
Deep-compression for High Energy
Physics data

Honey Gupta

Google Summer of Code 2020

Mentors: Caterina Doglioni, Baptiste Ravina, Rebeca Gonzalez
Suarez, Antonio Boveia, Lukas Heinrich

Jun-Aug, 2020



Chapter 1

Introduction

This report contains the details of the Google Summer of Code 2020 project on Deep-
compression for High Energy Physics (HEP) data. This project is in collaboration with
Caterina Doglioni, Baptiste Ravina, Rebeca Gonzalez Suarez, Antonio Boveia and Lukas
Heinrich.

Motivation.

At CERN’s Large Hadron Collider (LHC), proton collisions are performed to study the
fundamental particles and their interactions. To detect and record the outcome of these
collisions, multiple detectors with different focus points have been built. The ATLAS
detector is one such general purpose detectors at the LHC. There are approximately 1.7
billion events or collisions occurring inside the ATLAS detector each second and storage
is one of the main limiting factors to the recording of information from these events.
To filter out irrelevant information, the ATLAS experiment uses trigger systems which
selects and sends interesting events to the data storage system while throwing away the
rest. Storage of these events is limited by the amount of information to be stored and a
reduction of the event size can allow for searches that were not previously possible.

To this end, this project aims to investigate the use of deep neural autoencoders to
compress event-level data generated by the HEP detector. The existing preliminary work
investigates deep-compression algorithms on jets, which is the most common type of parti-
cle. The work shows promising results towards using deep-compression on HEP data. We
build upon the existing work and extend the compression algorithm to event-level data,
which means that the data contains information for multiple particles rather than just jets
particles. We experiment with two open-sourced datasets and perform ablation studies
to investigate the effect of deep compression on different particles from multiple processes.

Deep-compression.

Deep compression refers to the usage of autoencoders for performing data compression.
The aim is to learn the data distribution by projecting it to a lower-dimension and then
reprojecting. The project’s idea is to use deep compression for HEP data and check their
efficacy. Therefore, the objective while learning the neural network is to maintain the
data’s fidelity after performing compression and decompression.

In Chapter 2, we discuss the existing work in some detail and present the results of the
validation experiments we performed on the available pre-trained model. This chapter

1

https://summerofcode.withgoogle.com/projects/#5677663735250944
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/experiments/atlas
https://lup.lub.lu.se/student-papers/search/publication/9004751


also contains some details of the work done directly on private ATLAS data. Next, we
briefly describe the opens-sourced datasets used for our experiments in Chapter 3. In
Chapters 4 and 5, we describe the experiments performed during the project and discuss
our observations on the open-sourced PhenoML v1 and PhenoML challenge datasets,
respectively.

2



Chapter 2

Description and validation of
existing network

An autoencoder (AE) is a neural network that tries to implement an approximation of
the identity function. It generally consists of an encoder, a latent space, and a decoder.
The encoder encodes the information present in the input into a lower-dimensional latent
space, and the decoder reconstructs the original input as best as it can. The latent space
representation that has a lower dimension as compared to the input-space can be used
as a compressed representation of the input and can be stored along with the decoder
network to reconstruct the data.

The existing work focuses on using AEs for compression by using the latent space
as a compressed representation of the HEP data comprising only of jet-particles. They
use the commonly used Mean Squared Error (MSE) as the loss function for training
their networks. The metrics used for evaluating the accuracy of the reconstructions after
performing compression and decompression are difference (xout − xin), relative difference
(xout−xin

xin
) and the mean and standard deviations of both of them. Here, xin represents

the input (4-D or 27-D) data and xout represents the reconstructed data. The mean and
standard deviation are averaged across the test samples. We investigate the performance
of the existing work on two compression types on the ATLAS trigger data. The first
compression type is from a 4-dimensional data and the second compression is from a
27-dimensional data.

Compression of 4D data

We analyse the compression of 4-D data to a latent space of 3 dimensions. We used a
network with 7 fully-connected layers of 200, 100, 50, 3, 50, 100, 200 nodes and a tanh
activation layer after each layer, as mentioned in the existing work.

