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Abstract

Electric vehicles have gained popularity over past decades as they are more environmen-
tally friendly than conventional gasoline vehicles. This thesis studies the optimization of
joint fleet size and number and location of charging stations location problem for inte-
grated demand responsive transport (DRT) service using electric vehicles. We propose a
simulation-optimization framework to model the problem and solve it approximately us-
ing a two-stage approach. Under the given framework we firstly determine the minimum
fleet size which satisfies a predefined level of service (LOS) criterion, and then optimize
the charging infrastructure using a surrogate-based approach. The proposed method is
tested using both a generated dataset and a Luxembourg dataset. The result shows that
installing 18 new DC Fast chargers in optimal locations in Luxembourg can decrease
the average charging operation time of EVs (electric vehicles) by 45.1%. A comparison
with another charging station allocation method k-means also proves the efficiency of the
proposed method.
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Chapter 1

Introduction

1.1 Background
Public transport has always played an important role in the society. It provides peo-
ple with mobility and access to schools, hospitals, and other destinations with a certain
frequency. It also relieves road congestion and helps to reduce pollution. Basically, tradi-
tional public transport only provides a fixed route mobility service. In many rural areas,
the frequency of public transport is low (longer customer waiting time), it may appear less
desirable compared to a demand responsive transport (DRT) system which is flexible and
user-centered. Nowadays, DRT system has risen in importance, as it’s more flexible and
user-centered than public transportation and provides an alternative to car use. It also
overcomes the first/last mile problem of fixed-route transportation where passengers need
to travel from the origin to the public transit station or from the transit station to the
destination. Moreover, in rural and suburban areas, the public transport infrastructure is
usually not well-developed because of the limitations of population density, and the DRT
system can function as a complement of public transport. Some commonly seen examples
of demand responsive transportation are taxi, Uber and flexible shuttle service.

The planning of demand responsive transport system needs to consider the trade-off of
operation cost and user inconvenience (Fu & Teply (1999)). From the perspective of ser-
vice providers, the goal is to minimize the cost of the operation, which can be achieved by
reducing the number of vehicles and increasing the number of user-service route matches,
etc. (Stiglic et al. (2018)); while from the perspective of the riders, the objective is to
minimize the inconvenience, which can be realized by minimizing travel distance, travel
time or travel expenses (Agatz et al. (2012)). To optimize this system, a number of
configuration parameters such as fleet size, capacity and routing need to be optimized.
These are referred to as supply-side decision variables. However, due to the stochastic and
dynamic nature of user-demand, the optimization problem can not be solved using ex-
act mathematical methods. Furthermore, each experiment for one simulation run can be
time-consuming. Optimization methodologies such as the surrogate optimization provide
an efficient way to optimize the configuration of the system with few expensive function
evaluations.

Electric vehicles have gained popularity over past decades as they are more environmen-
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CHAPTER 1. INTRODUCTION 2

tally friendly than conventional gasoline vehicles. The major benefit of electric vehicles
is that they produce no carbon dioxide, can use renewable energy, and is more energy-
efficient. Many transport network companies like Uber and Via (https://ridewithvia.com/)
start their fleet electrification towards sustainable mobility solutions (George & Zafar
(2018)). In this thesis, we consider the planning of integrated DRT using a fleet of elec-
tric vehicles/shuttles. The service planning involves tactic decisions regarding number and
locations of charging stations, and number of vehicles (fleet size). The next part of this
chapter is a literature review, which is organized as follows. Firstly, we will describe DRT
and integrated DRT system. Secondly, the supply-side decision variable optimization
methods are discussed. Finally, an outlook of this thesis is presented.

1.2 Literature review

1.2.1 DRT, integrated DRT and EV charging management
(1) DRT system

According to Kirby et al. (1974), a demand responsive transport “provides door-to-door
service on demand to a number of travelers with different origins and destinations”. Figure
1.1 shows how a DRT system works. As can be seen, passengers need to call in requests
in advance, informing the service provider of their origin/pick-up points. Apart from
the fixed route, the vehicle will also travel the deviation route to pick up the other
passengers.

Figure 1.1: Example of demand responsive transport system (adapted based on Häll
(2006))

For planning a DRT system, one of the questions is when DRT service is better than fixed
route service. Li & Quadrifoglio (2010) pointed out that the turning point should be in
the range from 10 to 50 customers/mile2/h, and the DRT service is preferred during peak
hours. As a DRT service is usually provided within some specific areas, studies have been
conducted to find the optimal zones for DRT service. Lee & Savelsbergh (2017) found
that in areas where transit points are closer to each other, a DRT service is preferred over
fixed route service. Another important issue in designing a DRT system is to determine
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supply-side parameters. In the work of Winter et al. (2016), the influence of fleet size on
the performance of the system is analyzed, and designing of an automated DRT system
is presented.

(2) Integrated DRT System

According to Häll (2006), an integrated demand responsive transport system is a combi-
nation of a demand responsive service and a fixed route service (public transport). It’s a
system where passengers will travel the first/last mile by DRT, which works as a comple-
ment of the public transit. Figure 1.2 presents how an integrated DRT system operates.
The DRT vehicle picks up passengers from their origins along the route, and takes them
to the transfer point which connects the fixed route and DRT. Passengers will then travel
by public transport, and switch to DRT at the transfer point to get to the destination.

The integrated DRT planning problem aims to find the optimal supply-side parameters
such as fleet size and routing to maximize profit. Liu et al. (2009) used genetic algorithm
to determine the fleet composition and routing. Repoussis & Tarantilis (2010) combined
a novel knowledge extraction mechanism with a probabilistic semi-parallel construction
heuristic to obtain the solution. Liu et al. (2019) applied a Bayesian optimization method
to find the optimal parameters, where the integrated DRT system is regarded as a blackbox
function and Bayesian optimization is used as a sequential search strategy. Some recent
studies show integrated DRT service could increase ridership of public transport and
provide customer’s seamless door-to-door mobility service (Ma (2017), Ma et al. (2018),
Ma et al. (2019), Häll et al. (2009)).

Figure 1.2: Integrated DRT system (adapted based on Häll (2006))

(3) Electric vehicle charging management

Electric vehicles have numerous benefits compared to conventional vehicles such as en-
vironmentally friendly and energy efficiency. With the rapid rise in the use of electric
vehicles, it also raises a problem as to how to manage the charging of electric vehicles.
Most studies focus on private EV charging demand management (Shen et al. (2019)).
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Commercial electric vehicle charging management received more attention in recent years.
According to Amjad et al. (2018), there are three types of EV charging management ap-
proaches: centralized EV charging which provides centralized control, distributed EV
charging which allows EV to make decisions, and the third EV charging approach is a
combination of the two. Researchers have also proposed methods to achieve various ob-
jectives. For instance, Mkahl et al. (2017) adopted a linear programming method to make
sure the battery SoC (state of charge) level is at its highest when reaching the charging
station. In He et al. (2012), an optimal scheduling scheme is proposed to minimize the
total cost of EVs performing charging and discharging during the day.

1.2.2 Supply-side decision variable optimization
The optimization problem is the problem of choosing a set of values for supply-side vari-
ables of an integrated DRT system, such as vehicle capacity, fleet size, etc. To optimize
an integrated DRT system, the supply-side variables need to be tuned so that the op-
timal configuration can be obtained. When simulating an integrated DRT system, the
supply-side variables are used to configurate the system and they are not updated during
the simulation process. The supply-side variable optimization problem is similar to the
hyperparameter optimization problem in machine learning. Hence many hyperparameter
optimization techniques can be applied to our problem. This section will present different
methods of supply-side decision variable optimization.

