
A proof of the Collatz conjecture and connection
of intervals based on “tetrada”.*

Eduard Dyachenko
E-mail: dyachenko.eduard@gmail.com

27.08.2020

Abstract

This paper presents a proof of the Collatz conjecture, also known as the 3x+1
problem.

The proof is based on numeral systems of rational bases, its modifications and
sequences of ordered numeral intervals. The latter provide a new representation of
integers.

The proof is obtained by dividing numerals into ordered intervals; in this sense,
it is connected to the theory of prime numbers.
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1 Introduction

1.1 Motivation

This article explores the Collatz conjecture (CC) and related numerical systems, and

reveals the mechanism underlying systems of numbers, which suggests the existence of

the Collatz conjecture (transformation).

The main motivation is to understand and describe this mechanism.

The use of the concept of “mechanism” is associated with the mechanistic (as I see

it) formulation of the hypothesis itself, namely, cyclic repetition of a set of actions with

numbers until a certain result is achieved.
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1.2 Brief and accurate presentation of the questions studied

The Collatz transformation hides some very obvious yet invisible properties, necessitat-

ing a fundamental approach to the problem. The large share of ”constructivism” in this

work does not degrade the rigor of the proof.

1.3 Existing literature on the Collatz transformation.

Since 1937, researchers have attempted to solve the Collatz problem (conjec-

ture)(further ) using theories of orbits or trajectories.

Scientific and historical works on the Collatz problem are most comprehensively

reviewed in Lagarias [8] .

Terras[14] made significant contributions to the theory of orbits and their character-

istics, and

Tao recently interpreted the trajectories of orbits in a probabilistic manner[13].

Significant efforts have been made to solve by computational methods.

For very recent contributions on related topics, see [4],[2],[9],[12],[5],[11],

[7],[18],[3],[6].

The series of works by Ren [23] is particularly pertinent to the present study. From

Introduce [17]:“Section 5 studies all starting numbers whose lengths of reduced dy-

namics are no more than 7.”

Having examined the above literature, I did not find the answer to the question: in

what way are the resulting sequences of numbers related to each other when transform-

ing the Collatz from the originally given number?

1.4 Contributions of the present article

Our study reveals a hidden “mechanism” in numerical systems based on the frac-

tional bases 2a
3 and 4

3 .

Applying this mechanism, we provide a proof of the CC, which was first formulated

in 1937.

We also provide a proof, that all natural numbers get their expansion in a set of

numbers with a fractional base 2a
3 .

1.5 Methods

In this paper, we study the distribution of a number, as a potential, on selected levels

(scales) of numeral system. During the Collatz transformation, the characteristics of the

levels are set by bases 2a
3 and 4

3 .

Unlike previous works, we modify the Collatz transformation by deleting its parity

(rather than its “recursive destruction” as in conventional “recursive conservation”).
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The study builds on previous work, but displaces the research plane in the theory

of numeral systems of rational bases.

It should be noted that the method of numeral systems of rational bases appeared as

a result of the transition from “recursive destruction” to “recursive conservation” while

modifying the Collatz transformation.

1.5.1 Definitions of the employed mathematical objects

Further efforts to solve the Collatz transformation have employed numerical systems

based on the fractional bases 2a
3 and 4

3 , combined number representations of ordered in-

tervals, iterative transformations of ordered intervals, replacement of “rank” with the

“scale” concept, operations SEAM and UNSEAM (required to explain the behavior of

potentials (the magnitude of a number) when combined into one whole and discon-

nected into several the numbers) see def.(2.4), and arithmetic interpretations. Here, we

introduce concept of the ‘length of the significance part” (body) of the number for set

of numbers with rational base 4
3 .

1.5.2 Essential results for the present investigation

Recursive transformations in the study of the Collatz problem are constructed in

[10], and the orbit characteristics of the Collatz problem are explained in [14].

1.5.3 Brief presentations of the proposed methods

Ordered intervals can be perceived similarly to musical notations[16]. The same anal-

ogy applies to the concepts of “scale” and “rank”[15]. As in music, our study considers

the parallel transfer of intervals (or their combination, analogously to a piece of music),

and their length (analogously to the distance from a musical row).

1.5.4 Structure of the present study

The proof of the CC and underlying mechanism were determined by the following

procedure:

a) the recursive-conditional Collatz transformation f is converted to a system of

recursive linear transformations F.;

b) we get and research as a result from a) a numeral system with rational base 2a
3 ;

c) we obtain sufficient conditions for the CC;

Definition 1.1. Sufficient conditions for CC, we mean such a record of the number

A ∈N, which is given using two arithmetic operations indicated in the very formulation

of the hypothesis

d) Collatz transformations are investigated in a numeral system with a rational base
4
3 “close” to a numeral system with a rational base 2a

3 ;
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e) we obtain necessary conditions for the Collatz conjecture CC by the following

procedure:

Definition 1.2. Necessary conditions for CC, is the presence for ∀A ∈ N of a limited

sequence of mathematical operations such that, as a result of applying these operations,

we obtain sufficient conditions CC for this number.

— –an arbitrary natural number is written in the number system 4
3 , which acquires

the characteristic “length of the significance part” or “body” of the number.

—–during the recursive Collatz transformation, the “length of the significance part”

of the number can remain unchanged, or can decrease by at least half-digit (these rules

are dictated by the specific set of digits in the 4
3 system).

- —-The “length of the significance part” reduces when the oddness of the form

4k + 1 appears, and is kept when keeping the oddness of the form 4k + 3

- —-As the oddness of the form 4k+ 3 cannot be kept indefinitely, the “length of the

significance part” periodically decreases.

—– Therefore, it is inevitable that after an appropriate number of iterations, the

number transforms into the form 2p(q)

3q .

j) we also get the result that natural numbers are a subset of numeral system with a

rational base 2a
3

2 Research and converting of the Collatz transformation,
obtaining 2a

3 -expansion of numbers from N

MathWorld [20] describes the Collatz problem as follows:

For some positive integer a0, the Collatz problem asks whether the operations

an =

1
2an−1 for an−1 even

3an−1 + 1 for an−1 odd
(2.1)

always return to 1.

2.1 Equivalent convert of the Collatz transformation

We write the Collatz transformation as defined in Margenstern [10]:

f (x) =

3x+1
2 , if x-odd, x∈N,

x
2 , if x-even, x∈N.

(2.2)

f (x) : N→N (2.3)

As implemented in [10], we introduce the recurrent transformationg(x,k + 1) = f(g(x,k)),
g(x,0) = x.

(2.4)
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g(x,k) : N→N. (2.5)

k is the iteration step indicating the number of sequential applications of the func-

tion f before the solution reaches 1.

The iteration count n terminates when g(x,n) = 1.

Note that in a binary numeral system, we have

f(x2) =

11x2+1
10 , if x-odd, x∈N,

x2
10 , if x-even, x∈N.

(2.6)

Analyzing the first and second actions of the Collatz transformation.

The binary number system clarifies that:

- the first action (2.6) pads the end of the significant part of the number f (x2) with

zeros, and

- the second action removes the zeros at the end of the significant part f (x2) and

sets the last significant digit to odd.

The following are also clarified:

- The Collatz transformation can be modified by considering only the significant

part of the number. That is, we can ignore the second action above and consider

the first action alone.

-In this interpretation, the Collatz transformation reduces to obtaining the unit

length of the significant part of the number at the n-th step.

To convert g(x2, k) into a recursive transformation F(x2, i) , we remove

the second action x2
10 from the transformation (2.6).

We get the result:
F(x2, i) = 11 ·F(x2, i − 1) + 10a(i−1), i ∈N, a(i − 1) ∈N,
F(x2,0) = x2,

i ∈ [0,n],

(2.7)

F(x2, i) : N→N. (2.8)

a(i −1) is the number of padded zeros, which the second action (2.6) deletes in all

steps up to i − 1.

g(x2, k) is understood as a conversion a binary number.

