

--semiminor

The pixel-value weighted root mean square (RMS) along the semi-minor axis
of the profile (assuming it is an ellipse) in units of pixels. See Section 7.4.3
[Measuring elliptical parameters], page 291.

Chapter 7: Data analysis 309

-—-axisratio
The pixel-value weighted axis ratio (semi-minor/semi-major) of the object or
clump.

P

--positionangle
The pixel-value weighted angle of the semi-major axis with the first FITS axis
in degrees. See Section 7.4.3 [Measuring elliptical parameters|, page 291.

--geosemimajor
The geometric (ignoring pixel values) root mean square (RMS) along the semi-
major axis of the profile, assuming it is an ellipse, in units of pixels.

--geosemiminor
The geometric (ignoring pixel values) root mean square (RMS) along the semi-
minor axis of the profile, assuming it is an ellipse, in units of pixels.

--geoaxisratio
The geometric (ignoring pixel values) axis ratio of the profile, assuming it is an
ellipse.

--geopositionangle
The geometric (ignoring pixel values) angle of the semi-major axis with the first
FITS axis in degrees.

Above, all of MakeCatalog’s single-valued measurements were listed. As mentioned in
the start of this section, MakeCatalog can also do multi-valued measurements per label.
Currently the only such measurement is the creation of spectra from 3D data cubes as
discussed below:

—-—spectrum

Generate a spectrum (measurement along the first two FITS dimensions) for
each label when the input dataset is a 3D data cube. With this option, a
seprate table/spectrum will be generated for every label. If the output is a
FITS file, each label’s spectrum will be written into an extension of that file
with a standard name of SPECTRUM_NN (the label will be replaced with NN).
If the output is a plain text file, each label’s spectrum will be written into a
separate file with the suffix spec-NN.txt. See Section 7.4.5.4 [MakeCatalog
output], page 310, for more on specifying MakeCatalog’s output file.

The spectra will contain one row for every slice (third FITS dimension) of the
cube. Since the physical nature of the third dimension is different, two types of
spectra (along with their errors) are measured: 1) Sum of values in each slice
that only have the requested label. 2) Sum of values on the 2D projection of
the whole label (the area of this projection can be requested with the --areaxy
column above).

Labels can overlap when they are projected onto the first two FITS dimen-
sions (the spatial domain). To help separate them, MakeCatalog does a third
measurement on each slice: the area, sum of values and error of all pixels that
belong to other labels but overlap with the 2D projection. This can be used
to see how reliable the emission line measurement is (on the projected spectra)
and also if multiple lines (labeled regions) belong to the same physical object.

Chapter 7: Data analysis 310

-—inbetweenints
Output will contain one row for all integers between 1 and the largest label
in the input (irrespective of their existance in the input image). By default,
MakeCatalog’s output will only contain rows with integers that actually corre-
sponded to atleast one pixel in the input dataset.

For example if the input’s only labeled pixel values are 11 and 13, MakeCatalog’s
default output will only have two rows. If you use this option, it will have
13 rows and all the columns corresponding to integer identifiers that didn’t
correspond to any pixel will be 0 or NaN (depending on context).

7.4.5.4 MakeCatalog output

After it has completed all the requested measurements (see Section 7.4.5.3 [MakeCatalog
measurements|, page 302), MakeCatalog will store its measurements in table(s). If an output
filename is given (see -—output in Section 4.1.2.1 [Input/Output options|, page 107), the
format of the table will be deduced from the name. When it isn’t given, the input name
will be appended with a _cat suffix (see Section 4.9 [Automatic output], page 138) and
its format will be determined from the --tableformat option, which is also discussed in
Section 4.1.2.1 [Input/Output options|, page 107. --tableformat is also necessary when
the requested output name is a FITS table (recall that FITS can accept ASCII and binary
tables, see Section 5.4 [Table|, page 166).

By default (when --spectrum isn’t called) only a single catalog/table will be created
for “objects”, however, if --clumpscat is called, a secondary catalog/table will also be
created. For more on “objects” and “clumps”, see Section 7.3 [Segment|, page 273. In
short, if you only have one set of labeled images, you don’t have to worry about clumps
(they are deactivated by default).

When --spectrum is called, it is not mandatory to specify any single-valued measure-
ment columns. In this case, the output will only be the spectra of each labeled region. See
the description of —-spectrum in Section 7.4.5.3 [MakeCatalog measurements|, page 302.

