ls"'dc "_\J‘a"
:':-; ¥ ;":; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
‘1:,_..>' ,.‘-.:l" Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJCS

AN ANALYSIS OF CONCEPTS AND TECHNIQUES
CONCERNING THE USE OF HIDDEN MARKOV
MODELS FOR SEQUENTIAL DATA

Advait Pravin Savant
Sardar Patel Institute of Technology, Mumbai, India

adisavl7@gmail.com

Publication History

Manuscript Reference No: IRJCS/RS/V0l.07 /Issue08/AUCS10083
Received: 09, August 2020

Accepted: 19, August 2020

Published: 31, August 2020

DOI: https://doi.org/10.26562 /irjcs.2020.v0708.002

Citation: Advait (2020). An Analysis of Concepts and Techniques concerning the use of Hidden Markov Models for
Sequential Data. IRJCS:: International Research Journal of Computer Science, Volume VII, 220-226.
https://doi.org/10.26562 /irjcs.2020.v0708.002

Peer-review: Double-blind Peer-reviewed

Editor: Dr.A.Arul Lawrence Selvakumar, Chief Editor, IRJCS, AM Publications, India

Copyright: ©2020 This is an open access article distributed under the terms of the Creative Commons Attribution License;
Which Permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

Abstract: This A lot of machine learning concerns with creating statistical parameterized models of systems based
on the data points that have been extracted from some underlying distribution depending upon the inductive bias.
In probabilistic models, we model the joint probability of the input and the output or even the conditional
probability of the output given the input (and vice versa using Bayes theorem).To elaborate, generative models
determine the probability of the input given a particular output class if it is a classification task and discriminative
models find the probability of the output class given the input. For a large class of models such as the standard
ANNs, we assume the individual data points to be independent and identically distributed. However, when it comes
to data such as rainfall measurements across successive days, there is an inherent sequential structure to the data
which the previous assumption fails to take into consideration. Hidden Markov Models are used to model sequential
data such as a time series where in for each sequence observed, the successive data points in that sequence are
temporally related and are not independent, they are a part of a series of measurements and are evolving with
respect to time-here, an independent variable. HMMs(Hidden Markov Models) are able to exploit this structure in
the data and are used for a variety of tasks which are inherently sequential such as speech recognition, language
modelling, time series etc. In this paper, we will understand and review the mathematics behind building and
training an HMM, we will understand Latent Variables, Markov Chains, the forward backward algorithm and the
Viterbi algorithm for HMMs. We will understand Lagrange Multipliers, the expectation maximization algorithm and
see how it is applied for optimization in an HMM. We will also review some of the applications of an HMM. [3]
Keywords: Hidden Markov Models; Expectation maximization algorithm; Viterbi algorithm; Baum Welch Algorithm;
Lagrange Multipliers;

I.INTRODUCTION

In the scientific community, there has been an observation that often probabilistic models are more reasonable than
deterministic models.[6] Many phenomena that we observe are not just random phenomena to be described by
Random Variables, but they are also evolving with time. A stochastic process is a family of Random Variables which
are functions of time. A Markov Chain is a stochastic process with the Markov Assumption which is that the Random
Variable at time step t depends only on the Random Variable at the previous time step and the probability
distribution of the Random Variable at time step t given all the previous Random Variables reduces to the probability
distribution of the Random Variable at time step t given the previous Random Variable at time step (t-1) and is
independent of the Random Variables which precede that.[1] Now coming back to our sequence modelling problem,
we can model the joint probability distribution of the input observations for a sequence as follows:

N
PGty o) = PG | [pGont G)
n=2

© 2014-20, IRJCS- All Rights Reserved Page-220

https://www.irjcs.com/archives
https://doi.org/10.26562/irjcs.2020.v0708.002
https://doi.org/10.26562/irjcs.2020.v0708.002
mailto:adisav17@gmail.com

l;"'dc "_\J‘a"
:'_;; ¥ ;":; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
{:!-'-‘-}- .'..’-":l. Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJCS

As we said earlier, we have to relax the assumption about the observations being independent and identically
distributed.
Under the Markov Assumption, this equation reduces to-