The functions g(x2, k) and F(x2, i) differ only in their treatments of the parities:

g(x2, k) destroys the resulting zeros (parities), whereas F(x2, i) sequentially stores

and accumulates them.
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Example: x = 910 = 10012 The step-wise actions of the recursive transformations g(x,k)

and F(x2, i) are compared in the following examples:

k g(x,k) i F(x2, i) a(i)

0 9 0 1001 0
1 28=7*4 1 11100 2
2 7
3 22=11*2 2 1011000 3
4 11
5 34=17*2 3 100010000 4
6 17
7 52=13*4 4 1101000000 6
8 13
9 40=5*8 5 101000000000 9
10 5
11 16=1*16 6 10000000000000 13
12 8
13 4
14 2
15 1

(2.9)

In the above examples, the recursive transformation F(x2, i) terminated in Step 6

(i = 6), when the significant length of the number F(x2,6) became unity.

The steps of the recursive transformations k, i (g(x,k) and F(x2, i) respectively) are

mismatched because the second case F(x2, i) omits the action of dividing an even

number by 2.

Note that F(x, i) stores the following items:

- the values from the first (non-zero) significant digit to the last (non-zero) signif-

icant digit;

- the number of zeros between the last significant digit and the radix point [22],

or between the radix point and the first significant digit;

- the radix point is in the initial number, and when the transformations F are

executed, it (radix point) is transferred into the same place to each subsequent

value of the number.
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Properties of the recursive transformation F(x, i)

From recursive transformation (2.7) it follows that

∀i ∈N,

a(i) ∈N,

a(i − 1) < a(i)

(2.10)

As each recursive step i adds a number of no- significant zeros, we have

a(0) < a(1) < · · · < a(i) < · · · < a(n). (2.11)

To find the mechanism of the recursive Collatz transformation of the number x to

unit length, it is sufficient to find the sequence a(i) of x.

The recursive transformation F(x, i) is similarly written for other numeral systems.

2.1.1 Cyclic condition

The recursive transformation F is conditionally periodic if the following hold:

In the binary system

F(x2,n) = 10a(n) has unit length, (2.12)

which corresponds to the unit number of significant digits.

The length of this transformation is periodic because

F(F(x2,n),n+ 1) = F(10a(n),n+ 1) = 10a(n)+2also has unit length. (2.13)

Similarly, in the decimal system, we have

F(x10,n) = 2a(n). (2.14)

Because the number matches its divisor, we also have

F(F(x10,n),n+ 1) = F(2a(n),n+ 1) = 2a(n)+2. (2.15)

Finding the values n for which F(2a(n),n + 1) = 2a(n)+2 is equivalent to finding the

final member a(n).

2.2 Solution of the system of integer equations

The initial (2.7) (step 0), intermediate (2.7)(step i) and final conditions (2.14)(step n) are

combined into a system of recursive transformations, from which we can determine the

sequence a(i); i ∈N; i ∈ [0,n].
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Consider the following system of equations in a generic numeral system:

F(x,0) = x; x ∈N,

· · ·
F(x, i) = 3 ·F(x, i − 1) + 2a(i−1),

· · ·
F(x,n) = 2a(n).

(2.16)

As the system (2.16) has a recursive structure, we can construct its inverse transfor-

mation:



F(x,n− 1) =
F(x,n)− 2a(n−1)

3
,

· · ·

F(x, i − 1) =
F(x, i)− 2a(i−1)

3
,

· · ·

F(x,0) =
F(x,1)− 2a(0)

3
; x ∈N.

(2.17)

As F(x,n) satisfies (2.16), we can write F(x,0) as follows:

F(x,0) =

2a(n)−2a(n−1)
3 −2a(n−2)

3 −···−2a(n−i+1)

3 −2a(n−i)−···
3 − 2a(0)

3
,

where a(0) < a(1) < · · · < a(i) < · · · < a(n).

(2.18)

The steps of the recursive transformation (2.18) are written in terms of the system

(2.16).

Without loss of generality, we hereafter maintain a downward numbering of the

recursion steps F(x, i) from 0(start) to n (final).



F(x,0) = x

F(x, i) =

2a(n)−2a(n−1)
3 −2a(n−2)

3 −···−2a(i+1)

3 −2(i)

3
F(x,n) = 2a(n)

a(0) < a(1) < · · · < a(i) < · · · < a(n)

(2.19)

Theorem 2.1. Conditions (2.16) apply to the system of numbers (2.19)

Proof. The above theorem is proved by sequentially substituting the numbers from

(2.19) to (2.16) in the reverse order, and checking for identical expressions.

2.2.1 Example:

7 =

211−27
3 −24

3 −22

3 −21

3 −20

3
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a(0) < a(1) < · · · < a(i) < · · · < a(n). (2.20)

F(7,0) =
F(7,1)− 20

3
= 7,

F(7,1) =
F(7,2)− 21

3
= 22,

F(7,2) =
F(7,3)− 22

3
= 68,

F(7,3) =
F(7,4)− 24

3
= 208,

F(7,4) =
F(7,5)− 27

3
= 640,

F(7,5) =
F(7,6)− 211

3
= 2048.

The above example constructs a recursive transformation for the number 7 and re-

cursively calculates a(i).

2.2.2 Options for converting the system of equations.

We first introduce b(i) as

b(i) = a(i + 1)− a(i)
b(i) ≥ 0 because(2.11)

(2.21)

then

F(x,0) =
2b(0)

3
(
2b(1)

3
(
2b(2)

3
(· · · (2b(i

3
(· · · (2b(n−2)

3
(
2a(n) − 2b(n−1)

3
)−1) · · · )−1) · · · )−1)−1).

(2.22)

Example:

F(7,5) = 211,

F(7,4) =
1
3

27(24 − 1) = 40 ∗ 24,

F(7,3) =
1
3

26(40− 1) = 52 ∗ 22,

F(7,2) =
1
3

22(52− 1) = 34 ∗ 21,

F(7,1) =
1
3

21(34− 1) = 22 ∗ 20,

F(7,0) =
1
3

20(22− 1) = 7.

If i = 0, then

F(x,0) =
2b(0)

3
(
2b(1)

3
(
2b(2)

3
(· · · (2b(i)

3
(· · · (2b(n−1)

3
(
2a(n)−b(n−1)

3
−1

3
)−1

3
) · · · )−1

3
) · · · )−1

3
)−1

3
)−1

3
.

(2.23)
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For all other i, we have

F(x, i) =
2a(n)

3n−i
−
n−1∑
j=i

2b(j)

3j−i+1
. (2.24)

For example from [2.2.2] is converted as

7 =
211

35 −
27

35 −
24

34 −
22

33 −
21

32 −
20

31

2.3 v-expansion (representation) of numbers from N

To obtain the representation (2.24), we must verify that a number record (2.24) exists in

a number system with rational base 2a
3 .

2.3.1 Horner’s transformation and pseudo-numbers in the 2a
3 numeral system

• In the standard Horner transformation[21], a number is converted into another

numeral system as follows:

M = c (0) + p (c (1) + p (· · · (C (n− 1) + p ·C (n)) · · · )) , (2.25)

where p is the base of the system,

c(i) are the digits in the system, and c(i) < p.

Horner’s scheme reduces to obtaining successive residues:



c(0) =
{M(0)
p

}
c(1) =


[
M(1)
p

]
p


· · ·

c(i) =


[
M(i)
p

]
p


· · ·

c(n− 1) =


[
M(n−1)

p

]
p

,

(2.26)

In Horners scheme, we note that

• the coefficients c(i) in the Horner scheme (2.25) and (2.26) and the record F(x,n)

in expression (2.24) are obtained by the same deduction scheme, which is given as

c(0) =M(n)−
n−1∑
i=0

c(i)pi , (2.27)
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F(x,0) =
2a(n)

3n
−
n−1∑
i=0

2b(i)

3i+1
. (2.28)

• It remains only to assume

that in expression (2.28) there exists a rational base of the numeral system p
q .

In a numeral system with rational base q = 3, the value of p changes dynamically

depending on the iteration step i.

The digits are forming as p(i) = 2b(i).

For convenience, we call these digits ”the digits of the numeral system of b(i)”.

