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Encoder

Motivation
● There are approximately 1.7 billion collision events occurring inside the ATLAS detector, each second. 
● Storage of these events is limited by the event size and a reduction of the event size will allow for searches that were 

not previously possible.

Deep-compression
● Deep compression refers to usage of autoencoders for 

performing data compression. 

● Learn the data distribution by projecting it to a 
lower-dimension and then reprojecting.
 

● The idea is to use deep compression for High Energy 
Physics (HEP) data and check their efficacy.

A typical autoencoder 
(encoder+decoder) network 

Input Output

Decoder
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Outline of goal and studies performed so far
● Previous work: [Eric Wulff’s thesis] compressed physics objects called “jets” (up to 27 variables per jet)
● Goal of this project: test event-level compression rather than jet-level compression

○ One event has multiple physics objects, jets but also electrons, photons, muons…

● First milestones (using ATLAS data, so we can’t show plots yet):
○ Reproducing the results of previous work (network of 4 and 27 initial variables)
○ Tests on normalization function and loss functions
○ Tests of timing of network training on computing cluster

● Plans for next month (using public ML data):
○ Extend the network to event level
○ Understand how robust the network is when trained/tested on different physics processes
○ Test anomaly detection

Why we want to use Minsky: to accelerate the network training, hyperparameter scans

What we would like to use on Minsky: 

- Pytorch on GPUs 
- Storage for data (approximately 50 GB) 3

A jet

Image © ATLAS/CERN

http://lup.lub.lu.se/student-papers/record/9004751
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Tests with 4D data



● Plots from Eric Wulff’s thesis

Normalization
An important part of training any machine learning algorithm is data preparation and analysis. Hence, we analyse the data distribution of 
the provided 4 dimensional data containing the parameters: m, p_t, phi and eta when normalized using different normalization methods.

No normalization Standard normalization Custom normalization

Data distribution for 4D data 5

http://lup.lub.lu.se/student-papers/record/9004751


Experiment details

To analyze effects of normalization on compression
● trained and tested a simple model - latent space of 3 

● input - 4D data

Ideally, the decompressed 4D data should be same as the input data and hence we train the autoencoder by using a 
reconstruction loss as the optimization loss function:

Model description:

The model contains 7 fully-connected layers with 200, 100, 50, 
3, 50, 100, 200 nodes and Tanh activation layer after each 
layer. 
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We made plots of the relative reconstruction error for each compressed variable for the entire test-set:

Observations:
● High bias in the non-normalised model. pt has low error whereas eta very high reconstruction error.
● Standard normalization has highest error for most of the parameters among the three models 
● Custom normalization has better performance for most of the parameters as compared to the others 

The custom norm data produced the lowest mean squared error on the test-set and is able to capture correlations 
among variables in a better way, we chose custom normalization for all further experiments.

Normalization results
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Normalization type MSE on the test-set

None 0.5181

Standard 0.01111

Custom 0.0007314



Different variants of compression network
Next, I tried 2 variants of the autoencoder models that had the same 7 layer autoencoder with similar node configuration as the previous model. The 
dissimilarity is in the activation layer and batchnorm layer.

● The first model has tanh activation and no batchnorm layer (the base model)
● The second has Leaky Rectified Linear Unit (ReLU) [1] activation and batchnorm [2] after each layer
● The third model has Exponential Linear Unit (ELU) [1] and batchnorm after each layer

Note that the MSE for the test-set is calculated on the custom normalized data, whereas the individual mean relative reconstruction errors are 
calculated on unnormalized data.

Note that the test-set contains custom-normalized data, while the individual errors are calculated on unnormalized data.

Model m  pt phi eta MSE on the test-set

Tanh, no BN 0.010748 -0.0001039 0.0007383 0.002638 0.0007314

LeakyReLU, BN 0.004853 -0.001126 0.008089 -0.02475 0.0005750

ELU, BN 0.005528 -0.0007568 -0.003144 -0.0002156 0.0005754

Mean of relative reconstruction error

[1] https://en.wikipedia.org/wiki/Rectifier_(neural_networks) [2] https://en.wikipedia.org/wiki/Batch_normalization 8

Observations:
● LeakyReLU model has moderate performance (based on the variance of relative error and MSE on the test-set).
● Tanh and ELU have comparable performance. Tanh has lower variance and mean for the relative error but ELU has lower MSE.
● Hence ELU  model can be said to be the better among by considering both the relative error and MSE, since there is not much difference 

between ReLU and ELU’s MSE for the test-set.

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Batch_normalization


Experiment with the loss function

● No re-training done for this network, original training from 4D network (MSE)
● Trained another model with the same configuration but with L1 loss

Model details:
● LeakyReLU, Batch Normalization
● Custom-norm, 4D data

Model m  pt phi eta MSE on the test-set

MSE 0.162 0.0369 1.642 7.206 0.0005750

L1 0.302 0.0203 1.385 2.364 0.01211852

Variance of relative reconstruction error
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Observations:
● Since MSE is used as a metric for analysing the test-set error, MSE as a loss function has much less error
● However, the compression performance could be better judged by using the response plots which show the 

distribution of the relative residual error
● No difference in performance of physics variables → stay with MSE



Test-set size: 27945
Hardware for computation: Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz, 8 cores

Data loading execution time: 0.10674s
Data loading memory: 3.668 MBs

Execution time and memory allocation 

Model Model initialization 
time (s)

Model load time 
(s)

