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Abstract—The learning space for executing general motions of a 

flexible joint manipulator is quite large and the dynamics are, in 

general, nonlinear, time-varying, and complex. The objective of 

this paper is to design a nonlinear system based on the fuzzy 

neural network control using supervised training, into executing 

reference trajectories by a flexible joint manipulator. The 
structure identifications of controller networks are performed by 

using the Adaptive Neural Fuzzy Inference System (ANFIS), with 

new parameters and weight coefficients automatically adapted 

and adjusted, in order to decrease position tracking errors. In 

order to adapt and reduce the number of undefined parameters 

in the network, a new technique is used. Reported research works 

use the Euler method for the resolution of the arm's dynamic 

function, in this paper, a more exact method was used, 

represented by the Fourth-Order Runge-Kutta (RK4) method. A 

comparative study has been carried out between these two 

methods in order to prove the effectiveness of the later. Finally, in 

order to test the robustness of the proposed approach, it was also 

investigated considering parameter variations. The tracking 
speed of the model on the system control accuracy was also 

analyzed. The simulation results show that the proposed 
approach has a good tracking effect. 

Keywords-Adaptive Neuro Fuzzy Interface System (ANFIS); 

Fuzzy Neural Network (FNN) control; manipulator robot; 

supervised training; trajectory tracking; robustness  

I. INTRODUCTION  

Robotic manipulators have reshaped industrial processes. 
Pressing requirements of improved and enhanced productivity 
in industrial applications have necessitated the deployment of 
robots to automate tasks [1]. Some of the most common tasks 
for which robots are designed to are: transportation and 
material handling [2, 3], assembly and manufacturing [4], and 
point and arc welding [5, 6]. Robotic manipulators can be 
categorized as rigid or flexible. Rigid manipulators increase 
tensile strength with more precision due to the materials used 
such as steel or aluminum frames but have high cost and 
weight [7]. The advancements in material technology have 
enabled us to acquire low cost and weight flexible joint robotic 
manipulators, but quite often an oscillation is produced 
throughout the manipulator arm, posing a great challenge in 
terms of manipulator’s control [8]. Linear control techniques 
(e.g. Proportional-Integral-Derivative (PID)) are valid when a 
robot moves slowly and can be modeled by linear differential 

equations with constant coefficients [9]. The linear control fails 
when there is a need to tackle complex system dynamics [8], 
nonlinearities and parameter changes in the control laws, which 
require robust or adaptive control laws to handle the 
trajectories [9]. Many nonlinear control strategies have been 
developed to deal with the nonlinearities present in the system, 
such as robust control [10], optimal control [11], adaptive 
control [12], nonlinear control [13, 14], and intelligent control 
[15]. In [9], authors present a systematic review of control 
strategies for multi-Degree of Freedom (DoF) robotic 
manipulators, using one of the most commonly used modeling 
formulas, Euler Lagrange. A review of modeling of serial 
articulated robotic arms was recently presented in [7]. 
Kinematics is usually derived using Denavit-Hartenberg (D-H) 
parameters. The problem of robust control law design for 
accurate trajectory tracking of a flexible joint manipulator is 
addressed in [14], by considering joint flexibility and actuator 
dynamics. The system’s model has been derived using the 
Euler-Lagrange approach. Authors in [16] proposed an iterative 
control law to regulate the set-point of a flexible robotic system 
that is driven electrically and is subjected to model uncertainty. 
Most of the reported techniques suffer from limitations related 
to the level of complexity resulting from iterative 
differentiations of nonlinear virtual functions and thus leading 
to complex and computationally expensive algorithms. 

