
Deep-compression for HEP data

Honey Gupta (hn.gpt1@gmail.com)

Google Summer of Code 2020 & CERN - HSF

1

Encoder

Motivation
● There are approximately 1.7 billion events occurring inside the ATLAS detector, each second.
● Storage of these events is limited by the event size and a reduction of the event size will allow for searches that were

not previously possible.

Deep-compression
● Deep compression refers to usage of autoencoders for

performing data compression.

● Learn the data distribution by projecting it to a
lower-dimension and then reprojecting.

● The idea is to use deep compression for High Energy
Physics (HEP) data and check their efficacy.

A typical autoencoder
(encoder+decoder) network

Input Output

Decoder

2

3

Experiments with 4D data

Normalization
An important part of training any machine learning algorithm is data preparation and analysis. Hence, we analyse the data distribution of
the provided 4 dimensional data containing the parameters: m, p_t, phi and eta when normalized using different normalization methods.

No normalization Standard normalization Custom normalization

Data distribution for 4D data 4

Experiment details
To analyze effects of normalization on compression
● trained and tested a simple model - latent space of 3

● input - 4D data

Ideally, the decompressed 4D data should be same as the input data and hence we train the autoencoder by using a
reconstruction loss as the optimization loss function:

Model description:

The model contains 7 fully-connected layers with 200, 100, 50,
3, 50, 100, 200 nodes and Tanh activation layer after each
layer.

5

Plots of the relative reconstruction error for each compressed variable for the entire test-set:

No normalization Standard normalization Custom normalization

Observations:
● High bias in the non-normalised model. pt has low error whereas eta very high reconstruction error.
● Standard normalization has highest error for most of the parameters among the three models
● Custom normalization has better performance for most of the parameters as compared to the others

The custom norm data produced the lowest mean squared error on the test-set and is able to capture
correlations among variables in a better way, I chose custom normalization for all further experiments.

Normalization experiments

6

Normalization type MSE on the test-set

None 0.5181

Standard 0.01111

Custom/ 0.0007314

Different variants of compression network
Next, I tried 2 variants of the autoencoder models that had the same 7 layer autoencoder with similar node configuration as the previous model. The
dissimilarity is in the activation layer and batchnorm layer.

● The first model has tanh activation and no batchnorm layer (the base model)
● The second has Leaky Rectified Linear Unit (ReLU) [1] activation and batchnorm [2] after each layer
● The third model has Exponential Linear Unit (ELU) [1] and batchnorm after each layer

Note that the MSE for the test-set is calculated on the custom normalized data, whereas the individual mean relative reconstruction errors are
calculated on unnormalized data.

Note that the test-set contains custom-normalized data, while the individual errors are calculated on unnormalized data.

Model m pt phi eta MSE on the test-set

Tanh, no BN 0.010748 -0.0001039 0.0007383 0.002638 0.0007314

LeakyReLU, BN 0.004853 -0.001126 0.008089 -0.02475 0.0005750

ELU, BN 0.005528 -0.0007568 -0.003144 -0.0002156 0.0005754

Mean of relative reconstruction error

[1] https://en.wikipedia.org/wiki/Rectifier_(neural_networks) [2] https://en.wikipedia.org/wiki/Batch_normalization 7

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Batch_normalization

Variants of compression network
Plots of the relative reconstruction error for each compressed variable for the entire test-set:

Tanh, no BN LeakyReLU, BN ELU, BN

Observations:
● LeakyReLU model has moderate performance (based on the variance of relative error and MSE on the test-set).
● Tanh and ELU have comparable performance. Tanh has lower variance and mean for the relative error but ELU has lower MSE.
● Hence ELU model can be said to be the better among by considering both the relative error and MSE, since there is not much difference

between ReLU and ELU’s MSE for the test-set.