Encoding time 
(s)

Decoding time 
(s)

Encoding memory 
alloc (MB)

Decoding memory 
alloc (MB)

Tanh, no NN 2.5174 0.05932 0.03934 0.02113 0.0024 0.1780

LeakyReLU, BN 2.5903 0.08180 0.12613 0.10033 0.0076 0.2240

ELU, BN 2.4373 0.07940 0.16376 0.15237 0.0064 0.1945

Observations:
● ELU has exponential component,  hence it’s runtime is higher
● Tanh also has exponential component, but the batchnorm layer in other two models increases execution time.
● Overall, we can day that a model without the exponential component i.e. with a ReLU activation and without Batch-normalisation 

should perform the best in terms of execution time
10
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Tests with 27D data



12

In order to transition to 27D data, we formulated the following tasks:

● Analyse the available data 

○ plot the distribution of each variable

○ compare the plots with the plots mentioned in prior experiments (Eric Wullf’s thesis, a Masters student 

who worked on the project earlier)

● Test the available pre-trained model

○ create plots from the pre-trained model 

○ compare and validate the published results

● Train the model on the available data

○ create response and correlation plots

○ analyse the performance

Tasks 



Model details for the available pre-trained 
model

● LeakyReLU, BN
● Custom-norm, 27D data
● Latent space = 20
● Model 

○ 27-200-200-200-20-200-200-200-27

Model details for the available results

● LeakyReLU, BN
● Custom-norm, 27D data
● Latent space = 14
● Model 

○ 27-200-200-200-14-200-200-200-27

Comparison with existing results
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Plots from Erik Wulff’s thesis

14

Observations:
● Performance of the available pretrained seem to be 

very similar to the existing results

http://lup.lub.lu.se/student-papers/record/9004751


Overall correlation plot for the pre-trained model
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Observations:
● We can observe that errors for different 

variables have considerable correlation among 
themselves

● This gives a glimpse of the ability of the 
network to compress different variables and 
also the tradeoff if some variable is focussed 
more



Model details:
● LeakyReLU, BN
● Custom-norm
● Latent space = 20
● Model - [27, 400, 400, 200, 20, 200, 400, 400, 27]

Results of the test: performance comparable with that obtained in the thesis → network is validated, can move on!

3. Re-training the network on 27D data

Error on test-set = 7.844e-06
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A comment on the training and validation loss plot - For this particular split and the training settings, the network shows a sharper decrease in the validation loss as 
compared to the training loss while training. A reason for this could be that the particular split/hyperparameter makes the network learn the data distribution in a 
better way. An interesting experiment would be to retrain the network with different settings and observe the behaviour.
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Conclusions

● Custom-normalization leads to better reconstruction error and the residual plots show a better 
performance

● The plots and the test-set MSE for the retrained model show that the network is able to perform 
compression fairly well for this dataset

● Using MSE as a loss function seems good for the task at hand. However, a better loss function can be 
formulated if better compression performance is needed for some specific variables 

● Few observations noted during the experimentation:
○ An MSE loss around 1e-6 is sufficient for stopping, which corresponds to around 500 epochs for a LR of 1e-4
○ Training time for the models

■ On an average -  3.12 minutes per epoch on a GPU
■ For 500ep - 25:35 hours on a GPU @ batch-size of 8192

● Next step: move on to event-level compression
`



Detailed summary

● Fixed the GitHub repo by adding missing references to the files

○ Commit links: [ a558e70, 8f1253d, 0faabf1 ]

● Extracted data from ROOT files and created binary (pickle) files for processing

● Created plots from the pre-trained model available to compare and validate the published results 

(thesis of Eric Wulff)

○ Link to the plots

● Understood the functioning of HTCondor

● Wrote documents (starting-guide) to work on HTCondor

○ Link to the doc

18

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/a558e70a31d6caddae7f522f9a6d3d77490e7bcd
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/8f1253d24da0d4586af18c9b0310a7a48fbaff62
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/f0faabf12ae154e3088d2561718ac80816d4bfce
https://drive.google.com/drive/folders/1T0vKkEV-uQ0LpnsYNs6-fedEcvJrZ8d3?usp=sharing
https://docs.google.com/document/d/1chrlFBSHY6bq46_U5uwGbzEposSyamMLqsX99605UUo/edit?usp=sharing


● Created scripts for 

○ Processing and saving the ROOT files [ 0531239 ]

○ Scaling the data by fitting scaling models for each data [ 06161dc ]

○ Custom normalising the data [ a93afeb ]

        on HTCondor

● Modified and created training scripts for 27D data to run on the GPUs available at HTCondor 

○ [ f169d01, ef03a0e ] 

● Checked the training strategy for the 27D model

○ Number of epochs or stopping point was not mentioned anywhere

○ Found that an MSE loss around 1e-6 is sufficient for stopping

○ For custom-normalized data, it corresponds to around 500 epochs @ LR 1e-4
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Detailed summary (cont.)

https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/053123971551bccfb46d650d91a42f22aadca7e0
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/06161dc7008704ced7bb6725e6fb65c5a97cee6e
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/a93afebe94faff2d133f5503592055d8ef8d51a5
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/f169d0109c9c0c04edc4d38f4f2e62eef8cdedca
https://github.com/Autoencoders-compression-anomaly/AE-Compression-pytorch/commit/ef03a0e6b8f24a7eb23f7fa6f7d0a40bf6029cab

