
Deliverables

● Python scripts to compress and decompress the data using different compression

algorithms analyzed during the project

● Scripts to produce the plots for different metrics

● Summary of the algorithms, documentation of the findings and points for future

development.

Proposed Timeline

● Before May 4, 2020

○ Familiarise myself with existing ATLAS code, understand ROOT I/O and its

functionalities.

● May 4 - May 17, 2020

○ Read up on ATLAS trigger and data formats, evaluate the existing

compression algorithms, with hands-on experience if possible.

● May 18 - May 31, 2020

○ Learn about the critical factors concerning the environment, the planned

experimental upgrades in 2026 and which factors regarding the ATLAS data

compression could be relevant while designing the deep-compression

algorithm.

○ Document and discuss the possible directions.

● June 1 - June 28, 2020

○ Experiment and analyze the existing deep-compression algorithms or

networks to compress the ATLAS data in the context of a

resource-constrained system such as the ATLAS trigger.
■ Start with running the 27-variable version of this

https://github.com/Autoencoders-compression-anomaly/AE-Compres

sion-pytorch - should be able to do this on your laptop

● Let me know if you need input files, not sure they are there

already

■ First run the network, the retrain the network on 80% of the data and

test it on 20% (→ git issue to Erik Wallin)

● How long does it take on laptop? Decide how fast we want to

get other resources

■ Check that this reproduces the results in Eric Wulff’s thesis (27

variables) or Erik Wallin’s thesis (15 variables) in terms of

● Response plots

○ (Compressed variable - Original variable)/original

variable = compressed variable / original variable (-1)

○ Response ~= 1 if all goes well with the compression

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch

● Quadrant/correlation plots

● Every time you make plots, save them somewhere safe with a

good naming convention that lets us understand where they

come from (make a Beamer talk so one can compare easily?)

○ Convention could be:

date_testingTopic_networkCharacteristics_variable

■ Try to implement your normalization functions and check if there are

improvements with respect to the baseline

● Keep the current ones for the test with Erik W’s thesis, then

revisit for event-level

■ Loss function thoughts

● For now, keep using MSE

● Once we have the 27D network set up, can try Maurizio’s or

something that weighs 4-vector more than other variables

■ Document the findings and their performances for the 1st evaluation.

● Evaluation is a google form

○ More complete presentation with work in this first

month

■ Includes work that you’ve done to document

the HTCondor/modifications to the code

○ Summary of results

○ (Optional) Perform hyperparameter tuning for a selected set of architectures.

This is time-consuming and hence, will be performed if time permits.

[contingent to getting a bigger cluster]

June 29 - July 3, 2020 (1st evaluation)

IMPORTANT DEADLINE for ALL MENTORS: First Evaluations open June 29 and are DUE
before Friday, July 3rd 18:00 UTC

● July 4 - July 19, 2020

○ Explore autoencoder architectures and develop a network that compresses

full events rather than individual jets.

■ Option 1: do things with the current workflow, use ATLAS data (ttbar

simulation) and change file to ttbar

● Pros: straightforward

● Cons: can’t publish outside ATLAS

■ Option 2: do things with the current workflow but use PhenoML data

● Pros:

○ can publish outside ATLAS

■ This would be our paper on “how autoencoders

work for compression of high energy physics

variables” using a sample dataset with different

physics objects and physics processes

○ link with DarkMachines community (who want a paper

on anomaly detection by the end of the summer, but

that is not our main goal)

○ Could brute-force the anomaly detection side (just

make a different plot that tells us “is this autoencoder

good for anomaly detection, as well as compression?” -

maybe the answer is no)

● Cons

○ Requires more time (~1 week) for data wrangling

starting from existing scripts to feed those to our

network

● Possible work plan:
○ Outputs:

■ Zenodo Jupyter notebook
■ Contribution to DarkMachines

○ Work to be done
■ [undergraduate student could help] Understand and

document what LHCPheno variables are, by talking to
DarkMachines people and to Caterina

■ [undergraduate student could help] Make a Jupyter
notebook that reads in the data and prints it out in simple
histograms, and has descriptions of each variable

■ This will be published on Zenodo and linked to the data
■ Take scripts from DarkMachines and adapt them for our

network
● Participate in discussions about how to read the

entire data in memory / in chunks

■ Option 3: investigate more optimal way of data representation

● E. g. binary representation learning, fairly standalone [Baptiste
also interested] - start with Eric’s network and compress to a
number of ints

● Followed by option 1
● July 20 - July 26, 2020

○ Document the results and conclusions obtained from the experiments for the

2nd evaluation.

July 27 - 31, 2020 (2nd evaluation)

● Aug 1, Aug 15, 2020

○ Develop a deep-compression network that works on entire events and can

run in resource-constrained systems such as the trigger system, based on the

previous months’ findings. Analyze its performance.

○ (Optional) Explore the possibility of anomaly detection using the designed

autoencoder-network.

● Aug 16 - Aug 23, 2020

○ Document the findings and write a white paper if needed.

● Aug 24 - Aug 31, 2020

○ Code submission and final evaluations.

