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Surface-based searchlight analysis
•  Each searchlight references 100 nearest 

voxels according to geodesic distance on 
cortical surface

Kriegeskorte et al, 2006
Oosterhof et al, 2011
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pairwise 
relationship 1

pairwise 
relationship 2

pairwise 
relationship 3

Cluster analysis
•  Cluster searchlights in feature space defined by 

pairwise relationships between conditions

Connolly et al, 2012
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Cluster analysis
•  Labeled clusters can then be projected 

back to cortical surface

Connolly et al, 2012
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Cluster analysis
•  Extract representational similarity structure 

for each cluster



An example

Action repetition

2000 ms
2000 ms

2000 ms

2000 ms

2000 ms

2000 ms

Time

Button press

12 participants viewed 2 s video clips of behaving 
animals
5 types of animals performing 4 different behaviors 
for 20 total conditions

Haxby et al, 2011
Guntupalli et al, under review
Nastase et al, in preparation

20,484 surface-based searchlights 
each referencing 100 voxels
Response patterns for 20 
conditions estimated via GLM 
used to construct RDM (190 
pairwise distances)
Whole-brain hyperaligned based 
on responses to Life nature 
documentary



An example

Cluster solutions using Gaussian mixture models 
(GMMs) at k = 2, 4, 19, and 30

Nastase et al, in preparation

k = 2 k = 4

k = 19 k = 30



Parcellation evaluation

How do we choose a particular cluster solution?
Is there any single “correct” parcellation of the 
brain?
Given a parcellation, how do we determine which 
parcels are meaningful?

Quantitative benchmarks for parcellation quality:
•  Reproducibility
•  Homogeneity

Thirion et al, 2014



Parcellation evaluation: Reproducibility

Lange et al, 2004
Thirion et al, 2014

Yeo et al, 2011
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evaluate parcellation reproducibility
Compare clustering algorithms and different values 
of k
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Repeat for each k
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Mean
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Split-half cross-validation at the participant level to 
evaluate parcellation reproducibility
Compare clustering algorithms and different values 
of k
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Thirion et al, 2014
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Parcellation evaluation: Homogeneity

Gordon et al, 2014

Homogeneity measured by mean pairwise distance 
between all searchlight RDMs within a parcel
Estimated null distribution of homogeneities by 
applying random rotations to the spherical 
projection of the cortical surface
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Desikan et al, 2006
Destrieux et al, 2010
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Summary

Functional parcellation of the cerebral cortex based on representational 
geometry

Reproducibility analysis quantifies how well parcellations generalize 
across participants

Homogeneity analysis identifies where representations are encoded 
most consistently

Future directions:
•  Extend analyses to higher k
•  Project group parcellations into 

individual participants’ brains
•  Quantify information content of 

parcels using classifiers 
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  http://www.pymvpa.org

Free and open source software:
PyMVPA, NeuroDebian, scikit-learn, NumPy, SciPy, 
AFNI, SUMA, R, RStudio, joblib…
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Code available at https://github.com/mvdoc/reprclust	  
(and soon in PyMVPA)