(1) Grid search

Grid search is a frequently used method for determining the supply-side decision variables
of DRT systems. The optimal values of the variables will be selected from a set of trial
values. In a grid search method the candidate points are predefined, the one that gives
the optimal objective function value will be chosen (Liu et al. (2009)). However, in case
of high dimensions, the performance of this method is compromised because of the curse
of dimensionality. Therefore, a more commonly used method is to combine manual search
and grid search. For instance, Larochelle et al. (2007) manually selected around 100
configurations of hyperparameters for a neural network algorithm, and then grid search
is used to search within the predefined configurations to find the optimal one.

(2) random search

Random search is an algorithm where samples (i.e. candidate points) are randomly drawn
from the parameter space. Each configuration of parameter is evaluated by the loss
function, thus the optimal one can be selected (Bergstra & Bengio (2012)).
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Figure 1.3: Grid search and random search (Bergstra & Bengio (2012))

Figure 1.3 shows the logic behind grid search and random search. According to Bergstra
& Bengio (2012), random search performs better than grid search when some parameters
are more important than others. Furthermore, when correlation exists among parameters,
random search is able to find the optimal solution in less trials than grid search. However,
it should be noted that for both grid search and random search, it is not guaranteed
that a local minimum can be obtained since only samples from the search space are
evaluated.

(3) Surrogate optimization

When the loss function is overly expensive to evaluate, a surrogate model can be used to
approximate the real loss function and help identify potential optimal configuration. The
surrogate model based optimization is useful for speeding up the optimization processes.
According to Queipo et al. (2005), the basic framework of surrogate-based optimization
can be illustrated as follows:

1. Construct surrogate model from initial observations to approximate true objective
function.

2. Estimate objective function value at candidate points using the surrogate function.

3. Evaluate true objective function value at the estimated minimum.

4. Update surrogate with the new observations until convergence.

In recent years various surrogate modelling approaches have been proposed, such as krig-
ing models (Martin & Simpson (2005)), radial basis functions (RBF) models (Regis &
Shoemaker (2007)) and support vector machine models (Collobert & Bengio (2000)). In
the work of Ma & Xie (2020), the surrogate optimization model is used to solve an optimal
fast charging station location problem.

(4) Bayesian optimization

The main idea of Bayesian optimization method is to select candidate points for objective
function evaluation using posterior distribution. For instance, Liu et al. (2019) combined
prior (obtained through online pilot survey) and likelihood of data (obtained from sim-
ulation) to get a posterior. The posterior selects the next set of decision variables to be
evaluated in the simulation, and then update the posterior with newly acquired data.
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The work of Eggensperger et al. (2014) shows how Bayesian optimization method can
be combined with spearmint, sequential model-based algorithm configuration and tree
Parzen estimator.

The advantage of Bayesian optimization method is that it can work directly with black-
boxes (Solnik et al. (2017)). The disadvantages are also clear, which are: (1) when it
comes to high dimensional problems, the efficiency of Bayesian optimization is similar to
that of random search (Li et al. (2016)); (2) Since Bayesian optimization method is a
Gaussian process which assumes continuous input, it can not work on categorical data
(Garrido-Merchán & Hernández-Lobato (2019)).

(5) Gradient-based optimization

Gradient-based optimization uses search directions defined by the gradient of the function
at the current point to solve optimization problem (Wikipedia (2019)). In hyperparam-
eter optimization, exact gradients of cross-validation performance can be computed for
all hyperparameters using chaining derivatives (Maclaurin et al. (2015)). In the work of
Maclaurin et al. (2015), this method has been developed to handle up to thousands of
hyperparameters.

For the integrated DRT system planning, Figure 1.4 shows the framework of syp-
plyside decision variable optimization for planning an integrated DRT system.
The framework consists of two parts: the simulation process and the optimization pro-
cess. In simulation process the user demand and public transport will be generated.
Given the supply-side configuration parameters, the DRT service can be optimized/gen-
erated. Therefore, an objective function value can be obtained as an output to evaluate
the performance of the system. Based on this value, the supply-side variable values will
be updated, which will lead to updated system configuration. The new configuration will
be used as input for the next iteration of simulation. The iteration process stops when a
stopping criteria is satisfied.
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Figure 1.4: Framework of Supply-side variable optimization for integrated DRT system
(adapted based on Liu et al. (2019) and Winter et al. (2016))

1.2.3 Outlook
The plan of this master thesis work is to propose a planning scheme to integrate public
transport and demand responsive transport to provide door-to-door transit service using
electric vehicles. The study area will be Luxembourg, the demand data will be randomly
generated, such as origin and destination of the passengers, arrival time, etc. For transit
network, we will consider the OpenStreetMap and transit system in Luxembourg. The
planning of this thesis work is presented in Figure 1.5. The second chapter presents
the supply-side decision variable optimization model of integrated DRT system and the
solution framework. In the third chapter a numerical study on a hypothetical dataset is
conducted. In chapter 4 we apply the proposed model to the Luxembourg dataset, and
present the results and evaluation of the method. In the last chapter we discuss the main
insights and draw the conclusion.
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Figure 1.5: Framework of supply-side variable optimization for integrated DRT system
using electric vehicles (adapted based on Liu et al. (2019) and Winter et al. (2016))



Chapter 2

Integrated DRT system planning
using electric vehicles

2.1 Integrated EV-DRT planning

2.1.1 Modeling framework for the integrated EV-DRT plan-
ning

This section presents the optimization-simulation framework for the integrated EV-DRT
planning. The system is composed of four components:

• Customer demand: Customer demand is related to stochastic ride requests, char-
acterized by customer’s pick-up location, drop-off location, and desired pick-up time.

• Vehicle fleet: An operator provides door-to-door transportation service or feeder
service as a part of integrated rideshare-transit service with a fleet of electric vehicles.

• Transit system: Frequency-/timetable- based fixed-route mass transport service.

• Charging infrastructure: Charging infrastructure is related to charging equip-
ment (i.e. different types of chargers) with charging stations.

The integrated EV-DRT planning problem involves in general the following three levels
of decisions:

• Strategic level: Determine the location and capacity (i.e. number and type of
chargers) of charging stations.

• Tactical level: Determine the fleet size of vehicles.

• Operational level: Determine the dispatching, routing policy and re-charging
policies of EVs given charging infrastructure constraints.

We consider two criteria in the planning problem: the operator’s perspective and user’s
perspective. The planning problem is formulated as an optimization problem to min-
imize operator’s total cost, given the user’s inconvenience constraint. The latter con-
siders a predefined average customer waiting time. As shown in Figure 2.1, we adopt
an optimization-simulation framework where we jointly consider these supply-side vari-
ables to minimize the objective function. Due to the huge design space to be explored

9
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and each simulation being computationally expensive, we will use the surrogate modeling
approach to obtain approximate solutions efficiently. Note that one can formulate the
problem as a bi-objective optimization problem to obtain optimal system configuration.
To limit the scope, we consider the optimal configuration of charging infrastructure and
fleet composition problem given a predefined vehicle dispatching, routing and re-charging
policy.

Figure 2.1: Modeling framework of the integrated EV-DRT planning

2.1.2 Problem formulation
We formulate the integrated EV-DRT planning problem as an optimization problem to
minimize operator’s expected annual investment and operation costs. The goal is to
minimize total cost, including two terms: 1) Investment cost of fleet and charging in-
frastructure, and 2) operation cost. The total cost is converted to annul expected cost
to be minimized (Zhang et al. (2019)). The decision variables are the fleet size
(satisfying average customer waiting time constraint) and new charging in-
frastructure configuration in terms of number of chargers and their spatial
locations.