In this approach, the entries are given as

c(0) = 〈M(n), c(n− 1), · · · , c(i), · · · , c(0)〉p, (2.29)

F(x,0) = 〈a(n),b(n− 1), · · · ,b(i), · · · ,b(0)〉 2
3
. (2.30)

• The equivalent pairs of equations are given by 2.29–2.27 and 2.30–2.28.

For example, consider the equivalent pairs

8710 = 〈100,1,3〉10 = 100− 1 ∗ 10− 3 ∗ 1

710 = 〈11,7,4,2,1,0〉 2a
3

=
211

35 −
27

35 −
24

34 −
22

33 −
21

32 −
20

31 ,
(2.31)

where 2a
3 is a designation of actions described by 2.28.

In addition, we denote by v = 2a
3 the membership of numbers in a pseudo-digit

system consisting of v -extensions of integers.

Due to the dynamic nature of the digits, the indicated number system v -

extensions cannot belong to classical number systems of a rational base, where

the value of p is constant.

Definition 2.2. Vv is a set of v-expansions of numbers from N.

2.3.2 Comments to v-expansion number

In the presentation of section (2.3.1), it should be noted that

a) The value p > 1 is customarily taken as the basis of the numeral system;

b) The digits of the numeral system must be smaller than the base p of the system;

c) in v-expansion number, the description of the number system p
q given in Section

1 [1] is inapplicable because the alphabet of digits v is given in the form of a power

function 2b(i), which violates p > q ≥ 1. (1 < 3 and 3 > 1).
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d) To describe the number system 4
3 , we can apply the number system p

q given in

[1] because the alphabet of digits can be specified in the form of [1] and the condition

p > q ≥ 1 is satisfied (4 > 3 > 1). Another variant of a rational base of the numeral system
4
3 will be described below.

2.3.3 Elementary numbers in v-expansion numbers from N and operations with
them

After confirming that the number F(x,n) (2.24) exists in the number system Vv, it is

necessary to study the elementary operations inherent in the number system.

Operation LOCK

Definition 2.3. Let us calculate the q-th element of a number in (2.28),(2.30). We

call this operation the [LOCK] operation.

2p

3q
=

2p+1

3q+1 +
2p

3q+1 ,

−2p

3q
= −2p+2

3q
+

2p

3q−1 .

(2.32)

Operations SEAM and UNSEAM

Definition 2.4. Operations SEAM and UNSEAM on numbers from v-expansion

are respectively given by:

〈A〉v = 〈a(n), a(n− 1), · · ·a(i), · · ·a(1)〉v ,
〈B〉v = 〈b(m),b(m− 1), · · ·b(j), · · ·b(1)〉v .

(2.33)

with

a(1) = −2p+2

3q
,

b(m) =
2p

3q−1 ,

a(1) + b(m) = − 2p

3q−1 .

(2.34)

Then

〈A〉v [SEAM] 〈B〉v is 〈C〉v .

〈C〉v = 〈A〉v∪〈B〉v = 〈a(n), a(n−1), · · · , a(i), · · · , a(1)+b(m),b(m−1), · · · ,b(j), · · · ,b(1)〉v
(2.35)

〈C〉v [UNSEAM] to〈A〉vand〈B〉v constructs A and B in returning order from C.

Note: if operation [SEAM] gives an unambiguous solution, then operation [UN-

SEAM] gives ambiguous solutions.
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An example of the [UNSEAM] operation is 1310 = 〈7,3,0〉v = 〈7,5〉v31 + 〈3,0〉v30

Elementary number in Vv See 2.2

Definition 2.5. Numbers of the form:

〈E(i)〉v = 〈α(i),β(i)〉v =
2a(i)

3
− 2b(i)

3
(2.36)

are considered as “elementary”

because α(i) = 2a(i) and β(i) = 2b(i) and therefore the “elementary” numbers can

operated on by [SEAM] .

2.4 The total v-expansion A10 ∈N, as a sum of elementary numbers

〈A〉v =
n−1∑
i=0

〈α(i),β(i)〉v
3i

=
n−1∑
i=0

〈E(i)〉v
3i

. (2.37)

For example, 510 = 〈4,0〉v ,

1310 = 〈7,3,0〉v = 〈7,5〉v31 + 〈3,0〉v30 ,

710 = 〈11,7,4,2,1,0〉v = 〈11,9〉v
34 + 〈7,6〉v33 + 〈4,4〉v32 + 〈2,3〉v31 + 〈1,0〉v30 .

Note that, in the general case, the elementary numbers can be negative.

2.4.1 Obtaining a sequence of elementary numbers from the value of A10

In this subsection, we represent A10 ∈N in the form of v.

This problem is solved by the following algorithm:

1. Define b(0):

A ≡ odd (mod 2b(0)).

If A is odd then b(0) = 0;

if A is even then b(0) ≥ 1.

Assuming parity, the definition of b(0) continues until the factor 2 maximally oc-

curs in the number A.

2. Define a(1) such that

(A ∗ 31 + 2b(0)) ≡ odd (mod 2a(0)).

3. Define the first elementary number as

〈α(0),β(0〉v = 2a(0)

31 − 2b(0)

31 .

4. Set b(i + 1) = a(i) + 2
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5. and let a(i + 1). Then[(
A−∑i−1

j=0

( 〈α(j),β(j〉v
3j

))
3i+1 + 2b(i+1)

]
≡ odd (mod 2a(i+1)).

Then a(i + 1) becomes the maximum degree of the factor 2.

The following example decomposes 710 into its

elementary numbers 710 =
⋃n−1
i=0 〈α(i),β(i)〉v .

• If 7 ≡ odd (2b(0)), then b(0) = 0

(7∗31 +2b(0)) ≡ odd (2a(0)) , 22 and the numbers below indicate the intermediate

results of the calculations

a(0) = 1, and

〈α(0),β(0〉v = 〈1,0〉v .

• If b(1) = a(0) + 2 then b(1) = 3, and[(
7−∑1−1

j=0

( 〈α(j),β(j〉v
3j

))
31+1 + 2b(1)

]
≡ odd (2a(1)) 68 ,

then a(1) = 2, and

〈α(1),β(1)〉v = 〈2,3〉v .

• If b(2) = a(1) + 2 then b(2) = 4, and[(
7−∑2−1

j=0

( 〈α(j),β(j〉v
3j

))
32+1 + 2b(2)

]
≡ odd (2a(2)) 208 ,

then a(2) = 4, and

〈α(2),β(2)〉v = 〈4,4〉v .

• If b(3) = a(2) + 2 then b(3) = 6, and[(
7−∑3−1

j=0

( 〈α(j),β(j〉v
3j

))
33+1 + 2b(3)

]
≡ odd (2a(3)) 640,

then a(3) = 7, and

〈α(3),β(3)〉v = 〈7,6〉v .

• If b(4) = a(3) + 2 then b(4) = 9 and[(
7−∑4−1

j=0

( 〈α(j),β(j〉v
3j

))
34+1 + 2b(4)

]
≡ odd (2a(4)) 2048

then a(4) = 11, and

〈α(4),β(4)〉v = 〈11,9〉v .

The operation [SEAM] in v gives

710 = 〈11,9〉v ∪ 〈7,6〉v ∪ 〈4,4〉v ∪ 〈2,3〉v ∪ 〈1,0〉v = 〈11,7,4,2,1,0〉v .
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Geometric representation of numbers in [2/3] on scales

S
ca

le
 1

/3
i

0

1

2

3

4

5

6

Value is proportional to the natural number

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Scales
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2.4.2 Geometric representation of v-expansion 〈A〉v numbers on scales

This subsection gives the geometric representation of splitting the number 〈A〉v into its

elementary numbers. Figure [1] shows the representation on a linear scale.

Definition 2.6. In numeral systems of rational bases p
q the resulting scales are straight

lines of the form y = 1
qi

.

Definition 2.7. In numeral systems of rational bases p
q the interval on the scale i are

spacing of the form [α(i)
qi

; β(i)
qi

] and α(i) < β(i).

Definition 2.8. In numeral systems with base 2a
3 the interval [ 2α(i)

3i
; 2β(i)

3i
] on the scale i

are acquires a direction or sign as a result of connecting the intervals with each other

using the LOCK.

If you connect the interval to the smaller end, you get a plus, and if you get a big

one, get a minus.