8

Test-set size: 27945
Hardware for computation: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz, 8 cores

Data loading execution time: 0.10674s
Data loading memory: 3.668 MBs

Execution time and memory allocation

Model Model initialization
time (s)

Model load time
(s)

Encoding time
(s)

Decoding time
(s)

Encoding memory
alloc (MB)

Decoding memory
alloc (MB)

Tanh, no NN 2.5174 0.05932 0.03934 0.02113 0.0024 0.1780

LeakyReLU, BN 2.5903 0.08180 0.12613 0.10033 0.0076 0.2240

ELU, BN 2.4373 0.07940 0.16376 0.15237 0.0064 0.1945

Observations:
● ELU has exponential component, hence it’s runtime is higher
● Tanh also has exponential component, but the batchnorm layer in other two models increases execution time.
● Overall, we can say that a model without the exponential component i.e. with a ReLU activation and without Batch-normalisation

should perform the best in terms of execution time
9

Experiment with the loss function

● No re-training done for this network, original training from 4D network (MSE)
● Trained another model with the same configuration but with L1 loss

Model details:
● LeakyReLU, Batch Normalization
● Custom-norm, 4D data

Model m pt phi eta MSE on the test-set

MSE 0.162 0.0369 1.642 7.206 0.0005750

L1 0.302 0.0203 1.385 2.364 0.01211852

Variance of relative reconstruction error

10

Observations:
● Since MSE is used as a metric for analysing the test-set error, MSE as a loss function has much less error
● However, the compression performance could be better judged by using the response plots which show the

distribution of the relative residual error

MSE vs L1 - residual plots
LeakyReLU, BN, MSE LeakyReLU, BN, L1

11

Observations:
● No significant difference between the results with two different loss functions

Note that the y-axis of the plots is different

LeakyReLU, BN, MSE LeakyReLU, BN, L1

12

MSE vs L1 - Correlation plots

Observation:
● Higher correlation between pt and m for MSE mean that the relative error of reconstruction for these variables are correlated

Note that the axes of the plots is different

13

Experiments with 27D data

14

In order to transition to 27D data, we formulated the following tasks:

● Analyse the available data

○ plot the distribution of each variable

○ compare the plots with the plots mentioned in prior experiments (Eric Wullf’s thesis, a Masters student

who worked on the project earlier)

● Test the available pre-trained model

○ create plots from the pre-trained model

○ compare and validate the published results

● Train the model on the available data

○ create response and correlation plots

○ analyse the performance

Tasks

1. Data distribution - 27D

15

We visualize the data distribution for each variable in the
training set

Data distribution - 27D (cont.)

16

Data distribution - 27D (cont.)

17

Model details for the available pre-trained
model

● LeakyReLU, BN
● Custom-norm, 27D data
● Latent space = 20
● Model

○ 27-200-200-200-20-200-200-200-27

Model details for the available results

● LeakyReLU, BN
● Custom-norm, 27D data
● Latent space = 14
● Model

○ 27-200-200-200-14-200-200-200-27

2: Comparison with existing results

18

Plots from the available results Plots for the results from the pre-trained model

19

Observations:
● Performance of the available pretrained seem to be very similar to the existing results

Note:
● The variable N90Constituents was not casted to int for the pre-trained model, which leads to the difference in the output plots
● the axes of the plots are slightly different

20

Plots from the available results Plots for the results from the pre-trained model

Plots for the results from the pre-trained modelPlots from the available results

21

Observations:
● Changes in the latent space dimension changes the correlations

Overall correlation plot for the pre-trained model

22

Observations:
● We can observe that errors for different

variables have considerable correlation among
themselves

● This gives a glimpse of the ability of the
network to compress different variables and
also the tradeoff if some variable is focussed
more

Model details:
● LeakyReLU, BN
● Custom-norm
● Latent space = 20
● Model - [27, 400, 400, 200, 20, 200, 400, 400, 27]

`

3. Re-training the network on 27D data

MSE on test-set = 7.844e-06

23
A comment on the training and validation loss plot - For this particular split and the training settings, the network shows a sharper decrease in the validation loss as
compared to the training loss while training. A reason for this could be that the particular split/hyperparameter makes the network learn the data distribution in a
better way. An interesting experiment would be to retrain the network with different settings and observe the behaviour.

Input-output plots for the retrained model

24Observations:
● The plots show that a faithful reconstruction for majority of the variables. Since we did not cast the N90 Constituents

variable, the reconstructed outputs for this variable seems troublesome.

25

Input-output plots for the retrained model (cont.)

Observations:
● Similarly in the case of the variables shown here, most of the reconstructions seem good, except for ActiveArea and

ActiveArea4vec_pt variables as we have not casted the output variables to int.

26

1D response plots for the retrained model

Observations:
● The 1D response plots here show that the distribution of the relative error. We notice that most of the variables are

zero centered and have low variance, which depicts that compression model performs fairly well for these variables.