(1) Investment cost

The investment cost includes EV purchase cost and charging stations investment cost. Let
T be the set of types of chargers, the total investment cost can be formulated as:

cvn+
∑
j∈T

cjkj (2.1)

where cv is the price of an EV, and n is the fleet size. cj is unitary cost of chargers of
type j, and kj is the number of chargers of type j.
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(2) Operation cost

The expected operation cost is calculated on an annual basis, given assumed stable day-
to-day ride request demand patterns. We assume total electricity consumption cost and
maintenance cost are proportional to the travel distance of EVs. The annual expected
operation and maintenance cost are defined as follows.

365
∑

v

(xvc
opr + γtwv ) (2.2)

where xv is the distance travelled by vehicle v for a full-day operation. copr is cost of
electricity consumption and maintenance per kilometer travelled. twv is the total charging
operation time (including travelling time to a charging station, waiting and charging time
at a charging station) during one day operation for vehicle v. γ is a coefficient which
converts waiting time at charging station into monetary opportunity cost when vehicles
are out-of- service.

By summarizing Eq. 2.1 and Eq. 2.2, the total annual cost can be written as Eq. 2.3:

Z(n, k) = φ[cvn+
∑
j∈T

cjkj] + 365
∑

v

(xvc
opr + γtwv ) (2.3)

where φ is a coefficient that converts the investment cost to an equally distributed annual
cost over entire lifespan of the investment.

The integrated EV-DRT planning problem is formulated as follows:

Minimize Z(n, k) (2.4)

subject to
0 ≤

∑
j∈T

kij ≤ k̂i ∀i ∈ S (2.5)

LimitedEV capacity and driving range constraints (2.6)

Average customer waiting time cannot exceed a predefined threshold (2.7)

Eq. 2.5 states that the maximum number of chargers to be installed at a candidate
charging station i ∈ S cannot exceed a predefined number k̂i (Jung et al. (2014)). T is
the set of types of chargers and S is the set of charging stations. Eq. 2.6 represents EV
operation and re-charging constraints (i.e. charger availability at charging stations). Eq.
2.6 and 2.7 are evaluated by simulating the dynamic ridesharing system using
electric vehicles which is an extension of the vehicle dispatching and routing model of
Ma et al. (2019). The implementation detail will be presented in section 2.2.
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2.1.3 Vehicle dispatching and routing policy with transit trans-
fers

We assume an operator deploys a fleet of homogenous capacitated EVs. Vehicle dis-
patching and routing policy is based on the non-myopic dynamic vehicle dispatching and
routing policy for ridesharing with transit transfers using conventional vehicles (Ma et al.
(2019)). For each new request, three possible travel options are considered: (i) rideshare,
(ii) rideshare-PT-rideshare and (iii) rideshare-PT-walk (or walk-PT-ridesahre) (see Fig-
ure 2.2). The option with least door-to-door travel time is selected to serve customers.
Note that when rideshare is involved as feeder service to public transportation, customer’s
corresponding pickup or drop-off locations are updated. This policy assigns a new request
r to a vehicle which has the lowest additional insertion cost. The reader is referred to Ma
et al. (2018) and Ma et al. (2019).

Figure 2.2: Real-time dispatching of vehicles considering two options: a) door-to-door, b)
bi-modal (rideshare+transit) service with transfers (Ma et al. (2019)).

2.1.4 EV charging scheme
We assume each EV is fully charged at depots at the beginning of each day, i.e. initial
battery State of charge (SoC) Bv = B̂. The battery SoC of each EV is monitored in real-
time by a dispatching center using remote communication technology. For simplification,
we assume a linear energy consumption of EVs, which is proportional to travel distance
(Goeke (2019)). Moreover, when the battery SoC of an EV is lower than a predefined
percentage θ (e.g., 25%), a charging request is sent to the dispatching center for charging
operation. The dispatching center has real-time information on the charging station sta-
tus (i.e. number of available chargers, charger types, charging schedule of each charger).
We assume the operator can charge the EV fleet on its own charging stations
and on the public chargers with the first-come-first-served policy. Depending
on the number of available chargers, there might be additional waiting time when arriving
at an assigned charging station.



CHAPTER 2. INTEGRATED DRT SYSTEM PLANNING USING ELECTRIC VEHICLES 13

Let eij represent the energy consumption for a vehicle to travel from its current location
i to j. Bvi(t) is the remaining battery level of charge of vehicle v at node i at time t. The
energy consumption from i to j is constrained by the remaining level of charge of vehicle
v at time t:

eij ≤ Bvi(t) (2.8)

Given the remaining energy of a vehicle, a list of reachable charging stations is determined
beforehand. The charging station assignment of an EV is determined by the
least total operation time to get fully charged policy. This total operation time
from the current position of vehicles to a charging station includes the access travel time,
waiting time at charging stations and charging time to 80% full charge. The access
travel time to a charging station is calculated as a shortest path travel time. Congestion
effect is captured by vehicle speed considering urban driving environment. Waiting time
wvij(t + πij) for vehicle v currently located at i, and arriving at a charging station j at
time t + πij can be obtained based on earliest available time of any charger at station
j. πij is the shortest travel time from i to j. Lastly, charging time, which depends on
charger type and remaining SoC of vehicle v, is approximated as:

Tvij(t+ πij) = (1− θ)B̂ −Bi(t+ πij)
ηj

(2.9)

where ηj is charger power output (kW). Tij(t+πij) represents total time spent on charging
when arriving at charging station j at time t+πij. According to Goeke (2019), the charging
speed is linear until it reaches 80%, then the charging speed decreases. We assume EVs
charge to 80% (i.e. θ=0.2) to allow higher vehicle availability to serve customers compared
to 100% full-charge policy. The charging scheme is shown in Fig. 2.3.



CHAPTER 2. INTEGRATED DRT SYSTEM PLANNING USING ELECTRIC VEHICLES 14

Figure 2.3: Framework of the charging scheme, adapted from Mkahl et al. (2017)

2.2 Simulation for the integrated DRT system
The integrated EV-DRT simulation framework is described below and in Figure 2.4. The
implementation is based on the discrete event simulation technique. More details can be
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found in Ma et al. (2019).

Simulation:
Input: Supply-side decision variables: fleet size, number and location of

charging stations.
Output: Performance metrics such as: average passenger waiting time, average

passenger travel time, average vehicle travel time, average vehicle charg-
ing operation time and number of rejects. Calculate objective function
value based on Eq. 2.3.

Step 1: Initialization. Construct the timetable of public transit network, such
that travel time between any two transit stations can be estimated.
Initialize the locations and battery state of charge of electric vehicles.
Initialize the statuses of charging stations. Each EV is marked as avail-
able. The current simulation time is set to t=0.

Step 2: Iteration. The iteration process loops over the passengers:
Step 2.1: System state update. Upon arrival of a new passenger, we up-

date the system state, including locations, battery SoC, service sta-
tuses of vehicles as well as the charging statuses of the charging
stations. For vehicles that have finished charging, mark them as
available. Next, search among all the available vehicles with suf-
ficient battery level. For vehicles with battery level lower than a
predefined threshold, mark them as unavailable and assign them a
charging station according to the charging scheme (Section 2.1.4).