The full list of MakeCatalog’s output options are elaborated below.

-C

—--clumpscat
Do measurements on clumps and produce a second catalog (only devoted to
clumps). When this option is given, MakeCatalog will also look for a secondary
labeled dataset (identifying substructure) and produce a catalog from that. For
more on the definition on “clumps”, see Section 7.3 [Segment], page 273.

When the output is a FITS file, the objects and clumps catalogs/tables will be
stored as multiple extensions of one FITS file. You can use Section 5.4 [Table],
page 166, to inspect the column meta-data and contents in this case. However,
in plain text format (see Section 4.7.2 [Gnuastro text table format], page 133),
it is only possible to keep one table per file. Therefore, if the output is a text
file, two output files will be created, ending in _o.txt (for objects) and _c.txt
(for clumps).

Chapter 7: Data analysis 311

--noclumpsort
Don’t sort the clumps catalog based on object ID (only relevant with
--clumpscat). This option will benefit the performance'® of MakeCatalog
when it is run on multiple threads and the position of the rows in the clumps
catalog is irrelevant (for example you just want the number-counts).

MakeCatalog does all its measurements on each object independently and in
parallel. As a result, while it is writing the measurements on each object’s
clumps, it doesn’t know how many clumps there were in previous objects. Each
thread will just fetch the first available row and write the information of clumps
(in order) starting from that row. After all the measurements are done, by
default (when this option isn’t called), MakeCatalog will reorder/permute the
clumps catalog to have both the object and clump ID in an ascending order.

If you would like to order the catalog later (when its a plain text file), you can
run the following command to sort the rows by object ID (and clump ID within
each object), assuming they are respectively the first and second columns:

$ awk ’!/"#/° out_c.txt | sort -g -k1,1 -k2,2

--sfmagnsigma=FLT
Value to multiply with the median standard deviation (from a MEDSTD keyword
in the Sky standard deviation image) for estimating the surface brightness limit.
Note that the surface brightness limit is only reported when a standard devia-
tion image is read, in other words a column using it is requested (for example
--sn) or --forcereadstd is called.

This value is a per-pixel value, not per object/clump and is not found over an
area or aperture, like the common 50 values that are commonly reported as a
measure of depth or the upper-limit measurements (see Section 7.4.2 [Quanti-
fying measurement limits], page 287).

--sfmagarea=FLT
Area (in arcseconds squared) to convert the per-pixel estimation of
--sfmagnsigma in the comments section of the output tables. Note that the
surface brightness limit is only reported when a standard deviation image is
read, in other words a column using it is requested (for example --sn) or
—--forcereadstd is called.

Note that this is just a unit conversion using the World Coordinate System
(WCS) information in the input’s header. It does not actually do any mea-
surements on this area. For random measurements on any area, please use the
upper-limit columns of MakeCatalog (see the discussion on upper-limit mea-
surements in Section 7.4.2 [Quantifying measurement limits], page 287).

7.5 Match

Data can come come from different telescopes, filters, software and even different configu-
rations for a single software. As a result, one of the primary things to do after generating

19 The performance boost due to --noclumpsort can only be felt when there are a huge number of objects.
Therefore, by default the output is sorted to avoid miss-understandings or bugs in the user’s scripts
when the user forgets to sort the outputs.

Chapter 7: Data analysis 312

catalogs from each of these sources (for example with Section 7.4 [MakeCatalog], page 284),
is to find which sources in one catalog correspond to which in the other(s). In other words,
to ‘match’ the two catalogs with each other.

Gnuastro’s Match program is in charge of such operations. The nearest objects in the
two catalogs, within the given aperture, will be found and given as output. The aperture
can be a circle or an ellipse with any orientation.

7.5.1 Invoking Match

When given two catalogs, Match finds the rows that are nearest to each other within an
input aperture. The executable name is astmatch with the following general template

$ astmatch [OPTION ...] input-1 input-2
One line examples:

1D wavelength match (within 5 angstroms) of the two inputs.
The wavelengths are in the 5th and 10th columns respectively.
$ astmatch --aperture=5e-10 --ccoll=5 --ccol2=10 inl.fits in2.txt

Match the two catalogs with a circular aperture of width 2.

(Units same as given positional columns).

(By default two columns are given for ‘--ccoll’ and ‘--ccol2’,
The number of values to these determines the dimensions).