The arm positioning is commonly performed by a fuzzy 
controller. Regarding the fuzzy logic control, it incorporates in 
a control system the way human beings think. Through fuzzy 
technology, the human operator experience, which controls 
processes and industrial plants, is captured in order to be 
included in computerized controllers with the same or better 
performance than humans. The fuzzy control does not need 
mathematical modeling of the process, but the modeling of 
actions from the knowledge of a specialist, using linguistic 
terms, i.e. verbal descriptions. Moreover, fuzzy controllers also 
handle linear and nonlinear systems and are able to control 
complex multivariable systems [17]. But the fuzzy controller is 
unable to learn, in contrast to the neural networks. With 
favorable generalization ability and relatively simple structure, 
a neural network is not involved with complicated 
mathematical calculations and is characterized as the 
approximation to any nonlinear function with arbitrary 
precision [18]. Therefore, it can be combined in many aspects 
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of nonlinear research. From another point, the neural networks 
need minimum information to perform learning [19]. For that 
reason, we have used the hybridization of these two approaches 
in order to exploit their advantages. This hybridization allowed 
us to improve the performance of the network controller and 
achieve satisfactory results through online learning [20, 21]. 
The dynamics of a robot manipulator are, in general, nonlinear 
time-varying and complex [22]. Therefore, most controllers are 
not able of effectively controlling movements of a flexible joint 
manipulator under different distance, velocity, and load 
requirements [23], and the use of a complicated nonlinear 
dynamic model makes real-time implementation difficult [24]. 
Moreover, it is by no means an easy task to identify the model 
parameters accurately. In this work, two network controllers 
based on fuzzy neural network control using supervised 
training are proposed, where each network will control one 
joint of the arm manipulator with two DoF. Parameters and 
structure identifications of network are necessary in any 
modeling which aims to achieve a generalized model. ANFIS 
employs well-known parameter-identification techniques [25], 
where the determination of the optimal number of fuzzy rules 
will be determined by the identification scheme of the structure 
[26]. For most of fuzzy controllers, the rule composition is very 
difficult, it needs experts’ knowledge or perspective insight of 
system behavior [27]. We propose a solution based on 
supervised training, where each synaptic weight between the 
third and the fourth hidden layer of each controller network 
represents a fuzzy rule [20]. 

There are several learning algorithms. They can be 
classified into two main categories: supervised and 
unsupervised. In unsupervised learning, the system learns about 
the pattern from the data itself without a priori knowledge. On 
the other hand, supervised learning is guided learning, i.e. 
when the network is formed it compares the input and the 
desired result which is represented in our case by the reference 
joint. However, in this case, new parameters and weight 
coefficients are automatically adapted and adjusted, through 
online error learning, in order to decrease the position tracking 
error. Meanwhile, the control system is analyzed. One of the 
major difficulties of this learning type is the local minimum 
error [28]. In order to overcome this problem, changes in the 
parameters of the learning law such as the learning step can be 
carried out. In the process, the resolution of the arm's dynamic 
function was performed by two comparative methods, RK4 and 
Euler method. Finally, control laws were subjected to various 
test inputs in a simulation to characterize the tracking 
performance, and some results are illustrated to show the 
validity of the proposed approach.  

II. PROPOSED APPROACH 

In this approach, the fuzzy system is used to represent the 
abstract controller program, and the neural network is used to 
manage the parameters specifying the fuzzy rules, using 
learning and knowledge of sampled movements [18, 29]. The 
fuzzy system encodes knowledge by qualitative rules rather 
than a precise quantitative description [30]. However, the use 
of fuzzy qualitative rules is more effective and tends to cover a 
wider learning space. The Fuzzy Neural Network (FNN) 
controller shown in Figure 1 modulates the motion command 

via sensory feedback and uses the resultant signal to move the 
robot manipulator. First we have a reference movement block. 
This movement is defined by the angle and the angular speed 
assigned to each articulation of each rod of the manipulator 
arm. These sampled data are then processed in parallel by two 
FNN controllers to produce two outputs, torque ��  and 
torque	��, applied to the manipulator arm which is simulated by 
its dynamic function. Finally, a sensory feedback is carried out 
in order to calculate the error in position and angular speed. 
Proper learning process is also imperative for determining the 
weights in the networks. Parameters specifying the fuzzy rules 
for governing sampled movements are stored and manipulated 
by the n6eural network to process a wide range of movements.  

 

 
Fig. 1.  Diagram block of robot learning control. 

The success of the proposed scheme depends on designing 
the FNN to generate proper motion commands for various 
motions. As indicated in the block diagram in Figure 1, we use 
the feedback error of position (�) and error of velocity (�� ) 
between the reference and actual joints, denoted as: 

� � �� ∑ 	
��� 
��� � 
��    (1) 
�� � �� ∑ 	
��� 
���� � 
	� ��    (2) 

The performance of the trained model is evaluated while 
decreasing the error between the reference trajectory and the 
trajectory tracked by the robot manipulator where n represents 
the number of training examples. 

