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Highlights 25 

The gut microbiota is emerging as a regulator of neurophysiology and behavior. 26 

 27 

Similar processes may govern the gut microbiota - brain axis across mammals and insects.  28 

 29 

The honey bee allows disentangling microbial effects on behavior in a eusocial animal. 30 

 31 

Abstract 32 

Research on the connections between gut microbes and the neurophysiology and behavior of 33 

their animal hosts has grown exponentially in just a few years. Most studies have focused on 34 

mammalian models as their relevance to human health is widely established. However, 35 

evidence is accumulating that insect behavior may be governed by molecular mechanisms that 36 

are partly homologous to those of mammals, and therefore relevant for the understanding of 37 

their behavioral dysfunctions. Social insects in particular may provide experimentally 38 

amenable models to disentangle the contributions of individual bacterial symbionts to the gut 39 

microbiota - brain axis. In this review, we summarize findings from recent research on the 40 

neurological and behavioral effects of the gut microbiota of insects and propose an integrated 41 

approach to unravel the extended behavioral phenotypes of gut microbes in the honey bee. 42 

 43 

 44 

 45 

 46 

 47 

 48 
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Introduction 49 

Research on symbiotic microorganisms associated with eukaryotic hosts has expanded 50 

dramatically in recent years, because advances in sequencing technologies allow rapid 51 

characterization of unculturable – and thus previously unknown – microbial diversity. An 52 

emerging avenue in this field is that of the neurophysiological consequences of microbial 53 

symbionts, which is rapidly changing the way we understand key aspects of symbiosis and 54 

animal behavior. Such interdisciplinary research operating at the interface of neuroscience, 55 

microbiology, and medicine is becoming a major subfield of biology, holding promise for the 56 

treatment of diseases affecting millions worldwide [1].  57 

 58 

The gut microbiota has well-established roles in animal nutrition and immunity [2,3]. 59 

However, gut microorganisms also hold a previously underestimated potential to contribute to 60 

host processes beyond those occurring in the intestinal tract. For example, they can produce 61 

neuroactive compounds that influence brain function and behavior [4], with numerous 62 

implications for disorders of the central nervous system [1,5-7]. Research on the gut 63 

microbiota - brain axis in mammalian models (i.e. rodents) is unraveling contributions of 64 

bacterial taxa to the etiology of neurodegenerative diseases such as Alzheimer [8] and 65 

Parkinson’s disease [9] and in the modulation of emotional states, including anxiety and 66 

depression (reviewed in [6]). Recent studies also suggest a link between the gut microbiota 67 

and social behavior, connecting microbial dysbiosis in the gut with social dysfunctions, such 68 

as autism-spectrum disorders (ASD) [10,11] and schizophrenia [12].  69 

 70 

So far, experimental investigations of the connections between gut bacterial strains, their 71 

metabolic output, the induction of gene expression in the host brain, and the ensuing effects 72 
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on behavioral traits, have mostly focused on a few established vertebrate model organisms 73 

(mostly mice and rats) [6,13]. This implies that the evolutionary history of the gut microbiota 74 

- brain axis has remained elusive, and we lack knowledge about the conservation of the 75 

underlying mechanisms by which hosts and microbes interact. Moreover, animals vary 76 

substantially in the diversity and stability of their microbial gut communities, as well as in the 77 

extent to which they engage in social behavior. Little is known about how these traits are 78 

regulated along the gut microbiota - brain axis, i.e. how microbial community structure 79 

impacts host brain and behavior and how social interactions shape the assembly of microbial 80 

communities in return. Insects provide experimentally amenable models that vary 81 

tremendously in the characteristics of their gut microbiota as well as in degree of sociality, but 82 

research in this field is still in its early stage. The exploitation potential of the gut microbiota - 83 

brain axis to manage invertebrate species of economic interest, and the suitability of insect 84 

species as pharmacological models for microbiota-induced neurological and behavioral 85 

dysfunctions have thus remained largely unexplored. Filling such knowledge gaps is now 86 

feasible owing to technological breakthroughs in DNA sequencing, genome engineering, 87 

metabolomics, and behavioral tracking, and the amenability of a few insect model organisms 88 

to manipulation of their gut microbiota composition.  89 

 90 

Social insects in particular hold promise for disentangling the contributions of individual 91 

bacterial strains and their synergistic effects on social behavior. Recent discoveries suggest 92 