$ astmatch --aperture=2 inputl.txt input2.fits

Similar to before, but the output is created by merging various
columns from the two inputs: columns 1, RA, DEC from the first
input, followed by all columns starting with ‘MAG’ and the ‘BRG’
column from second input and finally the 10th from first input.
$ astmatch --aperture=2 inputl.txt input2.fits \
--outcols=al,aRA,aDEC,b/ "MAG/,bBRG,al0

Match the two catalogs within an elliptical aperture of 1 and 2
arcseconds along RA and Dec respectively.
$ astmatch --aperture=1/3600,2/3600 inl.fits in2.txt

Match the RA and DEC columns of the first input with the RA_D

and DEC_D columns of the second within a 0.5 arcseconds aperture.

$ astmatch --ccoll=RA,DEC --ccol2=RA_D,DEC_D --aperture=0.5/3600 \
inl.fits in2.fits

Match in 3D (RA, Dec and Wavelength).
$ astmatch --ccoll=2,3,4 --ccol2=2,3,4 -a0.5/3600,0.5/3600,5e-10 \
inl.fits in2.txt
Match will find the rows that are nearest to each other in two catalogs (given some
coordinate columns). Therefore two catalogs are necessary for input. However, they don’t
necessarily have to be files: 1) the first catalog can also come from the standard input (for
example a pipe, see Section 4.1.3 [Standard input], page 117); 2) when only one point is
needed, you can use the ——coord option to avoid creating a file for the second catalog. When

Chapter 7: Data analysis 313

the inputs are files, they can be plain text tables or FITS tables, for more see Section 4.7
[Tables], page 130.

Match follows the same basic behavior of all Gnuastro programs as fully described in
Chapter 4 [Common program behavior|, page 103. If the first input is a FITS file, the
common --hdu option (see Section 4.1.2.1 [Input/Output options|, page 107) should be
used to identify the extension. When the second input is FITS, the extension must be
specified with ——hdu2.

When --quiet is not called, Match will print the number of matches found in standard
output (on the command-line). When matches are found, by default, the output file(s) will
be the re-arranged input tables such that the rows match each other: both output tables
will have the same number of rows which are matched with each other. If --outcols is
called, the output is a single table with rows chosen from either of the two inputs in any
order. If the --logasoutput option is called, the output will be a single table with the
contents of the log file, see below. If no matches are found, the columns of the output
table(s) will have zero rows (with proper meta-data).

If no output file name is given with the --output option, then automatic output
Section 4.9 [Automatic output], page 138, will be used to determine the output name(s).
Depending on --tableformat (see Section 4.1.2.1 [Input/Output options|, page 107),
the output will then be a (possibly multi-extension) FITS file or (possibly two) plain
text file(s). When the output is a FITS file, the default re-arranged inputs will be two
extensions of the output FITS file. With —-outcols and --logasoutput, the FITS output
will be a single table (in one extension).

When the --log option is called (see Section 4.1.2.3 [Operating mode options],
page 112), and there was a match, Match will also create a file named astmatch.fits (or
astmatch.txt, depending on --tableformat, see Section 4.1.2.1 [Input/Output options],
page 107) in the directory it is run in. This log table will have three columns. The first
and second columns show the matching row/record number (counting from 1) of the first
and second input catalogs respectively. The third column is the distance between the two
matched positions. The units of the distance are the same as the given coordinates (given
the possible ellipticity, see description of --aperture below). When --logasoutput is
called, no log file (with a fixed name) will be created. In this case, the output file (possibly
given by the --output option) will have the contents of this log file.

--log isn’t thread-safe: As described above, when --logasoutput is not called, the Log
file has a fixed name for all calls to Match. Therefore if a separate log is requested in two
simultaneous calls to Match in the same directory, Match will try to write to the same file.
This will cause problems like unreasonable log file, undefined behavior, or a crash.

-H STR

--hdu2=STR
The extension/HDU of the second input if it is a FITS file. When it isn’'t a
FITS file, this option’s value is ignored. For the first input, the common option
--hdu must be used.

Chapter 7: Data analysis 314

--outcols=STR
Columns (from both inputs) to write into a single matched table output. The
value to -—outcols must be a comma-separated list of strings. The first char-
acter of each string specifies the input catalog: a for the first and b for the
second. The rest of the characters of the string will be directly used to identify
the proper column(s) in the respective table. See Section 4.7.3 [Selecting table
columns], page 135, for how columns can be specified in Gnuastro.