Normalization

We experiment with three different types of normalizations for the compression of 4D
data from ATLAS - (1) No normalization, (2) Standard normalization and (3) Custom
normalization. Here, standard normalization refers to assuming a Gaussian distribution
and centralizing and scaling the data to make the mean=0 and variance=1. Whereas,

3



custom normalization refers to manually scaling each variable from the data so that the
distribution lies between [0,1] or [-1,1].

We observed a high bias towards few variables in the non-normalised model and very
poor reconstruction accuracy overall. One of the variables had a low error (MSE) for this
normalization case whereas one of them had a high error. For standard normalization,
we observed that the model had highest error for most of the parameters among the
three normalization types. Custom normalization has better performance for most of the
parameters as compared to the others. We conclude that custom normalization seems to
be optimal option.

Different variants of the network

We tried 2 variants of the autoencoder models that had the same 7 layer autoencoder with
similar node configuration as the previous model. The dissimilarity was in the activation
layer and batchnorm layer. The first model has tanh activation and no batchnorm layer
(the base model). The second has Leaky Rectified Linear Unit (ReLU) activation and
batchnorm after each layer. The third model has Exponential Linear Unit (ELU) and
batchnorm after each layer.

Our experiments indicated that LeakyReLU model has moderate performance (based
on the variance of relative error and MSE on the test-set). tanh and ELU have comparable
performance. tanh has lower variance and mean for the relative error but ELU has lower
MSE. Hence, ELU model can be said to be the better among the two by considering both
the relative error and MSE, since there is not much difference between ReLU and ELU’s
MSE for the test-set.

We also experimented by using a L1 loss as a loss function but found that there was
not very significant difference between the performance of the model trained with MSE
and the one trained with a L1 loss. Hence, we continue using MSE as the loss function
for the rest of the experiments.

Performance of the network

Next we analyzed the execution time and memory allocation of the compression model
while testing for 4D compression. The model configuration is the same as above.

Specifications.

• Test-set size: 27945

• Hardware for computation: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz, 8 cores

Results.

• Data loading execution time: 0.10674s

• Data loading memory: 3.668 MBs

The findings are summarized in Table 2.1. We observed that since ELU has an expo-
nential component, it’s runtime is higher. tanh also has an exponential component, but

4



Model Initialization Model load Encoding Decoding Encoding memory Decoding
time (s) time (s) time (s) time (s) alloc (MB) memory (MB)

Tanh, no NN 2.5174 0.05932 0.03934 0.02113 0.0024 0.1780
LeakyReLU, BN 2.5903 0.08180 0.12613 0.10033 0.0076 0.2240

ELU, BN 2.4373 0.07940 0.16376 0.15237 0.0064 0.1945

Table 2.1: Performance summary

the batchnorm layer in the other two models increases the execution time. Overall, we
can say that a model without the exponential component i.e. with a ReLU activation and
without Batch-normalisation should perform the best in terms of execution time.

Compression of 27-D data

In order to transition to 27-D data, we analysed the available 27-D data by plotting
the distribution of each variable and comparing the plots with the ones presented by
the prior experiments. We tested the available pre-trained model and created plots from
them. We also compared and validated the published results. Next, we trained the model
on the available ATLAS 27-D data and created response and correlation plots to analyse
the performance.

The compression was performed from 27-D data to a 20-dimensional latent space. This
data contained kinematic information only from jet particles and is the same as the previ-
ously mentioned 4-D data, but with more variables. The model contained LeakyReLU as
activation units and used batch-normalization. We used custom-normalization for scaling
the training and testing data. The model configuration was [27-200-200-200-20-200-200-
200-27], where each number represents the nodes at each layer of the autoencoder.