that homologous molecular mechanisms may underlie responsiveness to social stimuli across 93 

bees and humans [14,15] (Figure 1). Honey bee workers that do not engage in brood care and 94 

defense of the hive, and solitary individuals in a halictid bee species characterized by a social 95 

polymorphism, both show brain gene expression differences compared to their social 96 
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counterparts for genes implicated in ASD in humans [14,15]. This implies that social insects 97 

could provide excellent model organisms to understand the role of gut microbes on the 98 

evolution of social behavior and its dysfunctions.  99 

 100 

In this review, we will summarize recent investigations on microbially-induced alterations of 101 

neurophysiology and behavior across insects and propose an integrated approach to 102 

characterize the gut microbiota - brain axis in the honey bee, a social insect in which the 103 

understanding of brain physiology and social behavior [16], as well as the composition and 104 

function of the gut microbiota [17-20], are well-advanced. Further, a suite of assays to track 105 

cognitive performance and social interactions in social insects, including honey bees, has 106 

recently become available [21-24] (Box 1 and Figure 2A). 107 

 108 

The extended behavioral phenotypes of symbiotic microorganisms in insects 109 

The first appreciation that symbiotic microorganisms can alter the behavioral repertoire of 110 

their insect hosts derived from studies looking into how microbes manipulate their hosts to 111 

enhance their own transmission. Examples include Wolbachia bacterial symbionts modifying 112 

the mating preferences of their hosts [25], or Ophiocordyceps parasitic fungi turning infected 113 

ants into “zombies” that abandon their maternal nest to die where conditions are most 114 

favorable for fungal sporulation [26]. More recently, researchers have started investigating the 115 

specific neurological and behavioral effects of the bacterial communities associated with the 116 

intestinal tract of insects, identifying their contributions in numerous processes, including 117 

chemical communication, development, cognition, and social interactions.  118 

 119 
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Gut microbes can alter the odorant profiles and the olfactory behavior of their insect hosts 120 

[27], consequently regulating how individuals interact through chemical communication, 121 

aggregate in social groups, or make decisions about foraging and mating. For example in the 122 

lower termite Reticulitermes speratus, conspecific intruders are more easily recognized and 123 

aggressed when they are colonized by foreign gut bacteria promoting unfamiliar scents [28]. 124 

In Acromyrmex echinatior leaf-cutting ants, suppression of the gut microbiota seemingly 125 

promotes aggression between non-nestmates, possibly through changes in the cuticular 126 

hydrocarbon profiles (CHCs) [29]. German cockroaches that lack gut bacteria have lower 127 

amounts of volatile carboxylic acids in their feces, which mediate aggregation responses. 128 

These feces become less attractive to conspecifics than those from conventionally colonized 129 

or re-inoculated (after antibiotic treatment) individuals [30]. Similarly, the production of the 130 

pheromone guaiacol by gut microbes mediates the aggregation of locusts into swarms [31]. In 131 

Drosophila, gut microbes influence olfactory-guided foraging decisions by making hosts 132 

prefer food patches seeded with specific (beneficial) bacterial strains, although these decisions 133 

are traded against the need to balance the flies’ nutritional intake [32,33]. Similarly, when 134 

Bactrocera dorsalis oriental fruit flies are depleted of their gut microbes, they prefer food 135 

containing a full complement of amino acids over other less nutrient-rich options even when 136 

this food is less readily accessible [34].  137 

 138 

The gut microbiota can have profound effects on the neurophysiological development of the 139 

host [35], aiding in cognition by potentiating its capacity to learn and memorize. Axenic 140 

Drosophila flies perform worse in an aversive phototactic assay of learning and memory than 141 

flies reared with a conventional gut microbiota [36]. The co-inoculation of two commensal 142 

microbes, Lactobacillus and Acetobacter (but neither of those in mono-inoculations), is 143 
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required and sufficient to recapitulate the cognitive performance of fully-colonized flies [36]. 144 

Likewise, several cognitive-enhancing effects of the gut microbiota have been described in 145 

rodent models (reviewed in [6]). For example antibiotic-treated rats suffer reduced spatial 146 

memory abilities, which can be reversed by gut colonization of Lactobacillus 147 

fermentum NS9 [37]. 148 

 149 

Recent findings also show that insect models may be appropriate for understanding the 150 

development of neurodegenerative diseases and the potential for their probiotic treatment. 151 