Remark: to SCALEs. Here we must distinguish between the concept of “scale” and

the generally accepted concept of “rank”.

This distinction is necessary because in the number system v-expansion, the ab-

solute value of an elementary number can be arbitrarily large, since there are no

restrictions on the value of β(i) on any scale i.

In the ordinary number system p
q considered in [1], the alphabet A is limited by the

number of digits p.

Figure [1] plots the values of 1
3i

and i ∈N versus the values of k ∈N .

On these scales, we will represent the elementary number components 〈A〉v .

In Figure [1], the composition of the number

710 = 〈11,9〉v ∪ 〈7,6〉v ∪ 〈4,4〉v ∪ 〈2,3〉v ∪ 〈1,0〉v = 〈11,7,4,2,1,0〉v
is represented on the linear scale as follows:

a) The green arrows and their directions reflect the elementary numbers and their

signs, respectively.

scale 0 〈1,0〉v
scale 1 〈2,3〉v
scale 2 〈4,4〉v
scale 3 〈7,6〉v
scale 4 〈11,9〉v
b) The red arrows indicate the transitions between coordinates, and their

lengths indicate the value of the [LOCK] operation

while stitching a number. This number is always positive.

The transition between the scales is governed by the [LOCK] rule

b(i + 1) = a(i) + 2 (figure 1).
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3 Proof of sufficient conditions for the Collatz conjec-
ture.

Theorem 3.1. Proof of sufficient conditions for obtaining a unit length number using

Collatz transformation.

If the number A10 ∈ N have v-expansions 〈A〉v , then in a limited number of iteration

steps n of F it will reduce to a number with unit length of the form 2a(n)

3n . 〈A〉v ∈Vq.

Proof. Let us suppose that the representation of a number 〈A〉v is known.

That is, the number 〈A〉v can be represented in the form (2.37).

Then the action F decreases

the number of scales of 〈A〉v by one or by one of its elementary numbers E.

The first action corresponds to scale 0, and subsequent actions continue

until all scales or all elementary numbers have been deleted.

The final number is 2a(n)

3n , which has unit length.

In Figure [1] above, this process corresponds to the green arrows acting across hori-

zontal intervals, which decrease quantity of the elementary numbers.

The vertical transitions (red) are the direct actions from scales i to i + 1. They are

associated with the formation of the number 〈A〉v as described in Section 2.4.1.

3.1 Necessary conditions

To complete the proof, we consider the necessary conditions for the Collatz transforma-

tion, as the existence for ∀A ∈ N of its v-expansions in the set Vv or (in the geometric

sense) the limited number of scales for it.

4 Research a recursive transformation F in Wq(the set of
4
3-expansion of numbers)

As the base of the system 2a
3 depends at the iteration step (is dynamic) it follows, what

to get a v-expansion of number in the system 〈V〉v by Horner’s method is not possible.

Namely, the iterative process becomes an infinite sequence.

The search of the necessary conditions for CC leads to numeral system with rational

base of 4
3 , which ”close” to numeral system with base of 2a

3 .

4.1 Numeral system with rational base 4
3

The base q of the 4
3 numeral system is

q =
4
3
> 1 (4.1)
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Unlike the authors of [1], we compose an alphabet of digits γ(i) as follows:

γ(i) ∈
{
0,

1
3
,
2
3
,
3
3

}
. (4.2)

By Horner’s scheme [21] and Theorem 1 of [1], a number A ∈ N can be represented in

the base-q system as

Aq =
n∑
i=0

γ(i)
(4

3

)i
=

n∑
i=0

γ(i) · qi . (4.3)

The natural numbers can then be converted to numbers in the q system by the Horner

algorithm.

For example, in Figure [2],

the values against the yellow background are the result of converting the number

7 to the q system.

7

1/3

20/3 5

12/3

3/3

4/3

4/3

4/3

4/3 3/3

4/3

2/3

2

3

8/3

1/3

Figure 2: Conversation of the number 7 to the rational base 4
3

710 =
3
3

(4
3

)4
+

2
3

(4
3

)3
+

1
3

(4
3

)2
+

3
3

(4
3

)1
+

1
3

(4
3

)0
. (4.4)

An equivalent presentation is

〈A〉q =
n∑
i=0

γ(i)qi =
n∑
i=0

(
γ(i)

3
4

)
qi+1. (4.5)

Shifting by one rank converts the digits to the following form:(
γ(i)

3
4

)
∈
{
0,

1
3

3
4

=
1
4
,
2
3

3
4

=
2
4
,
3
3

3
4

=
3
4

}
. (4.6)
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Definition 4.1. Parallel digit transfer

If

〈A(i)〉q =
p∑
i=s

γ(i) · qi , (4.7)

then

〈A(i)〉q =
(4

3

)
·
p∑
i=s

γ(i) ·
(3

4
· qi

)
(4.8)

or

〈A(i)〉q =
(4

3

)
·
p−1∑
i=s−1

γ(i + 1) · qi . (4.9)

Half-digits

Definition 4.2. Half-digits γ(i2),γ(i1) are defined as

γ(i) = αγ(i2) + βγ(i1),

where α = {0,1},
β = {0,1},
γ(i2) =

2
3
,

and

γ(i1) =
1
3
.

(4.10)

Alphabet of half-digits γ(ij) as follows:

γ(ij) ∈
{1

3
,
2
3

}
. (4.11)

The fact that the digits of the q-th number system consist of half-digits is an im-

portant point, because the Collatz transformation, as will be discussed later, dif-

ferently changes the last half-digit and other half-digits located to the right of it.

And also half-digits establish a correspondence between alphabets of digits of

number systems 〈V〉v and 〈W〉q

Definition 4.3. Let Wq be a set of q-expansions of numbers

Definition 4.4. If i ≥ 0 then 〈A〉q is integer in Wq, then 〈A〉q =
∑n
i=0γ(i)qi .

Co-factors (divisors)

Definition 4.5. If 〈d〉q is a divisor of 〈A〉q, then N summations of 〈d〉q will equal

〈A〉q.
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〈d〉q + 〈d〉q + 〈d〉q + . . .+ 〈d〉q︸                              ︷︷                              ︸
〈N 〉q

= 〈A〉q

〈N 〉q ∈N

(4.12)

The division of the q-expansions of the number 〈A〉q is its decomposition into

equal counting parts.

Properties 〈d〉q (as divisor)
〈d〉q > 0

〈d〉q ≤ 〈A〉q
(4.13)

follows by Def. (4.5) and N > 1.

If N is odd and according by Def. (4.5) we have that the last half-digit of the

divisor 〈d〉q repeats the last half-digit of the number 〈A〉q. The rule is as follows:

Aq dq(1)
2
3

2
3

1
3

1
3

if dq(s) =
2
3

, then taking it N = 2n+ 1-times get out Aq(s) =
2
3

, since s is last half-digit

if dq(s) =
1
3

, then taking it N = 2n+ 1-times get out Aq(s) =
1
3

, since s is last half-digit

(4.14)

4.1.1 Fractional positions in Wq

• We can appropriately assume that, like the base-2 or base-10 systems, the Wq

system admits commas and fractional positions:

Definition 4.6. If i < 0 that 〈A〉q is fraction in Wq

〈A〉q =
∑n
i=−mγ(i)qi

i ∈ Z

n,m ∈N

.

Let us consider the above definition further:

• A shift by one position gives(
0 ,

1
3

)
q

=
1
3

(4
3

)−1
=

1
3

(3
4

)1
=

(1
4

)
10
,(

0 ,
2
3

)
q

=
2
3

(4
3

)−1
=

2
3

(3
4

)1
=

(2
4

)
10
,(

0 ,
3
3

)
q

=
3
3

(4
3

)−1
=

3
3

(3
4

)1
=

(3
4

)
10
.

(4.15)
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• A shift by 2 positions is described as(
0 , 0

1
3

)
q

=
1
3

(4
3

)−2
=

1
4

(4
3

)−1
=

3
16

=
1
8

+
1

16
,(

0 , 0
2
3

)
q

=
2
3

(4
3

)−2
=

2
4

(4
3

)−1
=

3
8

=
1
4

+
1
8
,(

0 , 0
3
3

)
q

=
3
3

(4
3

)−2
=

3
4

(4
3

)−1
=

9
16

=
1
2

+
1

16
.