N
PGy g,) = pG) | | pGeasns)
n=2

We assume that the conditional distribution of the Random Variables given the previous one does not change over
time steps. This is equivalent to a stationary time series. Such a homogenous Markov Model simplifies the math and
allows us to model a large number of sequences. If the Random Variable (for all time steps) takes on K states, then
the conditional distribution of the Random Variable at one time step t given the Random Variable at the previous
time step will have (K-1) free parameters for each of the K states of the Random Variable at time step (t-1). (K-1) is
because we are modelling a probability distribution with the sum of the probabilities of the function (Random
Variable) constrained to be 1. Thus, there will be K (K-1) number of free parameters. As we increase the number of
terms as given in the conditional probability distribution, the number of free parameters will increase exponentially.

We must now understand latent variables. These are variables in our model, which are not directly observed but are
inferred based on the values of other observable variables, which can be measured. Latent variables may represent
an abstract concept or they may represent a part of physical reality. In latent variable models, the observed variable
responses are assumed to be dependent on the latent variables. We can create sequence models which can
generalize more than the Markov assumption and are consisting of a relatively limited number of parameters by
introducing latent variables.

In the Hidden Markov Model, for each observation x at time step t, we introduce a latent variable z at time step t that
is responsible for producing that observation. We make the hidden variables a Markov Chain. The distribution for
each observed variable depends only on the latent variable at that time step and the corresponding conditional
distribution determines the observed variable values. We introduce a matrix, A which is the transition matrix of the
Markov Chain of the latent variables and a matrix B that denotes the emission probabilities of the observations given
the latent variable. A(i,j) is the probability of the latent variable going from state i to state j from one time step to the
next. B(j,k) is the probability of observing input k in state j where j is the state of the latent variable. In our
homogeneous models, the emission distribution is the same across time steps. We have parameterized it using the
matrix B, HMMs can have other emission distributions such as a mixture of Gaussians.[1] We let II denote the initial
distribution of the states for the first time step.

Now that we have defined our model, we will demonstrate how to find the probability of the sequence, that
probability is the likelihood estimate of the data given the parameters. This likelihood is also our objective function
during optimization which we try to maximize. We will see how to find the most likely sequence of hidden states
given an observation sequence, this is useful after our training is done.

II. FORWARD BACKWARD ALGORITHM

We now calculate the probability of an observation sequence. We marginalize the joint distribution of the
observation sequence and latent variable states for all states the latent variables can take.

M M
p(x) = Z Z P(X1, X, . X7, Z1, Z2, ey Z7)

z;=1 zZp=1
This reduces to,

M M T
p(x) = Z Z p(er/2z;) 1_[p(ze/ 20)P (xe)22)

For each time step, we are running a summation for each of the states for an inner function, which is a product,
which increases linearly with t. Such a naive implementation would be O(M'T). We can do better. We make the
observation that there is a lot of shared computation in this expression as we traverse it and there is nested
factoring.[4] Consider the expression again, we focus on the time step (t+1) -

M M
PG) = pCress/7e0)) PG /20 @e/7)))
zp=1 Zt-1=1
In the above equation, if we start from left to right, we see that the sub-expression/pattern we have highlighted is a
function of x(t+1) and z(t+1).Let this be denoted as a. If we see the part in the brackets, this is the exact same pattern
for x(t) and z(t). We have thus realized a recursive computation. What we mean to say is that for particular values of
x(t+1) and z(t+1),we will have some corresponding o value. We thus define,

© 2014-20, IRJCS- All Rights Reserved Page-221

https://www.irjcs.com/archives

ls"'c "_\J‘a"
:':-; ¥ ‘:":; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
‘1:,_..>' ,_..-.:l" Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJCS

M
a(t+1,2e41) = P(Xer1/Ze41) Z P(2er1/2e)a(t,)

Zt=l

Substituting the values based on the matrices we have defined, we get Initialization,
a(1,z;) = m;B(z;, x;)