III. CONTROLLER DESIGN  

A fuzzy neural system is a fuzzy system presented in the 
network architecture. Parameter identification of the fuzzy 
system is performed by an automatic learning technique of an 
adaptive neural network [21, 31]. ANFIS is one of the well-
known neural fuzzy approaches and it has shown good results 
in the modeling of complex non-linear problems [20, 21]. It 
must be noted that the application of ANFIS is not limited only 
to systems difficult for modeling, but we can also use this 
method to design controllers easier. Different learning 
techniques have been developed for the tuning of the inputs and 
consequent parameters in the ANFIS [32, 33]. In this study, the 
FNN system employed the learning, because it is the most 
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appropriate method for the ANFIS architecture. An initial 
Takagi-Sugeno (T-S) fuzzy inference system [34] is developed 
by defining the input and output membership functions. The 
determination of the optimum number of rules is very 
important in fuzzy modeling, it can be determined by a 
structure identification scheme [26], and the parameters of the 
initial fuzzy inference system are tuned in ANFIS architecture. 
Finally, the performance of the trained model is evaluated 
while decreasing the error between the reference trajectory and 
the trajectory tracked by the robot manipulator. As mentioned 
above, two network controllers are proposed in this study, 
where each FNN system is implemented as shown in Figure 2. 
The parameters of fuzzy reasoning are expressed by the 
connection weights or node functions of the neural network 
[35]. In Figure 2, the inputs of the FNN are the reference 
position and the velocity trajectories of a sampled motion, and 
the output is the motion command. The reason of choosing this 
structure is that the numbers of fuzzy rules and membership 
functions for input and output are pre-specified in this type of 
FNN. Thus, for various motions there are the same numbers of 
fuzzy parameters with the same attributes. Consequently, these 
fuzzy parameters are appropriate to be generalized by the 
neural network in order to deal with a motion.  

 

 
Fig. 2.  The structure of the FNN. 

The structure adopted of each FNN, consists of five layers 
of nodes, which are of the same type within the same layer. 
Each of the five layers performs one stage of the fuzzy 
inference process, as described below: 

A. Layer 1 

This layer is the input layer, and inputs are transmitted to 
the next layer directly without any calculation. In Figure 2, we 

can see two input nodes 
���  and 
����  of motions of a single 
DoF. 

B. Layer 2 

Each input node in this layer is an adaptive node which 
produces the membership grade of linguistic label. It is a fuzzy 

layer. Each node � in this layer has a node function ���. 
��� � 	�	�� 

�	�� � ��� ��	����� ��   
� ∶ 		� → #0, 1'    (3) 

where � is the degree of the Gaussian membership function, � 
is the input to the node j, (  is the center of membership 
functions, and ) the width of membership functions. 
In this paper, it is chosen that 
��� , 
����  and the torque		� 

have the same kind of membership function, where �	  is 
composed by seven fuzzy subsets, NB, NM, NS, ZE, PS, PM, 
PB: N represents negative, P positive, S small, M medium , B 

large and ZE zero. 
���  and 
����  are composed by five fuzzy 
subsets, as shown in Figure 3, which implies 5×5 = 25 nodes in 
the rule layer. 

 

 
Fig. 3.  Degree of membership functions. 

C. Layer 3 

This layer is intended for the implementation of the fuzzy 
rules. Each node in this layer corresponds to a rule, which is 
defined as a fuzzy conditional statement of the form rule [36, 
37]: 

If   x is A   and   y is B   Then   z is C 

where x and y are fuzzy sets representing the inputs 
���  and 
���� . z represents the output	τ , and A, B, and C represent 
linguistic variables. In this layer, the membership functions are 
multiplied and the output is:  

O+, � μ	x�. μ	y�    (4) 
where �	��  and �	0�	 denote the degree of membership 
functions. A control rule for each network is described as 
follows: 

If 12345	 is NB   and  1� 2345 is NB   then 	65 is NB. 

D. Layer 4 

In T-S model approach, the output model is a combination 
of the input variables according to fuzzy rules. The use of this 
model allows us to obtain an output according to the input 
variables [17, 34]. The fuzzy rules are structured as follows:  

78 ∶ 94	:	��	;�	<=	>�8 	?	&…&	#	�
�	;�	<=	>
�8 	'  
BC3D		08		;� � �E8 F	��8 	��	;� F �
G8 	�
G	;�  

i = 0, 1, … , nr,     (5) 
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where 78  is the i-th inference rule, ��	the j-th input variable, >�  
the fuzzy set defined on the universe of discourse of the 

variable	��, used in i-th inference rule, 08 		is the output of the i-
th input/output (I/O) local model, HI is the number of fuzzy 
rules, and p � #	a�a� 	…	aLM	b�b� 	…	bLO	c�c� 	…	cLQ'  are 
parameters of i-th I/O local model. So the output of this layer 
is:  O+R = τ+ = O+,. f+ = O+,. (	p+. qVWX + q+. q� VWX + r+)    (6) 
where Z�  represents the T-S function,  �� , 
� , and I�  are the 
consequent parameters [38]. 