Step 2.2: Vehicle dispatching to pick up customers. Then update the
current simulation time to customer’s arrival time. Determine the
travel option for the passenger (Section 2.1.3). Assign the new
request to a vehicle using the vehicle dispatching and routing policy
of Ma et al. (2019). Note that when no EV is available for the
passenger, the passenger will be rejected.

Step 3: Stopping criteria. After the arrival of the last passenger, advance the
clock until all the passengers are served. stop the simulation.
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Figure 2.4: Integrated EV-DRT simulation framework

2.3 Solution framework
(1) Optimization of fleet size

Due to the large search space, we adopt a two-stage approach by first determining
the fleet size then solving the charging station configuration problem. The
latter decision is solved by the surrogate optimization method. To determine the fleet
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size, an operator needs to consider the tradeoff between the fleet investment cost and sys-
tem performance in terms of customer inconvenience. We assume that average customer
waiting time is a relevant measure as it will impact directly the ridership and the revenue
of the operator. Hence the fleet size is determined to meet user average waiting time
constraint.

(2) Optimization of charging station configuration

For the charging station configuration problem, each configuration (i.e. number and lo-
cations of type-specific chargers) is computationally expensive to evaluate as it needs
a complete simulation run to get the performance metrics from the simulation. More-
over, the number of possible configurations is exponential. Thus, we apply the surrogate
optimization approach so that only a few simulation runs could get approximate good
solutions. Regis & Shoemaker (2007) proved that under mild assumptions, the surrogate
optimization method convergences to a global optimum.

The surrogate is constructed as an interpolation of the objective function and is used
to select the candidate evaluation points. Therefore, by effectively selecting points to
evaluate, significant time savings can be achieved. There are various kinds of surrogate
models such as response surfaces models, kriging, and radial basis functions (RBFs).
According to Fang & Horstemeyer (2006), compared to response surfaces models, the
RBFs are proven to be more accurate for highly nonlinear responses. The kriging model,
on the other hand, are generally more time consuming than the RBFs when the number
of design points becomes large. Therefore, the RBFs are chosen as the surrogate model.
The surrogate-based optimization is performed using the surrogateopt function of Global
optimization Toolbox in MATLAB. The algorithm is described as follows in Algorithm 1.
The detail of the methodology can be found in Regis & Shoemaker (2007).
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Algorithm: Algorithm 1
Step 1: Initialization. Select a starting point (i.e. number and location of

charging stations) within the bounds. Evaluate the objective function
value at the starting point by running the simulation (see section 2.2).
Initialize iteration index n = 0.

Step 2: Iteration. This process iterates between the following two phases:
Phase 1: Construct surrogate. Update the surrogate with the new eval-

uation point. The surrogate is constructed such that it gives the
same values at the evaluation points as the objective function. The
surrogate is formulated as follows:

s(y) =
l∑

i=1
λiφ(‖y− yi‖) + p(y),y ∈ Rn (2.10)

where λi is the coefficient of the RBFs. The radial basis function
used here is the cubic function φ(r) = r3, with a linear tail p(y) =
µ1 + µ2y. According to Light (1991), a unique solution for λ, µ1,
and µ2 can be obtained by solving a linear system of equations.

Phase 2: Select next evaluation point. Generate a random sample S of
several thousand points within the search region. The samples are
obtained by adding pseudorandom vectors (scaled) to the incum-
bent point, which is the point with the smallest objective function
value among all previous iterations. Evaluate the samples with
merit function:

fmerit(x) = w
s(x)− smin

smax − smin

+ (1− w)dmax − d(x)
dmax − dmin

(2.11)

where s(x) is the obtained surrogate in phase 1, smax =
max(s(x)),x ∈ S. Similarly, d(x) = min(dist(x,yi)) with yi be-
ing the previous evaluation points. dmax = max(d(x)),x ∈ S and
dmin = min(d(x)),x ∈ S. Hence the merit function is a weighted
sum of the scaled surrogate and scaled distance between the candi-
date point and the incumbent point, with w taking values between
0 and 1. A large value of w puts more weight on minimizing the
surrogate, while a small w will lead to the search of new regions.
With no prior information on w, we will cycle the value of w in
[0.3, 0.5, 0.7, 0.95] as proposed by Regis & Shoemaker (2007). The
candidate point with the smallest merit function value is chosen
as the next evaluation point. Evaluate the objective function at
this point by running the simulation. Set iteration index n = n+1.
Then go to phase 1.

Step 3: Stopping criteria. The iteration stops when convergence is reached
or when n = nmax.



Chapter 3

Numerical study

In this chapter, we conduct a preliminary numerical study to test the performance of
the proposed surrogate method in different scenarios. We firstly conduct a simulation
study with different locations of charging stations, given predefined number of vehicles
and chargers. The objective is to evaluate the impact of charging station locations on the
operation cost and customers’ inconvenience. Secondly, we conduct a numerical study
to evaluate the performance of the surrogate model and validate the proposed approach.
The simulation is run on a Dell laptop with i5-8250 CPU, 4 cores and 8 GB memory.
The simulation is implemented on Matlab by extending the previous work from Ma et al.
(2019).

3.1 Preliminary analysis
In this section, we conduct a preliminary analysis to investigate to what extent different
charger locations affect the performance of the system in terms of operation cost and
customer’s inconvenience. The number of EVs is assumed fixed for which we optimize
only the decision related to charging station allocation.

3.1.1 Experimental design
• Test instance: The study is conducted on a 20km × 20km rectangular region. As

can be seen in Figure 3.1, the blue line represents the railways which cover 89 transit
stations. The headway of the transit train is set to be 20 minutes on both directions.
The pick-up and drop-off locations are randomly generated, and the passenger ar-
rival pattern follows a Poisson process with time-dependent arrival intensities. The
simulation parameters are presented in Table 3.1.
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Figure 3.1: Test instance for the numerical study

Table 3.1: Simulation parameters
Customer arrival time 6:00-22:00
EV fleet size 20
Capacity of vehicles 4
Walking speed (km/h) 5
EV speed (km/h) 36
Train speed (km/h) 80
EV initial location (0,0)
EV driving range (km) 200
EV battery capacity(kWh) 16.5
Idle vehicle relocation epoch (min.) 10

• Passenger arrival pattern: The simulation duration is 16 hours, from 6 A.M. to
10 P.M., among which 7 A.M. to 9 A.M. and 5 P.M. to 7 P.M. are considered
peak hours. During peak hours it is assumed that passenger arrival intensity is 50
passengers/hour, and during normal hours 10 passengers/hour.

• Charging infrastructure: We assume the operator considers investing 5 charging sta-
tions with 2 DC fast chargers (see Table 3.2) per station over a set of charging station
candidates. Three scenarios are set up to test the performance of the simulation
under different locations of charging stations. Among the 89 candidate stations (see
Figure 3.2), 5 stations are selected as the location candidate for charging stations:

- Scenario 1: charging stations are located in station 14, 3, 6, 9, 19.

- Scenario 2: charging stations are located in station 1, 12, 11, 21, 6.

- Scenario 3: charging stations are located in station 61, 62, 69, 70, 6.



CHAPTER 3. NUMERICAL STUDY 21

Figure 3.2: Scenario settings of the case study

In scenario 1 and 2, charging stations are located near the center of each quadrant
of the map, while in scenario 3, all the charging stations are allocated to the center
of the map. Each charging station has 2 DC Fast chargers installed.

Some of the commonly seen types of chargers in the European market are listed in
Table 3.2. In this case study, we only consider the DC Fast chargers. It is assumed
that the state of charging stations (i.e. number of unused chargers at any time t) is
known in real-time for each charging station by an online information system such
as Chargemap (https://chargemap.com/).