Plots for 27D data - retrained model

27

Plots for 27D data - retrained model

28

Plots for 27D data - retrained model

29

Plots for 27D data - retrained model

30

Plots for 27D data - retrained model

31

● Performance on the test-set

32

Standard norm vs Custom norm on PhenoML data

Normalization type MSE on the test-set

Standard 2.7026193e-05

Custom 8.7358785e-06

33

1D response plots

Standard norm on PhenoML dataMore tails lead to
the resolution
being worse for
standard norm

34

1D response plots

Custom norm on PhenoML data

35

Correlation plots
Standard norm Custom norm

Std vs Custom norm on PhenoML data

MSE on test-set:
● “Full” dataset (500 MB of jets): 2.485e-06 - 2-3 days, batch size 8k (using the one from before)

○ More requires too much memory to be loaded all at once...

● Half- dataset: 8.735e-06 - 24h
● Question for later: if we increase the batch size && use the full dataset it should take less time...check E. Wulff’s thesis

1D response plots
Full training-set Half training set

36

Variation in training-set size

37

Variation when trained with half data
Correlation plots

Full training-set Half training set

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets [number of events?]

`

38

Normalization type MSE on the test-set

atop 2.7047477e-06

Jets 2.4856113e-06

Jets data with custom norm atop events with only jets data with custom norm

Test with atop_10fb data - events with only jets
If any other particle, exclude eventgamma-top

Test with atop_10fb data - events with only jets
Jets data with custom norm atop events with only jets data with custom norm

39

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

40

Normalization type MSE on the test-set

atop 2.6954153e-06

Jets 2.4856113e-06

Jets data with custom norm all events but only jet particles

Test with atop_10fb data - all events but only jet particles
Keep all the event, but use only the type of particles == jets in network dataset

Test with atop_10fb data - all events but only jet particles
Jets data with custom norm all events but only jet particles

41

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

42

Jets data with custom norm atop data with custom norm

Test with atop_10fb data - all events
All particles are there

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

43

Normalization type MSE on the test-set

atop 6.7475153e-06

Jets 2.4856113e-06

Jets data with custom norm atop data with custom norm

Test with atop_10fb data - all events
All particles are there

Test with atop_10fb data - all events
Jets data with custom norm atop data with custom norm

44

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

45

Test with atopbar_10fb data

Jets data with custom norm atopbar data with custom norm

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

46

Test with atopbar_10fb data
Normalization type MSE on the test-set

atopbar 6.674753e-06

Jets 2.4856113e-06

Jets data with custom norm atopbar data with custom norm

Test with atop_10fb data
Jets data with custom norm atopbar data with custom norm

47

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

48

Normalization type MSE on the test-set

ttbar 2.915699e-06

Jets 2.4856113e-06

Jets data with custom norm ttbar events with only jets data with custom norm

Test with ttbar_10fb data - events with only jets

Jets data with custom norm ttbar events with only jets data with custom norm

Test with ttbar_10fb data - events with only jets

49

50

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

Normalization type MSE on the test-set

ttbar 3.0117515e-06

Jets 2.4856113e-06

Jets data with custom norm all events but only jet particles

Test with ttbar_10fb data - all events but only jet particles

Test with ttbar_10fb data - all events but only jet particles
Jets data with custom norm all events but only jet particles

51

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

52

Jets data with custom norm ttbar data with custom norm

Test with ttbar_10fb data - all events

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

Normalization type MSE on the test-set

ttbar 8.184939e-06

Jets 2.4856113e-06

Jets data with custom norm ttbar data with custom norm

Test with atop_10fb data - all events

53

Test with ttbar_10fb data - all events
Jets data with custom norm ttbar data with custom norm

54

55

Percentage % Percentage %

Particle distribution plot for different processes in phenoML
dataset - SM

56

Percentage % Percentage %

Particle distribution plot for different processes in phenoML
dataset - SM

57

Particle distribution plot for different processes in phenoML
dataset - SM

Percentage % Percentage %

58

Particle distribution plot for different processes in phenoML
dataset - BSM

59

Particle distribution plot for different processes in phenoML
dataset - BSM

60

Particle distribution plot for different processes in phenoML
dataset - BSM

61

Particle distribution plot for different processes in phenoML
dataset - BSM

Model details:
● LeakyReLU, BN, Custom-norm
● Latent space = 3
● Model - [4, 400, 400, 200, 3, 200, 400, 400, 4]
● Trained on njets_10fb dataset - containing only jets