Induction,
M
a(t+1,z)=B(. xt_,.l)z AW) a(t, z)
i=1
And finally,
M
) = D all,z)
i=1
This is a O(TM?) forward backward algorithm which is much better than the naive approach. We take a look at what

& represents. We know,
a(l,zy =10) =ply/z; = f)p(ﬁl =1) = plxnz =10)
a2z, =) = pCea/zs =) D A@D a(lz, = D)
i=1

M
a2z, =) = PGs/z = D D P2z = /7 = D PGz = D)
i=1

M
a(2,z; =j) = p(x2/z2 = J) Z p(x1,z1 = L,z = J)
i=1
Here we see that we are just marginalizing over z, values, we thus get,
a(2,z; =j) = p(xa/z, =))p(x1,22 = J)
Thus we see that,
(2,2, =j) = p(x1,%2,2, =)
Similarly we can show,
a(3,z; = j) = p(x1,x2,%3,23 = J)
a(t: Zt :}) = p(xlr e Xy Zp = })
At any time step the & value is the joint probability of the observations up until that time step and the value of the
latent variable state at that time step.
There is a term P we need to define in a similar fashion for further uses which we will go through later on. The idea is
similar, to break the computations into step wise abstractions and solve them recursively. We define [,
Bt +1,2e41 = J) = P(Xesg) s X7/ 2041 =)
Pt+1z41=))=
M R M
EZH.z:l p(zt+2/zf+l -])p (_2) Ztia

Ztt2

1P(2e+3/Z42)P (Xe43/Ze43) ---Egﬂm p(zr/zr-1)p(xr/27)

Here, for each latent variable state at time steps ahead of (t+1), we can define a recursive computation C for each
state of the latent variable in the following manner,

M
C(Ze42) = p(xt+2/zt+2) z P(Zt+3/Ze+2)C(Zr+4)

Zpya=1

C(zr) i p(xr/zr)
Bt + 1,201 =) = Z P(Ze+2/Zev1 = JIC(2e42)

Ztya=1

III. VITERBI ALGORITHM
The next step is to find the most likely sequence of hidden states given an observation. This means we find a
sequence that best explains the observations.

z' = argmax(p(z/x))
z' = argmax(p(z,x)/p(x))

© 2014-20, IRJCS- All Rights Reserved Page-222

https://www.irjcs.com/archives

.5-"” "_\J‘a"
:':-; ¥ ;":; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
‘i:,_..>' ,.‘-.:l" Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJCS

Since we are finding out the z values, this is equivalent to,
z' = argmax(p(z,x))
We know,

M
p(z,x) = szlB(zlrxl) | | ACzr— 1,2) B (Z¢, x¢)
=2

Instead of looping through all possible sequences to find the one with the maximum probability, we use a dynamic
programming based approach.[4] Let 0(t,j) be the maximum probability that we have visited an optimal sequence of
states for (t-1) time steps and we have arrived at state j in time step t. 0(t,j) will give us the maximum probability of
the sequence of latent variable states up until time step t wherein we are in state j at time step t. We hence have the
recursive relation based on the principle of optimality as is with dynamic programming

o(t,j) = Ezr{qffim{ o(t —1,0)A@)} * By, x(1))

*= max o(T,j
p j={1,..M} (j)

O'(l,j) = ?TJBO,X(l))

We use backtracking to find the best hidden state sequence. Let ¢(t,j) tell us the optimal previous state at time step
(t-1) given that we are in state j at time step t in an optimal sequence of states.

o(t,j) = arg gz?i'f‘_?_‘M}{ o(t —1,1)AG)}

T is the final time step. Initially,

Initially,
$(1,j)=0
Let z'(t) tell us the optimal state at time step t. Therefore,
z*(T) = arg max o(T,i
() gi:{l,...M} ()

We can then iterate backwards and thus find the optimal sequence of states,

z'(T-1) = ¢(T,z* (1))

We can continue this for all previous time steps.