According to several studies, the synaptic weights between 
the hidden layers have no physical significance. In this work, 
through the network architecture we can take the synaptic 
weights between the second and the third hidden layer in the 
form of the consequent parameters of the T-S function. 

TABLE I.  RULE BASES FOR FNN-1 

1� 234[  1234[										 NB NM ZE PM PB 

NB ZE PS NB NB NB 

NM PS NS ZE PS NM 

ZE PM NB PB PM PB 

PM PM ZE NM NB PS 

PB NS NS PB PB ZE 

TABLE II.  RULE BASES FOR FNN-2 

1� 2345  12345								 NB NM ZE PM PB 

NB NB ZE PB NS NS 

NM NS PS PM NB ZE 

ZE PM PM PS PB ZE 

PM NM NB PS NS NM 

PB PB PM PM ZE PS 
 

E. Layer 5 

For given values of the input variables 		��(;) , the final 
output of the fuzzy plant model 0\  is inferred by taking the 
weighted average of the local model outputs 08	[39]. 

0\(; + 1) 		= 	∑ 	]^	._^`a^bc d�(e)f.g^(e)∑ _^`a^bc d�(e)f     (7) 

�8d�(;)f = ∏ ��8
���� �	��(;)�    (8) μidx(k)f	denotes the membership functions of the fuzzy set >�8, 
and 	k8	  denotes the gravity centers of the output fuzzy sets 
associated with each rule. It means that a local model in the 
consequent part of each fuzzy rule describes each operation of 
the arm manipulator depending on the input values. In this 
layer only one node is needed for a single motion command τ.  

��l = 6 = ∑ 	] 	̂mnon∑ mnpn   

= ∑ 	]^	mnp�nn∑ mnpn   

Because the number of rules in Layer 3 is pre-specified by 
the number of nodes, and weights for the input and output layer 

are fixed, the parameters to learn in the FNN are the modifiable 
weights present on the input links to the rule layer and the 
output membership layer and the consequent parameters of the 
T-S function.  

IV. SUPERVISED TRAINING METHOD  

The purpose of learning in an FNN controller is to adapt 
these synaptic weights, in order to generate a control vector τ 
corresponding to a sampled movement. During learning, an 
error rate related to the resultant motion is back-propagated to 
adjust the parameters from layer to layer sequentially [40, 41]. 
The error rate can be obtained by differentiating the error 
between the reference motion and the actual motion relative to 
the motion command. The training adopted for this error is the 
supervised training; this method is widely applied in 
minimization problems, optimal control, parameter 
identification, neural network training, etc. [42]. The adaptation 
law of the weights is: 

q8�e (r + 1) = q8�e (r) − μ	. s�(t)st^nu (v)  +w. �q8�e (r) − q8�e (r − 1)� 					0 ≤ w < 1    (10) 
where q8�e (r) is the weight between the neuron 		j in layer  ; 
and the neuron < in layer (k-1), r is the index of iteration, 	w is 
the momentum, and � the learning step. 
The output of the neuron j in layer ; is given by: 

0�e(r) = Z �z�e(r)�     (11) z�e(r) = ∑ q8�e
e8�� . 08e��(r)    (12) 
The connection weights are adjusted so that the feedback 

error �({) is minimized: 
�(q) = ��∑ (
��� |� − 0�)�    (13) 

where Z is the neuron activation function, z�e(r) the input of 
neuron j, H;  the number of corresponding neurons, n the 
number of training examples, |� the reference output, and 0� is 
the actual output. We use the feedback error to derive the error 

rate }�(q) }q8�e (r)⁄ .  

