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EXTENDED ABASTRACT 

 
Several classes of algorithms, such as clustering (WU et al, 2016), forecasting (MOUNCE et al, 

BIREK et al, 2014), filtering (YE et al, 2011) and optimization (HAGHIGHI and RAMOS, 2011) are 

widely applied for leakage detection and localization. Mainly in the last decades, when the monitoring 

systems have become popular and the processing capacity of computer have increased, data mining 

and optimization have changed the routine of water companies.  

Observing the hydraulic system, measured pressure and flow are the result of a non-linear 

combination of consumed water and leakages, modified by control devices. In signal processing field, 

the leakages and consumers can be read as sources. These sources have different behaviors and their 

actions will result in a final pressure and flow signals, acquired by sensors. Bearing it in mind, a set 

of techniques for signal separation without previously knowledge of the sources, so called, blind 

source separation (BSS) can be applied on pressure and flow data for leakage detection. Independent 

Component Analysis (ICA), one algorithm from the class of BSS, have been used successfully in 

health-related research (WESSEL, 2018), seismic activities (CAPUANO et al., 2017), image analysis 

(AHMAD et al., 2017), discharge flow separation in water systems (ZHENG et al., 2016). ICA is 

able to differentiate a linear combination in a data set, extracting components of source signal without 

variation. (LANGLOIS et al., 2010).  

For the Battle of Leakage Detection and Isolation (BattleDIM), ICA is applied on hydraulic data, for 

source separation helping to identify water consumption and noise sources. The results show that 

noise source is significantly affected by leakages. The second stage of leak detection methodology, a 

statistical controlling method, Abrupt Change Point Detection (CPD), is applied using noise data as 

input. CDP assumes that changes in data affect the statistical properties of the dataset, such as average 

and standard deviation. Because of this, in general, CPD techniques monitor changes in some of these 

parameters, identifying abrupt changes (LAVIELLE, 2005; BRENTAN et al., 2017).     

Optimization processes also gained space in research on WDS, such as in the optimization of pump 

and valve control (Mala-Jetmarova, et al, 2017), network calibration (Savic, et al, 2009), etc. Since 

BattleDIM offer a non-calibrated model, and pressure/flow dataset, calibration process is applied in 

two different stages. The first one, a dataset of normal condition is used to calibrate roughness and 

base demand using Particle Swarm Optimization algorithm linked to Epanet hydraulic simulator. The 

results are used on a second stage, where pressure and flow during detected leakages by the ICA-

CDP algorithm is used for calibration of a leakage event. A 24h dataset is used and leakage flow and 

nodal leaking position are calibrated. The main objective of this stage is to identify the region of 

leaking pipe. 

 



 

METHODOLOGY 
 

The methodology used in this work is divided into two parts: Leakage Detection and Leakage 

Isolation. The first one is based on data process and signal analysis and has the main goal to identify 

when leakages start in the network. The second part, Leakage Isolation, is based on optimization 

process for calibration, and it’s responsible to localize the leakage region.  

 

Leakage Detection  

  

Flow and pressure data are used to detect leaks, being separeted in two sources by ICA algorithm. 

Langlois et al. (2010) present the fundamentals of the ICA method, which can be denoted through a 

random vector observed 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑚]𝑇 where 𝑚 elements are mixtures of 𝑚 independent 

elements of a random vector 𝑆 = [𝑆1, 𝑆2, … , 𝑆𝑚]𝑇 given by: 

 

𝑋 = 𝐴𝑆 (eq. 1) 

where 𝐴 is a mix matrix 𝑚 × 𝑚, the sample value of 𝑋𝑗 is indicated by 𝑥𝑗 and 𝑗 = 1,2, … , 𝑚. ICA 

aims to find an unmixing matrix 𝑊, or the inverse of A, which provides 𝑌, what is the best possible 

way to find 𝑆:  

 

𝑌 = 𝑊𝑋 ≅ 𝑆 (eq. 2) 

 

ICA is applied for pairs of flow and pressure, generating a large dataset of sources. These sources, 

usually, can represent with better precision, anomalies, than mixed signal, mainly when the noise 

source is analyzed. A post-processing methodology is used on the new dataset to identify the start 

time of leakages, the CPD method presented by Lavielle (2005). The algorithm simultaneously 

determines all change points, given a statistical control parameter, minimizing a penalized contrast 

function. The contrast function allows to accurately determine the points where statistical parameter 

control changes, and the penalty function seeks to reduce the number of points of changes 

(BRENTAN et al., 2017). In this study, average and standard deviation values are used as statistical 

control parameter.  

 

Leakage Location  

 

The leak location process consists of two steps, the first one calibrates the pipe roughness and nodal 

demands for normal scenario, using the PSO algorithm. The second step uses the results of the 

calibration process to identify the leakage magnitude and region in the network. The sum squared 

error of dimensionless pressure, flow and tank level are used as objective function. A single-objective 

problem F is stated, as presented in equation 3.  
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where 𝑃𝑡,𝑖
𝑚 is the modelled pressure in the node 𝑖 in a network with 𝑁𝑛 monitored nodes, at time 

step 𝑡 in a simulation during 𝑇. 𝑃𝑡,𝑖
𝑜  is the observed pressure for the same node 𝑖 at time step 𝑡. 