(4.16)

• In the number representation of the Wq system, the whole (integer) part is assem-

bled from thirds and the fractional part is assembled from quarters.

Meanwhile, factors (dividers) of the integer and fractional part are proportional

to thirds and quarters, respectively.

For instance, consider the number δ(−r)q = 2−r in Wq:

q−1 =
(

4
3

)−1
= 3

4 = 1− 1
4 ,

δ(−1)q =
1
2

=
2
3

(4
3

)−1
,

δ(−2)q =
1
4

=
3
3
−
(4

3

)−1
=

(3
3
− (q)−1

)
q
,

δ(−3)q =
1
8

=
1
2

(
3
3
−
(4

3

)−1)
=

(
0 ,

2
3

)
q

(3
3
− (q)−1

)
q
,

· · ·

δ(−r)q = 2−r = 2−r+2
(

3
3
−
(4

3

)−1)
= (δ(−r + 2))q

(3
3
− (q)−1

)
q
.

(4.17)

• Digits in the fractional part of a number.

In some situations, there are insufficient digits to demonstrate the result using

earlier introduced digits (alphabet).

In such cases, we can introduce virtual digits.

Virtual digits of known value can be used in Eq. (4.17), but cannot be present-

ing(writing) as the components of earlier introduced digits (alphabet).

• The action of adding fractions by (4.17) is illustrated in Figure [3].

4.1.2 Special contradictions in Wq

• In the decimal system, a small number is short in length; for example

107 < 1014

• In the Wq system, a smaller number may be longer than the larger designated

number.
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The length of a number is determined by the number of positions from the radix

point; for example,

〈1
3

0
1
3
,0〉q < 〈33 ,0〉q = 110.

• Below is an example of a disorder in magnitude (numerical mess):

(1
3

)
q
·
(4

3

)i+1

q
<
(4

3

)i
q
.

• The disorder table is obtained by computing the ratio of

γ(i)q < γ(i − 1). (4.18)

In three cases, we obtain
1
3
q <

2
3
,

1
3
q <

3
3
,

2
3
q <

3
3
,

(4.19)

γ(i)q2 < γ(i − 2). (4.20)

In two cases:
1
3
q2 <

2
3
,

1
3
q2 <

3
3
,

(4.21)

γ(i)q3 < γ(i − 3), (4.22)

and in one case,
1
3
q3 <

3
3
. (4.23)

• The ratio

γ(i)q4 < γ(i − 4) (4.24)

has no value, because
1
3
q4 >

3
3
. (4.25)

4.2 Positional representation of a number in Wq and potential

• To properly compare numbers in the disordered Wq system, we must introduce

the concept of potential:
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Example:

〈A〉q = 〈3
3

3
3
. . .

3
3

3
3
〉q︸          ︷︷          ︸

n

,

and

〈B〉q = 〈1
3

0
3
. . .

0
3

0
3
〉q︸          ︷︷          ︸

n+1

,

〈A〉q
〈B〉q

= 9− 9
(4

3

)−(n+1)
∼ 9.

• A number is then understood as a magnitude distribution of the total potential

among the scales (i) in Wq.

• For the number system of a rational base q, the concept of a “scale” coincides

with the concept of “rank”; differences will arise in further research when the el-

ementary numbers (2.36) appears on “scales” as part of the result of the recursive

Collatz transformation F.

In the further study of the system Wq, we use the concept of a “scale”.

•

Definition 4.7. We define the potential 〈A〉q as

P (〈A〉q) = logq(〈A〉q). (4.26)

4.3 Research of a recursive transformation F in Wq

Lemma 4.8. The recursive transform of F has the following property:

F
(
〈2z ·A(i)〉q

)
= 2z ·F(〈A(i)〉q).

Proof. As the factor 2z is part of the divisor of the number 〈A(i)〉q, then by Eqs. (4.12)

and (4.28) we have

F
(
〈2z ·A(i)〉q

)
= 2z ·F(〈A(i)〉q). (4.27)

4.3.1 Particular qualities F in Wq

In accordance with (4.3) and (4.12), each iteration of F(〈A(i)〉q) begins with the decom-

position of the number 〈A(i)〉q into divisors of 2 and quantity of this divisors.

We write this expansion on step i in the form 〈A(i)〉q = 〈N (〈A(i)〉q)〉q ∗ 〈d(〈A(i)〉q)〉q
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The equivalent record of converting F over steps i is as follows,

where the expression 〈N (〈A(i)〉q)〉q and 〈d(〈A(i)〉q)〉q account for the value of the

scale i from the previous transformation

〈A(i)〉q = 〈N (〈A(i)〉q)〉q ∗ 〈d(〈A(i)〉q)〉q,
〈N (〈A(i)〉q)〉q ∈Wq.

In the number 〈N (〈A(i)〉q)〉q,
at least one of the numerator or denominator must be odd.

〈d(〈A(i)〉q)〉q = 2b(i);see Def .(4.5).

(4.28)

In iteration i,

the oddness 〈N (〈A(i)〉q)〉q (before F) is converted over to evenness 〈n(〈A(i)〉q)〉q
(after F) on scale i:

〈A(i + 1)〉q = F(〈A(i)〉q) = 3〈A(i)〉q + 〈d(〈A(i)〉q)〉q =

(3〈N (〈A(i)〉q)〉q + 1) · 〈d(〈A(i)〉q)〉q =(3
4
〈N (〈A(i)〉q)〉q +

1
4

)
(4〈d(〈A(i)〉q)〉q) =(3

4
〈N (〈A(i)〉q)〉q +

1
4

)
2b(i)+2 =

n(〈A(i)〉q) ∗ 〈D(〈A(i)〉q)〉q.

(4.29)

N (〈A(i)〉q)→ 3
4
N (〈A(i)〉q) +

1
4

= n(〈A(i)〉q). (4.30)

In this transformation, in the new value of the number of divisors (after F) of

〈(n(〈A(i)〉q)〉q, divisors of two appear. These divisors are separated from the new

value of the number of divisors at the beginning of the next iteration.

〈d(〈A(i)〉q)〉q→ 2b(i)+2 = 〈D(〈A(i)〉q)〉q, (4.31)

following step (i + 1).

In the new total number of divisors 〈(n(〈A(i)〉q)〉q, the divisors of two are separated

and the number of divisors reduces to 〈N (〈A(i + 1)〉q)〉q ∈Wq (4.29). Meanwhile,

the selected divisors of two are transferred to the number divider 〈d(〈A(i+1)〉q)〉q.
Equivalent record of converting F over steps (i + 1)

〈A(i + 1)〉q = n(〈A(i)〉q) ∗ 〈D(〈A(i)〉q)〉q =

N (〈A(i + 1)〉q) ∗ 〈d(〈A(i + 1)〉q)〉q
N (〈A(i + 1)〉q) ∈Wq

〈d(〈A(i + 1)〉q)〉q = 2b(i+1).

(4.32)

The example of process in working as shown in Figure [4].
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10 4/3

2 * 3 6 3/3 2/3 1/3 0 2/3

1 * 3 3 3/3 2/3 1/3

1/2 * 3 3/2 3/3 , 2/3

1/4 * 3 3/4 0 , 3/3

1/8 * 3 3/8 0 , 0 2/3

1/16 * 3 3/16 0 , 0 1/3

Figure 3: Digits in the fractional part of a number

A_(4/3) A D F(A)

Scale 0 3/3 2/3 1/3 3/3 1/3 7 1 4/3 * 21/4

Scale 1 3/3 2/3 1/3 3/3 , 1/3 4/3 21/4 1/4 22/3

Scale 2 3/3 2/3 1/3 3/3 , 2/3 4/3 11/2 1/8 34/8

Scale 3 3/3 2/3 1/3 0 , 1/3 4/3 17/4 1/16 52/16

Scale 4 3/3 2/3 1/3 , 1/3 4/3 13/4 1/16 40/16

Scale 5 3/3 2/3 , 2/3 4/3 5/2 1/8 16/8

Scale 6 3/3 2/3 2

Figure 4: Equivalent record of recursively converting 710 over steps (i)
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4.3.2 Elementary numbers between iterations

Scale (step) i

We denote by 〈d(i)〉q the divisor of the number 〈A(i)〉q:

Definition 4.9. 〈d(i)〉q = 〈d(〈A(i)〉q)〉q.

