Upcoming

• https://indico.desy.de/indico/event/25341/overview

Work-log

- <u>https://trello.com/b/1hw2qil0/autoencoders-for-atlas</u>
- <u>https://docs.google.com/presentation/d/12_yRCI63H1VEIDejEUteBqwXalWs0b9x3YcoKG</u>
 <u>FkkZA/edit?usp=sharing</u>
- Presentation: <u>https://docs.google.com/presentation/d/12_yRCI63H1VEIDejEUteBqwXaIWs0b9x3YcoKG</u> <u>FkkZA/edit?usp=sharing</u>

Imp paths

- /eos/atlas/user/d/doglioni/Autoencoders_for_compression
- /afs/cern.ch/work/h/hgupta
- /afs/cern.ch/user/h/hgupta

Links

- <u>https://mattermost.web.cern.ch/it-dep/channels/town-square</u>
- <u>https://cern.service-now.com/service-portal/</u>
- https://hal.inria.fr/hal-02396279/document
- <u>https://arxiv.org/abs/1707.08966</u>
- <u>https://arxiv.org/pdf/2006.04780.pdf</u>

Ideas

- Check numerical deep compression works for loss and normalization
- Loss
 - L2
 - Relative error as loss
 - Might have to avoid divergence due to division
 - L1 + MSE

TODO

- Formulate custom norm parameters for PhenoML data
- Discuss how to add certain categories of particles to the test data

Wrapping up

- Added models, training logs and testing codes to the github repo
- Merged with the master branch

- Updated documentation for the repo
 - Merged again with the master
- Added rest of the plots to the drive
- Adding processed datasets from my laptop used for testing phenoML processes csv files for different particles and created darkmachines chan3 csv file
 - Link:

https://drive.google.com/drive/folders/12nX9uXFGyqJvH0eLRigIPUMGtM0l_6rv? usp=sharing

- List of commits:
 - <u>https://docs.google.com/spreadsheets/d/1DFU6QOT6MXZKnYkXndzQlzxPZSPt</u> <u>Lf-GB4Qk9BgQuT0/edit?usp=sharing</u>
- Added the remaining plots in the slides
- TODO:
 - Report writing

Aug 19

- Model trained on chan2a data and tested on chan3 data
 - MSE = [0.00039981445]

Aug 17

- Created plots for data distribution and particle distribution for darkmachines dataset
- Training a model with articles from chan2a and will test on chan3
- Changes in previous plots all plots uploaded on drive

Aug 13

- Stop_02
- <u>https://drive.google.com/drive/folders/1JjEZEBYCSaQcGrluKhNetv5o0d0no9SN?usp=sharing</u>

- gluino_02
- <u>https://drive.google.com/drive/folders/1FQxUQbWehHbrTzhEJ3Hb5Vo-JJuau80U?usp=sharing</u>

- stop_02_p_b_to_t1_t1~0_5.69774999996_48.csv
 - ∘ **e+**
 - MSE: [8.7379005e-05]
 - **e-**
 - [8.628796e-05]
 - **m+**
 - [9.5003474e-05]
 - **m-**
 - [0.000113431066]
 - **g**
- [1.1838656e-05]
- gluino_02
 - ∘ **e+**
 - [6.45536e-05]
 - о **е-**
 - [5.0873867e-05]
 - **m+**

[9.127547e-05]

• **m-**

• **g**

[7.6756885e-05]

[1.2573055e-05]

Aug 5

- Data distribution for different process in phenoML data can be found here:
 - <u>https://drive.google.com/drive/folders/1geNKLyFq2vlyomvFkBGpFWUzLYwncYc</u> <u>z?usp=sharing</u>

Aug 4

- Added the plots in slides
 - SM processes: Slide 55 57
 - BSM processes: Slide 58 61

Aug 3

• Plots for particle distribution for different sm and bsm data files in the PhenoML dataset

July 28

- List of files in the dataset:
- SM
 - 2gam_10fb.csv
 - 4top_10fb.csv
 - atop_10fb.csv
 - atopbar_10fb.csv
 - gam_jets_10fb.csv
 - njets_10fb.csv
 - single_higgs_10fb.csv
 - single_top_10fb.csv
 - single_topbar_10fb.csv
 - ttbar_10fb.csv
 - ttbarGam_10fb.csv
 - ttbarHiggs_10fb.csv
 - ttbarW_10fb.csv
 - ttbarWW_10fb.csv
 - ttbarZ_10fb.csv
 - Wgam_10fb.csv
 - w_jets_10fb.csv
 - wtop_10fb.csv
 - wtopbar_10fb.csv
 - ww_10fb.csv