Table 3.2: Simulation parameters

Type Power output
(kW)

Kilometers per
10 minutes of

charge

Typical
locations

Investment
cost per

charger (euro)

AC Mode 2
Commercial 10 3.2

Private,
workplace, and

public
2000

AC Mode 3 Fast
Charger 22 21 Public/private 4000

DC Fast Charger 50 64 Public/private 20000
Source: Spöttle et al. (2018), p. 24.

3.1.2 Results
The performance of the three configurations are presented in Table 3.3. It shows that
scenario 1 and scenario 2 present similar level of performance. However, in scenario 3, the
average EV travelling time, average passenger travel time and total EV waiting time are
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significantly longer. Figure 3.3 presents the tracking of the battery SoC of two randomly
selected EVs over space and time. The XY-plane represents the location of the EV and
Z-axis represents the battery SoC. It shows that the states of EVs evolve continuously
over time based on the movement of EVs and the recharging operations.

Table 3.3: Evaluation results of different scenarios (20 EVs)
Average

passenger
waiting time

(minutes)

Average EV
travelling

time
(minutes)

Average
passenger

travel time
(minutes)

Total EV
waiting time

(minutes)

Computational
time

(seconds)

Scenario 1 11.12 331.86 34.80 0 213.94
Scenario 2 11.20 329.53 34.93 0 215.09
Scenario 3 11.92 337.77 35.46 1.67 224.67

Figure 3.3: Evolution of the status of charge (SoC) of EVs over time

3.2 Application of the surrogate-based approach

3.2.1 Experimental setting
In this section, we apply the surrogate model to configure the optimal locations of the 10
DC fast chargers presented in the previous section. Two problems are considered. The
first problem considers optimal charger location problem, with a fixed fleet size of 20.
Customer demand is identical as in the previous section. The goal is to optimize the loca-
tions of 10 chargers with at least 2 chargers at each charging station if the site is selected.
The second problem extends the first problem by jointly optimizing the charging station
locations and fleet size. The charger location candidate sites are the transit stations (89 in
total). In the surrogate optimization approach (Algorithm 1), the surrogate is used as an
interpolating function to approximate the real objective values to reduce computational
time. Note that there is in total of ∑5

k=1
89!

k!(89−k)! = 4.4067×107 possibilities of charging lo-
cation choices for which the exhausted permutation is prohibited. The detailed parameter
settings are presented in Table 3.4. According to JATO (https://www.jato.com/electric-
cars-cost-double-the-price-of-other-cars-on-the-market-today/ ), the average market price



CHAPTER 3. NUMERICAL STUDY 23

of an electric vehicle in Europe is 31119 euro. The price of each charger is set to be
20000 euro by considering the fact that only DC Fast chargers are considered in this
case study. Since most electric vehicle manufacturers guarantee 8 years of use with a
certain rate of battery capacity loss (https://www.myev.com/research/ev-101/how-long-
should-an-electric-cars-battery-last), we assume the EV has a lifespan of around 8 years,
hence the annual conversion coefficient is 0.125. The out-of-service time conversion co-
efficient is estimated to be 0.3 (euro/min), given that the average Uber driver salary
reported on Glassdoor is $15/hour (https://nl.glassdoor.be/Salarissen/Uber-Salarissen-
E575263.htm). The electricity cost per 100 kilometers is estimated to be around 3
euro to 4 euro (https://www.energuide.be/en/questions-answers/how-much-power-does-
an-electric-car-use/212/) by which the operational cost of EV per kilometer travelled is
chosen to be 0.037.

Table 3.4: Evaluation results of different scenarios (20 EVs)
cv Purchase cost per vehicle (euro) 31119
n Fleet size 20
cj Purchase cost of chargers of type j (euro) 20000
k The number of chargers of type j 10
φ Convertion coefficient to annual cost 0.125
γ Out-of- service time convertion coefficient 0.3
copr Operational cost of EV per kilometer travelled (euro) 0.037

3.2.2 Optimization of charging station location configuration
given a fleet of EVs

In this section, we optimize the charging station allocation with a given EV
fleet size of 20. The surrogate model is applied to search for the optimal configuration
of the charging infrastructure. Figure 3.4 presents the evolution of objective function
values (Eq. 2.3) after 40 iterations. Each iteration corresponds to a complete simulation
run for one day operation. The computational time per run is 2.38 minutes (cpu time).
For 40 iterations, it corresponds to 1.5867 hour. Figure 3.4 shows that after 21 iterations
the value of the objective function convergences to 52602.5, i.e. -2.71% with the value
objective function at iteration 1.
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Figure 3.4: Function evaluation plot (20 EVs)

The results of the surrogate-based optimization for charging station locations are shown
in Table 3.5. The optimal locations for charging stations are station 69, 89, 10, 39, 1.
The locations are shown in Figure 3.5, it is clear that the charging stations are roughly
allocated in the four quadrants and center of the map, which is a sensible result.

Figure 3.5: Optimal allocation of 10 chargers

Table 3.5: Results of the surrogate-based approach (20 EVs)

Optimal
solution

(Station ID)

Average
passenger

waiting time
(min)

Average
passenger

travel time
(min)

Average
vehicle travel
length (km)

Average
vehicle

waiting time
(min)

Comp. time
per iteration

(min)

69 89 10 39 1 9.47 34.19 194.75 0 2.38
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3.2.3 Optimization of the charging infrastructure and fleet size
In this section, we extend the previous problem by optimizing both the charg-
ing station allocation and the fleet size. We first determine the minimum fleet size
to meet user average waiting time constraint. We vary the fleet size from 20 to 60 EVs
and evaluate its impact on the objective function and customer’s average waiting time.
Figure 3.6 reports the values of the objective function using different fleet sizes. We can
observe that convergence is achieved in each setting at no more than 30 iterations. The
detailed performance metrics are reported in Table 3.6. In an attempt to find the optimal
fleet size, we explore how average passenger waiting time evolves when fleet size increases.
As is shown in Figure 3.7, when fleet size increases from 30 to 60, the average passenger
time remains at almost the same level (i.e. ˜8.375 minutes). When increasing the fleet
size from 20 to 25, the average waiting time is reduced from 9.5 minute to 8.4 minute,
and the operational cost decreases by 1100 euros. However, there is only 0.2 minutes in
average waiting time decrease and 380 euro in operational cost decrease when fleet size
is changed from 25 to 30. Hence based on the observed trend, the fleet size is chosen as
25.

Table 3.6: Results of the surrogate-based approach for different fleet sizes

Fleet
size

Optimal
solution

(Charging
Station

location)

Average
passenger
waiting

time
(min)

Average
passenger

travel
time
(min)

Average
vehicle
travel
length
(km)

Average
vehicle
waiting
time for
charging

(min)

Comp.
time per
iteration

(min)

20 69 89 10 39 1 9.47 34.19 194.75 0 2.38
25 12 78 56 78 56 8.63 32.36 152.74 0 2.03
30 29 84 51 84 29 8.42 32.36 126.32 0 2.32
40 38 89 41 84 18 8.34 31.70 94.71 0 3.63
50 38 89 41 84 18 8.36 31.71 75.77 0 5.28
60 38 89 41 84 18 8.34 31.70 63.14 0 4.63

Figure 3.7: Average passenger waiting time evolution plot
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(a) 20 EV (b) 25 EV

(c) 30 EV (d) 40 EV

(e) 50 EV (f) 60 EV

Figure 3.6: Values of objective function vs. fleet size
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As a next step, we proceed to determine the optimal configuration of charging stations.
Different settings were tested to see how total annual cost changes when increasing the
number of chargers. We apply the surrogate model on scenarios with different number of
chargers with a fleet size of 25 vehicles. The number of chargers ranges from 2 to 20, with
at least 2 chargers if one charging station is open. The results are reported in Table 3.7.