Drosophila null mutants of the parkin gene (a gene whose mutations are strongly associated 152 

with early onset of Parkinson’s disease in humans) have 5-fold higher bacterial loads and an 153 

altered community structure in their guts compared to wild-type control flies [38]. These flies 154 

are also more sensitive to paraquat (a neurotoxin whose chronic exposure increases the risk of 155 

developing Parkinson’s disease) as compared to germ-free parkin mutants [38]. Selective 156 

RNAi knockdown of parkin in gut enterocytes increases bacterial load but does not cause 157 

changes in paraquat sensitivity. However, sensitivity to paraquat is altered if the knockdown 158 

occurs throughout the entire fly, suggesting that dysbiosis of the gut microbiota can influence 159 

sensitivity to toxins in distal tissues [38]. These results suggest that parkin regulates microbial 160 

homeostasis in the gut of fruit flies, and conversely, that the gut microbiota impact fruit fly 161 

traits that are associated with Parkinson’s disease in humans. These findings are intriguing 162 

because recent studies in mice have linked the gut microbiota with the etiology of this disease 163 

[9] and suggest that at least some forms of Parkinson’s disease may represent autoimmune 164 

diseases starting in the gut years before any motor deficit occurs [39].  165 

 166 
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Three recent studies also linked the gut microbiota with markers of Alzheimer’s disease in a 167 

Drosophila model. Together these studies show that dysbiosis results in exacerbated 168 

progression of the disease as modeled in the fly [40] and that probiotic supplementation with 169 

distinct Lactobacillus and Bifidobacterium strains can ameliorate several symptoms [41], 170 

possibly mediated by the production of short-chain fatty acids (SCFAs) such as acetate [42]. 171 

Gut dysbiosis and associated changes in SCFA abundance in the gut are common markers of 172 

Alzheimer’s disease in mammals, including humans (reviewed in [8]). Further, initial 173 

therapeutic attempts with probiotics composed of Lactobacillus and Bifidobacterium strains 174 

had positive effects on disease symptoms [43,44].  175 

 176 

A recent study [45] showed that Drosophila are hyperactive in axenic conditions compared to 177 

conventionally-inoculated flies. These effects could be reversed by colonization 178 

with Lactobacillus brevis, a common gut symbiont of fruit flies, but not Lactobacillus 179 

plantarum. The study gained some mechanistic understanding of these interactions by 180 

showing that xylose isomerase was responsible for the locomotor effects by modulating 181 

trehalose levels, and that thermogenetic activation of octopaminergic neurons or exogenous 182 

administration of octopamine abrogated its effects, implicating octopaminergic neurons as 183 

mediators of cues from the gut microbiota. Mice lacking a microbiota are similarly 184 

hyperactive [35] and have increased anxiety-like behavior [46]. Moreover, recent studies 185 

showed that ASD symptoms in mice [10,11] and human children [47] can be improved 186 

through microbiota transplantations. ASD symptoms include hyperactivity (i.e. attention 187 

deficit hyperactivity disorder) and anxiety, in addition to gastro-intestinal and autoimmune 188 

disorders, depression and obsessive-compulsive disorder [48,49]. Therefore, it has been 189 

suggested that there could be a mechanistic link between these results in Drosophila and 190 
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mammals [50]. One potential mechanism has been recently identified. Reducing the 191 

expression of histone demethylase KDM5 genes in Drosophila (whose loss-of-function 192 

mutations are associated with ASD in humans and mice) causes intestinal barrier dysfunction 193 

and induces changes in gut microbiota composition and social behavior that can be partly 194 

rescued by feeding a Lactobacillus strain [51]. KDM5 histone demethylases regulate 195 

transcription of genes in the immune deficiency signaling pathway [51]. The functions of 196 

these enzymes are evolutionary conserved, indicating that they may play a key role in 197 

maintaining gut microbial homeostasis across a wide range of host species [51]. Epigenetic 198 

modifications such as DNA methylation and histone modifications are broadly implicated in 199 

neurodegenerative diseases in humans [52], so future comparative work should detail the 200 

extent to which these processes are conserved.  201 

 202 

An interesting aspect emerging from this body of research is that, in spite of gut communities 203 

being comprised of substantial bacterial diversity, in several instances mono-inoculations with 204 

individual bacterial strains appear to be sufficient to recapitulate the cognitive, social, and 205 

locomotor abilities of fully-colonized individuals [11,36,45]. This may point towards general 206 

mechanisms of host-microbe interaction that are redundant across multiple gut symbionts. 207 