- Zgam_10fb.csv
- z_jets_10fb.csv
- ztop_10fb.csv
- ztopbar_10fb.csv
- zw_10fb.csv
- \circ zz_10fb.csv
- BSM
 - gluino_01_p_p_to_go_go_0.2013275_21.csv
 - gluino_02_p_p_to_go_go_0_0.0508105_30.csv
 - o gluino_03_p_p_to_go_go_0.0144098_39.csv
 - o gluino_04_p_p_to_go_0_0.00442036_48.csv
 - gluino_05_p_p_to_go_0_0.00143275_84.csv
 - o gluino_06_p_p_to_go_go_0_0.0004843405_66.csv
 - gluino_07_p_p_to_go_go_0_0.000168185_75.csv
 - o stop_01_p_p_to_t1_t1~0_26.7494500003_39.csv
 - stop_02_p_to_t1_t1~0_5.69774999996_48.csv
 - stop_03_p_p_to_t1_t1~0_1.2483025_75.csv
 - o stop_04_p_b_to_t1_t1~0_0.0200922000001_84.csv
 - Zp_technicol_01_0.3865.csv
 - Zp_technicol_02_0.12206.csv
 - Zp_technicol_03_0.044272.csv
 - Zp_technicol_04_0.017957.csv
 - Zp_technicol_05_0.00807869999999.csv

- Tested the pretrained model on the three datasets created from ttbar
 - 1. Remove events where there is at least one lepton (Slides 48 -49)
 - 2. All events but only jet data (Slides 50-51)
 - 3. All data (Slides 52-54)

July 26

- Disk space issue, removed some old dataset
- Creating datasets from ttbar taking only first 100k events

July 25

- Extracted all files from sm.tgz
- Creating the 3 types of dataset for ttbar
- Getting "disk quota exceeded" error

July 24

• Models take around 3 days to train for the 500MB dataset

- Maybe use only half of the training data?
- Changed figures and numbers for full dataset in slides (Slides 36-37)
- Not much difference between MSE on test-set
- Tested the model in atop
 - Created 3 versions of the data
 - 1. Remove events where there is at least one lepton (Slides 38-39)
 - 2. All events but only jet data (Slides 40-41)
 - 3. All data (Slides 42-44)
- Tested the model in atopbar all events and all particles
 - (Slides 45-47)
- Plots in slides and drive
- Figured out the issue with missing ttbar file
 - Untar takes a long time and login expires :/
 - Submitted a job on HTCondor to decompress the tar file
- Custom normalisation
 - MSE on test-set: [2.4856113e-06]
 - Plots

- Standard normalisation
 - MSE on test-set: [0.00019922169]
 - Plots

- Results show that model trained with half train-set is better than the full train set
 - Either the data is conflicting
 - Or the full train model did not train properly
 - The codes timed out after 1 day maybe not enough epochs were done
 - No way to find out, as of now
- Resubmitted the jobs for training with full train-set

- Extended the max time to 3 days
- Test results with half the training data

 $(\phi_{out} - \phi_{in})/\phi_{in}$

- Std-norm
 - Test-set MSE : [2.7026193e-05] 0
 - Plots: 0

2.0

- Custom-norm
 - Test-set MSE : [8.7358785e-06]
 - Plots:

- Job exited incomplete training
- Resubmitted

• Submitted jobs for training with half (of 500MB) training data

- Results with ~500MB of training data:
 - Std-norm
 - Test-set MSE :[0.0008520562]
 - Plots:

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 (E_{cott} - E_{in})/E_{in}

0

• Custom-norm

- Test-set MSE : [3.0818668e-05]
- Plots:

3

ш-

- Submitted a job to process 4D data
- Added the script to train 4D-3D model
- Submitted job to train models with std and custom norm
 - custom norm has only log no sub or div

July 14

- Comparison of data distribution between phenoML and evaluation data
- w/o normalization

phenoML data vs GSoC evaluation data

phenoML data vs GSoC evaluation data

GSoC data
 1117

```
111778 - train
```

- 0
- Created a smaller file for njets
 - \circ $\;$ Submitted job to extract as events with zero padding
- Writing script to read as 4D
- Plots for 4D data distribution (10k samples)
 - E and pt % 1000.