IV. LAGRANGE MULTIPLIERS
Without loss of generality, we consider the constrained minimization problem. We have to minimize f(x) given that
h(x)=0 where x € R", f maps from R" to R and h maps from R"to R™ ,that is, there are m constraints. Here m is less
than n. We consider the Jacobian matrix of the functions corresponding to the constraints, a point in n dimensional
space x* is said to be a regular point if it satisfies all the constraints and the corresponding gradients are linearly
independent.[5]

Dhy (x™) Vhy (x*O7
S P S

DRy (x™) Vh,, ()T
Here each of the m gradients is n dimensional. The set of these constraints define a surface S which is a subset of R",
assuming that the rank of the Jacobian matrix is m, we get the dimensionality of the dimensionality of the surface to
be n-m. Consider a curve x(t) parameterized by t which represents some curve in the Surface S. We mean that for
each value of t in some domain, we will get a corresponding x vector, which will be a function of t. For some
constraint h(x)=0 satisfied on the Surface, we get h(x(t))=0. Since the h value is constant along the curve, we get the

derivative of h with respect to t to be equal to 0. Using the chain rule we get,

I () = D(h(x(t)) * D(x(t)) = Vh(x)"D(x(t)) = 0

We know from calculus that for such a parameterized curve, the derivative of the curve at a point is a tangent vector
to the curve.[5] We thus get that the gradient of the equality constraint function is perpendicular to the tangent
vector for a curve defined in the Surface of regular points. We consequently define the tangent space to be the set of
all vectors which are perpendicular to the gradient vectors of the equality constraint function for a regular point
x*.This is equivalent to the null space of the Jacobian matrix. We define the normal space corresponding to a regular
point x* to be the space spanned by the gradient vectors of the equality constraint function. Indeed we see that the
tangent space vectors are perpendicular to the normal space vectors. Now, let the point x* be a minimizer of f(x). We
can write f(x) as f(x(t)) and set the derivative with respect to t to O(as is the case for a minima) using chain rule.

We get,

VE(x)TD(x" (1) = 0

© 2014-20, IRJCS- All Rights Reserved Page-223

https://www.irjcs.com/archives

l;"'dc "_\J‘a"
:':-; ¥ ;":; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
‘i:,_..>' ,.‘-.:l" Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJCS

We thus see that the tangent vector of a parameterized curve in the Surface of the regular points which is
corresponding to the derivative of x(t) with respect to t is perpendicular to both the gradient of f and the gradient of
h. This is true for all equality constraint functions h, that is, both f and h gradient vectors are perpendicular to the
same set of vectors(the vectors in the tangent space at x*). Therefore the gradient of f(x) lies in the same space as
that spanned by the gradient vectors of the h(x) functions. As that gradient of f(x) lies in the normal space of x*(the
point of the minima) defined by the gradient vectors of all h functions at that point, we can thus express the gradient
of f(x) as a linear combination of the gradients of h.

We define the Lagrangian function as follows,

[(x, D) = f(x) + Th(x)

If we differentiate this with respect to x (taking partial derivatives for each of the dimensions in x) and equate to O
we get the condition that we explained earlier about the gradient vector of being a linear combination of the

gradients of h functions. Similarly, if we differentiate with respect to A and equate to O we get the equality constraint

conditions (h=0). Thus, we have m+n equations for m+n unknowns (m A coefficients for the constraints and n

dimensions in x). We can use Lagrange Multipliers in this manner to solve constrained optimization problems.

V. MAXIMUM LIKELIHOOD ESTIMATE

In applications such as Parts of Speech tagging in NLP, we essentially have the values of the Parts of Speech tags
which act as hidden states. In such a scenario, we can use the maximum likelihood estimate wherein we find the
parameters which maximize the conditional probability of observing the data given the parameters.