For example the output of ——outcols=al,bRA,bDEC will have three columns:
the first column of the first input, along with the RA and DEC columns of the
second input.

If the string after a or b is _all, then all the columns of the respective input
file will be written in the output. For example the command below will print
all the input columns from the first catalog along with the 5th column from the
second:

$ astmatch a.fits b.fits —--outcols=a_all,bb

_all can be used multiple times, possibly on both inputs. Tip: if an input’s
column is called _all (an unlikely name!) and you don’t want all the columns
from that table the output, use its column number to avoid confusion.

Another example is given in the one-line examples above. Compared to the
default case (where two tables with all their columns) are saved separately, using
this option is much faster: it will only read and re-arrange the necessary columns
and it will write a single output table. Combined with regular expressions in
large tables, this can be a very powerful and convenient way to merge various
tables into one.

When --coord is given, no second catalog will be read. The second catalog will
be created internally based on the values given to -—coord. So column names
aren’t defined and you can only request integer column numbers that are less
than the number of coordinates given to —-coord. For example if you want to
find the row matching RA of 1.2345 and Dec of 6.7890, then you should use
--coord=1.2345,6.7890. But when using --outcols, you can’t give bRA, or

b25.

-1

--logasoutput
The output file will have the contents of the log file: indexes in the two catalogs
that match with each other along with their distance. See description above.
When this option is called, a log file called astmatch.txt will not be created.
With this option, the default output behavior (two tables containing the re-
arranged inputs) will be

--notmatched

Write the non-matching rows into the outputs, not the matched ones. Note
that with this option, the two output tables will not necessarily have the same
number of rows. Therefore, this option cannot be called with --outcols.
--outcols prints mixed columns from both inputs, so they must all have the
same number of elements and must correspond to each other.

Chapter 7: Data analysis 315

-c INT/STR[,INT/STR]

--ccol1=INT/STR[,INT/STR]
The coordinate columns of the first input. The number of dimensions for the
match is determined by the number of comma-separated values given to this
option. The values can be the column number (counting from 1), exact col-
umn name or a regular expression. For more, see Section 4.7.3 [Selecting table
columns], page 135. See the one-line examples above for some usages of this
option.

-C INT/STR[,INT/STR]

--ccol2=INT/STR[,INT/STR]
The coordinate columns of the second input. See the example in --ccoll for
more.

-d FLT[,FLT]

--coord=FLT[,FLT]
Manually specify the coordinates to match against the given catalog. With this
option, Match will not look for a second input file/table and will directly use
the coordinates given to this option.

When this option is called, the output changes in the following ways: 1) when
--outcols is specified, for the second input, it can only accept integer numbers
that are less than the number of values given to this option, see description
of that option for more. 2) By default (when --outcols isn’t used), only the
matching row of the first table will be output (a single file), not two separate
files (one for each table).

This option is good when you have a (large) catalog and only want to match a
single coordinate to it (for example to find the nearest catalog entry to your de-
sired point). With this option, you can write the coordinates on the command-
line and thus avoid the need to make a single-row file.

-a FLT[,FLT[,FLT]]

--aperture=FLT[,FLT[,FLT]]
Parameters of the aperture for matching. The values given to this option can
be fractions, for example when the position columns are in units of degrees,
1/3600 can be used to ask for one arcsecond. The interpretation of the values
depends on the requested dimensions (determined from --ccoll and --ccol2)
and how many values are given to this option.

When multiple objects are found within the aperture, the match is defined as
the nearest one. In a multi-dimensional dataset, when the aperture is a general
ellipse or ellipsoid (and not a circle or sphere), the distance is calculated in the
elliptical space along the major axis. For the defintion of this distance, see r,;
in Section 8.1.1.1 [Defining an ellipse and ellipsoid], page 318.

1D match The aperture/interval can only take one value: half of the interval
around each point (maximum distance from each point).

2D match In a 2D match, the aperture can be a circle, an ellipse aligned in
the axes or an ellipse with a rotated major axis. To simply the

Chapter 7: Data analysis

316

usage, you can determine the shape based on the number of free
parameters for each.

1 number

2 numbers

3 numbers

For example --aperture=2. The aperture will be a
circle of the given radius. The value will be in the
same units as the columns in --ccoll and --ccol2).