Standard normalisation

- data['eta'] = data['eta'] / 5
- o data['phi'] = data['phi'] / 3
- data['m'] = np.log10(data['m'] + 1) / 1.8
- o data['pt'] = (np.log10(data['pt']) 1.3) / 1.2

- Job with 6 CPUs terminated
 - Memory usage by the code 17909 MBs
- Resubmitted
 - Process still getting killed -_-

July 12

- Code to process the data not getting queued
 - \circ $\;$ reduced the no. of CPUs and resubmitted

July 11

- Updated the README for autoencoder repo: merged instructions for install_libs file
 - Updated setup.py file with few package related details
 - https://github.com/Autoencoders-compression-anomaly/AE-Compressionpytorch/commit/e0df729225258f03d63d5f53148ef16f83f6b93f
- Added the code to read the data on GitHub

- <u>https://github.com/Autoencoders-compression-anomaly/collider-unsupervised-lea</u> <u>rning/tree/honey_dev/process_data/</u>
- Wrote and committed the code for training a model on the phenoML data
 - https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch /tree/honey_dev/examples/phenoML

- Reading data code
 - Check about jet and b-jet
 - Which approach to take the data 40 vs 4 (mix events)?
 - Trying both for now
 - 4D 3D for now
 - What is the 3,5 in reshape for?
 - Normalization?
 - Taking std for now

• Formulate custom norm parameters

• Submitted the code to process data on condor

July 9

- Dataset at https://zenodo.org/record/3685861/files/sm.tgz?download=1
 - Downloaded in AFS

Jul 2-3

- Going through the documentation of PhenoML dataset
 - https://arxiv.org/pdf/2002.12220.pdf
- Going through some physics-related literature provided by Rebeca

Jul 1

- Updated the presentation as per the suggestions
 - Included few additional slides from the evaluation just for completeness
- Wrote a doc for using Gpus on HTCondor: <u>https://docs.google.com/document/d/1zCjPpN80zq57bktLlqsSv9H1tl2IR9_Hr3vNGWkE</u> <u>Ggg/edit?usp=sharing</u>

28 Jun

- Updated presentation can be found here: <u>Worklog slides</u>
- Added I/O and corr plots to trello

27 Jun

- Working on the presentation
- Created an Ipynb to test the model and create the plots
 - Fixed the scale for Corr plots
- Tested the custom_norm model
 - https://drive.google.com/drive/folders/1wZ7KwhTXHdX755ct2uVMGgdebO8M20t
 D?usp=sharing

• Tested the data for scaled-normalization

0

• https://drive.google.com/drive/folders/1m2PN_Ytt_97mAhClOljLELtQKPwhbF2Z?u

sp=sharing

- 25 Jun
 - Custom norm for 100 (previously trained) + 400ep
 - Total time taken: 1275.949 minutes ~ 21:15 hours
 - Time taken per epoch: 3.1898 minutes
 - Validation MSEloss: 7.844627e-06, Training MSELoss: 1.814027e-05

• ~500ep looks good to train the model

- Training MSE ~1e-05/1e-06 can be taken as the stopping point
- Pushed the recent HTCondor files to honey_dev branch

23 Jun

- Custom norm code for 500ep on HTCondor
 - previously trained for 100, retraining that model for 400ep
- TODO
 - Create plots for the trained models
 - Add images to Trello
 - Check webfest
 - Modify code to take LR as an argument and launch the job using multiple LRs
 - More complete presentation with work in this first month
 - Includes work that you've done to document the HTCondor/modifications to the code
 - Summary of results

22 Jun

- Wrote scripts to process and scale the data in HTCondor
 - Some issue in copying the created files
 - Added an explicit transfer in the sub file
 - Pushed the codes on GitHub and merged prior codes with master
- Processed the root files
- Was getting TLE for GPU codes
 - \circ +JobFlavour = "workday" \rightarrow increase the time limit of the job fixed it
 - https://batchdocs.web.cern.ch/local/submit.html
 - condor_rm to remove jobs
- Pretrained
 - Eric's thesis has plots for 14D latent space
 - 27-200-200-200-14-200-200-200-27
 - No pre-trained model available for this configuration
 - Model mentioned in the GitHub notebook -27-400-400-200-18-200-400-400-27.pth for 20D
 - Used pretrained 200_custom_norm_over_night_all.pth model
 - Residual and corner plots in ppt [link to the presentation, trello]
 - Ith_thesis_project/jet_by_jet_compression/aod_compression/aod_custom_norma lization_and_test.ipynb
 - Input Data plots match the ones in the thesis
 - MSE = 8.3398e-05 on test-set
- [Scaled data] For 10eps on GPU@HTCondor 23mins,
 - Validation MSELoss: 1.210103e-02 Training MSELoss: 1.226083e-02