s�(t)st^nu (v) = s�(t)sgnu(v) . sgnu(v)st^nu (v)    (14) 
����(�)�t���(�) = ����nu(v)��t���(�) 		 = Z �z�e(r)�	 . ����(�)�t���(�)    (15) 

and 

����(�)�����(�) = s∑ t^n	u`u^bc 	.		gû�c(v)st^nu (v) = 08e��(r)    (16) 
So: 

sgnu(v)st^nu (v) = Z �z�e(r)�	.		08e��(r)    (17) 
Substituting the results obtained in (17) into (14) the 

derivative of the error rate is obtained as:  
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s�(t)st^nu (v) = s�(t)sgnu(v) 	 . Z �z�e	r��	.		08e��	r�    (18) 
Now by simply choosing: 

z�e	r� � � s�	t�sgnu	v� 	 . Z �z�e	r��    (19) 
The second term at the right side of (18) satisfies:  

s�	t�
st^nu 	v� � �z�e	r�	. 08e��	r�    (20) 

Finally, we get:  

q8�e 	r F 1� � q8�e 	r� F μ	z�e	r�	. 08e��	r�	Fw	 �q8�e 	r� � q8�e 	r � 1��    (21) 
This final function represents the adaptation law of the 

weights used in the FNN controller.  

V. SIMULATION  

To demonstrate the effectiveness of the proposed approach, 
a two-joint robot manipulator was used [43]. The dynamic 
equations for this planar manipulator of 2DoF as shown in 
Figure 4 are described by the joint positions, velocities, and 
accelerations as functions of time [44]:  

��� = ���. 
�� F ���. 
�� � �. 	
��� F 2.
�� . 
��� F ��
�� � ��� . 
�� F ���. 
�� F �. 
��� F ��																															

    (22) 

where q and 
�  are the actual position and velocity vectors and �� and �� are the torques. 
 

 
Fig. 4.  The flexible robot manipulator of 2DoF.  

In this simulation, the parameters for robot manipulator are 
given as:  	��� = ��. ���� F �� F ��. 	��� F ���� F 2. ��. ��� . ��=
�� F ��	  ��� � ��. ���� F F��		  	��� �			��. �� . ��� . ��=
� F��. ���� F	��			   ��� � ���         (23) � � �� . ��. ��� . =<H
�	  �� � ��. ��� . �. ��=
� 	F ��. �. 	���� . F��. ��=
��		   �� � ��. ��� . �. cos 		
� F 
��					   
where 
�	, 
� are the positions of links, ��	, �� are the masses, ��	 , ��  the lengths, ��  , ��  express lengthwise centroid inertia 
values, and ��� , ��� are the half lengths. 

The resolution of the mathematical model with computed 
torques of the flexible robot manipulator of 2 DoF requires 
transforming them in the form of the following differential 
functions.   

For the first joint:  

���
��		

��c�v = 
�																																															�� �v = 
,																																														��p�v = ¡c�¢cc .�p£¢.d�p £�.� .�pf�¤c¢c  			
	 (24) 

For the second joint:  

���
��		

��c�v � 
�																														�� �v � 
,																													
��p�v �	 ¡ �¢ c .�p£¢.�  �¤ ¢   	

    (25) 

These functions are derived by using two methods, Euler, 
and Runge-Kutta method [45, 46].  In many cases, differential 
equation systems can take the form of an ordinary first-order 
differential equation of the type: 

¥�g�v � Z	r, 0	r��0	0� � 0E								 				0 x r		    (26) 
where 0	r� is the function we are looking for and 0E its initial 
value. We note h as a step based on the discretization of the 
variable t, and 0
  the approximate value of 0(r
)  for the 
different instant r
 = H¦.  By integrating the differential 
equation between r
	and r
£�	we have the relation: 

0	r
£�	� � 0	r
	� � § Zdr, 0	r�f|rv`¨©	v`	     (27) 

The idea is to approach this integral with more precision 
than the Euler method.  

A. Euler Method 

Coming back to Euler's method, the integral in (26) can be 
approached by the rectangle method on the left (explicit Euler), 
or by the rectangle method on the right (implicit Euler). The 
error produced corresponds to the area of quasi-triangular 
shape and of dimension h.ph where p is the slope of f at the 

instant r
 . So the error is about: �ª ≃ ��¬¦�.  
Improvements to the Runge-Kutta method of order 2 

consist in improving the integral by calculating the area of a 
trapezoid instead of that of a rectangle. The error is therefore 
related to the curvature of the function and not to its slope. In 
order to reduce the error of the later we used the Runge-Kutta 
method of order 4. 