Clearly, during iteration i on scale i, there remains a difference. This difference is an

elementary number 〈E(i)〉q.

Theorem 4.10. Representing the number A10 ∈ N by 〈A〉q, then at each iteration step i

in the recursive transformation F, (〈A〉q) will be reduced to an elementary number 〈E(i)〉q.
〈A〉q ∈Wq

Proof. Notice that

〈A(i)〉q − 〈d(i − 1)〉q =

= 〈A(i)〉q − 〈d(i)〉q + [〈d(i)〉q − 〈d(i − 1)〉q] + q · 〈d(i)〉q − q · 〈d(i)〉q =

=
[
〈A(i)〉q +

1
3
· 〈d(i)〉q

]
− q · 〈d(i)〉q + [〈d(i)〉q − 〈d(i − 1)〉q] =

= q ·
[
〈A(i + 1)〉q − 〈d(i)〉q

]
+ 〈E(i)〉q. (4.33)

〈d(i)〉q − 〈d(i − 1)〉q = 〈E(i)〉q→ Elementary number between steps of iterations

(4.34)

Next, the value (4.33) is distributed across the scales.

The remainder (4.34) stay on a present scale (i) and

the body of the number is transferred to the next scale, accompanied by a decrease

(division) of its value in the base q-system.

Transfer to scale (i + 1)

Next, we implement a parallel transfer of the numbers from scale i to scale i + 1:

[
〈A(i)〉q +

1
3
· 〈d(i)〉q

]
− q · 〈d(i)〉q =

= q ·F(〈A(i)〉q)− q · 〈d(i)〉q = q ·
[
〈A(i + 1)〉q)− 〈d(i)〉q

]
. (4.35)

The transition to scale (step) (i + 1) is given by

〈A(i + 1)〉q − 〈d(i)〉q→ Start next iteration. (4.36)

Clearly, during iteration i on scale i, there remains a difference. This difference is an

elementary number 〈E(i)〉q.
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4.3.3 Research of divisor 〈d(i)〉q
On the one hand, we have

〈A(i)〉q =
p∑
i=s

γ(i) · qi ; (4.37)

and on the other hand,

〈A(i)〉q =N (〈A(i)〉q)d(〈A(i)〉q)
d(〈A(i)〉q) = 2b(i). (4.38)

This result is possible only when the divisor of the last digit γ(s) · qs

also divides a divisor d(〈A(i)〉q).
The divisor of γ(s) · qs is given by

d(γ(s) · qs) =


1, if γ(s) = {13 ; 3

3 } or γ(s1) = 1
2, if γ(s) = 2

3 or γ(s1) = 0,

 · 4s (4.39)

and therefore

〈d(〈A(i)〉q)〉q ≥ 〈d(γ(s) · qs)〉q. (4.40)

The ratio of potential dividers is given by

log4〈d(〈A(i)〉q)〉q ≥ log4〈d(γ(s) · qs)〉q. (4.41)

Note, that the bottom frame (see subsec.[5.1]) of the potential of the divider is

considered as the potential of its last half-digit γ(s2),γ(s1).

4.4 Conversion of potential of the number 〈A〉q during iterations F

Theorem 4.11. The transformation F reduces the potential of the number 〈A〉q ∈ 〈W〉q at

each iteration.

Proof. Before the next iteration of F, the potential is given by

P (〈A(i)〉q) = logq(〈A(i)〉q). (4.42)

After the iteration, it becomes

P (F(〈A(i)〉q)) = logq(F(〈A(i)〉q)). (4.43)
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The potentials before and after the transformation are separated by the following in-

terval:

∆P

(
F(〈A(i)〉q)
〈A(i)〉q

)
= P (F(〈A(i)〉q))− P (〈A(i)〉q). (4.44)

Specifically, we have

∆P

(
F(〈A(i)〉q)
〈A(i)〉q

)
=

logq(F(〈A(i)〉q))− logq(〈A(i)〉q) =

logq

(
F(〈A(i)〉q)
〈A(i)〉q

)
=

logq

(
3
4

+
1
4
· d(〈A(i)〉q)
〈A(i)〉q

)
=

= logq

(
3
4

+
1
4
· 1
N (〈A(i)〉q)

)
. (4.45)

As N (〈A(i)〉q) ≥ 3, it follows that for any N (〈A(i)〉q), ∆P < 0.

According to the above proof, the potential value decreases in each iteration, and even-

tually approaches its limit −1.

5 Length of the number

5.1 Potentials and the length of 〈A(i)〉q in 〈W〉q
We will enclose the “body” of the number in a frame (roof frame and bottom frame)

and consider the behavior of the body of the number and its frame when converting F,

the transformation of the potential of the number should be considered simultaneously

with the change in the potential of the divisor.

Definition 5.1. Define by

l(〈A(i)〉q) = P (〈A(i)〉q)− P (d(γ(s)4s))

the length is quantity (interval) of scales, on which distribute potential of a number

〈A(i)〉q in the form of significant digits.

The potential (roof frame) 〈A(i)〉q is determined under the conditions of subsect.[4.1.2]
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and [4.2]:
〈A(i)〉q > γ(p) · qp,

logq(〈A(i)〉q) > logq(γ(p) · qp) = logq(γ(p)) + p,

γ(p) < q

logqγ(p) < 0

logq(〈A(i)〉q) ≥ p − 3.

(5.1)

The value of the potential P (〈A(i)〉q) (4.11) is then determined as

P (〈A(i)〉q) = logq(〈A(i)〉q). (5.2)

Under the conditions of Section 4.2, the potential P (d(γ(s)4s)) (bottom frame) of the

last significant digit is determined as log4d(〈γ(s) · 4s〉q)

d(〈A(i)〉q) > d(γ(s)4s) = d(γ(s))4s,

log4(d(〈A(i)〉q)) > log4(d(γ(s)4s)) = log4d(γ(s)) + s,

γ(s) < q,

log4d(γ(s))) = {0,−1
2
}(4.13).

(5.3)

P (d(γ(s)4s)) is determined as

P (d(γ(s)4s)) = log4(d(γ(s)4s)). (5.4)

The length of the number is write as

l(〈A(i)〉q) = logq(〈A(i)〉q)− log4(d(γ(s)4s)). (5.5)

5.2 Length of the number in 〈W〉q during F

1. In the implementation of F, the quantity of divisor of number becomes even.

2. The divisor of number (before F) contains the last half-digit of number.

3. Multiplication of the last half-digit an even number of times at least doubles it.

4. It says about, that the action of F can show its result only inside the digits of

number, or at the level of a half-digits.

5. Therefore, that made compare consecutive iterations along each other in length it

is need to take into account these results and the length of number calculate as quantity

of significant half-digits using the enumeration, or by introducing the coefficient 2 into

the formula of length.

6. To preserve their(half-digits) true quantity, which will be forming (after F) divider

d(〈A(i + 1)〉q), we introduce a coefficient of 2 into the length formula.

Definition 5.2. The “big length” L is quantity (half-interval) of half-scales, on which

distribute potential of number 〈A(i)〉q in the form of

“significant half-digits” (4.10) and had equation:

L(〈A(i)〉q) = 2 · l(〈A(i)〉q) = 2 · [logq(〈A(i)〉q)− log4(d(γ(s)4s))].
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Similarly to (4.44), we consider the length change of a number in the

transformation F.

Without loss of substance, we can omit the iteration number (i) and the number system

〈W〉q when converting the length of a number between iterations.

Before an iteration of F, the length is given by

L(A) = 2 · logq(A)− 2 · log4(d(γ(s)) · 4s). (5.6)

After the iteration, it becomes

L(F(A)) = 2 · logq(F(A))− 2 · log4(d(F(γ(s) · 4s))). (5.7)

5.2.1 The interval between the lengths ∆L
(
F(A)
A

)
before and after a transfor-

mation is given by

Definition 5.3. ∆L
(
F(A)
A

)
= L(F(A))−L(A).

