
Guide to using GPUs in HTCondor
Honey Gupta

This doc contains instructions on how to run a python script possibly containing a training routine for a
deep neural network on the batch service: HTCondor. We will consider a sample script from here and the
following instructions will show how to queue the code for training on HTCondor.

Reference guide: https://batchdocs.web.cern.ch/tutorial/exercise10.html
For queries or more details, contact: Honey Gupta (hn.gpt1@gmail.com)

Before starting

Check the quick start guide and follow the instructions to ensure you have appropriate licenses in
place. The guide will also give you a brief introduction on how to queue codes.

Training a network on HTCondor

Few pointers:

● We use the AFS service to store the data, scripts as well as the virtual environment
containing the required packages for running the training code.

Where to start?

Start with preparing the python training script. A sample python script for training can be found
here.

You’ll have to include scripts to save the training logs within the script in order to be able to
debug/diagnose later. You can include plot and save commands to save the training/validation
logs, save intermediate outputs and checkpoints.

You can either hardcode the arguments such as data path and hyperparameters or mention them
as input arguments in the bash file. The python script that we have considered has hardcoded
parameters and paths. Note that when mentioning paths to AFS locations, mention the full-path
as the working directory location changes when you login to the node.

Installing the required packages

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/blob/master/examples/27D/27D_train.py
https://batchdocs.web.cern.ch/tutorial/exercise10.html
mailto:hn.gpt1@gmail.com
https://docs.google.com/document/d/1chrlFBSHY6bq46_U5uwGbzEposSyamMLqsX99605UUo/edit?usp=sharing
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/blob/master/examples/27D/27D_train.py

Once you have the python script ready, you need to make a list of the additional packages
required for running the python script.

Pro-tip: Determining the required additional packages could be difficult as you might need to
submit the job multiple times just to see if it is sufficient and that could take many trials and a lot
of your time. To make debugging easier, you could use the interactive mode once you have a
draft of the scripts ready. More information on the interactive mode can be found here:
https://batchdocs.web.cern.ch/tutorial/exercise10.html#interactive-jobs

There are two ways in which you can load the required packages to run your code on the
assigned node

1. You can include the installation instructions in the bash file and mention all the installation
details before issuing the run command to start the training.

2. Or you can preinstall the packages in a virtual environment at a location in AFS and then
activate the environment through the bash service.

I prefer to use the 2nd option as it is

● easier,
● saves time as it avoids the installation of packages every time you submit the code, and
● easy to debug and fix

Let’s name the bash file to be submitted to the batch services as train.sh

1. If you choose the first option, your train.sh script could be something like this:

#!/bin/bash

python -m virtualenv -p python3 myvenv

source myvenv/bin/activate
pip install pandas

pip install fastai

pip install scikit-learn

cd /afs/cern.ch/work/h/h*/public/AE-Compression-pytorch/examples/27D/
python 27D_train.py

2. If you choose the second option, you can create a virtual environment at an accessible

(public) AFS location and install the packages. This can simply be done by running the first
part of the above train.sh script in the desired installation location.
For e.g. let’s say my installation location is
/afs/cern.ch/work/h/h*/public/AE-Compression-pytorch/

Then I can create the virtual-env and packages by running an install_libs.sh bash file that
contains the following:

https://batchdocs.web.cern.ch/tutorial/exercise10.html#interactive-jobs
https://docs.python.org/3/tutorial/venv.html

cd /afs/cern.ch/work/h/h*/public/AE-Compression-pytorch/
python -m virtualenv -p python3 myvenv

source myvenv/bin/activate
pip install pandas

pip install fastai

pip install scikit-learn

And then run:

$ chmod +x install_libs.sh
$./install_libs.sh

This creates a virtual-env at the required location, with all the required packages and now
you can just cd to the location from the HTCondor nodes.

Now your train.sh file to be submitted to the HTCondor node can be something like the
following:

#!/bin/bash

cd /afs/cern.ch/work/h/h*/public/AE-Compression-pytorch/
source myvenv/bin/activate
cd examples/27D/
python 27D_train.py

Pointers:

● source myvenv/bin/activate activates you virtual-env with the name “myvenv”
● cd examples/27D/ is to go to the AFS location that contains your python script
● The link line of the above code runs the python script. You can add your input

argument here if any.

Job submit file

Let’s name the submit file to be submitted to the batch services as train.sub

Here is a sample submit file for training the network.

executable = train.sh

arguments = $(ClusterId)$(ProcId)
output = train.$(ClusterId).$(ProcId).out

error = train.$(ClusterId).$(ProcId).err
log = train.$(ClusterId).log
request_GPUs = 1

request_CPUs = 4

+JobFlavour = "tomorrow"
queue

Pointers:

● The first 5 lines of the above code are same as mentioned in the quick-start guide.
● request_GPUs = 1 says that the node to be assigned for running this job file should

have a GPU
● request_CPUs = 4 says that 4 CPUs are required. The number of CPUs is also related to

the memory (RAM) and disk allotment, the details of which can be found here:
https://batchdocs.web.cern.ch/local/submit.html#resources-and-limits

● +JobFlavour = "tomorrow" mentions a suggested maximum runtime of the job. Jobs
which exceed the maximum runtime will be terminated. The runtime is the wall time of the
job (the elapsed actual time) rather than a calculated cpu time. Here, “tomorrow” is equal
to a maximum runtime of 1 day. More details regarding the job flavors and max-time can
be found here: https://batchdocs.web.cern.ch/local/submit.html#job-flavours

Finally, you can submit the job by running the following command from your lxplus terminal
window:

$ condor_submit train.sub

https://batchdocs.web.cern.ch/local/submit.html#resources-and-limits
https://batchdocs.web.cern.ch/local/submit.html#job-flavours