For example --aperture=3,4e-10. The aperture will
be an ellipse (if the two numbers are different) with the
respective value along each dimension. The numbers
are in units of the first and second axis. In the example
above, the semi-axis value along the first axis will be 3
(in units of the first coordinate) and along the second
axis will be 4x107'° (in units of the second coordinate).
Such values can happen if you are comparing catalogs
of a spectra for example. If more than one object exists
in the aperture, the nearest will be found along the
major axis as described in Section 8.1.1.1 [Defining an
ellipse and ellipsoid], page 318.

For example --aperture=2,0.6,30. The aperture will
be an ellipse (if the second value is not 1). The first
number is the semi-major axis, the second is the axis
ratio and the third is the position angle (in degrees).
If multiple matches are found within the ellipse, the
distance (to find the nearest) is calculated along the
major axis in the elliptical space, see Section 8.1.1.1
[Defining an ellipse and ellipsoid], page 318.

3D match The aperture (matching volume) can be a sphere, an ellipsoid
aligned on the three axises or a genenral ellipsoid rotated in any
direction. To simplifythe usage, the shape can be determined based
on the number of values given to this option.

1 number

3 numbers

6 numbers

For example --aperture=3. The matching volume will
be a sphere of the given radius. The value is in the same
units as the input coordinates.

For example --aperture=4,5,6e-10. The aperture
will be a general ellipsoid with the respective extent
along each dimension. The numbers must be in the
same units as each axis. This is very similar to the two
number case of 2D inputs. See there for more.

For example --aperture=4,0.5,0.6,10,20,30. The
numbers represent the full general ellipsoid definition
(in any orientation). For the definition of a general
ellipsoid, see Section 8.1.1.1 [Defining an ellipse and
ellipsoid], page 318. The first number is the semi-major
axis. The second and third are the two axis ratios. The
last three are the three Euler angles in units of degrees

Chapter 7: Data analysis 317

in the ZXZ order as fully described in Section 8.1.1.1
[Defining an ellipse and ellipsoid], page 318.

318

8 Modeling and fitting

In order to fully understand observations after initial analysis on the image, it is very
important to compare them with the existing models to be able to further understand both
the models and the data. The tools in this chapter create model galaxies and will provide
2D fittings to be able to understand the detections.

8.1 MakeProfiles

MakeProfiles will create mock astronomical profiles from a catalog, either individually or
together in one output image. In data analysis, making a mock image can act like a
calibration tool, through which you can test how successfully your detection technique is
able to detect a known set of objects. There are commonly two aspects to detecting: the
detection of the fainter parts of bright objects (which in the case of galaxies fade into the
noise very slowly) or the complete detection of an over-all faint object. Making mock galaxies
is the most accurate (and idealistic) way these two aspects of a detection algorithm can be
tested. You also need mock profiles in fitting known functional profiles with observations.

MakeProfiles was initially built for extra galactic studies, so currently the only astro-
nomical objects it can produce are stars and galaxies. We welcome the simulation of any
other astronomical object. The general outline of the steps that MakeProfiles takes are the
following:

1. Build the full profile out to its truncation radius in a possibly over-sampled array.

2. Multiply all the elements by a fixed constant so its total magnitude equals the desired
total magnitude.

3. If ——individual is called, save the array for each profile to a FITS file.

4. If --nomerged is not called, add the overlapping pixels of all the created profiles to the
output image and abort.

Using input values, MakeProfiles adds the World Coordinate System (WCS) headers of
the FITS standard to all its outputs (except PSF images!). For a simple test on a set of
mock galaxies in one image, there is no need for the third step or the WCS information.

However in complicated simulations like weak lensing simulations, where each galaxy
undergoes various types of individual transformations based on their position, those trans-
formations can be applied to the different individual images with other programs. After
all the transformations are applied, using the WCS information in each individual profile
image, they can be merged into one output image for convolution and adding noise.

8.1.1 Modeling basics

In the subsections below, first a review of some very basic information and concepts behind
modeling a real astronomical image is given. You can skip this subsection if you are already
sufficiently familiar with these concepts.

8.1.1.1 Defining an ellipse and ellipsoid

The PSF, see Section 8.1.1.2 [Point spread function], page 320, and galaxy radial profiles
are generally defined on an ellipse. Therefore, in this section we’ll start defining an ellipse
on a pixelated 2D surface. Labeling the major axis of an ellipse a, and its minor axis with

Chapter 8: Modeling and fitting 319

b, the azis ratio is defined as: ¢ = b/a. The major axis of an ellipse can be aligned in any
direction, therefore the angle of the major axis with respect to the horizontal axis of the
image is defined to be the position angle of the ellipse and in this book, we show it with 6.