Specifically,

∆L

(
F(A)
A

)
= L(F(A))−L(A) =

[2 · logq(F(A))− 2 · log4(d(F(γ(s) · 4s)))]−
[2 · logq(A)− 2 · log4(d(γ(s)) · 4s)] =

2 · [logq(F(A))− logq(A)]−
2 · [log4(d(F(γ(s) · 4s)))− log4(d(γ(s)) · 4s)] =

2 · logq

(
F(A)
A

)
− 2 · log4

(
d(F(γ(s) · 4s))
d(γ(s)) · 4s)

)
. (5.8)

The roof frame of the number then shifts as follows:

∆L

(
P (F(A))
P (A)

)
= 2 · logq

(
F(A)
A

)
. (5.9)

Accordingly, the bottom frame of the number shifts as

∆L

(
P (d(F(γ(s) · 4s)))
P (d(γ(s)) · 4s))

)
= 2 · log4

(
d(F(γ(s) · 4s))
d(γ(s)) · 4s)

)
. (5.10)

The length change of the ”body” of the number between iterations is measured

as the difference lengths between the potentials of number and potential of last

half-digit before and after transformation F.
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5.2.2 Researching ∆L
(
P (d(F(A)))
P (d(A))

)
Theorem 5.4. The recursively transformation F increases the length of the number

by one half-digit in the bottom frame of the number, if the number consists of 4k + 3

divisors.

Proof.

∆L

(
P (d(F(γ(s) · 4s)))
P (d(γ(s)) · 4s))

)
=

2 · log4

(
d(F(γ(s) · 4s))
d(γ(s)) · 4s)

)
=

log4

(
d(F(γ(s)) · 4s))
d(γ(s)) · 4s))

)2

. (5.11)

- Properties ∆L
(
P (d(F(γ(s)·4s)))
P (d(γ(s))·4s))

)
When N (A(i)) is 4k(i) + 3 and k(i) is even, the transformation F obtains n(A(i)) =

12k(i) + 10 = 2(6k(i) + 5), and when N (A(i + 1)) = 4k(i + 1) + 1, it gives n(A(i + 1)) =

12k(i + 1) + 4 = 4(3k(i + 1) + 1).

(
d(F(γ(s) · 4s))
d(γ(s)) · 4s)

)2

=



1
4 ,N (A) = 4k + 3, k ∈N
1,N (A) = 4k + 1
4,N (A) = 8k−1

3
16,N (A)
64,N (A)
· · · ,n(A).

(5.12)

log4

(
d(F(γ(s) · 4s))
d(γ(s)) · 4s)

)2

=



−1,N (A) = 4k + 3, k ∈N
0,N (A) = 4k + 1
1,N (A) = 8k−1

3
2,N (A)
4,N (A)
· · · ,n(A).

(5.13)

∆L

(
P (d(F(γ(s) · 4s)))
P (d(γ(s)) · 4s))

)
=



−1,N (A) = 4k + 3, k ∈N
0,N (A) = 4k + 1
1,N (A) = 8k−1

3
2,N (A)
4,N (A)
· · · ,N (A).

(5.14)

A value of −1 indicates an increase in the bottom frame part of the number by one

half-digit
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5.2.3 Researching ∆L
(
P (F(A))
P (A)

)
Theorem 5.5. The recursive transformation F decreases the length of the significant

part of the number in the start part of the number by at least one significant half-digit.

That is

P (F(A)) < P (A)− 1.

Proof. According theorem (4.11)

∆L

(
P (F(A))
P (A)

)
= 2 · logq

(
F(A)
A

)
= 2 · logq

(
3
4

+
1
4
· 1
N (A)

)
. (5.15)

The proof holds because

logq

(
3
4

+
1
4
· 1)
N (A)

)
> −1.

As N(A) is odd, it holds that

logq

(
3
4

+
1
4
· 1
N (A)

)
< logq

(3
4

+
1

4 · 3
)

= logq(5/6) = −0,63,

and hence

−0,63 > logq
(3

4
+

1
4 · 3

)
> −1

−1,2 > ∆L

(
P (F(A))
P (A)

)
> −2.

(5.16)

Since, the length change of the ”body” of the number between iterations is mea-

sured as the difference lengths between the potentials of number and potential of

last half-digit before and after transformation F, we write it and substitute into it

of the possible border’s values(levels):

∆L

(
F(A)
A

)
= ∆L

(
P (F(A))
P (A)

)
−∆L

(
P (d(F(γ(s) · 4s)))
P (d(γ(s)) · 4s))

)
=

−1
−2

−



−1
0
1
2
· · ·

=



< 0
−1
−2
−3
· · ·

(5.17)

In (5.17), the value of ∆L
(
F(A)
A

)
may decrease below −1 or be from −1 to 0. The

second condition corresponds to storing the length of the ”body” of the number

A after the conversion F(A), because the length in this case changes by less of one

half-digit or say another: the length was stored.

-
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5.3 Possible conditions for ∆L
(
F(A)
A

)
Consider the conditions, when ∆L

(
P (d(F(γ(s) cdot4s)))

P (d(γ(s))·4s))
)

is equal to −1, which leads to the

preservation of length, and 0, which already according to (5.17) corresponds to the con-

dition of decreasing length during conversion.

In other cases, when ∆L
(
P (d(F(γ(s) cdot4s)))

P (d(γ(s))·4s))
)
> 0, we omit , since the consideration will

be similar to the case when ∆L
(
P (d(F(γ(s) cdot4s)))

P (d(γ(s))·4s))
)

= 0.

Theorem 5.6. Condition of necessity: To maintain the length of the number during the re-

cursive transformation F, the number of divisors must equal 4k + 3.

Proof. ∆L
(
P (d(F(γ(s)·4s)))
P (d(γ(s))·4s))

)
equals 0: then

N (A) = 4 · k + 1

k ∈N
then

logq

(3
4

+
1
4
· 1

4k + 1

)
< logq

(3
4

+
1

20

)
=

logq (0,8) ≈ −0,775

and

∆L

(
F(A)
A

)
< 2 · (−0,75) + 0 < −1.

(5.18)

That is, the length of the number is reduced

∆L
(
P (d(F(γ(s)·4s)))
P (d(γ(s))·4s))

)
equals -1 then

N (A) = 4 · k + 3

k ∈N
then

logq

(3
4

+
1
4
· 1

4k + 3

)
< logq

(3
4

+
1

12

)
=

logq

(5
6

)
≈ −0.633

and

−1 < ∆L

(
F(A)
A

)
≤ 2 · (−0,633) + 1 < 0 approaches 0.

(5.19)

That is, unlike the potential, the number length after an iteration may not be

further reduced if it approaches 0.

This fact will be investigated further below.
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5.4 Not- decrease of ∆L
(
F(A)
A

)
during a conversion F

Theorem 5.7. Condition of necessity: To conserve the length of a number during the recursive

transformation F, the number of divisors in successive iterations must be 4k + 3. Otherwise,

it is proven that ∆L
(
F(A)
A

)
periodically falls below −1, meaning that the number of half-digits

in the number 〈A(i)〉q decreases by one.

Proof. Only when N (A) = 4 · k + 3, we have d(F(γ(s)·4s))
d(γ(s))·4s) = 1

2 , meaning that ∆L
(
F(A)
A

)
approaches 0:

Under condition 0,

we have

N (A(i)) = 4 · k(i) + 3. Then

d(F(γ(s) · 4s))
d(γ(s)) · 4s) =

d(i + 1)
d(i)

=
1
2
, and

A(i + 1) =N (i + 1) · d(i + 1) =
1
2
· d(i) · (6 · k(i) + 5), (5.20)

Under condition 1, the 4k + 3 property is preserved

If

6 · k(i) + 5 = 4 · k(i + 1) + 3,

then

k(i) is odd (5.21)

Under condition 2, the 4k + 3 property is violated,when the new value of k(i) is even.