The compared the data distribution plots and the response plots, which is a plot of the
relative error for different variables. They showed that the our data and results are very
similar to the published results. After training the existing network on ATLAS data, our
1D response plots were similar to the published results, which showed that the relative
errors for most of the variables are zero centered and have low variance. This depicts that
the compression model performs fairly well for these variables. We also observed that
errors for different variables have considerable correlation among themselves. This gave
a glimpse of the ability of the network to compress different variables.

5

https://lup.lub.lu.se/student-papers/search/publication/9004751
https://lup.lub.lu.se/student-papers/search/publication/9004751


Chapter 3

Datasets

PhenoML datasets

We used two open-sourced datasets for expanding the existing method to compress data
at an event-level. These datasets are

1. PhenoML v1 dataset (Link)

2. PhenoML challenge dataset (Link)

The first dataset, PhenoML v1 dataset contains a set of simulated LHC events, corre-
sponding to 10 1fb−1 of data. The events from the dataset can be used as a benchmark
for comparison of different detection algorithms. The dataset contains different processes
from both Standard Model (SM) and beyond the SM (BSM) models.

The data is provided as in CSV files, the format of which is as follows:

Each process is identified by a process ID that is mentioned as the name of the CSV file.
The data/file for each process contains data in a one-line-per-event text format, where
each line has variable lengths. The object identifiers (obj1,obj2, ...) are strings
identifying each object in the event. The particle to keyword mapping can be found in
Table 3.1. The data distribution plots generated by converting the events into 4-D data
from one of the processes from the SM model: atop 10fb is shown in Fig. 3.1. The data
in the plots are custom normalized and represent a sample train/test dataset.

For our experiments, we look at jet events first for training and testing the model.
Since, the existing works validate deep compression for HEP data on only jets, we started
with jets and moved on to other particles. Moreover, the kinematic properties of particles
other than jets and b-jets, as mentioned in Table 3.1, is similar to the jets data distribution
based on the physics processes involved. Hence, we focus on training the model on jets
and then testing on different flavours of the dataset containing different kinds of particles.

1fb−1 corresponds to sample size of thousands to millions, depending on the type of event considered.
It should be enough to provide a statistically meaningful training sample

6

https://zenodo.org/record/3685861#.X0QfKBnhWkB
https://zenodo.org/record/3961917#.Xy0XZS-ZN3M


Keyword Particle
j jet
b b-jet
e- electron (e−)
e+ positron (e+)
m- muon (µ−)
m+ antimuon (µ+)
g photon (γ)

Table 3.1: Definition of the keywords used in the PhenoML dataset for different particles.

Figure 3.1: Data distribution of the 4 variables from the process - atop 10fb data(SM)
from the PhenoML v1 dataset, after custom normalization.

We also tried the other way around by training on only ‘other’ particles and testing on
jets. For this experiment, we used the PhenoML challenge dataset, which contains data
having all processes as mixed. Also, the fraction of ‘other’ particles as compared to jets
is comparatively higher in this dataset as compared to the PhenoML v1 dataset. More
details of the experiments and results are mentioned in the following sections.

7



Chapter 4

Tests of the network on PhenoML
dataset v1

We trained a deep autoencoder on the njets 10fb dataset which majorly contains jet
particles. The model compresses an input 4D data into 3D latent space and then again
back to 4D with the help of encoders and decoders. The 4D data that we used for training
contained event-level data converted to 4D by considering all particles as the same.

Model features:

• Activation = LeakyReLU

• Batch-normalization = True

• Data normalization type = Custom

• Layer configuration = [4, 400, 400, 200, 3, 200, 400, 400, 4]

As mentioned earlier, we use the response plots to analuse the properties of the recon-
structed data. The response plots are the plots of the relative difference or the residuals
between the input and output data. The plots for the jets-trained model tested on a
dataset derived from the same njets 10fb process are shown in Fig. 4.1.

We then tested the jets-trained model on data from two other processes: atop 10fb

and ttbar 10fb. The aim was to analyse the ffect of compression on different particles
when the model is trained on one type of particle - jets. The response/residual plots
for atop 10fb are shown in Fig. 4.2. We observed that the response plots generated
from the compression were very similar to the plots in Fig. 4.1, which indicated that the
jets-trained model performs fairly well for other particles as well.