Our aim is to put a radial profile of any functional form f(r) over an ellipse. Hence we
need to associate a radius/distance to every point in space. Let’s define the radial distance
re as the distance on the major axis to the center of an ellipse which is located at i. and
Je (in other words r,; = a). We want to find r.; of a point located at (7,7) (in the image
coordinate system) from the center of the ellipse with axis ratio ¢ and position angle 6.
First the coordinate system is rotated! by 6 to get the new rotated coordinates of that

point (i, j,):
i-(1,7) = +(i. — i) cos O + (j. — j) sin @
]r(zvj) = _(ic - 7’) sinf + (]c _]) cos t

Recall that an ellipse is defined by (4, /a)?+ (4,/b)*> = 1 and that we defined r.; = a. Hence,
multiplying all elements of the ellipse definition with r? we get the elliptical distance at

this point point located: r; = /i2 + (j,./¢)?. To place the radial profiles explained below
over an ellipse, f(r.) is calculated based on the functional radial profile desired.

An ellipse in 3D, or an ellipsoid (https://en.wikipedia.org/wiki/Ellipsoid), can
be defined following similar principles as before. Labeling the major (largest) axis length as
a, the second and third (in a right-handed coordinate system) axis lengths can be labeled
as b and c¢. Hence we have two axis ratios: ¢; = b/a and ¢u = ¢/a. The orientation of the
ellipsoid can be defined from the orientation of its major axis. There are many ways to
define 3D orientation and order matters. So to be clear, here we use the ZXZ (or Z; X, 73)
proper Euler angles (https://en.wikipedia.org/wiki/Euler_angles) to define the 3D
orientation. In short, when a point is rotated in this order, we first rotate it around the Z
axis (third axis) by «, then about the (rotated) X axis by 5 and finally about the (rotated)
Z axis by 7.

Following the discussion in Section 6.4.2 [Merging multiple warpings], page 231, we can
define the full rotation with the following matrix multiplication. However, here we are
rotating the coordinates, not the point. Therefore, both the rotation angles and rotation
order are reversed. We are also not using homogeneous coordinates (see Section 6.4.1
[Warping basics|, page 229) since we aren’t concerned with translation in this context:

. cosy siny O 1 0 0 cosae sina 0 Te — 1
Jr | = | —=siny cosy 0| |0 cosp sinfB| | —sina cosa 0| | j.—j
k. 0 0 1 0 —sinfB cosp 0 0 1 ke —k

Recall that an ellipsoid can be characterized with (i,/a)? + (4,/b)* + (k./c)*> = 1, so
similar to before (r,, = a), we can find the ellipsoidal radius at pixel (i,j,k) as: 1y =

\/22 + (jr/fh)2 + (k7'/QQ)2‘

! Do not confuse the signs of sin with the rotation matrix defined in Section 6.4.1 [Warping basics],
page 229. In that equation, the point is rotated, here the coordinates are rotated and the point is fixed.

https://en.wikipedia.org/wiki/Ellipsoid
https://en.wikipedia.org/wiki/Euler_angles

Chapter 8: Modeling and fitting 320

MakeProfiles builds the profile starting from the nearest element (pixel in an image) in
the dataset to the profile center. The profile value is calculated for that central pixel using
monte carlo integration, see Section 8.1.1.5 [Sampling from a function], page 322. The next
pixel is the next nearest neighbor to the central pixel as defined by r.;. This process goes
on until the profile is fully built upto the truncation radius. This is done fairly efficiently
using a breadth first parsing strategy? which is implemented through an ordered linked list.

Using this approach, we build the profile by expanding the circumference. Not one more
extra pixel has to be checked (the calculation of 7., from above is not cheap in CPU terms).
Another consequence of this strategy is that extending MakeProfiles to three dimensions
becomes very simple: only the neighbors of each pixel have to be changed. Everything else
after that (when the pixel index and its radial profile have entered the linked list) is the
same, no matter the number of dimensions we are dealing with.