Parameters = arg mjlgp(X i1, A B)
A,

We have represented this probability earlier. Here we will do it similarly using the indicator function. Let we have N
observation sequences, M hidden variable states, T time-steps and K observation values(x(t)). The likelihood

becomes,
N M K M M K

T
L= H[H ?Tgl[zl=i)B(i, k)l(zl=i,x1=k) 1_[1_[H HA(E,])I(Zt‘lzi’thj)B G, k)1(2t=f:xt=k)}

n=1 i=1 i=1 t=2 i=1 j=1 k=1

It is easier for us to work with the logarithm of the likelihood and since the log is a monotonically increasing
function, maximizing the likelihood is equivalent to maximizing the log likelihood. The products turn into

summations as is with logarithms and we have the equality constraints for 7 values summing upto 1 and each row of

A and B summing upto 1. This problem is solved with Lagrange multipliers and it turns out that we get the A(j,k)
values to be the count of the state transitions from j to k in our data divided by the count of the state being j. We get

the same frequency counts for B and .
VI. EXPECTATION MAXIMIZATION ALGORITHM

Here we describe the general EM algorithm, which is used in the case of latent variables in optimization problems.
Consider the general log likelihood estimate from earlier. For a scenario where we have n observations,

n
10> = > log (P(xi; 00
i=1

This is the same as marginalizing the joint distribution over z,

N M
16) — Z log(z p(xi,zi50))
i=1

Zj=1

The summation over z; values denotes all the M different values that z; can take. The numbers 1 to M denote the
indices of the values which z; takes. We see that we have a summation inside the logarithm as we have to sum over
the latent variables and we do not have a computationally feasible closed form solution for the log likelihood. What
we do in the EM algorithm is that we find the tight lower bound to the log likelihood in the parameter space and then
maximize that lower bound with respect to the parameters to obtain a new set of parameters. We then again find the
tight lower bound using these new parameters and then optimize that lower bound to obtain another new set of
parameters. We repeat this procedure until convergence. [1] Consider Q to be an arbitrary probability distribution
over z. Multiplying and dividing by Q(z;) inside the log likelihood we get,

© 2014-20, IRJCS- All Rights Reserved Page-224

https://www.irjcs.com/archives

5
:':-; “'; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
‘1:,_..>' .-"' Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJGS

(o> = E oz > 0.2 + (Z522522)

=y=1

We take a close look at the term inside the logarithm. Observe that it is an expectation with respect to the
distribution Q(z;) for the random variable z;. The term being multiplied to Q(z;)-the probability value is a function of
the random variable z for a given x and 0 and can itself be viewed as a Random Variable. We recollect the law of the
Unconscious Statistician and take the expectation. Now, we recollect Jensen’s inequality for a concave function and
notice that the log is a concave function.

log(E(X)) = E(log(X))

Using this inequality in our log likelihood, we get,
N

M
10) = > > Qiz) *log (p(x’“ o 9))

i=1 z;=1
In the Jensen’s in equality, we achieve the equality when the random variable under consideration is a constant. Let
that constant be C.
p(x;,z;;0)
Q; (Z)

QL(Z) - *p(‘xl’leg)

i Qi(z) = =~ Z p(xi2;;0)

=C

Marginalizing over z,

z;=1 ,zi=1
C= p(xuﬁ')
Therefore,
_P(xizi;0)]
Qi (z)) = 0 p(z;/xi;0)

In the E step, we estimate the distribution Q as the posterior probability of z given x for a set of parameters in order
to obtain the tight lower bound of the likelihood function. In M step, for estimated distribution Q based on a set of
parameters, we maximize the lower bound that we have obtained with respect to the parameters to obtain a new set
of parameters for the new time step. This optimization is easier to perform as compared to the original log likelihood

function.
6 = arg rnaxz Z Q;(z;) * log (p(gi;(z“)ﬂ))

i=1 z;=1
We again find the tight lower bound based on these new parameters and repeat the same procedure as be said
before, until convergence. It can see seen that the likelihood values after each iteration are indeed increasing.