If

k(i) is even !!!

then

6 · k(i) + 5 = 4 · k(i + 1) + 1 (5.22)

The 4k + 3 property is preserved at each iteration if and only if the new value of

k(i + 1) is odd (this completes the proof)
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5.4.1 Limit of the 4k + 3 property

If conditions 0 are fulfilled once,

then

N (A(i)) = 4 · k(i) + 3,

and

k(i) is even. (5.23)

If conditions 0 are fulfilled twice,

then

N (A(i)) = 8 · k(i) + 7,

and

k(i) is even. (5.24)

Theorem 5.8. Condition of necessity: The length of a number during p recursive trans-

formation F is preserved if and only if the number of divisors in successive iterations is

2p−1 · 4 · k(i) + (2p−1 − 1).

Proof. The proof is obtained by induction.

When conditions 0 and 1 are fulfilled p times,

then

N (A(i)) = 2p−1 · 4 · k(i) + (2p−1 − 1),

and

k(i) is even. (5.25)

Some examples are given below:

For

175 = 160 + 15 = 16 · 10 + 15,

conditions 0 and 1 are fulfilled three times, because 15 = 24 − 1 :

175 = 4 · 43 + 3⇒ 263,

263 = 4 · 65 + 3⇒ 395,

395 = 4 · 98 + 1⇒ 593 = 4 · 98 + 1.
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For

287 = 256 + 31 = 32 · 8 + 31

conditions 0 and 1 are fulfilled four times, because 31 = 25 − 1 :

287 = 4 · 71 + 3⇒ 431,

431 = 4 · 107 + 3⇒ 647,

647 = 4 · 161 + 3⇒ 971,

971 = 4 · 242 + 1⇒ 971 = 4 · 242 + 1.

6 Proof of necessary conditions for the implementation
of the Collatz transformations.

6.1 Proof of decreasing length of a number

Lemma 6.1. In a transformation F, the number of iterations i during which the length of a

number A(i) decreases by one half-digit is limited to P (i).

Proof. Since, for any N (A(i)) ∈N there exists P (i) ∈N when

N (A(i)) ≤ 2P (i)−1 − 1 (6.1)

, follows that in less than P (i) steps

∆L


P (i)︷︸︸︷

F(· · ·F(A) · · · )
A


< −1. (6.2)

(overbrace is designation of the application of the operation F many times until the

number decreases by 1 in length).

Note, that the quantity of retention(holding) in the corresponding iteration 4k + 3

cannot exceed P (i), since in the extreme case when N (A(i)) = 2P (i)−1 − 1 will be reduced

to a unit length for P (i) steps, since number 1 is number of the form 4k + 1.

is proven

Theorem 6.2. The necessary conditions for the implementation of the Collatz transforma-

tions.

Within a limited number of steps, the iterative transformation F transforms an arbitrary

natural number A ∈N to a number of unit length 2N

3Q
.

Proof. In the Horner scheme, any arbitrary number A ∈N can be represented in Wq.

Therefore, an arbitrary number can be represented as (4.3),

and will contain a limited quantity n of digits in the record, along with quantity half-

digits 2n.
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By Lemma (6.1), the length of the number A(i) after a limited quantity P (i) of a trans-

formation F is reduced, as minimum, by one half-digit.

Follow, the quantity P of iterations F required to transform the number A to a number

of unit length is calculated as

P =
2·n∑
i=0

P (i) ≤ 2 ·n ∗maxP (i) (6.3)

The quantity P of iterations F required to transform the number A ∈N to a number of

unit- length 2N (A)

3Q(A) is limited.

This observation remains to be proven.

.

6.2 On the v-expansions of integer numbers in a rational base 2a
3

Theorem 6.3.

For ∀A ∈N there exists an v-expansion Av in Vv.

Proof. In each transformation F(A(i)), there arises an elementary number E(i) that

equals the difference between two divisors.

When the conversion is completed, the initial numberAq ∈Wq has become a number

Av ∈Vv .

This representation of a number in the system is here called a 2a
3 -expansion.

Since for ∀A ∈N there exists an q-expansion Aq ∈Wq, and ∀Aq ∈Wq there exists an

v-expansion it turns out that for ∀A ∈N there exists an v-expansion Av ∈Vv .

This was required to prove to obtain the necessary conditions.

QED

Thus, sufficient and necessary conditions are obtained for the CC, which leads to

its proof.

As a demonstration of the CC mechanism, we present the result of the number 27.

Here, we chose 27 [19] because it is often used to popularize the conjecture.

The mechanism is contrasted with that of Figure [5] in the decimal number system.

Conversion algorithm can see in figure[6]
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i n(i) r(i) -r(i)>1 4k(i)+1 4k(i)+3 k(i) P(i)
0 27 -1 4*6+3 14+13 Even 1
1 41 -2 2 4*10 + 1
2 31 -1 4*7+3 16+15 Odd 4
3 47 -1 4*11+3 Odd
4 71 -1 4*17+3 Odd
5 107 -1 4*26+3 Even
6 161 -2 2 4*40+1
7 121 -2 2 4*30+1
8 91 -1 4*22+3 46+45 Even 1
9 137 -2 2 4*34+1
10 103 -1 4*25+3 52+51 Odd 2
11 155 -1 4*38+3 Even
12 233 -2 2 4*58+1
13 175 -1 4*43+3 88+87 Odd 3
14 263 -1 4*65+3 Odd
15 395 -1 4*98+3 Even
16 593 -2 2 4*148+1
17 445 -3 3 4*111+1
18 167 -1 4*41+3 84+83 Odd 2
19 251 -1 4*62+3 Even
20 377 -2 2 4*94+1
21 283 -1 4*70+3 213+212 Even 1
22 425 -2 2 4*106+1
23 319 -1 4*79+3 160+159 Odd 5
24 479 -1 4*119+3 Odd
25 719 -1 4*179+3 Odd
26 1079 -1 4*269+3 Odd
27 1619 -1 4*404+3 Even
28 2429 -3 3 4*607+1
29 911 -1 4*227+3 456+455 Odd 3
30 1367 -1 4*341+3 Odd
31 2051 -1 4*512+3 Even
32 3077 -4 4 4*769+1
33 577 -2 2 4*144+1
34 433 -2 2 4*108+1
35 325 -4 4 4*81+1
36 61 -3 3 4*15+1
37 23 -1 4*5+3 12+11 Odd 2
38 35 -1 4*8+3 Even
39 53 -5 5 4*13+1
40 5 -4 4 4*1+1
41 1 0

Balance -70 46 24

Figure 5: Example A=27
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1

step 1

Conversion of A10 to Aq

A10 = Aq (0.1)

step 2: Iterate F

step 3

If

N (Aq(i)) = 4 · k(i) + 1,

then

Aq(i +1) —— decrease the number of half-digits (0.2)

step 4

If

N (Aq(i)) = 4 · k(i) + 3,

then

Aq(i +1) —— do not decrease the number of half-digits (0.3)

step 5 If

A(i) = 2a · qb,
where a,b ∈ Z

then terminate the computation (0.4)

return to step 2

end algorithm

Figure 6: Conversion algorithm
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8 Afterword

Below we list the defining properties of prime numbers:

1) A prime has no divisors

2) A prime is represented in the set 〈A〉q.
3) A non-prime number can be unpacked into its dividers with the following rep-

resentation:

〈A〉v = 〈B〉v ∗ 〈C〉v ;

〈A〉v ,〈B〉v ,〈C〉v ∈N .

4) A prime number satisfies 〈A〉v = 〈B〉v and 〈C〉v = {2,0}v = 110, so can be decom-

posed by an“arithmetic” in the Vv system.

Perception of a unit as both a scale of quantity and a scale of number length will likely

provide the answer to the famous phrase by Paul Erdos: ”[Mathematics may not

be ready for such problems.]”.

Figure [7] Harmony unifies opposites and connects entities in space. From Pythagorean

String

Music
(as interrelatedness)

Number
(as interrelatedness)

Object
(as interrelatedness)

1:1

Octave 2:1

Quint 3:2

Quar 4:3

Figure 7: tetrada

theory, consonant intervals are given by 2 : 1 = (3 : 2) · (4 : 3). [16]
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