8.1.1.2 Point spread function

Assume we have a ‘point’ source, or a source that is far smaller than the maximum resolution
(a pixel). When we take an image of it, it will ‘spread’ over an area. To quantify that spread,
we can define a ‘function’. This is how the point spread function or the PSF of an image is
defined. This ‘spread’ can have various causes, for example in ground based astronomy, due
to the atmosphere. In practice we can never surpass the ‘spread’ due to the diffraction of
the lens aperture. Various other effects can also be quantified through a PSF. For example,
the simple fact that we are sampling in a discrete space, namely the pixels, also produces a
very small ‘spread’ in the image.

Convolution is the mathematical process by which we can apply a ‘spread’ to an image,
or in other words blur the image, see Section 6.3.1.1 [Convolution process|, page 207. The
Brightness of an object should remain unchanged after convolution, see Section 8.1.3 [Flux
Brightness and magnitude], page 324. Therefore, it is important that the sum of all the
pixels of the PSF be unity. The PSF image also has to have an odd number of pixels on its
sides so one pixel can be defined as the center. In MakeProfiles, the PSF can be set by the
two methods explained below.

Parametric functions

A known mathematical function is used to make the PSF. In this case, only the
parameters to define the functions are necessary and MakeProfiles will make a
PSF based on the given parameters for each function. In both cases, the center
of the profile has to be exactly in the middle of the central pixel of the PSF
(which is automatically done by MakeProfiles). When talking about the PSF,
usually, the full width at half maximum or FWHM is used as a scale of the
width of the PSF.

Gaussian In the older papers, and to a lesser extent even today, some re-
searchers use the 2D Gaussian function to approximate the PSF of
ground based images. In its most general form, a Gaussian function
can be written as:

flr)=aexp <—(3:—,u)2> +d

202

2 http://en.wikipedia.org/wiki/Breadth-first_search

http://en.wikipedia.org/wiki/Breadth-first_search

Chapter 8: Modeling and fitting 321

Since the center of the profile is pre-defined, p and d are con-
strained. a can also be found because the function has to be nor-
malized. So the only important parameter for MakeProfiles is the o.
In the Gaussian function we have this relation between the FWHM
and o:

FWHM, = 2v2In 20 ~ 2.354820

Moftat The Gaussian profile is much sharper than the images taken from
stars on photographic plates or CCDs. Therefore in 1969, Moffat
proposed this functional form for the image of stars:

(2]

Again, a is constrained by the normalization, therefore two param-
eters define the shape of the Moffat function: o and 8. The radial
parameter is « which is related to the FWHM by

-8

f(r)=a

FWHM,, = 2aV2V/8 — 1

Comparing with the PSF predicted from atmospheric turbulence
theory with a Moffat function, Trujillo et al.® claim that 3 should
be 4.765. They also show how the Moffat PSF contains the Gaus-
sian PSF as a limiting case when § — oc.

An input FITS image
An input image file can also be specified to be used as a PSF. If the sum of its
pixels are not equal to 1, the pixels will be multiplied by a fraction so the sum
does become 1.

While the Gaussian is only dependent on the FWHM, the Moffat function is also de-
pendent on B. Comparing these two functions with a fixed FWHM gives the following
results:

e Within the FWHM, the functions don’t have significant differences.
e For a fixed FWHM, as increases, the Moffat function becomes sharper.

e The Gaussian function is much sharper than the Moffat functions, even when (is large.

3 Trujillo, 1., J. A. L. Aguerri, J. Cepa, and C. M. Gutierrez (2001). “The effects of seeing on Sérsic
profiles - II. The Moffat PSEF”. In: MNRAS 328, pp. 977—985.

Chapter 8: Modeling and fitting 322

8.1.1.3 Stars

In MakeProfiles, stars are generally considered to be a point source. This is usually the
case for extra galactic studies, were nearby stars are also in the field. Since a star is only a
point source, we assume that it only fills one pixel prior to convolution. In fact, exactly for
this reason, in astronomical images the light profiles of stars are one of the best methods to
understand the shape of the PSF and a very large fraction of scientific research is preformed
by assuming the shapes of stars to be the PSF of the image.

8.1.1.4 Galaxies

Today, most practitioners agree that the flux of galaxies can be modeled with one or a few
generalized de Vaucouleur’s (or Sérsic) profiles.

I(r) = I.exp (bn K:e) . - 1])

Gérard de Vaucouleurs (1918-1995) was first to show in 1948 that this function best fits
the galaxy light profiles, with the only difference that he held n fixed to a value of 4. 20