B. Runge-Kutta Method 

The Runge-Kutta method of order 4 is an additional step in 
the refinement of the calculation of the integral (26). Instead of 
using the trapezoid method, we use the Simpson method [47]. 
This consists of replacing the integrated function with a 
parabola passing through the extreme points and the midpoint. 
We have: 
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§ Z(�)|� ≃	­�®¯­® °Z	±� F 4Z �®£­� � F Z	³�´    (28) 
Applied to the integral (26), this gives: 

§ Zdr, 0(r)f|r ≃ µ̄v`¨c	v`	 °Zdr
	, 0(r
	)f + 4Z �r
£�/�	, 0dr
£�/�	f�  +Zdr
£�	, 0(r
£�	)f? 
Hence the relationship: 

0
£� = 0
 + µ̄ :Z(r
	 , 0
	) + 4Zdr
£�/�	, 0
£�/�	f  +Z(r
£�	, 0
£�	)'							    (29) 
Here, a difficulty appears because the equation presents two 

unknowns: 0
£�/�	 and	0
£�	. To make the diagram explicit, we 
must estimate 4Zdr
£�/�	 , 0
£�/�	f	and Z(r
£�	, 0
£�	) from	0
, r
	 and h. Let's start with the term 4Zdr
£�/�	, 0
£�/�	f	which 
we break down into two identical terms:  2Zdr
£�/�	 , 0
£�/�	f + 2Zdr
£�/�	, 0
£�/�	f  
In the first, we replace 0
£�/�	 by its value deduced from 

the explicit Euler method: 0
£�/�® = 0
	 + ¦/2.Z(r
	 , 0
). 
In the second term, we replace 0
£�/�	 by its value deduced 

from the implicit Euler method: 0
£�/�­ = 0
	 + ¦/2.Zdr
£�/�	, 0
£�/�	f  
that we will approach 		0
	 + ¦/2. Zdr
£�/�	 , 0
£�/�® f. Since the 
implicit and explicit Euler methods produce quasi-opposite 
errors, there is a hope to minimize the error on the calculation 

of		4Zdr
£�/�	 , 0
£�/�	f. To summarize, we will write: 4Zdr
£�/�	, 0
£�/�	f 	≃ 2;�	 + 2;,	  
{<r¦

���
�� ;�	 = Z(r
	, 0
	)																											;�	 = Z �r
	 + 12¦,0
	 + 12¦;�	�;, = Z �r
	 + 12¦,0
	 + 12¦;�	�

	 
As for the term Z(r
£�	 , 0
£�	),  we approach it by 

estimating 0
£�	 by the midpoint method, i.e. by applying the 
rectangle method in the middle: 0
£� ≃ 0
 F ℎZdr
£�/�	, 0
£�/�	f  

≃ 0
 F ℎZdr
£�/�	, 0
£�/�­ f  
Finally we obtain the explicit diagram of Runge-Kutta of 

order 4: 

0
£� = 0
 + ¦ °�̄;�	 + �,;,	 + �,;,	 + �̄;R	´    (30) 
{<r¦

���
��;�	 = Z(r
	, 0
	)																												;�	 = Z �r
	 + ��¦,0
	 + ��¦;�	�;, = Z �r
	 + �� ¦, 0
	 + ��¦;�	�;R = Z(r
	 + ¦, 0
	 + ¦;,	)								

  

Compared to the RK2 method, this numerical diagram 
requires the double calculations at each step and therefore 
longer calculation time, without mentioning the rounding errors 
which accumulate faster. However, this defect is compensated 
by a gain in precision.  

Finally, the algorithm developed for this method is: 

Algorithm RK4 
1. Initialization of step h, of duration T. 
2. Initialization of the initial conditions 
3. Definition of the function	Z(r, 0) 
4. While r ≤ · Do 
(a) Calculate from ;�	 = Z(r, 0). 
(b) Calculate from	;�	 = Z �r + �� ¦,0 + ��¦;�	�. 
(c) Calculate from	;, = Z �r + ��¦, 0 + ��¦;�	�. 
(d) Calculate from ;R = Z(r + ¦, 0 + ¦;,	). 
(e) 	0 = 0 + µ̄ #;�	 + 2;,	 + 2;,	 + ;R	'; r = r + ¦. 
(f) 	Save data. 
Finally a comparative study will be carried out between 

Euler's method and Runge-Kutta method in order to prove the 
effectiveness of the later. 