Indeed empirical evidence so far suggests that several neurophysiological effects of gut 208 

microbes can be induced by molecules that are broadly produced via bacterial fermentation in 209 

both insects and mammals, such as SCFAs [9,42,53], or by the activity of enzymes encoded 210 

by genes present across multiple bacterial genomes [45]. Taken together the recent studies on 211 

insects are encouraging, as they provide support for the hypothesis that homologous processes 212 

underlie the regulation of neurodevelopmental diseases by the gut microbiota across 213 

mammals and insects. If this hypothesis will be substantiated by additional empirical 214 
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evidence, it would suggest that these diseases are deeply rooted in evolution and represent by-215 

products of ancient and complex interactions between gut microbes and the host nervous 216 

system. However, a full appreciation of homology in these interactions will require a much 217 

better mechanistic understanding of the extended phenotypes of gut bacteria on their insect 218 

hosts. Most studies have so far focused on the fruit fly gut microbiota, which consists of few 219 

bacterial species that for the most part only transiently colonize the gut [reviewed in 54, but 220 

see 55]. While Drosophila provides a good model to dissect the proximate mechanisms that 221 

mediate host responses to bacterial colonization, it is sub-optimal to understand how more 222 

complex and persisting bacterial communities impact neural functioning and regulate the 223 

interaction dynamics of host social networks, questions that are highly relevant for human 224 

psychology and medicine. 225 

 226 

A research primer to characterize the gut microbiota - brain axis in the honey bee 227 

The honey bee is a promising model to investigate the neurological and behavioral effects of 228 

bacterial symbionts for a number of reasons. The gut microbiota is well characterized and 229 

known to consist of eight to ten predominant bacterial phylotypes (clusters of bacterial strains 230 

sharing ≥ 97% sequence identity in the 16S rRNA gene; Figure 1), five of which represent the 231 

core microbiota found in every honey bee worker, independently of sub-species and 232 

geography [56]. This represents a remarkably simple gut community that can be easily 233 

manipulated (see Box 1) compared to vertebrate models, yet that is both more complex and 234 

stable than that of a fruit fly [54]. The bacterial lineages present in the honey bee gut are 235 

comprised of several sequence-discrete populations (SDPs, which can be considered as 236 

bacterial species [20,57]), each of which contains high levels of strain diversity [20] (Figure 237 

2B). Each bee harbors a unique combination of strains, indicating that the functional 238 
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repertoire of the gut community varies across bees even within the same hive [20]. Distinct 239 

behavioral groups characterized by division of labor coexist within the hive, and these show 240 

differences in gut microbiota composition and structure [58-60]. This system therefore 241 

represents a unique opportunity to understand how gut bacterial diversity affects variation in 242 

individual cognition and behavior and how the cumulative effect of these microbe-host 243 

interactions shapes the colony’s social network structure. Communication between host and 244 

microbes is bi-directional and social interactions can have profound effects on how gut 245 

bacteria are distributed between hive members and how the microbiota assembles in 246 

individual bees. These dynamics could be investigated using tracking technologies as recently 247 

done to assess how ants modify social interaction to slow down transmission of a fungal 248 

pathogen [23]. These technologies are already applicable to honey bees [24]. 249 

 250 

The physiological impact of honey bee gut symbionts has recently been investigated. So far, 251 

the focus has mostly been restricted to roles for nutrition [18,61] and immunity [62-64] in gut 252 

tissues. However, these first explorations are encouraging as they also suggest that the gut 253 

microbiota alters worker behavior towards increased sugar intake, likely by modulating 254 

insulin sensitivity [61] (Figure 1), and that specifically Bifidobacterium asteroides induces 255 

juvenile hormone III and prostaglandins in the host gut [18], which may be instrumental for 256 

gut - brain communication. The study of the neurophysiological effects of gut microbes is still 257 

in its infancy, but as honey bees are major pollinators of invaluable importance to secure food 258 

production, it could make vital contributions to ensure hive health.  259 

 260 

Conclusions 261 
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Studies of the extended behavioral phenotypes of microbial gut symbionts have implications 262 

across biological and medical disciplines. They are also contributing to a shift in perspective 263 

of organismal function to one in which the behavioral repertoires of animals result from 264 

interactions between symbiotic species spanning multiple domains of life. So far our 265 

proximate and ultimate understanding of these interactions has been limited by the use of only 266 

a handful of model organisms, rodents for the most part. This has precluded understanding 267 

when and how such gut microbe - brain interactions evolved, as well as the generality of the 268 

proximate mechanisms involved. To fully appreciate the role of bacterial symbionts in the 269 

evolution of the social brain, future research should contrast these interactions across multiple 270 

taxa representing different degrees of sociality. Nevertheless, encouraging first investigations 271 

have begun to suggest that homologous gut microbiota - brain interactions in mammals and 272 

insects may exist, pointing to a deep evolutionary origin of the gut microbiota - brain axis. 273 

