
Deliverables 

● Python scripts to compress and decompress the data using different compression           

algorithms analyzed during the project 

● Scripts to produce the plots for different metrics 

● Summary of the algorithms, documentation of the findings and points for future            

development. 

Proposed Timeline 

● Before May 4, 2020 

○ Familiarise myself with existing ATLAS code, understand ROOT I/O and its           

functionalities.  

● May 4 - May 17, 2020 

○ Read up on ATLAS trigger and data formats, evaluate the existing           

compression algorithms, with hands-on experience if possible. 

● May 18 - May 31, 2020 

○ Learn about the critical factors concerning the environment, the planned          

experimental upgrades in 2026 and which factors regarding the ATLAS data           

compression could be relevant while designing the deep-compression        

algorithm. 

○ Document and discuss the possible directions. 

● June 1 - June 28, 2020 

○ Experiment and analyze the existing deep-compression algorithms or        

networks to compress the ATLAS data in the context of a           

resource-constrained system such as the ATLAS trigger.  
■ Start with running the 27-variable version of this        

https://github.com/Autoencoders-compression-anomaly/AE-Compres

sion-pytorch - should be able to do this on your laptop  

● Let me know if you need input files, not sure they are there             

already  

■ First run the network, the retrain the network on 80% of the data and              

test it on 20% ( → git issue to Erik Wallin) 

● How long does it take on laptop? Decide how fast we want to             

get other resources 

■ Check that this reproduces the results in Eric Wulff’s thesis (27           

variables) or Erik Wallin’s thesis (15 variables) in terms of 

● Response plots 

○ (Compressed variable - Original variable)/original     

variable = compressed variable / original variable (-1) 

○ Response ~= 1 if all goes well with the compression  

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch


● Quadrant/correlation plots 

● Every time you make plots, save them somewhere safe with a           

good naming convention that lets us understand where they         

come from (make a Beamer talk so one can compare easily?) 

○ Convention could be: 

date_testingTopic_networkCharacteristics_variable 

■ Try to implement your normalization functions and check if there are           

improvements with respect to the baseline 

● Keep the current ones for the test with Erik W’s thesis, then            

revisit for event-level 

■ Loss function thoughts 

● For now, keep using MSE 

● Once we have the 27D network set up, can try Maurizio’s or            

something that weighs 4-vector more than other variables  

■ Document the findings and their performances for the 1st evaluation. 

● Evaluation is a google form  

○ More complete presentation with work in this first        

month 

■ Includes work that you’ve done to document       

the HTCondor/modifications to the code 

○ Summary of results 

○ (Optional) Perform hyperparameter tuning for a selected set of architectures.          

This is time-consuming and hence, will be performed if time permits.           

[contingent to getting a bigger cluster] 

June 29 - July 3, 2020 (1st evaluation)  

IMPORTANT DEADLINE for ALL MENTORS: First Evaluations open June 29 and are DUE                         
before Friday, July 3rd 18:00 UTC  

● July  4 - July 19, 2020 

○ Explore autoencoder architectures and develop a network that compresses         

full events rather than individual jets.  

■ Option 1: do things with the current workflow, use ATLAS data (ttbar            

simulation) and change file to ttbar 

● Pros: straightforward 

● Cons: can’t publish outside ATLAS  

■ Option 2: do things with the current workflow but use PhenoML data 

● Pros: 

○ can publish outside ATLAS 

■ This would be our paper on “how autoencoders        

work for compression of high energy physics       



variables” using a sample dataset with different       

physics objects and physics processes 

○ link with DarkMachines community (who want a paper        

on anomaly detection by the end of the summer, but          

that is not our main goal) 

○ Could brute-force the anomaly detection side (just       

make a different plot that tells us “is this autoencoder          

good for anomaly detection, as well as compression?” -         

maybe the answer is no) 

● Cons 

○ Requires more time (~1 week) for data wrangling        

starting from existing scripts to feed those to our         

network 

● Possible work plan: 
○ Outputs: 

■ Zenodo Jupyter notebook 
■ Contribution to DarkMachines 

○ Work to be done 
■ [undergraduate student could help] Understand and 

document what LHCPheno variables are, by talking to 
DarkMachines people and to Caterina 

■ [undergraduate student could help] Make a Jupyter 
notebook that reads in the data and prints it out in simple 
histograms, and has descriptions of each variable 

■ This will be published on Zenodo and linked to the data 
■ Take scripts from DarkMachines and adapt them for our 

network 
● Participate in discussions about how to read the 

entire data in memory / in chunks  

■ Option 3: investigate more optimal way of data representation 

● E. g. binary representation learning, fairly standalone [Baptiste        
also interested] - start with Eric’s network and compress to a           
number of ints 

● Followed by option 1  
● July 20 - July 26, 2020 

○ Document the results and conclusions obtained from the experiments for the           

2nd evaluation. 

July 27 - 31, 2020 (2nd evaluation)  

● Aug 1, Aug 15, 2020 

○ Develop a deep-compression network that works on entire events and can           

run in resource-constrained systems such as the trigger system, based on the            

previous months’ findings. Analyze its performance. 

○ (Optional) Explore the possibility of anomaly detection using the designed          

autoencoder-network. 



● Aug 16 - Aug 23, 2020 

○ Document the findings and write a white paper if needed. 

● Aug 24 - Aug 31, 2020 

○ Code submission and final evaluations.  

 