As can be seen in Table 3.7, we vary the number of chargers to observe how the costs
change. Note that the total annual cost is the sum of annual investment cost and annual
operational cost. The evolution plots of the objective function value, investment cost
and operational cost are shown in Figure 3.8. Overall, for the operational cost there’s a
decreasing trend. The cost decreases dramatically when the number of chargers increases
from 2 to 4, then then decrease slows down in the interval of 4 to 8. Afterwards, the cost
stays constant, indicating that redundant chargers exist in the system. For investment
cost we observe a linear relationship with the number of chargers. Lastly, the objective
function value, which sums up the investment cost and operational cost, shows a moderate
decrease until the number of chargers reaches 4, then goes up substantially. It’s also
noteworthy that the total vehicle waiting time becomes 0 once the number of chargers
reaches 4. As a result, it can be concluded that the optimal number of chargers is 4, at
a minimal cost to operators. The allocation of the 4 chargers is illustrated in Figure 3.9.
The chargers are distributed to 2 charging stations with 2 chargers in each station, we
can see that the charging stations are located roughly on the diagonal of the map.

Table 3.7: Results of the surrogate-based approach for different number of charging sta-
tions (25 EVs)

Number
of

chargers

Total
annual

cost
(euro)

Annual
Invest-

ment cost
(euro)

Annual
Opera-
tional
cost

(euro)

Average
passenger
waiting

time
(min.)

Total
Vehicle
waiting

time
(min.)

Average
vehicle
travel
length
(km)

Comp.
Time per
iteration
(min.)

2 837482.3 781175 56307.3 9.28 9.87 153.5 2.01
4 837100.9 784375 52725.9 8.63 0 152.74 2.06
8 842342.6 790775 51567.6 8.62 0 152.74 2.12
10 845542.5 793975 51567.5 8.63 0 152.74 2.03
12 848699.4 797175 51524.4 8.41 0 152.74 3.57
16 855042.6 803575 51467.6 8.62 0 152.74 4.45
20 861440.7 809975 51465.7 8.22 0 152.36 4.56
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Figure 3.8: Evolution plots of annual operational cost, investment cost and objective value

Figure 3.9: Optimal allocation of 4 chargers



Chapter 4

Luxembourg case study

In this section, we consider a realistic case study where a new flexible shuttle service com-
pany would like to deploy a fleet of electric shuttles in Luxembourg to provide integrated
demand-responsive transportation service. DRT services without transit integration have
been operating in Luxembourg such as Kussbus (https://kussbus.lu/) or Sales-Lenz Flex-
ible bus service (https://www.sales-lentz.lu/en/individuals/shuttle-upon-request/). The
company needs to determine the fleet size of electric shuttles and locate a number of
DC fast chargers in Luxembourg. Firstly, we present the empirical data used for the
case study, then we apply the proposed model (Section 2.1.2) and the two-stage solu-
tion method by solving the fleet size problem at the first stage, DC fast charging station
location problem of the company at the second stage.

4.1 Data and experimental setting
- Demand: We assume the daily customer demand is 1000 passengers/day, repre-

senting 20 passengers/vehicle if the fleet size is 50 vehicles. We generate stochastic
demand from the 2017 LuxMobil (https://statistiques.public.lu/en/index.html) sur-
vey based on the probability of trip occurrence in the study area. The arriving time
of 1000 passengers is within the timeframe from 6.30 A.M. to 10 P.M., and is visu-
alized in a histogram in Figure 4.1. It can be observed that there is a travel peak
in the morning at around 8 a.m. and a peak in the afternoon at around 5 p.m. The
spatial distribution of the passenger demand is shown in Figure 4.2, with the pick-up
points marked as pink and drop-off points marked as blue. The passenger arrival in-
tensity differs in different regions, and the highest passenger arrival intensity can be
observed in Luxembourg city and Luxembourg–France border. Figure 4.3 displays
the histogram of passenger travel distances (straight line distance between origin
and destination). We notice that the distances fall into the interval between 2 Km
and 20 Km with the average being 12 Km, and the distribution of the distances is
roughly uniform.
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Figure 4.1: Histogram of passenger arrivals in Luxembourg from 6.30 A.M. to 10 P.M.

Figure 4.2: Pick-up (left) and drop-off (right) points of the sampled passengers

Figure 4.3: Histogram of passenger travel distances
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- Transit network: We consider the integrated DRT service with public transit
system (railroad network only) in Luxembourg. The railroad network is presented
in Figure 4.4, where the black lines represent the transit lines and the red points
represent the train stations. The data is downloaded from the Luxembourgish data
platform (https://data.public.lu/en/). In order to obtain the travel time between
any two train stations, we scraped data from the website of Luxembourg National
Railway Company (https://www.cfl.lu/). We assume there is a total of 7 depots,
marked with green triangles in Figure 4.4, representing the initial locations of the ve-
hicles. It is noteworthy that the depots are located around the municipality centers,
namely Luxembourg, Esch-sur-Alzette, Ettelbruck, Dudelange, Mersch, Remich,
and wiltz.

Figure 4.4: Luxembourg railroad network and electric vehicle depot locations

- Characteristic of EVs: We assume the 100% Volkswagen electric buses (called
Tribus) with the capacity of 8 passengers will be used for this study. Equipped with
a battery capacity of 35.8 kWh, the electric bus is claimed to have a driving range
up to 150 km under normal weather, work and traffic conditions. We assume the
price of the electric bus is 60000 euro, which is the twice the price of the Volkswagen
electric car ID.3.

- Public charging infrastructure: We assume the EVs can be recharged at the
existing public Chargy network (https://chargy.lu/en/). The existing public charg-
ers are presented in Figure 23. There are a total of 814 level-2 chargers (22 kW)
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located at 302 locations in Luxembourg. For simplicity, we assume that there is few
charging operations (neglected in this study) from other commercial or private EVs
competing the available charging facilities. We assume the operator considers the
facility location problem of DC fast chargers on the existing Chargy network (302
candidate sites).

Figure 4.5: Luxembourg public charging station locations

The other parameter settings are displayed in Table 4.1.

Table 4.1: Simulation parameters
Number of customers 1000
Capacity of vehicles 8
Walking speed (km/h) 5
EV speed (km/h) 50
EV driving range (Km) 150
EV battery capacity (kWh) 35.8
Price of EV (euro) 60000
Number of depots 7
Number of public chargers 302
Headway of trains (minutes) 20
Simulation time 6.30 A.M. to 10 P.M.

4.2 Minimum fleet size configuration
Similar to the numerical case study, we optimize the system configurations through the use
of the two-stage approach. The approach allows the operator to determine the supply-
side variables via first configuring the fleet size (to satisfy average user’s waiting time
constraint) and then configuring the charging infrastructure while the fleet size is fixed
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(to minimize the total annual cost). Hence, as a first step we optimize the fleet size, by
considering a trade-off between the investment and metrics related to passenger incon-
venience. To explore the effect of fleet size on the performance of the system, different
scenarios are simulated by varying the fleet size from 30 to 200. In each simulation, the
initial state of charge of electric vehicles are assumed to be 100%. At the beginning of each
simulation the number of electric vehicles at each depot is proportional to the passenger
demand, which is calculated using distance-based classification. To be more specific, each
passenger is classified to its nearest depot, thus the passenger demand at each depot can
be calculated. Moreover, except for the public chargers, a total of 10 DC Fast chargers
are placed at 5 randomly selected charging stations. In addition, a request will be rejected
when there is no vehicle available to serve the passenger.