We next performed a more deeper analysis to check the the affect of compression on
data at an event level. We tested the jets-trained model on three different version of the
data from atop 10fb and ttbar 10fb.

Different versions of the test dataset:

• Dataset created by considering all particles from all the events in the process

• Dataset created by considering all the particles but from those events that contained
only jets

8



Figure 4.1: Response plots for the results from the jets-trained model when tested on jets.

Figure 4.2: Response plots for the results from the jets-trained model when tested on
atop 10fb.

9



Figure 4.3: Mean and standard deviation of the relative difference error of pt for various
particles from the gluino 02 and gluino 02 BSM processes.

• Dataset created by considering all events but taking 4D data from only jet particles

For all the above three flavours of event-level data, we again observed that the re-
sponse plots had minor variations from the ones in Fig.4.1. The variations were smaller
in the case of E and pt variables and more in the case of η and φ.

We next analysed the compression performance of the jet-trained model on test-sets
that contained only ‘other’ particles, individually. For this, we considered two BSM pro-
cesses - stop 02 p p to t1 t1~0 5.69774999996 48 and gluino 02 p p to go go 0 0.0508105 30.
To create the dataset, we extracted the 4D information corresponding to each ‘other’ par-
ticle separately. We then tested these particles independently on the jet-trained model.
The mean and standard deviation of the response for pt of different particles is shown in
the Fig. 4.3 below. The stacked response plots for the stop 02 process is shown in Fig. 4.4.
The response plots for this experiment have the means close to 0 and have low-variance,
which shows that the compression on individual particles using a jet-trained model also
works considerably well.

Our overall conclusion from the experiments is that using a jet-trained network to
perform compression should be sufficient and training on other particles might not be
necessary. To validate this further, we performed the experiments with the PhenoML
challenge dataset, as mentioned in the next chapter.

10



Figure 4.4: The response plots for various particles from the gluino 02 BSM process.

11



Chapter 5

Tests of the network on PhenoML
challenge dataset

To check the compression performance when a network is trained on ‘other’ particles, we
used the PhenoML challenge dataset that contains data from mixed processes. We use
the data from chan2a that contains mixed particles to train the model and use chan3

data that contains mostly jets to test the model. Fig. 5.1 shows the loss vs epoch plots for
networks trained with jets data (njets 10fb) and the one trained with other particles from
chan2a. We can see that the model trained on jets converges better than the one trained
on other particles. This could be because the mixed processes data has less correlated
particles. Thus, the kinematic properties are also less correlated as compared to using
just jets having similar kinematics. This dissimilarity can lead to poor convergence for
the network while training.

Fig. 5.2 shows the response plots for the 4D-3D compression when data from chan3

containing mostly jets is tested on a model trained on data from chan2a. We can observe
that the response plots have higher variance as compared to Figs. 4.1 and 4.4, which
shows that training a model on jets gives better performance as compared to training on
mixed particles.

12



Figure 5.1: Loss plots for networks trained on jets and non-jets (other particles) data.

Figure 5.2: The response plots for all particles when jets-data is tested on a model trained
on other particles.

13



Chapter 6

Code and documentation

Project Artifacts:

• Code Release:
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/

releases/tag/GSoC20

• Slides containing the experiments summary, generated plots, observations and con-
clusions: https://bit.ly/3jrPTB4

The code for performing the experiments, analysis and generating the plots mentioned in
this report can be found in the GitHub repository at
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch,
release tag - GSoC20. The repository includes the documentation for performing the ex-
periments and analysing the models. The scripts are written in Python language and we
use fastai and PyTorch frameworks for implementing and executing the neural networks.

14

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/releases/tag/GSoC20
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/releases/tag/GSoC20
https://bit.ly/3jrPTB4
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch

	Introduction
	Description and validation of existing network
	Datasets
	Tests of the network on PhenoML dataset v1
	Tests of the network on PhenoML challenge dataset
	Code and documentation

