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Cluster analysis

•  Cluster searchlights in feature space defined by 

pairwise relationships between conditions


Connolly et al, 2012
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back to cortical surface
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Cluster analysis

•  Extract representational similarity structure 

for each cluster




An example


Action repetition


2000 ms

2000 ms


2000 ms


2000 ms


2000 ms


2000 ms


Time


Button press


12 participants viewed 2 s video clips of behaving 
animals

5 types of animals performing 4 different behaviors 
for 20 total conditions


Haxby et al, 2011

Guntupalli et al, under review

Nastase et al, in preparation


20,484 surface-based searchlights 
each referencing 100 voxels

Response patterns for 20 
conditions estimated via GLM 
used to construct RDM (190 
pairwise distances)

Whole-brain hyperaligned based 
on responses to Life nature 
documentary




An example


Cluster solutions using Gaussian mixture models 
(GMMs) at k = 2, 4, 19, and 30


Nastase et al, in preparation


k = 2
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k = 19
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Parcellation evaluation


How do we choose a particular cluster solution?

Is there any single “correct” parcellation of the 
brain?

Given a parcellation, how do we determine which 
parcels are meaningful?



Quantitative benchmarks for parcellation quality:

•  Reproducibility

•  Homogeneity


Thirion et al, 2014
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Parcellation evaluation: Homogeneity


Gordon et al, 2014


Homogeneity measured by mean pairwise distance 
between all searchlight RDMs within a parcel

Estimated null distribution of homogeneities by 
applying random rotations to the spherical 
projection of the cortical surface
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Summary


Functional parcellation of the cerebral cortex based on representational 
geometry


Reproducibility analysis quantifies how well parcellations generalize 
across participants


Homogeneity analysis identifies where representations are encoded 
most consistently


Future directions:

•  Extend analyses to higher k

•  Project group parcellations into 

individual participants’ brains

•  Quantify information content of 

parcels using classifiers 
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.http:// .net

  http://www.pymvpa.org

Free and open source software:

PyMVPA, NeuroDebian, scikit-learn, NumPy, SciPy, 
AFNI, SUMA, R, RStudio, joblib…
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Code available at https://github.com/mvdoc/reprclust	
  

(and soon in PyMVPA)