- Considering model [27, 400, 400, 200, 20, 200, 400, 400, 27]
- Need to do around ~580 epochs for 350k batches
- [Scaled data] Trained the code for 100ep, LR@1e-4 on HTCondor (everything from now on is GPU)
 - Training time: 4:20 hours
 - Validation MSELoss: 8.236064e-04 Training MSELoss: 9.428300e-04

- [Custom-norm data] Trained the code for 100ep, LR@1e-4 on HTCondor
 - Training time: 4:42 hours

• Validation MSELoss: 7.017471e-05 Training MSELoss: 9.206531e-05

19 Jun

- Started working on the AOD files
- Run 364292
- The file mentioned in the notebooks DAOD_TRIG6.16825104._000035.pool.root.1

 2260895
- The file in the folder *_000079* and *_000263*
 - o 079 6117135
 - Check if file matters
 - no no

18 Jun

- Had a meeting with Lucas about the doubts regarding HTCondor
 - AFS is visible to the nodes, only the contents of the current folder changes
- Wrote a quick start guide to run a sample python script on HTCondor
 - Link:

https://docs.google.com/document/d/1chrlFBSHY6bq46_U5uwGbzEposSyamML qsX99605UUo/edit?usp=sharing

16 Jun

- Weekly meeting:
 - Got access to the datasets
 - Caterina confirmed from Erik Wallin that the 27d datasets are what Eric Wulff used.
 - Checked the timeline

12,15 Jun

- Worked on tutorials for HTCondor
 - https://batchdocs.web.cern.ch/tutorial/exercise10.html

- Numpy one gives as error while installation
- virtualenv and tf works well
- Docker error: docker image tensorflow/tensorflow:latest-gpu not found
- Tried converting the 27D train script to run on HTCondor
 - fastai requires python 3
 - Script fix: python -m virtualenv -p python3 myvenv
 - Packages to install: fastai; (optional) pandas, corner

11 Jun

- Fixed missing file issue in Autoencoders-compression-anomaly /AE-Compression-pytorch
- Changed the README file to correct the repo link
- Reading up on Batch concepts
- Checked Eric's thesis for the number of epochs used for training. For 4D data: 10@10-7; 10@10-4 and 2000@10-6.
 For 27D. he performed a grid search. The plot in his thesis shows that around 350k batches were processed (for 18D latent variable), so this can be taken as a starting point.
- The best performing network from the grid search was trained using a learning rate of 10-2, wd= 0.01 and bs = 4096
- Modified and trained for 100ep using Erik's python script
- Created a new branch on github to record changes
- Modified 27D_train to load a model and retrain

10 Jun

- Training on 27D data for 350 more epochs
- Read on HTCondor
- Mailed Erik for clarification on data waiting for a reply

9 Jun

- started on 27D data:
 - <u>https://github.com/erwulff/lth_thesis_project/blob/master/jet_by_jet_compression/</u> aod_compression/train_on_aod.ipynb
 - Abs rel error on old checkpoint = 0.0007828
 - MSE on old checkpoint= 8.3398e-05
 - Abs relative error on model trained with 10 epochs: 0.017212
 - Abs relative error on model trained with 150 epochs= 0.00700411

8 Jun

- Got the data
- Setting up lxplus reading stuff
- Links

- http://information-technology.web.cern.ch/services/lxplus-service
- https://lxplusdoc.web.cern.ch/
- Batch service <u>https://batchdocs.web.cern.ch/index.html</u>

5 Jun

• Created the plots for L1 vs MSE

4 Jun

• Still training AE_3D_200_RELU_BN_L1_custom_norm, completed 4k epochs - Done

3 Jun

• Training with L1 on evaluation data - laptop, jupyter

2 Jun

- Requested for data files
 - <u>https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/</u> <u>issues/2</u>
- Issue raised to add some missing files
 - <u>https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/</u> <u>issues/1</u>
- Add L1 experiments somewhere