In each FNN controller, we have 2 nodes in layer 1, 10 
nodes in layer 2, 25 nodes in layers 3 and 4, and 1 node in layer 
5. Consequently, a total of 125 parameters must be adapted for 
each joint during training. Because between the second and the 
third layer we have 5.10=50 synaptic weights, and between the 
third and the fourth layer we have 25 synaptic weights to adapt, 
finally each neuron in layer 4 needs three parameters	�8, 
8  and I8  where 	�8R = �8 = �8,(�8
 + 
8
� + I8) . The parameter I8 
represents an amplifier of the torque 	�8 , to simplify the 
calculation we take 		I8 = 0 . Then total 50+25+50=125 
parameters have to be set for each network. Moreover, it is by 
no means an easy task to identify the model parameters 
accurately [48], but as we mentioned earlier, to adapt and 
reduce the number of undefined parameters in the network, a 
new technique is used. Generally, for the adaptation of T-S 
function coefficients we use the Genetic Algorithm which is an 
optimization algorithm [32, 49]. In optimization, which is a 
field of mathematics, the goal is to come up with the member 
of a set that is the best according to some criterion [50].This 
method includes several steps and it takes a lot of time and 
calculations. In order to overcome this problem a new 
technique is used, with a simple idea: According to several 
studies, synaptic weights in the FNN controller have no 
physical significance, while in our work, the coefficients �8 and 
8  represent the weights between the second and third hidden 
layer. This technique allows us to reduce the number from 125 
to 75 parameters. The trajectory references tracked by joint-1 
and joint-2 are expressed as follows [51]: 

¹ 
����(r) = �� . sin(2.¼. r)									
����(r) = − ½� + �� . sin(2. ¼. r) 							r ≤ 3    (31) 
The simulation results are represented in Figures 5-11. In 

general, several hundred learning tests have been used to learn 
how to govern a sampled movement.  
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TABLE III.  SIMULATED SYSTEM PARAMETERS 

Variable Value ¿� 0.32m ¿� 0.24m ¿�� 0.16m ¿�� 0.12m �� 1.8Kg �� 1.2Kg �� , �� 0.02kg.m
2
 � 9.8N/Kg 

 

 
Fig. 5.  Tracking position of joint-1 for the initial conditions 

[
�,	
�� ,	
��,	�]T=[0.3,0,0,0]: 

 
Fig. 6.  Tracking error of joint angle 1. 

 
Fig. 7.  Tracking angular velocity of joint-1. 

 
Fig. 8.  Tracking position of joint-2 for the initial conditions 

[
� ,	
��,	
��,	�]T=[-1,0,0,0]. 

 
Fig. 9.  Tracking error of joint angle 2. 

 
Fig. 10.  Tracking angular velocity of joint-2. 

 
Fig. 11.  FNNs outputs. 
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In order to solve the dynamic function, a comparative study 
was carried out between the two methods, the Euler method 
and the RK4 method. The simulation time is		r ∈ [0s,2.9s] and 
the sampling time is 0.01s. According to the simulation results, 
we can approve the efficiency of the RK4 method as can be 
seen from Figures 5, 7, 8, and 10 where the outputs of the first 
and second joint can track the reference movements and 
angular velocity respectively. The output is the position of the 
manipulator’s end effector which can freely move. Due to this 
flexibility at the joint, oscillations are produced near the ends 
[8].  

VI. TEST OF ROBUSTNESS  

Robust control is an approach to controller design that aims 
to achieve robust performance and/or stability in the presence 
of uncertainties in the system [50]. In order to test the 
robustness of the proposed approach, changes of the weight 
and the lengths for each joint of the arm manipulator are 
carried out. Also changes in the initial values were affected. 

TABLE IV.  SIMULATED SYSTEM PARAMETERS 

Variable Value ¿� 0.40m ¿� 0.30m ¿�� 0.20m ¿�� 0.15m �� 2.0Kg �� 1.5Kg �� , �� 0.028kg.m
2
 � 9.8N/Kg 

 

 
Fig. 12.  Tracking position of joint-1 for the initial conditions 

[q1,q2,q3,	�]T=[-1.2,0,0,0]. 

 
Fig. 13.  Tracking error of joint  angle 1. 

We have chosen another motion execution described as 
follows [52]:  

�	
���,(r) = − ½� + �R . °	2	. ¼. v,− sin �2.¼. v,�´	
���R(r) = �R . °	2	. ¼. v,− sin �2.¼. v,�´												 r ≤ 3   (32) 
 

 
Fig. 14.  Tracking angular velocity of joint-1. 