𝑃𝑜̅̅̅̅  is the average pressure of observed dataset. 𝑄𝑡,𝑗
𝑚  is the modelled flow in the pipe 𝑗, in a network 

with 𝑁𝑝 monitored pipes, 𝑄𝑡,𝑗
𝑜  is the observed flow in the same pipe and 𝑄𝑜̅̅ ̅̅  is the average flow 

of observed flow. Finally, 𝐿𝑡,𝑘
𝑚  is the modelled tank level at tank 𝑘 at time step 𝑡 in a network with 

𝑁𝑇 monitored tanks, and 𝐿𝑡,𝑘
𝑜  is the observed tank level at the same tank.  

 

The fist calibration process has as variables all nodes and all pipes of the water system. PSO algorithm 

(EBERHART and KENNEDY, 1995) is applied to minimize the single-objective problem. A swarm 



or population is compound of possible solutions of the problem. In the first iteration of the method 

the particles’ velocity and position are randomly distributed within a range of interest. The objective 

function is evaluated and the velocity and position are updated. The velocity update is calculated as 

a linear combination of three components, as presented in the equation (4).  

 

𝑣𝑖𝑑
𝑛+1 = [𝑤. 𝑣𝑖𝑑

𝑛 +
𝑐1.𝑟1(𝑝𝑖𝑑

𝑛 −𝑥𝑖𝑑
𝑛 )

∆𝑡
+  

𝑐2.𝑟2(𝑔𝑖𝑑
𝑛 −𝑥𝑖𝑑

𝑛 )

∆𝑡
] (eq. 4) 

 

𝑥𝑖𝑑
𝑛+1 = 𝑥𝑖𝑑

𝑛 + 𝑣𝑖𝑑
𝑛+1. ∆𝑡 (eq. 5) 

 

where 𝑑 = 1,2, . . . , 𝐷, is the dimension of decision variable vector, 𝑛 = 1,2, . . . , 𝑁 and 𝑁 is the 

iteration number. 𝑟1 and 𝑟2 are random numbers within the range [0,1]. 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝐷) is 

the best position occupied by a particle and 𝐺𝑖 = (𝑔𝑖1, 𝑔𝑖2, … , 𝑔𝑖𝐷) is the best position occupied by 

the swarm. Part of the update is weighted by the cognitive coefficient (𝑐1) social coefficient (𝑐2), 

Finally, the velocity 𝑣𝑖𝑑
𝑛  is weighted by the coefficient of inertia (w). 

 

 

BATTLEDIM – CASE STUDY 
The methodology is applied to the L-Town network provided in BattLeDIM.  The dataset is 

compound by 1 tank water level sensor, 3 flow sensors, 33 pressure sensors and 82 Automated 

Metered Readings. These points are monitored in 2018 and 2019 every 5 minutes. For 2018, 10 

leakages are fixed, providing for participants the pipe fixed and the time.  

 

The application of the ICA is done with different combination of pressure and flow. The choice of 

pairs (pressure and flow data) follows the division of the network into areas proposed by BattLeDIM, 

(e.g areas A, B and C). Area A and B are supplied by two reservoirs, while area C is supplied by a 

tank. 

The ICA method resulted, for each application, two sets of components in which they are analyzed 

by the CPD technique and several changes points in the signals are indicated. Figure 1 shows the 

results of these applications in one pair of pressre/flow data. The first component follows the demand 

pattern. The second component has variations in the data directly associated with the leaks.  

 

Figure 1 – Leak detection - application of ICA and CPD 

The CPD indications are used to built the report file, with the start time for possible leakages in 2019.  



In BattleDIM’ network, the calibration process demand and roughness are composed by 1687 

variables (782 nodal demands and 905 roughness). One week of pressure, flow and tank level data 

are used for the process. Figure 02 shows the comparison of modelled and observed flow in reservoir 

R1 and R2.  

 

Figure 2– Leak Isolation - application of PSO for calibration of nodal demand and pipe roughness. 

It’s possible to verify that leakages increase the outlet flow of reservoirs R1 and R2, making the 

difference between modelled and observed data increase. This fact can be used to estimate the 

magnitude and the start time of the leakages in the network. The black ellipsis highlights the period 

used for calibration.  

With the results of the first calibration, the region of leaks is determined, in a second calibration 

process. A unique and constant leakage flow and node are calibrated. While the simplification of 

constant flow makes the hydraulic simulation softer, this also can affect the precision of the results. 

For the 10 leakages of 2018, the marginal error, calculated as the average Euclidian distance between 

the leaking nodes and the real leaking pipes is around 300m.  
 

 

Keywords: Leakage Detection and Localization, Blind Source Separation, Change Point Detection, 

Calibration, Particle Swarm Optimization. 

 

 

SUMMARY 

 
Leakage detection and localization is one of the most important challenges of water companies. This 

work presents a multi-step methodology for contributing with discussions in this field. For the Battle 

of Leakage Detection and Isolation (BattleDIM), Independent Component Analysis, a blind source 

separation algorithm, is applied on hydraulic data, for source separation helping to identify water 

consumption and noise sources. The results show that noise source is significantly affected by 

leakages. In a second stage of leak detection methodology, a statistical controlling method, Abrupt 

Change Point Detection (CPD), is applied using noise data as input. CDP assumes that changes in 

data affect the statistical properties of the dataset, such as average and standard deviation. Calibration 

process is applied in two different stages in order to localize leakages. The first one, a dataset of 

normal condition is used to calibrate roughness and base demand using Particle Swarm Optimization 

algorithm linked to Epanet hydraulic simulator. The results are used on a second stage, where pressure 



and flow during detected leakages by the ICA-CDP algorithm is used for calibration of a leakage 

event. A 24h dataset is used and leakage flow and nodal leaking position are calibrated. The main 

objective of this stage is to identify the region of leaking pipe. 
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