`

62

Process e+ e- m+ m- \gamma

stop_02 8.737900e-05 8.628796e-05 9.500347e-05 0.0001134310 1.1838656e-05

gluino_02 6.45536e-05 5.087386e-05 9.127547e-05 7.675688e-05 1.2573055e-05

Testing a Jets-trained-model on different particles

63

Testing a Jets-trained-model on different particles

Mean and std-dev for the residuals of pt

64

Testing a Jets-trained-model on different particles

gluino_02

Testing a Jets-trained-model on different particles

stop_02

65

66

Testing a chan2a-trained-model on chan3 of DarkMachines
data

Model trained on chan2a doesn’t converge that well, and performs moderately on jets

67

Testing a chan2a-trained-model on chan3 of DarkMachines
data

Detailed summary

● Fixed the GitHub repo by adding missing references to the files

○ Commit links: [a558e70, 8f1253d, 0faabf1]

● Extracted data from ROOT files and created binary (pickle) files for processing

● Plotted the data distribution to validate that the working data is correct

○ Link to the plots

● Created plots from the pre-trained model available to compare and validate the published results

(thesis of Eric Wulff)

○ Link to the plots

● Understood the functioning of HTCondor

● Wrote documents (starting-guide) to work on HTCondor

○ Link to the doc

68

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/a558e70a31d6caddae7f522f9a6d3d77490e7bcd
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/8f1253d24da0d4586af18c9b0310a7a48fbaff62
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/f0faabf12ae154e3088d2561718ac80816d4bfce
https://drive.google.com/drive/folders/1UCRG_jrHxGp5ivB9sKyTWccgAT05VuLz?usp=sharing
https://drive.google.com/drive/folders/1T0vKkEV-uQ0LpnsYNs6-fedEcvJrZ8d3?usp=sharing
https://docs.google.com/document/d/1chrlFBSHY6bq46_U5uwGbzEposSyamMLqsX99605UUo/edit?usp=sharing

● Created scripts for

○ Processing and saving the ROOT files [0531239]

○ Scaling the data by fitting scaling models for each data [06161dc]

○ Custom normalising the data [a93afeb]

 on HTCondor

● Modified and created training scripts for 27D data to run on the GPUs available at HTCondor

○ [f169d01, ef03a0e]

● Checked the training strategy for the 27D model

○ Number of epochs or stopping point was not mentioned anywhere

○ Found that an MSE loss around 1e-6 is sufficient for stopping

○ For custom-normalized data, it corresponds to around 500 epochs @ LR 1e-4

69

Detailed summary (cont.)

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/053123971551bccfb46d650d91a42f22aadca7e0
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/06161dc7008704ced7bb6725e6fb65c5a97cee6e
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/a93afebe94faff2d133f5503592055d8ef8d51a5
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/f169d0109c9c0c04edc4d38f4f2e62eef8cdedca
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/ef03a0e6b8f24a7eb23f7fa6f7d0a40bf6029cab

● Trained the model for 27D - [27, 400, 400, 200, 20, 200, 400, 400, 27]

○ scaled data - (link to the training summary and models)

○ custom normalized data - (link to the training summary and models)

● Checked the training time for the models

○ On an average - 3.12 minutes per epoch

○ For 500ep - 25:35 hours on a GPU @ batch-size of 8192

● Created plots for the trained models

○ Scaled data - (link to the plots)

○ Custom-normalized data - (link to the plots)

● Compared L1 with MSE loss for 4D data

○ Link to the plots

70

Detailed summary (cont.)

https://drive.google.com/drive/folders/1u6TKhs3RNg2DKG1uQLeeAYAzFUq8mAQV?usp=sharing
https://drive.google.com/drive/folders/1qFtBeGiEHvquqZ2xFOctKPWtNH8BUwxj?usp=sharing
https://drive.google.com/drive/folders/1m2PN_Ytt_97mAhCIOljLELtQKPwhbF2Z?usp=sharing
https://drive.google.com/drive/folders/1wZ7KwhTXHdX755ct2uVMGgdebO8M20tD?usp=sharing
https://drive.google.com/drive/folders/1Sj0omQHxpIMi78cS5rmAeDw-EO6FrIih?usp=sharing