TABLE V.  VALUES OF TRACKING ERROR OF JOINT ANGLE 1 

Time (s) 
Error with RK4 

method (32Á) (rad) 

Error with Euler method 

(3ÂÃ) (rad) 

0.1 -0.3678 -0.3678 

0.2 0 0 

0.3 0 -0.0001 

0.4 -0.0001 -0.0002 

0.5 -0.0001 -0.0002 

0.6 -0.0001 -0.0003 

0.7 0 -0.0005 

0.8 0 -0.0012 

0.9 -0.0001 -0.0017 

1 -0.0002 -0.002 

1.1 -0.0003 -0.0019 

1.2 -0.0002 -0.0014 

1.3 -0.0001 -0.0007 

1.4 0 -0.0001 

1.5 0 0 

1.6 -0.0001 -0.0001 

1.7 -0.0005 -0.0009 

1.8 -0.0016 -0.0025 

1.9 -0.0031 -0.0047 

2 -0.0047 -0.0072 

2.1 -0.0058 -0.0099 

2.2 -0.0052 -0.0119 

2.3 -0.0067 -0.0147 

2.4 -0.0104 -0.0162 

2.5 -0.0116 -0.0163 

2.6 -0.0113 -0.0159 

2.7 -0.0098 -0.0169 

2.8 -0.0136 -0.055 

2.9 -0.0012 -0.0009 

3 0 -0.0001 

 

The difference between the reference and current trajectory 
is an input vector to the controller that generates joint rate 
commands. The simulation results of the proposed approach 
show the responses of joint positions, and position tracking 
errors, tracking angular velocities, and the outputs of the FNNs, 
for joint 1 and 2, with different initial conditions. It can be seen 
from Figures 12, 14, and 17 that the outputs of the first and 
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second joint can track the reference movements. From Figures 
6, 9, 13, and 16 can be obtained that with the adaptation of the 
fuzzy neural network synaptic weights, the system error is 
gradually reduced. According to the results shown in Table V, 
the average tracking error with the RK4 method is  
3.10.10-3rad and with Euler’s method it is -6.33.10-3 rad. When 
the dynamic equations are derived by using the RK4 method, 
the system control effect is better, and tracking error of joint is 
smaller. 

 

Fig. 15.  Tracking position of joint-2 for the initial conditions 

[q1,q2,q3,	�]T=[0.3,0,0,0]. 

 
Fig. 16.  Tracking error of joint angle 2. 

 
Fig. 17.  Tracking angular velocity of joint-2. 

Note that the proposed scheme bends the motion tracks near 
the ends, as shown in Figures 7, 10, 14, and 17. This error in 
speed produces an error in position. This phenomenon occurs 
because the scheme did not fully accomplish a salient braking 

in the end of the motion tracking and could be diminished via 
further learning in motion governing. Analogously, the human 
also demonstrates a similar behavior in performing fast 
movements: an overshoot in the end of the movement [53, 54]. 
As can be seen, the motions generated using the proposed 
approach capture the behaviors of the reference motions well 
and the simulation results verify the efficiency of the proposed 
solution.  

 

 
Fig. 18.  FNNs outputs.  

VII. CONCLUSION 

This paper presents a solution for the problem of learning 
and controlling a 2DoF industrial manipulator. One of the 
major problems in applying learning controllers to govern 
general motions is that the dynamics of robot manipulators are, 
in general, nonlinear, time-varying, and complex, which makes 
implementation in real time difficult. To tackle this, we have 
developed a Fuzzy Neural Network controller by taking 
advantage of the merits of the T-S fuzzy system and a Neural 
Network using supervised training. Network parameters and 
structure identifications were performed by using the ANFIS 
system. This design allows new parameters of the controller to 
be adapted in order to decrease the position tracking errors. In 
order to solve the dynamic function, a comparative study was 
carried out between two methods, the Euler method and the 
RK4 method, and according to the simulation results, we can 
accept the efficiency of the later. Finally, in order to test the 
system robustness, the proposed approach was also 
investigated for parameter variations and for another motion 
execution. The simulation results show that the proposed 
approach has a good tracking effect, and verify that the 
proposed scheme is sufficiently accurate and robust. Regarding 
future research, we are going to include a task of robust control 
strategies on multi DoF robotic manipulators and evaluate their 
performance.  
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