VII. BAUM WELCH ALGORITHM

The Baum Welch Algorithm is the EM algorithm applied to HMMs. We will see the mechanism of this algorithm and
go through some intuition for it. We first need to define a few important terms. We have defined the following earlier
along with the matrices A and B,

a(t: Zy :}) = p(xlr e X Zy = })

Bt + 1,21 = J) = D(Kes2s oir X7/ Zt41 =)

We know define, we know that posterior probabilities for the latent variables are used in the EM algorithm.
() =p(ze = 6,241 = j/%)

() =p(ze = 1,241 = J,) /P(%)

The denominator can be obtained by marginalizing over all Zt» Zt+1values. We take a close look at the numerator

and see that it can be defined as follows using the rules of conditional probability,

(e(i,)) =pCey, o xe 20 = 1) ¥ P(2e41 = j/20 = 1) * D(Xer1/Zex1 = J) * P (X2, o0 X7/ 2201 =)
Numerator = a(t,z, = i) * A(i,j) * B(j,x;41) * Bt + L, 211 =)

© 2014-20, IRJCS- All Rights Reserved Page-225

https://www.irjcs.com/archives

.5-"” "_\J‘a"
:':-; ¥ ;":; International Research Journal of Computer Science (IRJCS) ISSN: 2393-9842
‘i:,_.. - ,.‘-.:l" Issue 08, Volume 07 (August 2020) https://www.irjcs.com/archives
IRJCS

M M
Z. (i, j) = Numerator/ E E Numerator

i—=1 j—=1

We have described in the forward backward algorithm how to calculate a and B values. We also define,
M
Ve = pG = i/x) = > &G
J=1

In the E step here, we find gand ¥ for all time steps based on the values of 11, A and B at iteration. We initialize

arbitrary values of 11, A and B for the first iteration based on prior knowledge if any. In the M step, we find the values
of 11, A and B based on the posterior probabilities, which we have found out, as is the case in EM algorithm

applications.
T-17 (s :
_ Lit=1 ¢ (@,)

AGD = I—_‘ll e (D)

T-1 T—1
B k) = (Z ye(i) * 10x = k))/z 20!
t=1 t=1
m; = y1(0)

We get this result as expand the lower bound of the log likelihood based on Q(z) as we did in the EM algorithm, then
substituting the probability values based on our parameters. Solving the constrained optimization problem for 11, A
and B using Lagrange multipliers and substituting the value of Q(z) as p(z/x) in our equations, as we did in the EM
algorithm.

VIII. APPLICATIONS AND CONCLUSION

The Baum Welch algorithm wherein we calculated the posterior probabilities for the latent variables given an
observation sequence can be generalized to n sequences.[1] HMMs used in this manner are powerful models for
sequential data and are still relevant as a framework for unsupervised machine learning. HMMs are used in
automatic speech recognition where we extract spectral features from the audio data after sampling and
quantization[2]. The audio data consists of the sound pressure levels measured across time. The key is that the
Fourier transform[2] gives us the measures of various frequency components in the audio wave and each phone
,which is a basic unit of speech, has a distinct frequency pattern based on how the sound is produced through the
vibration of the vocal cords and the configuration of the vocal tract.[2] HMMs are also used in language models as in
parts of speech tagging as we described earlier and in text classification. In text classification, we train an HMM for
each class of the text based on our training data after using NLP concepts like stemming and lemmatization to
prepare the data. For a test sentence, we find the log likelihood of that sentence for each HMM and we return the
class whose HMM gave us the highest log likelihood. We can also include the prior probabilities for each class. Along
with all this, HMMs are used in tasks such as online character recognition. With the advancement of deep learning
and recurrent neural networks, HMMs are used along with LSTMs for creating hybrid sequence models. With this, we
conclude our study of Hidden Markov Models. In this paper, we understood what an HMM is, how an HMM works, we
understood the underlying concepts behind an HMM and how it is used for various sequence modelling applications.
Thank you.
REFERENCES

Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Daniel Jurafsky and James H.Martin ,Speech and Language Processing, Pearson Education, 2009.
Pietrzykowski, Marcin & Satabun, Wojciech. (2014). Applications of Hidden Markov Model: state-of-the-art.
L. R.Rabiner, B. H. Juang .IEEE ASSP magazine.(1986).An Introduction to Hidden Markov Models.

Edwin Chang and Stanislaw Zak, An introduction to optimization, Wiley, 2013.

] Medhi, Stochastic Processes, New Age International Publishers, 2017.

oW

© 2014-20, IRJCS- All Rights Reserved Page-226

https://www.irjcs.com/archives