Table 4.2 reports the simulation results. As a measure of customer inconvenience, the
average passenger waiting time and average passenger travel time are shown to decrease
when increasing the fleet size. Similarly, from the operator’s perspective, average vehicle
travel time and average charging operation time have shown a decrease as well. Addition-
ally, more vehicles tend to charge at DC Fast chargers with the increase of fleet size. It
can also be seen that the number of rejects drops to 0 when the fleet size is larger than
50.

Table 4.2: Simulation results for different fleet sizes

Fleet size

Average
passenger
waiting

time
(min)

Average
passenger

travel
time
(min)

Average
vehicle
travel
time
(min)

Average
charging
operation

time
(min)

% of pub-
lic/DC

fast
chargers

used

Number
of rejects

30 18.36 38.65 498.24 54.88 0.19/0.81 163
40 14.09 34.57 427.03 52.10 0.15/0.95 27
50 10.16 29.33 337.93 52.13 0.19/0.81 0
60 8.88 27.75 276.28 51.14 0.18/0.82 0
70 7.70 26.13 233.21 51.44 0.19/0.81 0
80 7.01 25.07 202.01 50.55 0.21/0.79 0
90 6.44 24.17 178.34 49.56 0.19/0.81 0
100 6.16 23.94 158.65 48.64 0.09/0.91 0
110 6.04 23.73 144.18 49.33 0.11/0.89 0
150 5.99 23.65 105.17 48.97 0.09/0.91 0
200 6.00 23.69 79.13 49.52 0.08/0.92 0

A visualization of the evolution of passenger waiting time and number of rejects can be
found in Figure 4.6. Based on the plots, a steep slope is observed when fleet size is less
than 50 while for fleet size larger than 50 the decrease rate seems to be much lower. For
the number of rejects, the plot shows a clear “elbow point” at fleet size 50 where the
improvement declines the most. Therefore, the optimal fleet size is chosen as 50.
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Figure 4.6: Average passenger waiting time and number of rejects vs. fleet size

4.3 Charging infrastructure configuration
After obtaining the optimal fleet size, the next step will be configuring the charging
infrastructure. In a preliminary analysis, we compared the performances of the integrated
DRT system before and after the extension of charging stations. It is found that by
extending the charging system with merely 10 DC Fast chargers, the average charging
operation time is seen to reduce from 60 minutes to 45 minutes, which is an indication that
the extension of charging infrastructure can significantly reduce the charging operation
time. Given that the fleet size is chosen as 50, we optimize the allocation of charging
stations in different scenarios where the number of DC Fast chargers range from 2 to 30
using the surrogate-based approach. Note that in each charging station the number of
chargers can take values from 2 to 30. Figure 4.7 shows the evolution of objective function
values (Eq. 2.2) in some scenarios, it can be concluded that convergence is achieved. As
a result, for each scenario where the number of chargers differs, the optimal allocation of
chargers as well as the performance metrics are obtained.
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(a) 6 chargers (b) 10 chargers

(a) 18 chargers (b) 30 chargers

Figure 4.7: Values of objective function vs. number of chargers

The simulation results are reported in Table 4.3. Compared to the default setting where
only public chargers are available, installing 2 DC Fast chargers result in an even higher
average passenger waiting time and travel time. This could be the consequence of vehicles
being more inclined to charge at DC Fast chargers, resulting in longer queuing delays at
DC fast chargers. However, when increasing the number of DC Fast chargers from 2 to
16, the system performance improves in every aspect. For instance, when there are 16 DC
Fast chargers, the average passenger waiting time is shown to decrease from 8.64 minutes
to 7.13 minutes compared to the default setting. Besides, the average charging operation
time (including travel time to reach a charger, waiting times at charging station and
charging time) drops from 60 minutes to 34 minutes, which is a decrease rate of nearly
50%. Nevertheless, continuing to increase the number of DC Fast chargers will not improve
the system performance, since the performance metrics seem to remain at the same level
when the number of chargers is larger than 18. It’s also noticed that the more DC Fast
chargers that are available, the more vehicles tend to charge at them.
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Table 4.3: Simulation results for different number of chargers

Number
of DC
Fast

chargers

Average
passenger
waiting

time
(min.)

Average
passenger

travel
time

(min.)

Average
vehicle
travel
time

(min.)

Average
charging
operation

time
(min.)

% of
public/
DC fast
chargers

used

Number
of rejects

Without
DC Fast
chargers

0 8.64 27.47 329.96 59.99 1/0 0

With
DC Fast
chargers

2 9.42 28.57 334.26 53.61 0.58/0.42 0
6 7.97 26.80 327.83 41.03 0.09/0.91 0
10 7.45 25.88 327.87 38.88 0.01/0.99 0
14 7.23 25.45 325.38 33.61 0.01/0.99 0
16 7.13 25.36 324.07 33.95 0/1 0
18 7.35 25.03 328.16 32.93 0/1 0
20 7.39 25.61 324.19 32.26 0/1 0
22 7.40 25.64 324.43 31.82 0/1 0
26 7.62 25.97 324.70 31.76 0/1 0
30 7.34 25.76 323.90 32.22 0/1 0

Table 4.4: Costs for different number of chargers
Number of
DC Fast
chargers

Annual
operational
cost (euro)

Annual
investment
cost (euro)

Annual
total cost

(euro)

Computation
time (sec)

Without
DC Fast
chargers

0 1105300 375000 1480300 560.57

With
DC Fast
chargers

2 997880 380000 1377880 563.22
6 853680 390000 1243680 564.59
10 800640 400000 1200640 554.53
14 745200 410000 1155200 567.28
16 736910 415000 1151910 565.28
18 717830 420000 1137830 564.34
20 716570 425000 1141570 577.82
22 707900 430000 1137900 1397.6
26 707560 440000 1147560 1322.6
30 705150 450000 1155150 1341.1



CHAPTER 4. LUXEMBOURG CASE STUDY 37

Figure 4.8: Evolution of costs vs. number of DC Fast chargers

Table 4.4 presents the operational costs and investment costs for different number of
chargers. A visualization of the costs can be found in Figure 4.8. For investment cost,
we observe a perfect linear relationship with the number of chargers. On the other hand,
for operational cost a clear downward trend can be seen when the number of chargers
increases from 2 to 18, afterwards the curve remains nearly flat. Finally, the objective
function value, which is the sum of investment cost and operational cost, demonstrates a
steep downward trajectory when the number of chargers is less than 18, then the objective
function value starts to climb slowly when the number of chargers increases. According
to the plot, the minimum value of objective function is obtained at 18 chargers. The
allocation of the 18 chargers is plotted in Figure 4.10, where the charging stations are
marked as red triangles. The 18 chargers are distributed to 9 charging stations with 2
chargers in each station. In this situation, we see from the output of the simulation that
100% of the passengers choose the rideshare-only service. The reason why the bi-modal
transit ridership is so low might be the low accessibility of train stations in Luxembourg.
Taking Figure 4.4 as an example, the railway network is not very dense, and the transit
lines are only connected in Luxembourg city. It means that passengers will have to go
through more transfers, which will inevitably increase the travel time significantly. Figure
4.9 presents the histogram and box plot of the distance between passenger’s origin to the
nearest train station. It’s clearly seen that the average distance is 2 km, with the majority
of the distances falling into the interval of 0.8 km and 2 km. In addition, the histogram
has a heavy right-skewed tail, indicating that train stations are hardly accessible for some
passengers.
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Figure 4.9: Histogram and box plot of passenger distance to the nearest train station