Establishing the role of gut microbes in cognition and behavior as well as the suitability of 274 

probiotic supplementation as a mean to adjust behavioral traits of species of strategic 275 

importance has the potential to open up a different perspective on how bees and other insects 276 

will be managed in the future. 277 

 278 
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Figure captions 293 

  294 

Figure 1 Comparative summary of studies that previously investigated the gut microbiota - 295 

brain axis in mammals (including humans) and the physiological responses to gut microbes in 296 

honey bees, highlighting parallels between these systems, as well as knowledge gaps for 297 

honey bees (in bold) and recently discovered expression overlap with brain genes involved in 298 

autism spectrum disorders (ASD).  299 

 300 

Figure 2 Schematic summary of experimental approaches to investigate the effect of gut 301 

microbes on the neurophysiology and behavior of the honey bee host. (A) The gut microbiota 302 

composition can be manipulated in any desired way (see Box 1), after which colonized and 303 

microbiota-depleted bees can be used in gene expression, metabolomics, brain imaging, or 304 

behavioral tracking experiments with ‘fiducial’ ARTags – unique matrix-like markers that are 305 

glued to the thorax of each bee. (B) Each bee harbors a unique combination of gut microbe 306 

strains [20] and the panel depicts a hypothetical example of strain distributions across bees, 307 

whose presence is shown by gray quadrants on top of orange and purple dashed lines 308 

separating bees belonging to distinct behavioral groups. Interactions between bees are shown 309 
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by gray arcs towards the top. The distinct behavioral groups (e.g. foragers and nurses, 310 

depicted in different node colors) cluster separately in a hypothetical social interaction 311 

network (C), where nodes represent individual bees and gray edges report interactions 312 

between bees, with edge width being proportional to the number of interactions between 313 

individuals through time. SDPs = sequence-discrete populations, as defined in [20,57]. 314 

 315 

Box 1 Research approaches to characterize the gut microbiota - brain axis in the honey bee. 316 

The production of gnotobiotic honey bees is rather simple, as bees can be deprived of gut 317 

symbionts via elimination of their oral-anal transmission route by isolating mature pupae in 318 

sterile rearing boxes and allowing adults to emerge in incubators [18]. This avoids the 319 

potentially confounding effects of the antibiotic exposure often required to produce germ-free 320 

individuals in other organisms and results in bees colonized only by transient, environmental 321 

bacteria at very low abundance, which are referred to as microbiota-depleted (MD) [56]. All 322 

bacterial strains associated with the honey bee can be cultured in the laboratory and re-323 

inoculated in MD bees by the simple addition of bacterial cultures to the food or by ‘pipette-324 

feeding’ defined quantities of bacteria in sugar water, producing bees colonized by any 325 

combination of bacterial strains [18]. The bees whose microbiota composition has been 326 

experimentally manipulated can be subjected to neurotranscriptomic analyses to identify brain 327 

gene expression changes upon bacterial colonization, and metabolomics studies to track 328 

bacterial metabolites [18,61] as they travel through the host body and possibly reach the brain, 329 

also with the aid of stable-isotope labeling. Brain regions and neuronal populations involved 330 

in the interactions can be identified via fluorescence in situ hybridization and microscopy. 331 

Phenotypic effects on behavior can be quantified by assays of learning and memory abilities 332 

[21], flight performance and responses to sensory stimuli [65]. Moreover, advanced tracking 333 
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technologies that allow the full quantification of social interactions in observation boxes are 334 

now available [22-24] and can be used to quantify whether gut bacteria influence the position 335 

of each bee in the hive interactome and the number of times each bee interacts with other 336 

individuals and engages in more complex behaviors such as nectar/pollen handling, brood 337 

rearing, or trophallaxis.  338 

 339 
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