4.4 Comparison with the benchmark K-means clus-
tering method for locating DC fast chargers

According to the previous section, the optimal configuration obtained by the surrogate
model is placing 18 DC Fast chargers at 9 charging stations. In order to assess the
effectiveness of the surrogate-based method, we compare the method with the k-means
clustering method as a benchmark. The k-means method determines the DC fast charging
locations based on the drop-off locations of customers (Asamer et al. (2016)). Based on
this method, EVs will gain shorter travel time to reach DC fast chargers located at denser
drop-off areas. As a comparison, the 18 DC fast chargers will be allocated in 9 charging
stations, which are obtained using the k-means clustering method. More specifically, the
destinations of all passengers are clustered into 9 clusters, and the centroids of the clusters
will be the locations of the charging stations. The locations given by k-means are plotted
in Figure 4.10, marked as green squares. The performances of both methods are reported
in Table 4.5. Apparently, the surrogate-based method has outperformed the k-means
clustering method with a lower annual operation cost (717830 v.s. 753430, -4.73%). In
fact, the surrogate-based method has given better results in terms of every performance
metric. Returning to Figure 4.10, we see that the charging stations obtained by the k-
means clustering method are more spread out on the map, while the stations obtained
by the surrogate model tend to be located near the center of the map - Luxembourg
city – where the passengers gather most densely. This could be the explanation for why
surrogate model performs better than k-means.
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Figure 4.10: Location of charging stations

Table 4.5: Comparison between surrogate-based method and the k-means method
Average

passenger
waiting

time
(min)

Average
passenger

travel
time
(min)

Average
vehicle
travel
time
(min)

Average
charging
operation

time
(min)

Annual
opera-
tional
cost

(euro)

Annual
invest-

ment cost
(euro)

Annual
total cost

(euro)

Surrogate
model 7.35 25.03 328.16 32.93 717830 420000 1137830

K-means 7.56 25.73 329.06 33.98 753430 420000 1173430



Chapter 5

Conclusion

Electrification in transportation sector, in particular shared mobility service, has gained
emerging popularity due to its zero CO2 emission and lower operation cost per kilome-
ter travelled. To convert to clean mobility service, transport network companies need
to make strategical (charging infrastructure investment), tactical (fleet size) and opera-
tional (charging operation management, vehicle dispatching and routing policy, among
others) decisions to reduce the total operation costs while satisfying the level of service
requirements. These decisions are often inter-dependent and require to develop non-trivial
mathematical models and algorithms for optimizing the system performance and mini-
mizing the overall operation costs.

In this study, we proposed a mathematical model to optimize the tactic decisions in
terms of fleet size and charging infrastructure configuration for the planning of integrated
DRT service using electric vehicles. The integrated DRT using EVs considers a dynamic
ridesharing service with transit transfers with additional consideration of EV charging op-
erations. The problem is formulated as an optimization problem under user’s travel incon-
venience and EV’s charging operation constraints. We propose a simulation-optimization
framework to model the problem and solve it approximately using a two-stage method.
Under a given vehicle dispatching and routing policy, we first determine a minimum fleet
size which satisfies a predefined level of service criterion (maximum tolerable customers
waiting time). Given the minimum fleet size, at a second stage, the number and loca-
tion of new charging facilities are determined using the surrogate-based approach. The
simulation-optimization framework provides a way to model the impact of charging in-
frastructure configuration on EV’s charging delays, which influences in turn the overall
system operation cost providing the feedback to adjust charging station investment deci-
sion.

To validate the proposed approach, we first conduct a numerical study on a 20 km × 20
km test instance with stochastic customer demand. In this study, convergence is achieved
in around 40 iterations and the results are reasonable. The proposed model and solution
approach are applied to a Luxembourg flexible shuttle service case study using electric
vehicles. We consider the problem of fleet size and new DC fast charging infrastructure
planning under stochastic demand. As there is no empirical ride data available from
the operator, we generate randomly 1000 customers/day from the 2017 Luxmobil survey
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data. We successfully solve the problem by the aforementioned two-stage method using
the surrogate-based optimization approach. The result shows that given 1000 customers,
the optimal fleet size is 50 vehicles with average customer waiting time of 10 minutes.
For new DC fast charging infrastructure investment, we found installing 18 new DC fast
chargers on the existing public Chargy network (302 charging stations with 814 22kW
chargers in total) would be most beneficial for the operator with minimum annual costs.
With such charging infrastructure extension, the average charging operation time (includ-
ing travel time to reach a charger, waiting times at charging station and charging time)
of EVs decreased significantly by 45.1%. Moreover, the findings show that all passengers
tend to choose the rideshare-only option instead of a bimodal option due to sparse de-
mand and low accessibility of transit network in Luxembourg.

The proposed method could be useful for helping operators or policy makers to make
decisions in planning e-DRT service. The framework is suitable by considering the objec-
tives from different perspectives such as the passenger, the operator, the government or
a combination of these indexes. However, the thesis work clearly has some limitations.
Some assumptions are made for the simplification of the problem. For instance, we as-
sume that public chargers are always available, which neglects the charging needs of other
commercial and private EVs. In addition, given the large parameter space, we adopted a
two-stage approach where we firstly determine the minimum fleet size to meet the level of
service constraint and then solve the charging infrastructure extension problem. We did
not further re-optimize the fleet size given the obtained charging infrastructure extension
solutions.

Several extensions can be considered for future work. Firstly, we only considered using DC
fast chargers in the planning problem. Further study can be carried out to include different
types of charger. In other words, optimizing the number, type and allocation of chargers.
Similarly, the electric vehicles considered in the case study are homogeneous. One can
consider using vehicles of different types with heterogeneous capacity, driving range, prices
and battery capacity. In this case, the problem size would increase significantly and a
more efficient methodology needs to be developed and imbedded within the surrogate
optimization approach.
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Spöttle, M., Jörling, K., Schimmel, M., Staats, M., Grizzel, L., Jerram, L., Drier, W. &
Gartner, J. (2018), Research for TRAN Committee-Charging infrastructure for electric
road vehicles, European Parliament.

Stiglic, M., Agatz, N., Savelsbergh, M. & Gradisar, M. (2018), ‘Enhancing urban mobility:
Integrating ride-sharing and public transit’, Computers & Operations Research 90, 12–
21.

Wikipedia (2019), ‘Gradient method — Wikipedia, the free encyclopedia’, http://en.
wikipedia.org/w/index.php?title=Gradient%20method&oldid=835397861. [On-
line; accessed 01-December-2019].

Winter, K., Cats, O., Correia, G. H. d. A. & van Arem, B. (2016), ‘Designing an auto-
mated demand-responsive transport system: Fleet size and performance analysis for a
campus–train station service’, Transportation Research Record 2542(1), 75–83.

Zhang, H., Sheppard, C. J., Lipman, T. E. & Moura, S. J. (2019), ‘Joint fleet sizing
and charging system planning for autonomous electric vehicles’, IEEE Transactions on
Intelligent Transportation Systems .

http://en.wikipedia.org/w/index.php?title=Gradient%20method&oldid=835397861
http://en.wikipedia.org/w/index.php?title=Gradient%20method&oldid=835397861


AFDELING
Straat nr bus 0000

3000 LEUVEN, BELGIË
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